diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 8 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 5 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 5 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 1 | ||||
-rw-r--r-- | src/algebra/syntax.spad.pamphlet | 64 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2154 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 2853 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1336 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9974 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 30826 | ||||
-rw-r--r-- | src/testsuite/interpreter/sf-2893009.input | 4 | ||||
-rw-r--r-- | src/testsuite/interpreter/sf-2893009.spad | 7 |
12 files changed, 23662 insertions, 23575 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index d0cb6a1a..0af59b83 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,11 @@ +2009-11-08 Gabriel Dos Reis <gdr@cs.tamu.edu> + + Fix SF/2893009 + * algebra/syntax.spad.pamphlet (ParameterAst): New. + (HeadAst): Use it. + * testsuite/interpreter/sf-2893009.input: Likewise. + * testsuite/interpreter/sf-2893009.spad: New. + 2009-10-31 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/br-op2.boot (pairlis): Remove. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 4068bdb5..1d773d79 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -879,7 +879,7 @@ axiom_algebra_layer_user = \ LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ - QQUTAST DEFAST MACROAST SPADXPT SPADAST \ + QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \ CTOR IP4ADDR NETCLT INETCLTS \ FMC FMFUN FORTFN FVC FVFUN ASP34 \ @@ -898,7 +898,8 @@ axiom_algebra_layer_user_objects = \ $(OUT)/SASTCAT.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) $(OUT)/LITERAL.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) -$(OUT)/HEADAST.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) +$(OUT)/PARAMAST.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) +$(OUT)/HEADAST.$(FASLEXT): $(OUT)/PARAMAST.$(FASLEXT) $(OUT)/SPADXPT.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) $(OUT)/ATTRAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) $(OUT)/TYPEAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 8c5299fb..f4338dfd 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -958,7 +958,7 @@ axiom_algebra_layer_user = \ LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ - QQUTAST DEFAST MACROAST SPADXPT SPADAST \ + QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \ CTOR IP4ADDR NETCLT INETCLTS \ FMC FMFUN FORTFN FVC FVFUN ASP34 \ @@ -977,7 +977,8 @@ axiom_algebra_layer_user_objects = \ $(OUT)/SASTCAT.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) $(OUT)/LITERAL.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) -$(OUT)/HEADAST.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) +$(OUT)/PARAMAST.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) +$(OUT)/HEADAST.$(FASLEXT): $(OUT)/PARAMAST.$(FASLEXT) $(OUT)/SPADXPT.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) $(OUT)/ATTRAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) $(OUT)/TYPEAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 9b3fb41c..25bf5eef 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -302,6 +302,7 @@ (|Palette| . PALETTE) (|PartialFraction| . PFR) (|PatternFunctions2| . PATTERN2) + (|ParameterAst| . PARAMAST) (|ParametricPlaneCurve| . PARPCURV) (|ParametricSpaceCurve| . PARSCURV) (|ParametricSurface| . PARSURF) diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet index 1511b02f..924767d3 100644 --- a/src/algebra/syntax.spad.pamphlet +++ b/src/algebra/syntax.spad.pamphlet @@ -574,6 +574,55 @@ Identifier(): Public == Private where @ +\subsection{The ParameterAst domain} + +<<domain PARAMAST ParameterAst>>= +)abbrev domain PARAMAST ParameterAst +++ Author: Gabriel Dos Reis +++ Date Created: November 08, 2009 +++ Date Last Modified: November 08, 2009 +++ Description: +++ Representation of parameters to functions or constructors. +++ For the most part, they are Identifiers. However, in very +++ cases, they are "flags", e.g. string literals. +ParameterAst(): Public == Private where + Public == Join(SpadSyntaxCategory, UnionType) with + case: (%, [| Identifier |]) -> Boolean + ++ \spad{x case Identifier} if the parameter AST object + ++ \spad{x} designates an \spadtype{Identifier}. + autoCoerce: % -> Identifier + ++ \spad{autoCoerce(x)@Identifier} implicitly coerce the + ++ object \spad{x} to \spadtype{Identifier}. This function + ++ is left at the discretion of the compiler. + case: (%, [| String |]) -> Boolean + ++ \spad{x case String} if the parameter AST object + ++ \spad{x} designates a flag. + autoCoerce: % -> String + ++ \spad{autoCoerce(x)@String} implicitly coerce the + ++ object \spad{x} to \spadtype{String}. This function + ++ is left at the discretion of the compiler. + Private == add + x case Identifier == + SYMBOLP(x)$Foreign(Builtin) + + autoCoerce(x: %): Identifier == + x : Identifier + + x case String == + STRINGP(x)$Foreign(Builtin) + + autoCoerce(x: %): String == + x : String + + x = y == + EQUAL(x,y)$Foreign(Builtin) + + coerce(x: %): OutputForm == + case x is + y@String => y::OutputForm + otherwise => x pretend OutputForm +@ + \subsection{The HeadAst domain} @@ -584,22 +633,22 @@ import List Identifier )abbrev domain HEADAST HeadAst ++ Author: Gabriel Dos Reis ++ Date Created: November 10, 2007 -++ Date Last Modified: September 21, 2008 +++ Date Last Modified: November 08, 2009 ++ Description: This domain represents the header of a definition. HeadAst(): Public == Private where Public == SpadSyntaxCategory with - headAst: (Identifier,List Identifier) -> % + headAst: (Identifier,List ParameterAst) -> % ++ headAst(f,[x1,..,xn]) constructs a function definition header. name: % -> Identifier ++ name(h) returns the name of the operation defined defined. - parameters: % -> List Identifier + parameters: % -> List ParameterAst ++ parameters(h) gives the parameters specified in the ++ definition header `h'. Private == add - Rep == List Identifier - headAst(op,args) == per cons(op,args) + Rep == Pair(Identifier, List ParameterAst) + headAst(op,args) == per pair(op,args) name h == first rep h - parameters h == rest rep h + parameters h == second rep h coerce(x: %): OutputForm == elt('HeadAst::OutputForm, ['name::OutputForm = name(x)::OutputForm, @@ -1699,7 +1748,7 @@ SpadAst(): SpadAstExports() == add \section{License} <<license>>= ---Copyright (C) 2007-2008, Gabriel Dos Reis. +--Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without @@ -1742,6 +1791,7 @@ SpadAst(): SpadAstExports() == add <<category SPADXPT SpadAstExports>> <<domain LITERAL Literal>> +<<domain PARAMAST ParameterAst>> <<domain HEADAST HeadAst>> <<domain TYPEAST TypeAst>> <<domain ATTRAST AttributeAst>> diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 50bb40ed..ee6ecd1d 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2262676 . 3465761899) +(2263553 . 3466723534) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4414 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4410 . T) (-4415 . T) (-4409 . T)) +((-4415 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4411 . T) (-4416 . T) (-4410 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3867) +(-32 R -3879) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) +((|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4417))) +((|HasAttribute| |#1| (QUOTE -4418))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3867 UP UPUP -2542) +(-40 -3879 UP UPUP -2211) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4410 |has| (-410 |#2|) (-365)) (-4415 |has| (-410 |#2|) (-365)) (-4409 |has| (-410 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2797 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2797 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2797 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2797 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-41 R -3867) +((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2800 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2800 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2800 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) +(-41 R -3879) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -433) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -433) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-308)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4414 |has| |#1| (-559)) (-4412 . T) (-4411 . T)) +((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T)) ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4417 . T) (-4418 . T)) -((-2797 (-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|))))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|))))))) +((-4418 . T) (-4419 . T)) +((-2800 (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|))))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4414 . T)) +((-4415 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3867) +(-54 |Base| R -3879) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-61 -1988) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-61 -1996) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -1988) +(-62 -1996) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -1988) +(-63 -1996) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -1988) +(-64 -1996) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -1988) +(-65 -1996) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -1988) +(-66 -1996) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -1988) +(-67 -1996) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1988) +(-68 -1996) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -1988) +(-69 -1996) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -1988) +(-70 -1996) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -1988) +(-71 -1996) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -1988) +(-72 -1996) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -1988) +(-73 -1996) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -1988) +(-74 -1996) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1988) +(-77 -1996) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -1988) +(-78 -1996) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -1988) +(-79 -1996) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1988) +(-80 -1996) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1988) +(-81 -1996) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -1988) +(-82 -1996) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1988) +(-83 -1996) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1988) +(-84 -1996) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1988) +(-85 -1996) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1988) +(-86 -1996) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1988) +(-87 -1996) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -1988) +(-88 -1996) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -1988) +(-89 -1996) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-365)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4417 . T)) +((-4418 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4417 . T) ((-4419 "*") . T) (-4418 . T) (-4414 . T) (-4412 . T) (-4411 . T) (-4410 . T) (-4415 . T) (-4409 . T) (-4408 . T) (-4407 . T) (-4406 . T) (-4405 . T) (-4413 . T) (-4416 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4404 . T)) +((-4418 . T) ((-4420 "*") . T) (-4419 . T) (-4415 . T) (-4413 . T) (-4412 . T) (-4411 . T) (-4416 . T) (-4410 . T) (-4409 . T) (-4408 . T) (-4407 . T) (-4406 . T) (-4414 . T) (-4417 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4405 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4414 . T)) +((-4415 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4419 "*")))) +((|HasAttribute| |#1| (QUOTE (-4420 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4417 . T)) +((-4418 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4418 . T)) +((-4419 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2797 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1152))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1101))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1101))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -388,22 +388,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -3867 UP) +(-115 -3879 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-910))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1023))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2797 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1152))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-910)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-911))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1024))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2800 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1153))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4418))) +((|HasAttribute| |#1| (QUOTE -4419))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,20 +430,20 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1101))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2797 (-12 (|HasCategory| (-129) (QUOTE (-1101))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1101)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1101))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1101))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2800 (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -466,13 +466,13 @@ NIL NIL (-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4419 "*") . T)) +(((-4420 "*") . T)) NIL -(-135 |minix| -2609 S T$) +(-135 |minix| -2612 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -2609 R) +(-136 |minix| -2612 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -494,8 +494,8 @@ NIL NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4417 . T) (-4407 . T) (-4418 . T)) -((-2797 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-4418 . T) (-4408 . T) (-4419 . T)) +((-2800 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -510,7 +510,7 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4414 . T)) +((-4415 . T)) NIL (-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -518,9 +518,9 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4414 . T)) +((-4415 . T)) NIL -(-148 -3867 UP UPUP) +(-148 -3879 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -531,14 +531,14 @@ NIL (-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasAttribute| |#1| (QUOTE -4417))) +((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasAttribute| |#1| (QUOTE -4418))) (-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4412 . T) (-4411 . T) (-4414 . T)) +((-4413 . T) (-4412 . T) (-4415 . T)) NIL (-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -3867) +(-158 R -3879) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -591,10 +591,10 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1202))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559)))) +((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1203))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasAttribute| |#2| (QUOTE -4417)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4410 -2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3046 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 -2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4417 |has| |#1| (-6 -4417)) (-3056 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,8 +606,8 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4410 -2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3046 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1202)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-910))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-910))))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1202)))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-1202)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4416)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177))))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-351))))) +((-4411 -2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4417 |has| |#1| (-6 -4417)) (-3056 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1203)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1203)))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1203)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4417)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-351))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -618,7 +618,7 @@ NIL NIL (-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-173) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -626,7 +626,7 @@ NIL NIL (-174 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4419 "*") . T) (-4410 . T) (-4415 . T) (-4409 . T) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") . T) (-4411 . T) (-4416 . T) (-4410 . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-175) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -643,7 +643,7 @@ NIL (-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-953 |#2|) (LIST (QUOTE -887) (|devaluate| |#1|)))) +((|HasCategory| (-954 |#2|) (LIST (QUOTE -888) (|devaluate| |#1|)))) (-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -680,7 +680,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -3867) +(-188 R -3879) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,23 +788,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -3867 UP UPUP R) +(-215 -3879 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -3867 FP) +(-216 -3879 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2797 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1152))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -3867) +(-219 R -3879) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -818,19 +818,19 @@ NIL NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4414 . T)) +((-4415 . T)) NIL -(-224 R -3867) +(-224 R -3879) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3040 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -838,23 +838,23 @@ NIL NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-229 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4418 . T)) +((-4419 . T)) NIL (-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233)))) +((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4414 . T)) +((-4415 . T)) NIL (-232 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -862,36 +862,36 @@ NIL NIL (-233) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4414 . T)) +((-4415 . T)) NIL (-234 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4417))) +((|HasAttribute| |#1| (QUOTE -4418))) (-235 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4418 . T)) +((-4419 . T)) NIL (-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -2609 R) +(-237 S -2612 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4414)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-1101)))) -(-238 -2609 R) +((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4415)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) +(-238 -2612 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4411 |has| |#2| (-1050)) (-4412 |has| |#2| (-1050)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) +((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T)) NIL -(-239 -2609 A B) +(-239 -2612 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -2609 R) +(-240 -2612 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4411 |has| |#2| (-1050)) (-4412 |has| |#2| (-1050)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2797 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-2797 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -902,7 +902,7 @@ NIL NIL (-243) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4410 . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-244 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -910,16 +910,16 @@ NIL NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-559)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -934,23 +934,23 @@ NIL NIL (-251 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4414 -2797 (-1664 (|has| |#4| (-1050)) (|has| |#4| (-233))) (-1664 (|has| |#4| (-1050)) (|has| |#4| (-901 (-1177)))) (|has| |#4| (-6 -4414)) (-1664 (|has| |#4| (-1050)) (|has| |#4| (-640 (-567))))) (-4411 |has| |#4| (-1050)) (-4412 |has| |#4| (-1050)) ((-4419 "*") |has| |#4| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2797 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1050)))) (-2797 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2797 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2797 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1050)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1050))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (-2797 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2797 (|HasCategory| |#4| (QUOTE (-1050))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1101)))) (-2797 (|HasAttribute| |#4| (QUOTE -4414)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) +((-4415 -2800 (-1667 (|has| |#4| (-1051)) (|has| |#4| (-233))) (-1667 (|has| |#4| (-1051)) (|has| |#4| (-902 (-1178)))) (|has| |#4| (-6 -4415)) (-1667 (|has| |#4| (-1051)) (|has| |#4| (-640 (-567))))) (-4412 |has| |#4| (-1051)) (-4413 |has| |#4| (-1051)) ((-4420 "*") |has| |#4| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2800 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102)))) (-2800 (|HasAttribute| |#4| (QUOTE -4415)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) (-252 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4414 -2797 (-1664 (|has| |#3| (-1050)) (|has| |#3| (-233))) (-1664 (|has| |#3| (-1050)) (|has| |#3| (-901 (-1177)))) (|has| |#3| (-6 -4414)) (-1664 (|has| |#3| (-1050)) (|has| |#3| (-640 (-567))))) (-4411 |has| |#3| (-1050)) (-4412 |has| |#3| (-1050)) ((-4419 "*") |has| |#3| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2797 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2797 (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1101)))) (-2797 (|HasAttribute| |#3| (QUOTE -4414)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +((-4415 -2800 (-1667 (|has| |#3| (-1051)) (|has| |#3| (-233))) (-1667 (|has| |#3| (-1051)) (|has| |#3| (-902 (-1178)))) (|has| |#3| (-6 -4415)) (-1667 (|has| |#3| (-1051)) (|has| |#3| (-640 (-567))))) (-4412 |has| |#3| (-1051)) (-4413 |has| |#3| (-1051)) ((-4420 "*") |has| |#3| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2800 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-2800 (|HasAttribute| |#3| (QUOTE -4415)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-253 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-233)))) (-254 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL (-255 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL (-256) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -990,8 +990,8 @@ NIL NIL (-265 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-266 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1036,11 +1036,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-277 R -3867) +(-277 R -3879) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-278 R -3867) +(-278 R -3879) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1059,10 +1059,10 @@ NIL (-282 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101)))) +((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102)))) (-283 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4418 . T)) +((-4419 . T)) NIL (-284 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1083,18 +1083,18 @@ NIL (-288 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4418))) +((|HasAttribute| |#1| (QUOTE -4419))) (-289 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-290 S R |Mod| -3269 -3523 |exactQuo|) +(-290 S R |Mod| -1591 -4135 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-291) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4410 . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-292) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1110,21 +1110,21 @@ NIL NIL (-295 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4414 -2797 (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4411 |has| |#1| (-1050)) (-4412 |has| |#1| (-1050))) -((|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-1101)))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2797 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-727)))) +((-4415 -2800 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4412 |has| |#1| (-1051)) (-4413 |has| |#1| (-1051))) +((|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-727)))) (-296 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) (-297) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-298 -3867 S) +(-298 -3879 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-299 E -3867) +(-299 E -3879) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1139,7 +1139,7 @@ NIL (-302 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1050)))) +((|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1051)))) (-303) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1162,7 +1162,7 @@ NIL NIL (-308) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-309 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1172,7 +1172,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-311 -3867) +(-311 -3879) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1186,8 +1186,8 @@ NIL NIL (-314 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-1023))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2797 (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-1152))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -1253) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1253) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1253) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1253) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| $ (QUOTE (-145)))) (-2797 (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1253 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| $ (QUOTE (-145)))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-1024))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2800 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-1153))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))) (-2800 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))))) (-315 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1198,9 +1198,9 @@ NIL NIL (-317 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4414 -2797 (-1664 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2797 (-1664 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1050)) (|has| |#1| (-476)))) (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) ((-4419 "*") |has| |#1| (-559)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4409 |has| |#1| (-559))) -((-2797 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (QUOTE (-21))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2797 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2797 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2797 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2797 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567))))) -(-318 R -3867) +((-4415 -2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1051)) (|has| |#1| (-476)))) (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) ((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-559)) (-4410 |has| |#1| (-559))) +((-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2800 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2800 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) +(-318 R -3879) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1210,8 +1210,8 @@ NIL NIL (-320 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) (-321 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1222,7 +1222,7 @@ NIL NIL (-323 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) ((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-793)))) (-324 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1238,19 +1238,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172)))) (-327 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-328 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-329 S -3867) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-329 S -3879) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-370)))) -(-330 -3867) +(-330 -3879) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-331) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1272,54 +1272,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-336 S -3867 UP UPUP R) +(-336 S -3879 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-337 -3867 UP UPUP R) +(-337 -3879 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-338 -3867 UP UPUP R) +(-338 -3879 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-339 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-340 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-341 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567))))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) (-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-343 S -3867 UP UPUP) +(-343 S -3879 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) -(-344 -3867 UP UPUP) +(-344 -3879 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4410 |has| (-410 |#2|) (-365)) (-4415 |has| (-410 |#2|) (-365)) (-4409 |has| (-410 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) (-346 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-348 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1334,33 +1334,33 @@ NIL NIL (-351) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-352 R UP -3867) +(-352 R UP -3879) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-353 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) (-354 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-355 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-356 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) (-357 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-358 -3867 GF) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-358 -3879 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1368,21 +1368,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-360 -3867 FP FPP) +(-360 -3879 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-361 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-362 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-363 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4414 . T)) +((-4415 . T)) NIL (-364 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1390,7 +1390,7 @@ NIL NIL (-365) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-366 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1406,7 +1406,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-559)))) (-369 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4414 |has| |#1| (-559)) (-4412 . T) (-4411 . T)) +((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T)) NIL (-370) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1418,7 +1418,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365)))) (-372 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL (-373 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1427,14 +1427,14 @@ NIL (-374 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101)))) +((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102)))) (-375 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4417 . T)) +((-4418 . T)) NIL (-376 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T)) NIL (-377 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1446,7 +1446,7 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-379 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4414 . T)) +((-4415 . T)) NIL (-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1454,7 +1454,7 @@ NIL NIL (-381) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4400 . T) (-4408 . T) (-3040 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4401 . T) (-4409 . T) (-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-382 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1462,11 +1462,11 @@ NIL NIL (-383 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-384 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL (-385) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1478,7 +1478,7 @@ NIL NIL (-387 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-388 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1490,7 +1490,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-851)))) (-390) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-391) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1502,13 +1502,13 @@ NIL NIL (-393 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL (-394) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-395 -3867 UP UPUP R) +(-395 -3879 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1532,11 +1532,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-401 -1988 |returnType| -4187 |symbols|) +(-401 -1996 |returnType| -4165 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-402 -3867 UP) +(-402 -3879 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1550,15 +1550,15 @@ NIL NIL (-405) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-406 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4408))) +((|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4409))) (-407) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3040 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-408 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1570,20 +1570,20 @@ NIL NIL (-410 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4404 -12 (|has| |#1| (-6 -4415)) (|has| |#1| (-455)) (|has| |#1| (-6 -4404))) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-821))) (-2797 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1152))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +((-4405 -12 (|has| |#1| (-6 -4416)) (|has| |#1| (-455)) (|has| |#1| (-6 -4405))) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-821))) (-2800 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4416)) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-411 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-412 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL (-413 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) +((|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-414 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1592,14 +1592,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-416 R -3867 UP A) +(-416 R -3879 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4414 . T)) +((-4415 . T)) NIL -(-417 R -3867 UP A |ibasis|) +(-417 R -3879 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1039) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1040) (|devaluate| |#2|)))) (-418 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1610,12 +1610,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-420 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4414 |has| |#1| (-559)) (-4412 . T) (-4411 . T)) +((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T)) NIL (-421 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1221))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455)))) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1222))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455)))) (-422 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1642,37 +1642,37 @@ NIL ((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370)))) (-428 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4417 . T) (-4407 . T) (-4418 . T)) +((-4418 . T) (-4408 . T) (-4419 . T)) NIL -(-429 R -3867) +(-429 R -3879) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-430 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4404 -12 (|has| |#1| (-6 -4404)) (|has| |#2| (-6 -4404))) (-4411 . T) (-4412 . T) (-4414 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4404)))) -(-431 R -3867) +((-4405 -12 (|has| |#1| (-6 -4405)) (|has| |#2| (-6 -4405))) (-4412 . T) (-4413 . T) (-4415 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#2| (QUOTE -4405)))) +(-431 R -3879) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-432 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) +((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-433 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4414 -2797 (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) ((-4419 "*") |has| |#1| (-559)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4409 |has| |#1| (-559))) +((-4415 -2800 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) ((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-559)) (-4410 |has| |#1| (-559))) NIL -(-434 R -3867) +(-434 R -3879) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-435 R -3867) +(-435 R -3879) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-436 R -3867) +(-436 R -3879) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1680,10 +1680,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-438 R -3867 UP) +(-438 R -3879 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-48))))) (-439) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1712,7 +1712,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-446 R UP -3867) +(-446 R UP -3879) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1750,16 +1750,16 @@ NIL NIL (-455) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-456 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4414 |has| (-410 (-953 |#1|)) (-559)) (-4412 . T) (-4411 . T)) -((|HasCategory| (-410 (-953 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-410 (-953 |#1|)) (QUOTE (-559)))) +((-4415 |has| (-410 (-954 |#1|)) (-559)) (-4413 . T) (-4412 . T)) +((|HasCategory| (-410 (-954 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-410 (-954 |#1|)) (QUOTE (-559)))) (-457 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-559)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) (-458 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1786,7 +1786,7 @@ NIL NIL (-464 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL (-465 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1794,8 +1794,8 @@ NIL NIL (-466 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) (-467 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1824,7 +1824,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-474 |lv| -3867 R) +(-474 |lv| -3879 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1834,23 +1834,23 @@ NIL NIL (-476) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4414 . T)) +((-4415 . T)) NIL (-477 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) (-478 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101)))) +((-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102)))) (-479 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) (-480) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-481) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1858,29 +1858,29 @@ NIL NIL (-482 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) (-483) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-484 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-559)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-485 -2609 S) +(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-485 -2612 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4411 |has| |#2| (-1050)) (-4412 |has| |#2| (-1050)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2797 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-2797 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-486) -((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) +((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-487 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-488 -3867 UP UPUP R) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-488 -3879 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1890,12 +1890,12 @@ NIL NIL (-490) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2797 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1152))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) (-491 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4417)) (|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) +((|HasAttribute| |#1| (QUOTE -4418)) (|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-492 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1916,34 +1916,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-497 -3867 UP |AlExt| |AlPol|) +(-497 -3879 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-498) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) (-499 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-500 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-501 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-502 R UP -3867) +(-502 R UP -3879) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-503 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1101))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1101))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) (-504 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1956,10 +1956,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-507 -3867 |Expon| |VarSet| |DPoly|) +(-507 -3879 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1177))))) +((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1178))))) (-508 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2006,36 +2006,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-793)))) (-519 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-520) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-521 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145)))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145)))) (-522 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-523 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-524 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4418))) +((|HasAttribute| |#3| (QUOTE -4419))) (-525 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4418))) +((|HasAttribute| |#7| (QUOTE -4419))) (-526 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-527) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2068,7 +2068,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-535 K -3867 |Par|) +(-535 K -3879 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2092,7 +2092,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-541 K -3867 |Par|) +(-541 K -3879 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2122,7 +2122,7 @@ NIL NIL (-548) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-549) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2142,13 +2142,13 @@ NIL NIL (-553 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-554 R -3867) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +(-554 R -3879) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-555 R0 -3867 UP UPUP R) +(-555 R0 -3879 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2158,7 +2158,7 @@ NIL NIL (-557 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3040 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-3050 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-558 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2166,9 +2166,9 @@ NIL NIL (-559) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-560 R -3867) +(-560 R -3879) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2180,7 +2180,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-563 R -3867 L) +(-563 R -3879 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|)))) @@ -2188,31 +2188,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-565 -3867 UP UPUP R) +(-565 -3879 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-566 -3867 UP) +(-566 -3879 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-567) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4399 . T) (-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4400 . T) (-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-568) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-569 R -3867 L) +(-569 R -3879 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|)))) -(-570 R -3867) +(-570 R -3879) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1140)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-630))))) -(-571 -3867 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-630))))) +(-571 -3879 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2220,27 +2220,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-573 -3867) +(-573 -3879) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-574 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3040 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-3050 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-575) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-576 R -3867) +(-576 R -3879) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559)))) -(-577 -3867 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559)))) +(-577 -3879 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-578 R -3867) +(-578 R -3879) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2262,28 +2262,28 @@ NIL NIL (-583 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-584 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) (-585) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-586 R -3867) +(-586 R -3879) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-587 E -3867) +(-587 E -3879) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-588 -3867) +(-588 -3879) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4412 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-1177))))) +((-4413 . T) (-4412 . T)) +((|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1178))))) (-589 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2310,19 +2310,19 @@ NIL NIL (-595 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2797 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1101)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2800 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-596 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-597 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567)))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567)))))) (-598 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4419 "*") |has| |#1| (-559)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-559)))) (-599 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) @@ -2332,7 +2332,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-601 R -3867 FG) +(-601 R -3879 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2342,12 +2342,12 @@ NIL NIL (-603 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-604 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#3| (QUOTE (-1101)))) +((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#3| (QUOTE (-1102)))) (-605 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2362,19 +2362,19 @@ NIL NIL (-608 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4414 -2797 (-1664 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4412 . T) (-4411 . T)) -((-2797 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +((-4415 -2800 (-1667 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4413 . T) (-4412 . T)) +((-2800 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-609 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (QUOTE (-1159))) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| (-1159) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| (-1160) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) (-610 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-611 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4418 . T)) +((-4419 . T)) NIL (-612 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2383,7 +2383,7 @@ NIL (-613 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) +((|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-614 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2392,7 +2392,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-616 -3867 UP) +(-616 -3879 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2414,20 +2414,20 @@ NIL NIL (-621 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4414 . T)) +((-4415 . T)) NIL (-622 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-849)))) -(-623 R -3867) +(-623 R -3879) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-624 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4410 . T) (-4414 . T)) -((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) +((-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4411 . T) (-4415 . T)) +((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-625 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2442,7 +2442,7 @@ NIL NIL (-628 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4414 . T)) +((-4415 . T)) NIL (-629 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2452,30 +2452,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-631 R -3867) +(-631 R -3879) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-632 |lv| -3867) +(-632 |lv| -3879) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-633) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (QUOTE (-1159))) (LIST (QUOTE |:|) (QUOTE -4232) (QUOTE (-52))))))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-52) (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1159) (QUOTE (-851))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (QUOTE (-1101)))) +((-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1160) (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102)))) (-634 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-635 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T)) NIL (-636 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4414 -2797 (-1664 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4412 . T) (-4411 . T)) -((-2797 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +((-4415 -2800 (-1667 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4413 . T) (-4412 . T)) +((-2800 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-637 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2487,10 +2487,10 @@ NIL (-639 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1653 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) +((-1657 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) (-640 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4414 . T)) +((-4415 . T)) NIL (-641 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) @@ -2510,8 +2510,8 @@ NIL NIL (-645 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-646 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2522,8 +2522,8 @@ NIL NIL (-648 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-649 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2535,39 +2535,39 @@ NIL (-651 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4418))) +((|HasAttribute| |#1| (QUOTE -4419))) (-652 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-653 R -3867 L) +(-653 R -3879 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-654 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) (-655 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) (-656 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-657 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-658 -3867 UP) +(-658 -3879 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-659 A -2167) +(-659 A -4074) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) (-660 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2582,7 +2582,7 @@ NIL NIL (-663 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) ((|HasCategory| |#1| (QUOTE (-792)))) (-664 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2590,7 +2590,7 @@ NIL NIL (-665 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T)) ((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172)))) (-666 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2598,13 +2598,13 @@ NIL NIL (-667 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-668 -3867) +(-668 -3879) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-669 -3867 |Row| |Col| M) +(-669 -3879 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2614,8 +2614,8 @@ NIL NIL (-671 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4414 . T) (-4417 . T) (-4411 . T) (-4412 . T)) -((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2797 (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((-4415 . T) (-4418 . T) (-4412 . T) (-4413 . T)) +((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2800 (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-672) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2635,7 +2635,7 @@ NIL (-676 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-677) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2679,10 +2679,10 @@ NIL (-687 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559)))) +((|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559)))) (-688 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL (-689 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2690,8 +2690,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559)))) (-690 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4417 . T) (-4418 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4418 . T) (-4419 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-691 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2700,7 +2700,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-693 S -3867 FLAF FLAS) +(-693 S -3879 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2710,11 +2710,11 @@ NIL NIL (-695) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4410 . T) (-4415 |has| (-700) (-365)) (-4409 |has| (-700) (-365)) (-3046 . T) (-4416 |has| (-700) (-6 -4416)) (-4413 |has| (-700) (-6 -4413)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2797 (|HasCategory| (-700) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-700) (QUOTE (-233))) (-2797 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (-2797 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1023))) (|HasCategory| (-700) (QUOTE (-1202))) (-12 (|HasCategory| (-700) (QUOTE (-1003))) (|HasCategory| (-700) (QUOTE (-1202)))) (-2797 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-910))))) (-2797 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-910)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-910))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1061))) (|HasCategory| (-700) (QUOTE (-1202)))) (|HasCategory| (-700) (QUOTE (-1061))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910))) (-2797 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2797 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4416)) (|HasAttribute| (-700) (QUOTE -4413)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-351))))) +((-4411 . T) (-4416 |has| (-700) (-365)) (-4410 |has| (-700) (-365)) (-3056 . T) (-4417 |has| (-700) (-6 -4417)) (-4414 |has| (-700) (-6 -4414)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2800 (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-700) (QUOTE (-233))) (-2800 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2800 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1024))) (|HasCategory| (-700) (QUOTE (-1203))) (-12 (|HasCategory| (-700) (QUOTE (-1004))) (|HasCategory| (-700) (QUOTE (-1203)))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-1203)))) (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4417)) (|HasAttribute| (-700) (QUOTE -4414)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-351))))) (-696 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4418 . T)) +((-4419 . T)) NIL (-697 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2724,13 +2724,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-699 OV E -3867 PG) +(-699 OV E -3879 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-700) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3040 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-701 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2738,7 +2738,7 @@ NIL NIL (-702) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4416 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4417 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-703 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2756,7 +2756,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-707 S -2636 I) +(-707 S -2637 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2766,7 +2766,7 @@ NIL NIL (-709 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL (-710 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2776,25 +2776,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-712 R |Mod| -3269 -3523 |exactQuo|) +(-712 R |Mod| -1591 -4135 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-713 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1152))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-714 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-715 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-716 R |Mod| -3269 -3523 |exactQuo|) +(-716 R |Mod| -1591 -4135 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4414 . T)) +((-4415 . T)) NIL (-717 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2802,11 +2802,11 @@ NIL NIL (-718 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL -(-719 -3867) +(-719 -3879) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4414 . T)) +((-4415 . T)) NIL (-720 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2830,7 +2830,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) (-725 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4410 |has| |#1| (-365)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 |has| |#1| (-365)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-726 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2840,7 +2840,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-728 -3867 UP) +(-728 -3879 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2858,8 +2858,8 @@ NIL NIL (-732 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-559)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) (-733 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2874,16 +2874,16 @@ NIL NIL (-736 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-851)))) (-737 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4407 . T) (-4418 . T)) +((-4408 . T) (-4419 . T)) NIL (-738 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4417 . T) (-4407 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4418 . T) (-4408 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-739) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL @@ -2894,7 +2894,7 @@ NIL NIL (-741 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4412 . T) (-4411 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL (-742 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2910,7 +2910,7 @@ NIL NIL (-745 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL (-746) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -2992,11 +2992,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-766 -3867) +(-766 -3879) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-767 P -3867) +(-767 P -3879) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3004,7 +3004,7 @@ NIL NIL NIL NIL -(-769 UP -3867) +(-769 UP -3879) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3018,9 +3018,9 @@ NIL NIL (-772) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4419 "*") . T)) +(((-4420 "*") . T)) NIL -(-773 R -3867) +(-773 R -3879) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3040,7 +3040,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-778 -3867 |ExtF| |SUEx| |ExtP| |n|) +(-778 -3879 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3054,28 +3054,28 @@ NIL NIL (-781 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))) (-1653 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))) (-1653 (|HasCategory| |#1| (QUOTE (-548)))) (-1653 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))) (-1653 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1653 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1177)))) (-1653 (|HasCategory| |#1| (LIST (QUOTE -993) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (QUOTE (-548)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-782 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-783 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1152))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-784 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-785 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL (-786 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-172)))) +((-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-172)))) (-787) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL @@ -3119,28 +3119,28 @@ NIL (-797 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370)))) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370)))) (-798 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-799 -2797 R OS S) +(-799 -2800 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-800 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2797 (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2800 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-801) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-802 R -3867 L) +(-802 R -3879 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-803 R -3867) +(-803 R -3879) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3148,7 +3148,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-805 R -3867) +(-805 R -3879) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3156,11 +3156,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-807 -3867 UP UPUP R) +(-807 -3879 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-808 -3867 UP L LQ) +(-808 -3879 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3168,41 +3168,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-810 -3867 UP L LQ) +(-810 -3879 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-811 -3867 UP) +(-811 -3879 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-812 -3867 L UP A LO) +(-812 -3879 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-813 -3867 UP) +(-813 -3879 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-814 -3867 LO) +(-814 -3879 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-815 -3867 LODO) +(-815 -3879 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-816 -2609 S |f|) +(-816 -2612 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4411 |has| |#2| (-1050)) (-4412 |has| |#2| (-1050)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2797 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177))))) (-2797 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1101)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-817 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1177)) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1177)) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1177)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1177)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1177)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-818 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4419 "*") |has| |#2| (-365)) (-4410 |has| |#2| (-365)) (-4415 |has| |#2| (-365)) (-4409 |has| |#2| (-365)) (-4414 . T) (-4412 . T) (-4411 . T)) +(((-4420 "*") |has| |#2| (-365)) (-4411 |has| |#2| (-365)) (-4416 |has| |#2| (-365)) (-4410 |has| |#2| (-365)) (-4415 . T) (-4413 . T) (-4412 . T)) ((|HasCategory| |#2| (QUOTE (-365)))) (-819 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3214,7 +3214,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-851)))) (-821) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-822) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3242,7 +3242,7 @@ NIL NIL (-828 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) (-829) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3254,7 +3254,7 @@ NIL NIL (-831 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4417 . T) (-4407 . T) (-4418 . T)) +((-4418 . T) (-4408 . T) (-4419 . T)) NIL (-832) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3266,8 +3266,8 @@ NIL NIL (-834 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4414 |has| |#1| (-849))) -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2797 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) +((-4415 |has| |#1| (-849))) +((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) (-835 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3278,7 +3278,7 @@ NIL NIL (-837 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) (-838) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3306,13 +3306,13 @@ NIL NIL (-844 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4414 |has| |#1| (-849))) -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2797 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) +((-4415 |has| |#1| (-849))) +((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) (-845) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-846 -2609 S) +(-846 -2612 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3326,7 +3326,7 @@ NIL NIL (-849) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4414 . T)) +((-4415 . T)) NIL (-850 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3342,20 +3342,20 @@ NIL ((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172)))) (-853 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL (-854 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) -(-855 R |sigma| -3120) +(-855 R |sigma| -1781) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-856 |x| R |sigma| -3120) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +(-856 |x| R |sigma| -1781) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365)))) +((-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365)))) (-857 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL @@ -3398,7 +3398,7 @@ NIL NIL (-867 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (-868 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3410,24 +3410,24 @@ NIL NIL (-870 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-871 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL (-872 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-871 |#1|) (QUOTE (-910))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1023))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2797 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1152))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-910)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-871 |#1|) (QUOTE (-911))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1024))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2800 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1153))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))))) (-873 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-821))) (-2797 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1152))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (-2800 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1153))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) (-874 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-875) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3436,1681 +3436,1685 @@ NIL ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-877 CF1 CF2) +(-877) +((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) +NIL +NIL +(-878 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-878 |ComponentFunction|) +(-879 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-879 CF1 CF2) +(-880 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-880 |ComponentFunction|) +(-881 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-881) +(-882) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-882 CF1 CF2) +(-883 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-883 |ComponentFunction|) +(-884 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-884) +(-885) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-885 R) +(-886 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-886 R S L) +(-887 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-887 S) +(-888 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-888 |Base| |Subject| |Pat|) +(-889 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1653 (|HasCategory| |#2| (QUOTE (-1050)))) (-1653 (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (-1653 (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177))))) -(-889 R A B) +((-12 (-1657 (|HasCategory| |#2| (QUOTE (-1051)))) (-1657 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (-1657 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178))))) +(-890 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-890 R S) +(-891 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-891 R -2636) +(-892 R -2637) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-892 R S) +(-893 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-893 R) +(-894 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-894 |VarSet|) +(-895 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-895 UP R) +(-896 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-896) +(-897) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-897 UP -3867) +(-898 UP -3879) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-898) +(-899) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-899) +(-900) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-900 A S) +(-901 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-901 S) +(-902 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4414 . T)) +((-4415 . T)) NIL -(-902 S) +(-903 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-903 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-904 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-904 S) +(-905 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4414 . T)) +((-4415 . T)) NIL -(-905 S) +(-906 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-906 S) +(-907 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4414 . T)) -((-2797 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) -(-907 R E |VarSet| S) +((-4415 . T)) +((-2800 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) +(-908 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-908 R S) +(-909 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-909 S) +(-910 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-910) +(-911) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-911 |p|) +(-912 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) -(-912 R0 -3867 UP UPUP R) +(-913 R0 -3879 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-913 UP UPUP R) +(-914 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-914 UP UPUP) +(-915 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-915 R) +(-916 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-916 R) +(-917 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-917 E OV R P) +(-918 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-918) +(-919) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-919 -3867) +(-920 -3879) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-920 R) +(-921 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-921) +(-922) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-922) +(-923) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4419 "*") . T)) +(((-4420 "*") . T)) NIL -(-923 -3867 P) +(-924 -3879 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-924 |xx| -3867) +(-925 |xx| -3879) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-925 R |Var| |Expon| GR) +(-926 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-926 S) +(-927 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-927) +(-928) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-928) +(-929) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-929) +(-930) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-930 R -3867) +(-931 R -3879) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-931) +(-932) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-932 S A B) +(-933 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-933 S R -3867) +(-934 S R -3879) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-934 I) +(-935 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-935 S E) +(-936 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-936 S R L) +(-937 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-937 S E V R P) +(-938 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -887) (|devaluate| |#1|)))) -(-938 R -3867 -2636) +((|HasCategory| |#3| (LIST (QUOTE -888) (|devaluate| |#1|)))) +(-939 R -3879 -2637) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-939 -2636) +(-940 -2637) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-940 S R Q) +(-941 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-941 S) +(-942 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-942 S R P) +(-943 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-943) +(-944) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-944 R) +(-945 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-945 |lv| R) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-946 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-946 |TheField| |ThePols|) +(-947 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL ((|HasCategory| |#1| (QUOTE (-849)))) -(-947 R S) +(-948 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-948 |x| R) +(-949 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-949 S R E |VarSet|) +(-950 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-910))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) -(-950 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-911))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) +(-951 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL -(-951 E V R P -3867) +(-952 E V R P -3879) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-952 E |Vars| R P S) +(-953 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-953 R) +(-954 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1177) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1177) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1177) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1177) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1177) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-954 E V R P -3867) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-955 E V R P -3879) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-455)))) -(-955) +(-956) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-956) +(-957) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-957 R L) +(-958 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-958 A B) +(-959 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-959 S) +(-960 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-960) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-961) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-961 -3867) +(-962 -3879) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-962 I) +(-963 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-963) +(-964) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-964 R E) +(-965 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4415))) -(-965 A B) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4416))) +(-966 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4414 -12 (|has| |#2| (-476)) (|has| |#1| (-476)))) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) -(-966) +((-4415 -12 (|has| |#2| (-476)) (|has| |#1| (-476)))) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) +(-967) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-967 T$) +(-968 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-968) +(-969) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-969 S) +(-970 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL -(-970 R |polR|) +(-971 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-455)))) -(-971) +(-972) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-972) +(-973) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-973 S |Coef| |Expon| |Var|) +(-974 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-974 |Coef| |Expon| |Var|) +(-975 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-975) +(-976) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-976 S R E |VarSet| P) +(-977 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-559)))) -(-977 R E |VarSet| P) +(-978 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4417 . T)) +((-4418 . T)) NIL -(-978 R E V P) +(-979 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-455)))) -(-979 K) +(-980 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-980 |VarSet| E RC P) +(-981 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-981 R) +(-982 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-982 R1 R2) +(-983 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-983 R) +(-984 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-984 K) +(-985 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-985 R E OV PPR) +(-986 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-986 K R UP -3867) +(-987 K R UP -3879) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-987 |vl| |nv|) +(-988 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-988 R |Var| |Expon| |Dpoly|) +(-989 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308))))) -(-989 R E V P TS) +(-990 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-990) +(-991) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-991 A B R S) +(-992 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-992 A S) +(-993 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1152)))) -(-993 S) +((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1153)))) +(-994 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-994 |n| K) +(-995 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-995) +(-996) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-996 S) +(-997 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL -(-997 S R) +(-998 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-291)))) -(-998 R) +((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-291)))) +(-999 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4410 |has| |#1| (-291)) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 |has| |#1| (-291)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-999 QR R QS S) +(-1000 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1000 R) +(-1001 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4410 |has| |#1| (-291)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-548)))) -(-1001 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4411 |has| |#1| (-291)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548)))) (-1002 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1003 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1003) +(-1004) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1004 -3867 UP UPUP |radicnd| |n|) +(-1005 -3879 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4410 |has| (-410 |#2|) (-365)) (-4415 |has| (-410 |#2|) (-365)) (-4409 |has| (-410 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2797 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2797 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2797 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2797 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-1005 |bb|) +((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2800 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2800 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2800 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) +(-1006 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2797 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1152))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1177)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145))))) -(-1006) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) +(-1007) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1007) +(-1008) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1008 RP) +(-1009 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1009 S) +(-1010 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1010 A S) +(-1011 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-1101)))) -(-1011 S) +((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-1102)))) +(-1012 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1012 S) +(-1013 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1013) +(-1014) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4410 . T) (-4415 . T) (-4409 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4414 . T)) +((-4411 . T) (-4416 . T) (-4410 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4415 . T)) NIL -(-1014 R -3867) +(-1015 R -3879) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1015 R -3867) +(-1016 R -3879) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1016 -3867 UP) +(-1017 -3879 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1017 -3867 UP) +(-1018 -3879 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1018 S) +(-1019 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1019 F1 UP UPUP R F2) +(-1020 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1020) +(-1021) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1021 |Pol|) +(-1022 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1022 |Pol|) +(-1023 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1023) +(-1024) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1024) +(-1025) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1025 |TheField|) +(-1026 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4410 . T) (-4415 . T) (-4409 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4414 . T)) -((-2797 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (QUOTE (-567))))) -(-1026 -3867 L) +((-4411 . T) (-4416 . T) (-4410 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4415 . T)) +((-2800 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567))))) +(-1027 -3879 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1027 S) +(-1028 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1101)))) -(-1028 R E V P) +((|HasCategory| |#1| (QUOTE (-1102)))) +(-1029 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1029 R) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1030 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4419 "*")))) -(-1030 R) +((|HasAttribute| |#1| (QUOTE (-4420 "*")))) +(-1031 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1031 S) +(-1032 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1032) +(-1033) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1033 S) +(-1034 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1034 S) +(-1035 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1035 -3867 |Expon| |VarSet| |FPol| |LFPol|) +(-1036 -3879 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1036) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -4232) (QUOTE (-52))))))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-52) (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-1177) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) (-1037) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-1178) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1038) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1038 A S) +(-1039 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1039 S) +(-1040 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1040 Q R) +(-1041 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1041) +(-1042) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1042 UP) +(-1043 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1043 R) +(-1044 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1044 R) +(-1045 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1045 T$) +(-1046 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1046 T$) +(-1047 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1047 R |ls|) +(-1048 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1101))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -781) (|devaluate| |#1|) (LIST (QUOTE -865) (|devaluate| |#2|)))))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-865 |#2|) (QUOTE (-370))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1048) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -781) (|devaluate| |#1|) (LIST (QUOTE -865) (|devaluate| |#2|)))))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-865 |#2|) (QUOTE (-370))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1049) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1049 S) +(-1050 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1050) +(-1051) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4414 . T)) +((-4415 . T)) NIL -(-1051 |xx| -3867) +(-1052 |xx| -3879) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1052 R) +(-1053 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1053 S |m| |n| R |Row| |Col|) +(-1054 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-559))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1054 |m| |n| R |Row| |Col|) +(-1055 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4417 . T) (-4412 . T) (-4411 . T)) +((-4418 . T) (-4413 . T) (-4412 . T)) NIL -(-1055 |m| |n| R) +(-1056 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4417 . T) (-4412 . T) (-4411 . T)) -((|HasCategory| |#3| (QUOTE (-172))) (-2797 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1056 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4418 . T) (-4413 . T) (-4412 . T)) +((|HasCategory| |#3| (QUOTE (-172))) (-2800 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1057 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1057 R) +(-1058 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1058 S T$) +(-1059 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1101)))) -(-1059) +((|HasCategory| |#1| (QUOTE (-1102)))) +(-1060) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1060 S) +(-1061 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1061) +(-1062) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1062 |TheField| |ThePolDom|) +(-1063 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1063) +(-1064) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1064) +(-1065) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -4232) (QUOTE (-52))))))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-52) (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1101))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (QUOTE (-1101))) (|HasCategory| (-1177) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1065 S R E V) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-1178) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1066 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -993) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1177))))) -(-1066 R E V) +((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1178))))) +(-1067 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL -(-1067) +(-1068) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1068 S |TheField| |ThePols|) +(-1069 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1069 |TheField| |ThePols|) +(-1070 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1070 R E V P TS) +(-1071 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1071 S R E V P) +(-1072 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1072 R E V P) +(-1073 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1073 R E V P TS) +(-1074 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1074) +(-1075) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1075) +(-1076) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1076 |f|) +(-1077 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1077 |Base| R -3867) +(-1078 |Base| R -3879) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1078 |Base| R -3867) +(-1079 |Base| R -3879) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1079 R |ls|) +(-1080 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1080 UP SAE UPA) +(-1081 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1081 R UP M) +(-1082 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4410 |has| |#1| (-365)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) -(-1082 UP SAE UPA) +((-4411 |has| |#1| (-365)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) +(-1083 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1083) +(-1084) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1084) +(-1085) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1085 S) +(-1086 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1086) +(-1087) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1087 R) +(-1088 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1088 R) +(-1089 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1089 (-1177)) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1089 (-1177)) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1089 (-1177)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1089 (-1177)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1089 (-1177)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1089 S) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1090 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1090 R S) +(-1091 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL ((|HasCategory| |#1| (QUOTE (-849)))) -(-1091) +(-1092) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1092 R S) +(-1093 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1093 S) +(-1094 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1095 |#1|) (QUOTE (-1101)))) -(-1094 S) +((|HasCategory| (-1096 |#1|) (QUOTE (-1102)))) +(-1095 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1095 S) +(-1096 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1101)))) -(-1096 S L) +((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1102)))) +(-1097 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1097) +(-1098) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1098 A S) +(-1099 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1099 S) +(-1100 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4407 . T)) +((-4408 . T)) NIL -(-1100 S) +(-1101 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1101) +(-1102) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1102 |m| |n|) +(-1103 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1103 S) +(-1104 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4417 . T) (-4407 . T) (-4418 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1104 |Str| |Sym| |Int| |Flt| |Expr|) +((-4418 . T) (-4408 . T) (-4419 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1105 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1105) +(-1106) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1106 |Str| |Sym| |Int| |Flt| |Expr|) +(-1107 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1107 R FS) +(-1108 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1108 R E V P TS) +(-1109 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1109 R E V P TS) +(-1110 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1110 R E V P) +(-1111 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1111) +(-1112) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1112 S) +(-1113 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1113) +(-1114) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1114 |dimtot| |dim1| S) +(-1115 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4411 |has| |#3| (-1050)) (-4412 |has| |#3| (-1050)) (-4414 |has| |#3| (-6 -4414)) ((-4419 "*") |has| |#3| (-172)) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1101)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2797 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2797 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-233))) (-2797 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-1101)))) (|HasCategory| |#3| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1101))))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1177))))) (-2797 (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1101)))) (|HasAttribute| |#3| (QUOTE -4414)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1101))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) -(-1115 R |x|) +((-4412 |has| |#3| (-1051)) (-4413 |has| |#3| (-1051)) (-4415 |has| |#3| (-6 -4415)) ((-4420 "*") |has| |#3| (-172)) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2800 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasAttribute| |#3| (QUOTE -4415)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +(-1116 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-455)))) -(-1116) +(-1117) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1117 R -3867) +(-1118 R -3879) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1118 R) +(-1119 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1119) +(-1120) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1120) +(-1121) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1121) +(-1122) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1122 S) +(-1123 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4417 . T) (-4418 . T)) +((-4418 . T) (-4419 . T)) NIL -(-1123 S |ndim| R |Row| |Col|) +(-1124 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4419 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) -(-1124 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4420 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1125 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4417 . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4418 . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1125 R |Row| |Col| M) +(-1126 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1126 R |VarSet|) +(-1127 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1127 |Coef| |Var| SMP) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1128 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1128 R E V P) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1129 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1129 UP -3867) +(-1130 UP -3879) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1130 R) +(-1131 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1131 R) +(-1132 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1132 R) +(-1133 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1133 S A) +(-1134 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL ((|HasCategory| |#1| (QUOTE (-851)))) -(-1134 R) +(-1135 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1135 R) +(-1136 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1136) +(-1137) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1137) +(-1138) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1140) +(-1141) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1141 V C) +(-1142 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1142 V C) +(-1143 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-1141 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1141 |#1| |#2|) (QUOTE (-1101)))) (|HasCategory| (-1141 |#1| |#2|) (QUOTE (-1101))) (-2797 (|HasCategory| (-1141 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1141 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1141 |#1| |#2|) (QUOTE (-1101))))) (|HasCategory| (-1141 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1143 |ndim| R) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))) (-2800 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))))) (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1144 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4414 . T) (-4406 |has| |#2| (-6 (-4419 "*"))) (-4417 . T) (-4411 . T) (-4412 . T)) -((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-365))) (-2797 (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-1144 S) +((-4415 . T) (-4407 |has| |#2| (-6 (-4420 "*"))) (-4418 . T) (-4412 . T) (-4413 . T)) +((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1145 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1145) +(-1146) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1146 R E V P TS) +(-1147 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1147 R E V P) +(-1148 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1148 S) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1149 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1149 A S) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1150 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1150 S) +(-1151 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1151 |Key| |Ent| |dent|) +(-1152 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101)))) -(-1152) +((-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102)))) +(-1153) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1153 |Coef|) +(-1154 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1154 S) +(-1155 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1155 A B) +(-1156 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1156 A B C) +(-1157 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1157 S) +(-1158 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4418 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1158) +((-4419 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1159) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1159) +(-1160) NIL -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1101))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) -(-1160 |Entry|) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +(-1161 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (QUOTE (-1159))) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#1|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (QUOTE (-1101))) (|HasCategory| (-1159) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1161 A) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#1|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-1160) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1162 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-1162 |Coef|) +(-1163 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1163 |Coef|) +(-1164 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1164 R UP) +(-1165 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) -(-1165 |n| R) +(-1166 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1166 S1 S2) +(-1167 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1167) +(-1168) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1168 |Coef| |var| |cen|) +(-1169 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4419 "*") -2797 (-1664 (|has| |#1| (-365)) (|has| (-1175 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1664 (|has| |#1| (-365)) (|has| (-1175 |#1| |#2| |#3|) (-910)))) (-4410 -2797 (-1664 (|has| |#1| (-365)) (|has| (-1175 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1664 (|has| |#1| (-365)) (|has| (-1175 |#1| |#2| |#3|) (-910)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-1152))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1113))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-1152))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -1175) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1175 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1169 R -3867) +(((-4420 "*") -2800 (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-911)))) (-4411 -2800 (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1170 R -3879) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1170 R) +(-1171 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1171 R S) +(-1172 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1172 E OV R P) +(-1173 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1173 R) +(-1174 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1152))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1174 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1175 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) +(-1176 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1113))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) -(-1176) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) +(-1177) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1177) +(-1178) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1178 R) +(-1179 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1179 R) +(-1180 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-6 -4415)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-972) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4415))) -(-1180) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-973) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4416))) +(-1181) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1181) +(-1182) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1183 N) +(-1184 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1184 N) +(-1185 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1186 R) +(-1187 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1187) +(-1188) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1188 S) +(-1189 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1189 S) +(-1190 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1190 |Key| |Entry|) +(-1191 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4417 . T) (-4418 . T)) -((-12 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1791) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4232) (|devaluate| |#2|)))))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#2| (QUOTE (-1101)))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1101))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1101))) (-2797 (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1191 R) +((-4418 . T) (-4419 . T)) +((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +(-1192 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1192 S |Key| |Entry|) +(-1193 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1193 |Key| |Entry|) +(-1194 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4418 . T)) +((-4419 . T)) NIL -(-1194 |Key| |Entry|) +(-1195 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1195) +(-1196) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1196 S) +(-1197 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1197) +(-1198) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1198) +(-1199) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1199 R) +(-1200 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1200) +(-1201) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1201 S) +(-1202 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1202) +(-1203) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1203 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1101))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-1204 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1205 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1205) +(-1206) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1206 R -3867) +(-1207 R -3879) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1207 R |Row| |Col| M) +(-1208 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1208 R -3867) +(-1209 R -3879) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -887) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -887) (|devaluate| |#1|))))) -(-1209 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -888) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -888) (|devaluate| |#1|))))) +(-1210 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-370)))) -(-1210 R E V P) +(-1211 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1211 |Coef|) +(-1212 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1212 |Curve|) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1213 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1213) +(-1214) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1214 S) +(-1215 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1215 -3867) +((|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1216 -3879) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1216) +(-1217) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1217) +(-1218) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1218 S) +(-1219 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-851)))) -(-1219) +(-1220) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1220 S) +(-1221 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1221) +(-1222) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1222) +(-1223) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1223) +(-1224) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1224) +(-1225) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1225) +(-1226) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1226 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1227 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1227 |Coef|) +(-1228 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1228 S |Coef| UTS) +(-1229 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) -(-1229 |Coef| UTS) +(-1230 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1230 |Coef| UTS) +(-1231 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1152)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2797 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1113))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2797 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1152)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1177)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1152)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1177)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-910))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1231 |Coef| |var| |cen|) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2800 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-911))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1232 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4419 "*") -2797 (-1664 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1664 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-910)))) (-4410 -2797 (-1664 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1664 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-910)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1152))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1113))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1152))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1177)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1232 ZP) +(((-4420 "*") -2800 (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-911)))) (-4411 -2800 (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1233 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1233 R S) +(-1234 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-849)))) -(-1234 S) +(-1235 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1101)))) -(-1235 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1102)))) +(-1236 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1236 R Q UP) +(-1237 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1237 R UP) +(-1238 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1238 R UP) +(-1239 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1239 R U) +(-1240 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1240 |x| R) +(-1241 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-559)) (-4413 |has| |#2| (-365)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2797 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2797 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1152))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2797 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1241 R PR S PS) +(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4414 |has| |#2| (-365)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1242 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1242 S R) +(-1243 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1152)))) -(-1243 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1153)))) +(-1244 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL -(-1244 S |Coef| |Expon|) +(-1245 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1113))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4127) (LIST (|devaluate| |#2|) (QUOTE (-1177)))))) -(-1245 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4132) (LIST (|devaluate| |#2|) (QUOTE (-1178)))))) +(-1246 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1246 RC P) +(-1247 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1247 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1248 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1248 |Coef|) +(-1249 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1249 S |Coef| ULS) +(-1250 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1250 |Coef| ULS) +(-1251 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1251 |Coef| ULS) +(-1252 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-1252 |Coef| |var| |cen|) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) +(-1253 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2797 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) -(-1253 R FE |var| |cen|) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) +(-1254 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4419 "*") |has| (-1252 |#2| |#3| |#4|) (-172)) (-4410 |has| (-1252 |#2| |#3| |#4|) (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| (-1252 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-172))) (-2797 (|HasCategory| (-1252 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1252 |#2| |#3| |#4|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1252 |#2| |#3| |#4|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1252 |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1252 |#2| |#3| |#4|) (QUOTE (-559)))) -(-1254 A S) +(((-4420 "*") |has| (-1253 |#2| |#3| |#4|) (-172)) (-4411 |has| (-1253 |#2| |#3| |#4|) (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-172))) (-2800 (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-559)))) +(-1255 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4418))) -(-1255 S) +((|HasAttribute| |#1| (QUOTE -4419))) +(-1256 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1256 |Coef1| |Coef2| UTS1 UTS2) +(-1257 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1257 S |Coef|) +(-1258 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1202))) (|HasSignature| |#2| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1576) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1177))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) -(-1258 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1203))) (|HasSignature| |#2| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2416) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1178))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) +(-1259 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1259 |Coef| |var| |cen|) +(-1260 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-559)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2797 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1177)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1113))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4127) (LIST (|devaluate| |#1|) (QUOTE (-1177)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2797 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1202))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -1576) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1177))))) (|HasSignature| |#1| (LIST (QUOTE -2845) (LIST (LIST (QUOTE -645) (QUOTE (-1177))) (|devaluate| |#1|))))))) -(-1260 |Coef| UTS) +(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|))))))) +(-1261 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1261 -3867 UP L UTS) +(-1262 -3879 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-559)))) -(-1262) +(-1263) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1263 |sym|) +(-1264 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1264 S R) +(-1265 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1265 R) +((|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1266 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4418 . T) (-4417 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1266 A B) +(-1267 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1267 R) +(-1268 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4418 . T) (-4417 . T)) -((-2797 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2797 (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2797 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1101))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1268) +((-4419 . T) (-4418 . T)) +((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1269) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1269) +(-1270) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1270) +(-1271) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1271) +(-1272) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1272) +(-1273) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1273 A S) +(-1274 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1274 S) +(-1275 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4412 . T) (-4411 . T)) +((-4413 . T) (-4412 . T)) NIL -(-1275 R) +(-1276 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1276 K R UP -3867) +(-1277 K R UP -3879) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1277) +(-1278) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1278) +(-1279) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1279 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1280 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1280 R E V P) +(-1281 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1101))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1281 R) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +(-1282 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4411 . T) (-4412 . T) (-4414 . T)) +((-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1282 |vl| R) +(-1283 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4414 . T) (-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4410))) -(-1283 R |VarSet| XPOLY) +((-4415 . T) (-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4411))) +(-1284 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1284 |vl| R) +(-1285 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) +((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL -(-1285 S -3867) +(-1286 S -3879) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1286 -3867) +(-1287 -3879) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL -(-1287 |VarSet| R) +(-1288 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4410))) -(-1288 |vl| R) +((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4411))) +(-1289 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) +((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T)) NIL -(-1289 R) +(-1290 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4410 |has| |#1| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4410))) -(-1290 R E) +((-4411 |has| |#1| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4411))) +(-1291 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4414 . T) (-4415 |has| |#1| (-6 -4415)) (-4410 |has| |#1| (-6 -4410)) (-4412 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4410))) -(-1291 |VarSet| R) +((-4415 . T) (-4416 |has| |#1| (-6 -4416)) (-4411 |has| |#1| (-6 -4411)) (-4413 . T) (-4412 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4416)) (|HasAttribute| |#1| (QUOTE -4411))) +(-1292 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4410))) -(-1292 A) +((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4411))) +(-1293 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1293 R |ls| |ls2|) +(-1294 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1294 R) +(-1295 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1295 |p|) +(-1296 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T)) NIL NIL NIL @@ -5128,4 +5132,4 @@ NIL NIL NIL NIL -((-3 NIL 2262656 2262661 2262666 2262671) (-2 NIL 2262636 2262641 2262646 2262651) (-1 NIL 2262616 2262621 2262626 2262631) (0 NIL 2262596 2262601 2262606 2262611) (-1295 "ZMOD.spad" 2262405 2262418 2262534 2262591) (-1294 "ZLINDEP.spad" 2261471 2261482 2262395 2262400) (-1293 "ZDSOLVE.spad" 2251416 2251438 2261461 2261466) (-1292 "YSTREAM.spad" 2250911 2250922 2251406 2251411) (-1291 "XRPOLY.spad" 2250131 2250151 2250767 2250836) (-1290 "XPR.spad" 2247926 2247939 2249849 2249948) (-1289 "XPOLY.spad" 2247481 2247492 2247782 2247851) (-1288 "XPOLYC.spad" 2246800 2246816 2247407 2247476) (-1287 "XPBWPOLY.spad" 2245237 2245257 2246580 2246649) (-1286 "XF.spad" 2243700 2243715 2245139 2245232) (-1285 "XF.spad" 2242143 2242160 2243584 2243589) (-1284 "XFALG.spad" 2239191 2239207 2242069 2242138) (-1283 "XEXPPKG.spad" 2238442 2238468 2239181 2239186) (-1282 "XDPOLY.spad" 2238056 2238072 2238298 2238367) (-1281 "XALG.spad" 2237716 2237727 2238012 2238051) (-1280 "WUTSET.spad" 2233555 2233572 2237362 2237389) (-1279 "WP.spad" 2232754 2232798 2233413 2233480) (-1278 "WHILEAST.spad" 2232552 2232561 2232744 2232749) (-1277 "WHEREAST.spad" 2232223 2232232 2232542 2232547) (-1276 "WFFINTBS.spad" 2229886 2229908 2232213 2232218) (-1275 "WEIER.spad" 2228108 2228119 2229876 2229881) (-1274 "VSPACE.spad" 2227781 2227792 2228076 2228103) (-1273 "VSPACE.spad" 2227474 2227487 2227771 2227776) (-1272 "VOID.spad" 2227151 2227160 2227464 2227469) (-1271 "VIEW.spad" 2224831 2224840 2227141 2227146) (-1270 "VIEWDEF.spad" 2220032 2220041 2224821 2224826) (-1269 "VIEW3D.spad" 2203993 2204002 2220022 2220027) (-1268 "VIEW2D.spad" 2191884 2191893 2203983 2203988) (-1267 "VECTOR.spad" 2190558 2190569 2190809 2190836) (-1266 "VECTOR2.spad" 2189197 2189210 2190548 2190553) (-1265 "VECTCAT.spad" 2187101 2187112 2189165 2189192) (-1264 "VECTCAT.spad" 2184812 2184825 2186878 2186883) (-1263 "VARIABLE.spad" 2184592 2184607 2184802 2184807) (-1262 "UTYPE.spad" 2184236 2184245 2184582 2184587) (-1261 "UTSODETL.spad" 2183531 2183555 2184192 2184197) (-1260 "UTSODE.spad" 2181747 2181767 2183521 2183526) (-1259 "UTS.spad" 2176560 2176588 2180214 2180311) (-1258 "UTSCAT.spad" 2174039 2174055 2176458 2176555) (-1257 "UTSCAT.spad" 2171162 2171180 2173583 2173588) (-1256 "UTS2.spad" 2170757 2170792 2171152 2171157) (-1255 "URAGG.spad" 2165430 2165441 2170747 2170752) (-1254 "URAGG.spad" 2160067 2160080 2165386 2165391) (-1253 "UPXSSING.spad" 2157712 2157738 2159148 2159281) (-1252 "UPXS.spad" 2154866 2154894 2155844 2155993) (-1251 "UPXSCONS.spad" 2152625 2152645 2152998 2153147) (-1250 "UPXSCCA.spad" 2151196 2151216 2152471 2152620) (-1249 "UPXSCCA.spad" 2149909 2149931 2151186 2151191) (-1248 "UPXSCAT.spad" 2148498 2148514 2149755 2149904) (-1247 "UPXS2.spad" 2148041 2148094 2148488 2148493) (-1246 "UPSQFREE.spad" 2146455 2146469 2148031 2148036) (-1245 "UPSCAT.spad" 2144066 2144090 2146353 2146450) (-1244 "UPSCAT.spad" 2141383 2141409 2143672 2143677) (-1243 "UPOLYC.spad" 2136423 2136434 2141225 2141378) (-1242 "UPOLYC.spad" 2131355 2131368 2136159 2136164) (-1241 "UPOLYC2.spad" 2130826 2130845 2131345 2131350) (-1240 "UP.spad" 2128025 2128040 2128412 2128565) (-1239 "UPMP.spad" 2126925 2126938 2128015 2128020) (-1238 "UPDIVP.spad" 2126490 2126504 2126915 2126920) (-1237 "UPDECOMP.spad" 2124735 2124749 2126480 2126485) (-1236 "UPCDEN.spad" 2123944 2123960 2124725 2124730) (-1235 "UP2.spad" 2123308 2123329 2123934 2123939) (-1234 "UNISEG.spad" 2122661 2122672 2123227 2123232) (-1233 "UNISEG2.spad" 2122158 2122171 2122617 2122622) (-1232 "UNIFACT.spad" 2121261 2121273 2122148 2122153) (-1231 "ULS.spad" 2111819 2111847 2112906 2113335) (-1230 "ULSCONS.spad" 2104215 2104235 2104585 2104734) (-1229 "ULSCCAT.spad" 2101952 2101972 2104061 2104210) (-1228 "ULSCCAT.spad" 2099797 2099819 2101908 2101913) (-1227 "ULSCAT.spad" 2098029 2098045 2099643 2099792) (-1226 "ULS2.spad" 2097543 2097596 2098019 2098024) (-1225 "UINT8.spad" 2097420 2097429 2097533 2097538) (-1224 "UINT64.spad" 2097296 2097305 2097410 2097415) (-1223 "UINT32.spad" 2097172 2097181 2097286 2097291) (-1222 "UINT16.spad" 2097048 2097057 2097162 2097167) (-1221 "UFD.spad" 2096113 2096122 2096974 2097043) (-1220 "UFD.spad" 2095240 2095251 2096103 2096108) (-1219 "UDVO.spad" 2094121 2094130 2095230 2095235) (-1218 "UDPO.spad" 2091614 2091625 2094077 2094082) (-1217 "TYPE.spad" 2091546 2091555 2091604 2091609) (-1216 "TYPEAST.spad" 2091465 2091474 2091536 2091541) (-1215 "TWOFACT.spad" 2090117 2090132 2091455 2091460) (-1214 "TUPLE.spad" 2089603 2089614 2090016 2090021) (-1213 "TUBETOOL.spad" 2086470 2086479 2089593 2089598) (-1212 "TUBE.spad" 2085117 2085134 2086460 2086465) (-1211 "TS.spad" 2083716 2083732 2084682 2084779) (-1210 "TSETCAT.spad" 2070843 2070860 2083684 2083711) (-1209 "TSETCAT.spad" 2057956 2057975 2070799 2070804) (-1208 "TRMANIP.spad" 2052322 2052339 2057662 2057667) (-1207 "TRIMAT.spad" 2051285 2051310 2052312 2052317) (-1206 "TRIGMNIP.spad" 2049812 2049829 2051275 2051280) (-1205 "TRIGCAT.spad" 2049324 2049333 2049802 2049807) (-1204 "TRIGCAT.spad" 2048834 2048845 2049314 2049319) (-1203 "TREE.spad" 2047409 2047420 2048441 2048468) (-1202 "TRANFUN.spad" 2047248 2047257 2047399 2047404) (-1201 "TRANFUN.spad" 2047085 2047096 2047238 2047243) (-1200 "TOPSP.spad" 2046759 2046768 2047075 2047080) (-1199 "TOOLSIGN.spad" 2046422 2046433 2046749 2046754) (-1198 "TEXTFILE.spad" 2044983 2044992 2046412 2046417) (-1197 "TEX.spad" 2042129 2042138 2044973 2044978) (-1196 "TEX1.spad" 2041685 2041696 2042119 2042124) (-1195 "TEMUTL.spad" 2041240 2041249 2041675 2041680) (-1194 "TBCMPPK.spad" 2039333 2039356 2041230 2041235) (-1193 "TBAGG.spad" 2038383 2038406 2039313 2039328) (-1192 "TBAGG.spad" 2037441 2037466 2038373 2038378) (-1191 "TANEXP.spad" 2036849 2036860 2037431 2037436) (-1190 "TABLE.spad" 2035260 2035283 2035530 2035557) (-1189 "TABLEAU.spad" 2034741 2034752 2035250 2035255) (-1188 "TABLBUMP.spad" 2031544 2031555 2034731 2034736) (-1187 "SYSTEM.spad" 2030772 2030781 2031534 2031539) (-1186 "SYSSOLP.spad" 2028255 2028266 2030762 2030767) (-1185 "SYSPTR.spad" 2028154 2028163 2028245 2028250) (-1184 "SYSNNI.spad" 2027336 2027347 2028144 2028149) (-1183 "SYSINT.spad" 2026740 2026751 2027326 2027331) (-1182 "SYNTAX.spad" 2022946 2022955 2026730 2026735) (-1181 "SYMTAB.spad" 2021014 2021023 2022936 2022941) (-1180 "SYMS.spad" 2017037 2017046 2021004 2021009) (-1179 "SYMPOLY.spad" 2016044 2016055 2016126 2016253) (-1178 "SYMFUNC.spad" 2015545 2015556 2016034 2016039) (-1177 "SYMBOL.spad" 2013048 2013057 2015535 2015540) (-1176 "SWITCH.spad" 2009819 2009828 2013038 2013043) (-1175 "SUTS.spad" 2006724 2006752 2008286 2008383) (-1174 "SUPXS.spad" 2003865 2003893 2004856 2005005) (-1173 "SUP.spad" 2000678 2000689 2001451 2001604) (-1172 "SUPFRACF.spad" 1999783 1999801 2000668 2000673) (-1171 "SUP2.spad" 1999175 1999188 1999773 1999778) (-1170 "SUMRF.spad" 1998149 1998160 1999165 1999170) (-1169 "SUMFS.spad" 1997786 1997803 1998139 1998144) (-1168 "SULS.spad" 1988331 1988359 1989431 1989860) (-1167 "SUCHTAST.spad" 1988100 1988109 1988321 1988326) (-1166 "SUCH.spad" 1987782 1987797 1988090 1988095) (-1165 "SUBSPACE.spad" 1979897 1979912 1987772 1987777) (-1164 "SUBRESP.spad" 1979067 1979081 1979853 1979858) (-1163 "STTF.spad" 1975166 1975182 1979057 1979062) (-1162 "STTFNC.spad" 1971634 1971650 1975156 1975161) (-1161 "STTAYLOR.spad" 1964288 1964299 1971515 1971520) (-1160 "STRTBL.spad" 1962793 1962810 1962942 1962969) (-1159 "STRING.spad" 1962202 1962211 1962216 1962243) (-1158 "STRICAT.spad" 1961990 1961999 1962170 1962197) (-1157 "STREAM.spad" 1958908 1958919 1961515 1961530) (-1156 "STREAM3.spad" 1958481 1958496 1958898 1958903) (-1155 "STREAM2.spad" 1957609 1957622 1958471 1958476) (-1154 "STREAM1.spad" 1957315 1957326 1957599 1957604) (-1153 "STINPROD.spad" 1956251 1956267 1957305 1957310) (-1152 "STEP.spad" 1955452 1955461 1956241 1956246) (-1151 "STBL.spad" 1953978 1954006 1954145 1954160) (-1150 "STAGG.spad" 1953053 1953064 1953968 1953973) (-1149 "STAGG.spad" 1952126 1952139 1953043 1953048) (-1148 "STACK.spad" 1951483 1951494 1951733 1951760) (-1147 "SREGSET.spad" 1949187 1949204 1951129 1951156) (-1146 "SRDCMPK.spad" 1947748 1947768 1949177 1949182) (-1145 "SRAGG.spad" 1942891 1942900 1947716 1947743) (-1144 "SRAGG.spad" 1938054 1938065 1942881 1942886) (-1143 "SQMATRIX.spad" 1935670 1935688 1936586 1936673) (-1142 "SPLTREE.spad" 1930222 1930235 1935106 1935133) (-1141 "SPLNODE.spad" 1926810 1926823 1930212 1930217) (-1140 "SPFCAT.spad" 1925619 1925628 1926800 1926805) (-1139 "SPECOUT.spad" 1924171 1924180 1925609 1925614) (-1138 "SPADXPT.spad" 1916310 1916319 1924161 1924166) (-1137 "spad-parser.spad" 1915775 1915784 1916300 1916305) (-1136 "SPADAST.spad" 1915476 1915485 1915765 1915770) (-1135 "SPACEC.spad" 1899675 1899686 1915466 1915471) (-1134 "SPACE3.spad" 1899451 1899462 1899665 1899670) (-1133 "SORTPAK.spad" 1899000 1899013 1899407 1899412) (-1132 "SOLVETRA.spad" 1896763 1896774 1898990 1898995) (-1131 "SOLVESER.spad" 1895291 1895302 1896753 1896758) (-1130 "SOLVERAD.spad" 1891317 1891328 1895281 1895286) (-1129 "SOLVEFOR.spad" 1889779 1889797 1891307 1891312) (-1128 "SNTSCAT.spad" 1889379 1889396 1889747 1889774) (-1127 "SMTS.spad" 1887651 1887677 1888944 1889041) (-1126 "SMP.spad" 1885126 1885146 1885516 1885643) (-1125 "SMITH.spad" 1883971 1883996 1885116 1885121) (-1124 "SMATCAT.spad" 1882081 1882111 1883915 1883966) (-1123 "SMATCAT.spad" 1880123 1880155 1881959 1881964) (-1122 "SKAGG.spad" 1879086 1879097 1880091 1880118) (-1121 "SINT.spad" 1877918 1877927 1878952 1879081) (-1120 "SIMPAN.spad" 1877646 1877655 1877908 1877913) (-1119 "SIG.spad" 1876976 1876985 1877636 1877641) (-1118 "SIGNRF.spad" 1876094 1876105 1876966 1876971) (-1117 "SIGNEF.spad" 1875373 1875390 1876084 1876089) (-1116 "SIGAST.spad" 1874758 1874767 1875363 1875368) (-1115 "SHP.spad" 1872686 1872701 1874714 1874719) (-1114 "SHDP.spad" 1862397 1862424 1862906 1863037) (-1113 "SGROUP.spad" 1862005 1862014 1862387 1862392) (-1112 "SGROUP.spad" 1861611 1861622 1861995 1862000) (-1111 "SGCF.spad" 1854774 1854783 1861601 1861606) (-1110 "SFRTCAT.spad" 1853704 1853721 1854742 1854769) (-1109 "SFRGCD.spad" 1852767 1852787 1853694 1853699) (-1108 "SFQCMPK.spad" 1847404 1847424 1852757 1852762) (-1107 "SFORT.spad" 1846843 1846857 1847394 1847399) (-1106 "SEXOF.spad" 1846686 1846726 1846833 1846838) (-1105 "SEX.spad" 1846578 1846587 1846676 1846681) (-1104 "SEXCAT.spad" 1844179 1844219 1846568 1846573) (-1103 "SET.spad" 1842503 1842514 1843600 1843639) (-1102 "SETMN.spad" 1840953 1840970 1842493 1842498) (-1101 "SETCAT.spad" 1840275 1840284 1840943 1840948) (-1100 "SETCAT.spad" 1839595 1839606 1840265 1840270) (-1099 "SETAGG.spad" 1836144 1836155 1839575 1839590) (-1098 "SETAGG.spad" 1832701 1832714 1836134 1836139) (-1097 "SEQAST.spad" 1832404 1832413 1832691 1832696) (-1096 "SEGXCAT.spad" 1831560 1831573 1832394 1832399) (-1095 "SEG.spad" 1831373 1831384 1831479 1831484) (-1094 "SEGCAT.spad" 1830298 1830309 1831363 1831368) (-1093 "SEGBIND.spad" 1830056 1830067 1830245 1830250) (-1092 "SEGBIND2.spad" 1829754 1829767 1830046 1830051) (-1091 "SEGAST.spad" 1829468 1829477 1829744 1829749) (-1090 "SEG2.spad" 1828903 1828916 1829424 1829429) (-1089 "SDVAR.spad" 1828179 1828190 1828893 1828898) (-1088 "SDPOL.spad" 1825605 1825616 1825896 1826023) (-1087 "SCPKG.spad" 1823694 1823705 1825595 1825600) (-1086 "SCOPE.spad" 1822847 1822856 1823684 1823689) (-1085 "SCACHE.spad" 1821543 1821554 1822837 1822842) (-1084 "SASTCAT.spad" 1821452 1821461 1821533 1821538) (-1083 "SAOS.spad" 1821324 1821333 1821442 1821447) (-1082 "SAERFFC.spad" 1821037 1821057 1821314 1821319) (-1081 "SAE.spad" 1819212 1819228 1819823 1819958) (-1080 "SAEFACT.spad" 1818913 1818933 1819202 1819207) (-1079 "RURPK.spad" 1816572 1816588 1818903 1818908) (-1078 "RULESET.spad" 1816025 1816049 1816562 1816567) (-1077 "RULE.spad" 1814265 1814289 1816015 1816020) (-1076 "RULECOLD.spad" 1814117 1814130 1814255 1814260) (-1075 "RTVALUE.spad" 1813852 1813861 1814107 1814112) (-1074 "RSTRCAST.spad" 1813569 1813578 1813842 1813847) (-1073 "RSETGCD.spad" 1809947 1809967 1813559 1813564) (-1072 "RSETCAT.spad" 1799883 1799900 1809915 1809942) (-1071 "RSETCAT.spad" 1789839 1789858 1799873 1799878) (-1070 "RSDCMPK.spad" 1788291 1788311 1789829 1789834) (-1069 "RRCC.spad" 1786675 1786705 1788281 1788286) (-1068 "RRCC.spad" 1785057 1785089 1786665 1786670) (-1067 "RPTAST.spad" 1784759 1784768 1785047 1785052) (-1066 "RPOLCAT.spad" 1764119 1764134 1784627 1784754) (-1065 "RPOLCAT.spad" 1743193 1743210 1763703 1763708) (-1064 "ROUTINE.spad" 1739076 1739085 1741840 1741867) (-1063 "ROMAN.spad" 1738404 1738413 1738942 1739071) (-1062 "ROIRC.spad" 1737484 1737516 1738394 1738399) (-1061 "RNS.spad" 1736387 1736396 1737386 1737479) (-1060 "RNS.spad" 1735376 1735387 1736377 1736382) (-1059 "RNG.spad" 1735111 1735120 1735366 1735371) (-1058 "RNGBIND.spad" 1734271 1734285 1735066 1735071) (-1057 "RMODULE.spad" 1734036 1734047 1734261 1734266) (-1056 "RMCAT2.spad" 1733456 1733513 1734026 1734031) (-1055 "RMATRIX.spad" 1732280 1732299 1732623 1732662) (-1054 "RMATCAT.spad" 1727859 1727890 1732236 1732275) (-1053 "RMATCAT.spad" 1723328 1723361 1727707 1727712) (-1052 "RLINSET.spad" 1722722 1722733 1723318 1723323) (-1051 "RINTERP.spad" 1722610 1722630 1722712 1722717) (-1050 "RING.spad" 1722080 1722089 1722590 1722605) (-1049 "RING.spad" 1721558 1721569 1722070 1722075) (-1048 "RIDIST.spad" 1720950 1720959 1721548 1721553) (-1047 "RGCHAIN.spad" 1719533 1719549 1720435 1720462) (-1046 "RGBCSPC.spad" 1719314 1719326 1719523 1719528) (-1045 "RGBCMDL.spad" 1718844 1718856 1719304 1719309) (-1044 "RF.spad" 1716486 1716497 1718834 1718839) (-1043 "RFFACTOR.spad" 1715948 1715959 1716476 1716481) (-1042 "RFFACT.spad" 1715683 1715695 1715938 1715943) (-1041 "RFDIST.spad" 1714679 1714688 1715673 1715678) (-1040 "RETSOL.spad" 1714098 1714111 1714669 1714674) (-1039 "RETRACT.spad" 1713526 1713537 1714088 1714093) (-1038 "RETRACT.spad" 1712952 1712965 1713516 1713521) (-1037 "RETAST.spad" 1712764 1712773 1712942 1712947) (-1036 "RESULT.spad" 1710824 1710833 1711411 1711438) (-1035 "RESRING.spad" 1710171 1710218 1710762 1710819) (-1034 "RESLATC.spad" 1709495 1709506 1710161 1710166) (-1033 "REPSQ.spad" 1709226 1709237 1709485 1709490) (-1032 "REP.spad" 1706780 1706789 1709216 1709221) (-1031 "REPDB.spad" 1706487 1706498 1706770 1706775) (-1030 "REP2.spad" 1696145 1696156 1706329 1706334) (-1029 "REP1.spad" 1690341 1690352 1696095 1696100) (-1028 "REGSET.spad" 1688138 1688155 1689987 1690014) (-1027 "REF.spad" 1687473 1687484 1688093 1688098) (-1026 "REDORDER.spad" 1686679 1686696 1687463 1687468) (-1025 "RECLOS.spad" 1685462 1685482 1686166 1686259) (-1024 "REALSOLV.spad" 1684602 1684611 1685452 1685457) (-1023 "REAL.spad" 1684474 1684483 1684592 1684597) (-1022 "REAL0Q.spad" 1681772 1681787 1684464 1684469) (-1021 "REAL0.spad" 1678616 1678631 1681762 1681767) (-1020 "RDUCEAST.spad" 1678337 1678346 1678606 1678611) (-1019 "RDIV.spad" 1677992 1678017 1678327 1678332) (-1018 "RDIST.spad" 1677559 1677570 1677982 1677987) (-1017 "RDETRS.spad" 1676423 1676441 1677549 1677554) (-1016 "RDETR.spad" 1674562 1674580 1676413 1676418) (-1015 "RDEEFS.spad" 1673661 1673678 1674552 1674557) (-1014 "RDEEF.spad" 1672671 1672688 1673651 1673656) (-1013 "RCFIELD.spad" 1669857 1669866 1672573 1672666) (-1012 "RCFIELD.spad" 1667129 1667140 1669847 1669852) (-1011 "RCAGG.spad" 1665057 1665068 1667119 1667124) (-1010 "RCAGG.spad" 1662912 1662925 1664976 1664981) (-1009 "RATRET.spad" 1662272 1662283 1662902 1662907) (-1008 "RATFACT.spad" 1661964 1661976 1662262 1662267) (-1007 "RANDSRC.spad" 1661283 1661292 1661954 1661959) (-1006 "RADUTIL.spad" 1661039 1661048 1661273 1661278) (-1005 "RADIX.spad" 1657960 1657974 1659506 1659599) (-1004 "RADFF.spad" 1656373 1656410 1656492 1656648) (-1003 "RADCAT.spad" 1655968 1655977 1656363 1656368) (-1002 "RADCAT.spad" 1655561 1655572 1655958 1655963) (-1001 "QUEUE.spad" 1654909 1654920 1655168 1655195) (-1000 "QUAT.spad" 1653490 1653501 1653833 1653898) (-999 "QUATCT2.spad" 1653111 1653129 1653480 1653485) (-998 "QUATCAT.spad" 1651282 1651292 1653041 1653106) (-997 "QUATCAT.spad" 1649204 1649216 1650965 1650970) (-996 "QUAGG.spad" 1648032 1648042 1649172 1649199) (-995 "QQUTAST.spad" 1647801 1647809 1648022 1648027) (-994 "QFORM.spad" 1647266 1647280 1647791 1647796) (-993 "QFCAT.spad" 1645969 1645979 1647168 1647261) (-992 "QFCAT.spad" 1644263 1644275 1645464 1645469) (-991 "QFCAT2.spad" 1643956 1643972 1644253 1644258) (-990 "QEQUAT.spad" 1643515 1643523 1643946 1643951) (-989 "QCMPACK.spad" 1638262 1638281 1643505 1643510) (-988 "QALGSET.spad" 1634341 1634373 1638176 1638181) (-987 "QALGSET2.spad" 1632337 1632355 1634331 1634336) (-986 "PWFFINTB.spad" 1629753 1629774 1632327 1632332) (-985 "PUSHVAR.spad" 1629092 1629111 1629743 1629748) (-984 "PTRANFN.spad" 1625220 1625230 1629082 1629087) (-983 "PTPACK.spad" 1622308 1622318 1625210 1625215) (-982 "PTFUNC2.spad" 1622131 1622145 1622298 1622303) (-981 "PTCAT.spad" 1621386 1621396 1622099 1622126) (-980 "PSQFR.spad" 1620693 1620717 1621376 1621381) (-979 "PSEUDLIN.spad" 1619579 1619589 1620683 1620688) (-978 "PSETPK.spad" 1605012 1605028 1619457 1619462) (-977 "PSETCAT.spad" 1598932 1598955 1604992 1605007) (-976 "PSETCAT.spad" 1592826 1592851 1598888 1598893) (-975 "PSCURVE.spad" 1591809 1591817 1592816 1592821) (-974 "PSCAT.spad" 1590592 1590621 1591707 1591804) (-973 "PSCAT.spad" 1589465 1589496 1590582 1590587) (-972 "PRTITION.spad" 1588426 1588434 1589455 1589460) (-971 "PRTDAST.spad" 1588145 1588153 1588416 1588421) (-970 "PRS.spad" 1577707 1577724 1588101 1588106) (-969 "PRQAGG.spad" 1577142 1577152 1577675 1577702) (-968 "PROPLOG.spad" 1576441 1576449 1577132 1577137) (-967 "PROPFRML.spad" 1575257 1575268 1576431 1576436) (-966 "PROPERTY.spad" 1574745 1574753 1575247 1575252) (-965 "PRODUCT.spad" 1572427 1572439 1572711 1572766) (-964 "PR.spad" 1570819 1570831 1571518 1571645) (-963 "PRINT.spad" 1570571 1570579 1570809 1570814) (-962 "PRIMES.spad" 1568824 1568834 1570561 1570566) (-961 "PRIMELT.spad" 1566905 1566919 1568814 1568819) (-960 "PRIMCAT.spad" 1566532 1566540 1566895 1566900) (-959 "PRIMARR.spad" 1565537 1565547 1565715 1565742) (-958 "PRIMARR2.spad" 1564304 1564316 1565527 1565532) (-957 "PREASSOC.spad" 1563686 1563698 1564294 1564299) (-956 "PPCURVE.spad" 1562823 1562831 1563676 1563681) (-955 "PORTNUM.spad" 1562598 1562606 1562813 1562818) (-954 "POLYROOT.spad" 1561447 1561469 1562554 1562559) (-953 "POLY.spad" 1558782 1558792 1559297 1559424) (-952 "POLYLIFT.spad" 1558047 1558070 1558772 1558777) (-951 "POLYCATQ.spad" 1556165 1556187 1558037 1558042) (-950 "POLYCAT.spad" 1549635 1549656 1556033 1556160) (-949 "POLYCAT.spad" 1542443 1542466 1548843 1548848) (-948 "POLY2UP.spad" 1541895 1541909 1542433 1542438) (-947 "POLY2.spad" 1541492 1541504 1541885 1541890) (-946 "POLUTIL.spad" 1540433 1540462 1541448 1541453) (-945 "POLTOPOL.spad" 1539181 1539196 1540423 1540428) (-944 "POINT.spad" 1538019 1538029 1538106 1538133) (-943 "PNTHEORY.spad" 1534721 1534729 1538009 1538014) (-942 "PMTOOLS.spad" 1533496 1533510 1534711 1534716) (-941 "PMSYM.spad" 1533045 1533055 1533486 1533491) (-940 "PMQFCAT.spad" 1532636 1532650 1533035 1533040) (-939 "PMPRED.spad" 1532115 1532129 1532626 1532631) (-938 "PMPREDFS.spad" 1531569 1531591 1532105 1532110) (-937 "PMPLCAT.spad" 1530649 1530667 1531501 1531506) (-936 "PMLSAGG.spad" 1530234 1530248 1530639 1530644) (-935 "PMKERNEL.spad" 1529813 1529825 1530224 1530229) (-934 "PMINS.spad" 1529393 1529403 1529803 1529808) (-933 "PMFS.spad" 1528970 1528988 1529383 1529388) (-932 "PMDOWN.spad" 1528260 1528274 1528960 1528965) (-931 "PMASS.spad" 1527270 1527278 1528250 1528255) (-930 "PMASSFS.spad" 1526237 1526253 1527260 1527265) (-929 "PLOTTOOL.spad" 1526017 1526025 1526227 1526232) (-928 "PLOT.spad" 1520940 1520948 1526007 1526012) (-927 "PLOT3D.spad" 1517404 1517412 1520930 1520935) (-926 "PLOT1.spad" 1516561 1516571 1517394 1517399) (-925 "PLEQN.spad" 1503851 1503878 1516551 1516556) (-924 "PINTERP.spad" 1503473 1503492 1503841 1503846) (-923 "PINTERPA.spad" 1503257 1503273 1503463 1503468) (-922 "PI.spad" 1502866 1502874 1503231 1503252) (-921 "PID.spad" 1501836 1501844 1502792 1502861) (-920 "PICOERCE.spad" 1501493 1501503 1501826 1501831) (-919 "PGROEB.spad" 1500094 1500108 1501483 1501488) (-918 "PGE.spad" 1491711 1491719 1500084 1500089) (-917 "PGCD.spad" 1490601 1490618 1491701 1491706) (-916 "PFRPAC.spad" 1489750 1489760 1490591 1490596) (-915 "PFR.spad" 1486413 1486423 1489652 1489745) (-914 "PFOTOOLS.spad" 1485671 1485687 1486403 1486408) (-913 "PFOQ.spad" 1485041 1485059 1485661 1485666) (-912 "PFO.spad" 1484460 1484487 1485031 1485036) (-911 "PF.spad" 1484034 1484046 1484265 1484358) (-910 "PFECAT.spad" 1481716 1481724 1483960 1484029) (-909 "PFECAT.spad" 1479426 1479436 1481672 1481677) (-908 "PFBRU.spad" 1477314 1477326 1479416 1479421) (-907 "PFBR.spad" 1474874 1474897 1477304 1477309) (-906 "PERM.spad" 1470559 1470569 1474704 1474719) (-905 "PERMGRP.spad" 1465321 1465331 1470549 1470554) (-904 "PERMCAT.spad" 1463879 1463889 1465301 1465316) (-903 "PERMAN.spad" 1462411 1462425 1463869 1463874) (-902 "PENDTREE.spad" 1461752 1461762 1462040 1462045) (-901 "PDRING.spad" 1460303 1460313 1461732 1461747) (-900 "PDRING.spad" 1458862 1458874 1460293 1460298) (-899 "PDEPROB.spad" 1457877 1457885 1458852 1458857) (-898 "PDEPACK.spad" 1451917 1451925 1457867 1457872) (-897 "PDECOMP.spad" 1451387 1451404 1451907 1451912) (-896 "PDECAT.spad" 1449743 1449751 1451377 1451382) (-895 "PCOMP.spad" 1449596 1449609 1449733 1449738) (-894 "PBWLB.spad" 1448184 1448201 1449586 1449591) (-893 "PATTERN.spad" 1442723 1442733 1448174 1448179) (-892 "PATTERN2.spad" 1442461 1442473 1442713 1442718) (-891 "PATTERN1.spad" 1440797 1440813 1442451 1442456) (-890 "PATRES.spad" 1438372 1438384 1440787 1440792) (-889 "PATRES2.spad" 1438044 1438058 1438362 1438367) (-888 "PATMATCH.spad" 1436241 1436272 1437752 1437757) (-887 "PATMAB.spad" 1435670 1435680 1436231 1436236) (-886 "PATLRES.spad" 1434756 1434770 1435660 1435665) (-885 "PATAB.spad" 1434520 1434530 1434746 1434751) (-884 "PARTPERM.spad" 1431920 1431928 1434510 1434515) (-883 "PARSURF.spad" 1431354 1431382 1431910 1431915) (-882 "PARSU2.spad" 1431151 1431167 1431344 1431349) (-881 "script-parser.spad" 1430671 1430679 1431141 1431146) (-880 "PARSCURV.spad" 1430105 1430133 1430661 1430666) (-879 "PARSC2.spad" 1429896 1429912 1430095 1430100) (-878 "PARPCURV.spad" 1429358 1429386 1429886 1429891) (-877 "PARPC2.spad" 1429149 1429165 1429348 1429353) (-876 "PAN2EXPR.spad" 1428561 1428569 1429139 1429144) (-875 "PALETTE.spad" 1427531 1427539 1428551 1428556) (-874 "PAIR.spad" 1426518 1426531 1427119 1427124) (-873 "PADICRC.spad" 1423852 1423870 1425023 1425116) (-872 "PADICRAT.spad" 1421867 1421879 1422088 1422181) (-871 "PADIC.spad" 1421562 1421574 1421793 1421862) (-870 "PADICCT.spad" 1420111 1420123 1421488 1421557) (-869 "PADEPAC.spad" 1418800 1418819 1420101 1420106) (-868 "PADE.spad" 1417552 1417568 1418790 1418795) (-867 "OWP.spad" 1416792 1416822 1417410 1417477) (-866 "OVERSET.spad" 1416365 1416373 1416782 1416787) (-865 "OVAR.spad" 1416146 1416169 1416355 1416360) (-864 "OUT.spad" 1415232 1415240 1416136 1416141) (-863 "OUTFORM.spad" 1404624 1404632 1415222 1415227) (-862 "OUTBFILE.spad" 1404042 1404050 1404614 1404619) (-861 "OUTBCON.spad" 1403048 1403056 1404032 1404037) (-860 "OUTBCON.spad" 1402052 1402062 1403038 1403043) (-859 "OSI.spad" 1401527 1401535 1402042 1402047) (-858 "OSGROUP.spad" 1401445 1401453 1401517 1401522) (-857 "ORTHPOL.spad" 1399930 1399940 1401362 1401367) (-856 "OREUP.spad" 1399383 1399411 1399610 1399649) (-855 "ORESUP.spad" 1398684 1398708 1399063 1399102) (-854 "OREPCTO.spad" 1396541 1396553 1398604 1398609) (-853 "OREPCAT.spad" 1390688 1390698 1396497 1396536) (-852 "OREPCAT.spad" 1384725 1384737 1390536 1390541) (-851 "ORDSET.spad" 1383897 1383905 1384715 1384720) (-850 "ORDSET.spad" 1383067 1383077 1383887 1383892) (-849 "ORDRING.spad" 1382457 1382465 1383047 1383062) (-848 "ORDRING.spad" 1381855 1381865 1382447 1382452) (-847 "ORDMON.spad" 1381710 1381718 1381845 1381850) (-846 "ORDFUNS.spad" 1380842 1380858 1381700 1381705) (-845 "ORDFIN.spad" 1380662 1380670 1380832 1380837) (-844 "ORDCOMP.spad" 1379127 1379137 1380209 1380238) (-843 "ORDCOMP2.spad" 1378420 1378432 1379117 1379122) (-842 "OPTPROB.spad" 1377058 1377066 1378410 1378415) (-841 "OPTPACK.spad" 1369467 1369475 1377048 1377053) (-840 "OPTCAT.spad" 1367146 1367154 1369457 1369462) (-839 "OPSIG.spad" 1366800 1366808 1367136 1367141) (-838 "OPQUERY.spad" 1366349 1366357 1366790 1366795) (-837 "OP.spad" 1366091 1366101 1366171 1366238) (-836 "OPERCAT.spad" 1365557 1365567 1366081 1366086) (-835 "OPERCAT.spad" 1365021 1365033 1365547 1365552) (-834 "ONECOMP.spad" 1363766 1363776 1364568 1364597) (-833 "ONECOMP2.spad" 1363190 1363202 1363756 1363761) (-832 "OMSERVER.spad" 1362196 1362204 1363180 1363185) (-831 "OMSAGG.spad" 1361984 1361994 1362152 1362191) (-830 "OMPKG.spad" 1360600 1360608 1361974 1361979) (-829 "OM.spad" 1359573 1359581 1360590 1360595) (-828 "OMLO.spad" 1358998 1359010 1359459 1359498) (-827 "OMEXPR.spad" 1358832 1358842 1358988 1358993) (-826 "OMERR.spad" 1358377 1358385 1358822 1358827) (-825 "OMERRK.spad" 1357411 1357419 1358367 1358372) (-824 "OMENC.spad" 1356755 1356763 1357401 1357406) (-823 "OMDEV.spad" 1351064 1351072 1356745 1356750) (-822 "OMCONN.spad" 1350473 1350481 1351054 1351059) (-821 "OINTDOM.spad" 1350236 1350244 1350399 1350468) (-820 "OFMONOID.spad" 1348359 1348369 1350192 1350197) (-819 "ODVAR.spad" 1347620 1347630 1348349 1348354) (-818 "ODR.spad" 1347264 1347290 1347432 1347581) (-817 "ODPOL.spad" 1344646 1344656 1344986 1345113) (-816 "ODP.spad" 1334493 1334513 1334866 1334997) (-815 "ODETOOLS.spad" 1333142 1333161 1334483 1334488) (-814 "ODESYS.spad" 1330836 1330853 1333132 1333137) (-813 "ODERTRIC.spad" 1326845 1326862 1330793 1330798) (-812 "ODERED.spad" 1326244 1326268 1326835 1326840) (-811 "ODERAT.spad" 1323859 1323876 1326234 1326239) (-810 "ODEPRRIC.spad" 1320896 1320918 1323849 1323854) (-809 "ODEPROB.spad" 1320153 1320161 1320886 1320891) (-808 "ODEPRIM.spad" 1317487 1317509 1320143 1320148) (-807 "ODEPAL.spad" 1316873 1316897 1317477 1317482) (-806 "ODEPACK.spad" 1303539 1303547 1316863 1316868) (-805 "ODEINT.spad" 1302974 1302990 1303529 1303534) (-804 "ODEIFTBL.spad" 1300369 1300377 1302964 1302969) (-803 "ODEEF.spad" 1295860 1295876 1300359 1300364) (-802 "ODECONST.spad" 1295397 1295415 1295850 1295855) (-801 "ODECAT.spad" 1293995 1294003 1295387 1295392) (-800 "OCT.spad" 1292131 1292141 1292845 1292884) (-799 "OCTCT2.spad" 1291777 1291798 1292121 1292126) (-798 "OC.spad" 1289573 1289583 1291733 1291772) (-797 "OC.spad" 1287094 1287106 1289256 1289261) (-796 "OCAMON.spad" 1286942 1286950 1287084 1287089) (-795 "OASGP.spad" 1286757 1286765 1286932 1286937) (-794 "OAMONS.spad" 1286279 1286287 1286747 1286752) (-793 "OAMON.spad" 1286140 1286148 1286269 1286274) (-792 "OAGROUP.spad" 1286002 1286010 1286130 1286135) (-791 "NUMTUBE.spad" 1285593 1285609 1285992 1285997) (-790 "NUMQUAD.spad" 1273569 1273577 1285583 1285588) (-789 "NUMODE.spad" 1264923 1264931 1273559 1273564) (-788 "NUMINT.spad" 1262489 1262497 1264913 1264918) (-787 "NUMFMT.spad" 1261329 1261337 1262479 1262484) (-786 "NUMERIC.spad" 1253443 1253453 1261134 1261139) (-785 "NTSCAT.spad" 1251951 1251967 1253411 1253438) (-784 "NTPOLFN.spad" 1251502 1251512 1251868 1251873) (-783 "NSUP.spad" 1244548 1244558 1249088 1249241) (-782 "NSUP2.spad" 1243940 1243952 1244538 1244543) (-781 "NSMP.spad" 1240171 1240190 1240479 1240606) (-780 "NREP.spad" 1238549 1238563 1240161 1240166) (-779 "NPCOEF.spad" 1237795 1237815 1238539 1238544) (-778 "NORMRETR.spad" 1237393 1237432 1237785 1237790) (-777 "NORMPK.spad" 1235295 1235314 1237383 1237388) (-776 "NORMMA.spad" 1234983 1235009 1235285 1235290) (-775 "NONE.spad" 1234724 1234732 1234973 1234978) (-774 "NONE1.spad" 1234400 1234410 1234714 1234719) (-773 "NODE1.spad" 1233887 1233903 1234390 1234395) (-772 "NNI.spad" 1232782 1232790 1233861 1233882) (-771 "NLINSOL.spad" 1231408 1231418 1232772 1232777) (-770 "NIPROB.spad" 1229949 1229957 1231398 1231403) (-769 "NFINTBAS.spad" 1227509 1227526 1229939 1229944) (-768 "NETCLT.spad" 1227483 1227494 1227499 1227504) (-767 "NCODIV.spad" 1225699 1225715 1227473 1227478) (-766 "NCNTFRAC.spad" 1225341 1225355 1225689 1225694) (-765 "NCEP.spad" 1223507 1223521 1225331 1225336) (-764 "NASRING.spad" 1223103 1223111 1223497 1223502) (-763 "NASRING.spad" 1222697 1222707 1223093 1223098) (-762 "NARNG.spad" 1222049 1222057 1222687 1222692) (-761 "NARNG.spad" 1221399 1221409 1222039 1222044) (-760 "NAGSP.spad" 1220476 1220484 1221389 1221394) (-759 "NAGS.spad" 1210137 1210145 1220466 1220471) (-758 "NAGF07.spad" 1208568 1208576 1210127 1210132) (-757 "NAGF04.spad" 1202970 1202978 1208558 1208563) (-756 "NAGF02.spad" 1197039 1197047 1202960 1202965) (-755 "NAGF01.spad" 1192800 1192808 1197029 1197034) (-754 "NAGE04.spad" 1186500 1186508 1192790 1192795) (-753 "NAGE02.spad" 1177160 1177168 1186490 1186495) (-752 "NAGE01.spad" 1173162 1173170 1177150 1177155) (-751 "NAGD03.spad" 1171166 1171174 1173152 1173157) (-750 "NAGD02.spad" 1163913 1163921 1171156 1171161) (-749 "NAGD01.spad" 1158206 1158214 1163903 1163908) (-748 "NAGC06.spad" 1154081 1154089 1158196 1158201) (-747 "NAGC05.spad" 1152582 1152590 1154071 1154076) (-746 "NAGC02.spad" 1151849 1151857 1152572 1152577) (-745 "NAALG.spad" 1151390 1151400 1151817 1151844) (-744 "NAALG.spad" 1150951 1150963 1151380 1151385) (-743 "MULTSQFR.spad" 1147909 1147926 1150941 1150946) (-742 "MULTFACT.spad" 1147292 1147309 1147899 1147904) (-741 "MTSCAT.spad" 1145386 1145407 1147190 1147287) (-740 "MTHING.spad" 1145045 1145055 1145376 1145381) (-739 "MSYSCMD.spad" 1144479 1144487 1145035 1145040) (-738 "MSET.spad" 1142437 1142447 1144185 1144224) (-737 "MSETAGG.spad" 1142282 1142292 1142405 1142432) (-736 "MRING.spad" 1139259 1139271 1141990 1142057) (-735 "MRF2.spad" 1138829 1138843 1139249 1139254) (-734 "MRATFAC.spad" 1138375 1138392 1138819 1138824) (-733 "MPRFF.spad" 1136415 1136434 1138365 1138370) (-732 "MPOLY.spad" 1133886 1133901 1134245 1134372) (-731 "MPCPF.spad" 1133150 1133169 1133876 1133881) (-730 "MPC3.spad" 1132967 1133007 1133140 1133145) (-729 "MPC2.spad" 1132613 1132646 1132957 1132962) (-728 "MONOTOOL.spad" 1130964 1130981 1132603 1132608) (-727 "MONOID.spad" 1130283 1130291 1130954 1130959) (-726 "MONOID.spad" 1129600 1129610 1130273 1130278) (-725 "MONOGEN.spad" 1128348 1128361 1129460 1129595) (-724 "MONOGEN.spad" 1127118 1127133 1128232 1128237) (-723 "MONADWU.spad" 1125148 1125156 1127108 1127113) (-722 "MONADWU.spad" 1123176 1123186 1125138 1125143) (-721 "MONAD.spad" 1122336 1122344 1123166 1123171) (-720 "MONAD.spad" 1121494 1121504 1122326 1122331) (-719 "MOEBIUS.spad" 1120230 1120244 1121474 1121489) (-718 "MODULE.spad" 1120100 1120110 1120198 1120225) (-717 "MODULE.spad" 1119990 1120002 1120090 1120095) (-716 "MODRING.spad" 1119325 1119364 1119970 1119985) (-715 "MODOP.spad" 1117990 1118002 1119147 1119214) (-714 "MODMONOM.spad" 1117721 1117739 1117980 1117985) (-713 "MODMON.spad" 1114516 1114532 1115235 1115388) (-712 "MODFIELD.spad" 1113878 1113917 1114418 1114511) (-711 "MMLFORM.spad" 1112738 1112746 1113868 1113873) (-710 "MMAP.spad" 1112480 1112514 1112728 1112733) (-709 "MLO.spad" 1110939 1110949 1112436 1112475) (-708 "MLIFT.spad" 1109551 1109568 1110929 1110934) (-707 "MKUCFUNC.spad" 1109086 1109104 1109541 1109546) (-706 "MKRECORD.spad" 1108690 1108703 1109076 1109081) (-705 "MKFUNC.spad" 1108097 1108107 1108680 1108685) (-704 "MKFLCFN.spad" 1107065 1107075 1108087 1108092) (-703 "MKBCFUNC.spad" 1106560 1106578 1107055 1107060) (-702 "MINT.spad" 1105999 1106007 1106462 1106555) (-701 "MHROWRED.spad" 1104510 1104520 1105989 1105994) (-700 "MFLOAT.spad" 1103030 1103038 1104400 1104505) (-699 "MFINFACT.spad" 1102430 1102452 1103020 1103025) (-698 "MESH.spad" 1100212 1100220 1102420 1102425) (-697 "MDDFACT.spad" 1098423 1098433 1100202 1100207) (-696 "MDAGG.spad" 1097714 1097724 1098403 1098418) (-695 "MCMPLX.spad" 1093725 1093733 1094339 1094540) (-694 "MCDEN.spad" 1092935 1092947 1093715 1093720) (-693 "MCALCFN.spad" 1090057 1090083 1092925 1092930) (-692 "MAYBE.spad" 1089341 1089352 1090047 1090052) (-691 "MATSTOR.spad" 1086649 1086659 1089331 1089336) (-690 "MATRIX.spad" 1085353 1085363 1085837 1085864) (-689 "MATLIN.spad" 1082697 1082721 1085237 1085242) (-688 "MATCAT.spad" 1074426 1074448 1082665 1082692) (-687 "MATCAT.spad" 1066027 1066051 1074268 1074273) (-686 "MATCAT2.spad" 1065309 1065357 1066017 1066022) (-685 "MAPPKG3.spad" 1064224 1064238 1065299 1065304) (-684 "MAPPKG2.spad" 1063562 1063574 1064214 1064219) (-683 "MAPPKG1.spad" 1062390 1062400 1063552 1063557) (-682 "MAPPAST.spad" 1061705 1061713 1062380 1062385) (-681 "MAPHACK3.spad" 1061517 1061531 1061695 1061700) (-680 "MAPHACK2.spad" 1061286 1061298 1061507 1061512) (-679 "MAPHACK1.spad" 1060930 1060940 1061276 1061281) (-678 "MAGMA.spad" 1058720 1058737 1060920 1060925) (-677 "MACROAST.spad" 1058299 1058307 1058710 1058715) (-676 "M3D.spad" 1056019 1056029 1057677 1057682) (-675 "LZSTAGG.spad" 1053257 1053267 1056009 1056014) (-674 "LZSTAGG.spad" 1050493 1050505 1053247 1053252) (-673 "LWORD.spad" 1047198 1047215 1050483 1050488) (-672 "LSTAST.spad" 1046982 1046990 1047188 1047193) (-671 "LSQM.spad" 1045212 1045226 1045606 1045657) (-670 "LSPP.spad" 1044747 1044764 1045202 1045207) (-669 "LSMP.spad" 1043597 1043625 1044737 1044742) (-668 "LSMP1.spad" 1041415 1041429 1043587 1043592) (-667 "LSAGG.spad" 1041084 1041094 1041383 1041410) (-666 "LSAGG.spad" 1040773 1040785 1041074 1041079) (-665 "LPOLY.spad" 1039727 1039746 1040629 1040698) (-664 "LPEFRAC.spad" 1038998 1039008 1039717 1039722) (-663 "LO.spad" 1038399 1038413 1038932 1038959) (-662 "LOGIC.spad" 1038001 1038009 1038389 1038394) (-661 "LOGIC.spad" 1037601 1037611 1037991 1037996) (-660 "LODOOPS.spad" 1036531 1036543 1037591 1037596) (-659 "LODO.spad" 1035915 1035931 1036211 1036250) (-658 "LODOF.spad" 1034961 1034978 1035872 1035877) (-657 "LODOCAT.spad" 1033627 1033637 1034917 1034956) (-656 "LODOCAT.spad" 1032291 1032303 1033583 1033588) (-655 "LODO2.spad" 1031564 1031576 1031971 1032010) (-654 "LODO1.spad" 1030964 1030974 1031244 1031283) (-653 "LODEEF.spad" 1029766 1029784 1030954 1030959) (-652 "LNAGG.spad" 1025598 1025608 1029756 1029761) (-651 "LNAGG.spad" 1021394 1021406 1025554 1025559) (-650 "LMOPS.spad" 1018162 1018179 1021384 1021389) (-649 "LMODULE.spad" 1017930 1017940 1018152 1018157) (-648 "LMDICT.spad" 1017217 1017227 1017481 1017508) (-647 "LLINSET.spad" 1016614 1016624 1017207 1017212) (-646 "LITERAL.spad" 1016520 1016531 1016604 1016609) (-645 "LIST.spad" 1014255 1014265 1015667 1015694) (-644 "LIST3.spad" 1013566 1013580 1014245 1014250) (-643 "LIST2.spad" 1012268 1012280 1013556 1013561) (-642 "LIST2MAP.spad" 1009171 1009183 1012258 1012263) (-641 "LINSET.spad" 1008793 1008803 1009161 1009166) (-640 "LINEXP.spad" 1008227 1008237 1008773 1008788) (-639 "LINDEP.spad" 1007036 1007048 1008139 1008144) (-638 "LIMITRF.spad" 1004964 1004974 1007026 1007031) (-637 "LIMITPS.spad" 1003867 1003880 1004954 1004959) (-636 "LIE.spad" 1001883 1001895 1003157 1003302) (-635 "LIECAT.spad" 1001359 1001369 1001809 1001878) (-634 "LIECAT.spad" 1000863 1000875 1001315 1001320) (-633 "LIB.spad" 998913 998921 999522 999537) (-632 "LGROBP.spad" 996266 996285 998903 998908) (-631 "LF.spad" 995221 995237 996256 996261) (-630 "LFCAT.spad" 994280 994288 995211 995216) (-629 "LEXTRIPK.spad" 989783 989798 994270 994275) (-628 "LEXP.spad" 987786 987813 989763 989778) (-627 "LETAST.spad" 987485 987493 987776 987781) (-626 "LEADCDET.spad" 985883 985900 987475 987480) (-625 "LAZM3PK.spad" 984587 984609 985873 985878) (-624 "LAUPOL.spad" 983280 983293 984180 984249) (-623 "LAPLACE.spad" 982863 982879 983270 983275) (-622 "LA.spad" 982303 982317 982785 982824) (-621 "LALG.spad" 982079 982089 982283 982298) (-620 "LALG.spad" 981863 981875 982069 982074) (-619 "KVTFROM.spad" 981598 981608 981853 981858) (-618 "KTVLOGIC.spad" 981110 981118 981588 981593) (-617 "KRCFROM.spad" 980848 980858 981100 981105) (-616 "KOVACIC.spad" 979571 979588 980838 980843) (-615 "KONVERT.spad" 979293 979303 979561 979566) (-614 "KOERCE.spad" 979030 979040 979283 979288) (-613 "KERNEL.spad" 977685 977695 978814 978819) (-612 "KERNEL2.spad" 977388 977400 977675 977680) (-611 "KDAGG.spad" 976497 976519 977368 977383) (-610 "KDAGG.spad" 975614 975638 976487 976492) (-609 "KAFILE.spad" 974577 974593 974812 974839) (-608 "JORDAN.spad" 972406 972418 973867 974012) (-607 "JOINAST.spad" 972100 972108 972396 972401) (-606 "JAVACODE.spad" 971966 971974 972090 972095) (-605 "IXAGG.spad" 970099 970123 971956 971961) (-604 "IXAGG.spad" 968087 968113 969946 969951) (-603 "IVECTOR.spad" 966857 966872 967012 967039) (-602 "ITUPLE.spad" 966018 966028 966847 966852) (-601 "ITRIGMNP.spad" 964857 964876 966008 966013) (-600 "ITFUN3.spad" 964363 964377 964847 964852) (-599 "ITFUN2.spad" 964107 964119 964353 964358) (-598 "ITAYLOR.spad" 962101 962116 963971 964068) (-597 "ISUPS.spad" 954538 954553 961075 961172) (-596 "ISUMP.spad" 954039 954055 954528 954533) (-595 "ISTRING.spad" 953127 953140 953208 953235) (-594 "ISAST.spad" 952846 952854 953117 953122) (-593 "IRURPK.spad" 951563 951582 952836 952841) (-592 "IRSN.spad" 949567 949575 951553 951558) (-591 "IRRF2F.spad" 948052 948062 949523 949528) (-590 "IRREDFFX.spad" 947653 947664 948042 948047) (-589 "IROOT.spad" 945992 946002 947643 947648) (-588 "IR.spad" 943793 943807 945847 945874) (-587 "IR2.spad" 942821 942837 943783 943788) (-586 "IR2F.spad" 942027 942043 942811 942816) (-585 "IPRNTPK.spad" 941787 941795 942017 942022) (-584 "IPF.spad" 941352 941364 941592 941685) (-583 "IPADIC.spad" 941113 941139 941278 941347) (-582 "IP4ADDR.spad" 940670 940678 941103 941108) (-581 "IOMODE.spad" 940291 940299 940660 940665) (-580 "IOBFILE.spad" 939652 939660 940281 940286) (-579 "IOBCON.spad" 939517 939525 939642 939647) (-578 "INVLAPLA.spad" 939166 939182 939507 939512) (-577 "INTTR.spad" 932548 932565 939156 939161) (-576 "INTTOOLS.spad" 930303 930319 932122 932127) (-575 "INTSLPE.spad" 929623 929631 930293 930298) (-574 "INTRVL.spad" 929189 929199 929537 929618) (-573 "INTRF.spad" 927613 927627 929179 929184) (-572 "INTRET.spad" 927045 927055 927603 927608) (-571 "INTRAT.spad" 925772 925789 927035 927040) (-570 "INTPM.spad" 924157 924173 925415 925420) (-569 "INTPAF.spad" 922021 922039 924089 924094) (-568 "INTPACK.spad" 912395 912403 922011 922016) (-567 "INT.spad" 911843 911851 912249 912390) (-566 "INTHERTR.spad" 911117 911134 911833 911838) (-565 "INTHERAL.spad" 910787 910811 911107 911112) (-564 "INTHEORY.spad" 907226 907234 910777 910782) (-563 "INTG0.spad" 900959 900977 907158 907163) (-562 "INTFTBL.spad" 894988 894996 900949 900954) (-561 "INTFACT.spad" 894047 894057 894978 894983) (-560 "INTEF.spad" 892432 892448 894037 894042) (-559 "INTDOM.spad" 891055 891063 892358 892427) (-558 "INTDOM.spad" 889740 889750 891045 891050) (-557 "INTCAT.spad" 887999 888009 889654 889735) (-556 "INTBIT.spad" 887506 887514 887989 887994) (-555 "INTALG.spad" 886694 886721 887496 887501) (-554 "INTAF.spad" 886194 886210 886684 886689) (-553 "INTABL.spad" 884712 884743 884875 884902) (-552 "INT8.spad" 884592 884600 884702 884707) (-551 "INT64.spad" 884471 884479 884582 884587) (-550 "INT32.spad" 884350 884358 884461 884466) (-549 "INT16.spad" 884229 884237 884340 884345) (-548 "INS.spad" 881732 881740 884131 884224) (-547 "INS.spad" 879321 879331 881722 881727) (-546 "INPSIGN.spad" 878769 878782 879311 879316) (-545 "INPRODPF.spad" 877865 877884 878759 878764) (-544 "INPRODFF.spad" 876953 876977 877855 877860) (-543 "INNMFACT.spad" 875928 875945 876943 876948) (-542 "INMODGCD.spad" 875416 875446 875918 875923) (-541 "INFSP.spad" 873713 873735 875406 875411) (-540 "INFPROD0.spad" 872793 872812 873703 873708) (-539 "INFORM.spad" 869992 870000 872783 872788) (-538 "INFORM1.spad" 869617 869627 869982 869987) (-537 "INFINITY.spad" 869169 869177 869607 869612) (-536 "INETCLTS.spad" 869146 869154 869159 869164) (-535 "INEP.spad" 867684 867706 869136 869141) (-534 "INDE.spad" 867413 867430 867674 867679) (-533 "INCRMAPS.spad" 866834 866844 867403 867408) (-532 "INBFILE.spad" 865906 865914 866824 866829) (-531 "INBFF.spad" 861700 861711 865896 865901) (-530 "INBCON.spad" 859990 859998 861690 861695) (-529 "INBCON.spad" 858278 858288 859980 859985) (-528 "INAST.spad" 857939 857947 858268 858273) (-527 "IMPTAST.spad" 857647 857655 857929 857934) (-526 "IMATRIX.spad" 856592 856618 857104 857131) (-525 "IMATQF.spad" 855686 855730 856548 856553) (-524 "IMATLIN.spad" 854291 854315 855642 855647) (-523 "ILIST.spad" 852949 852964 853474 853501) (-522 "IIARRAY2.spad" 852337 852375 852556 852583) (-521 "IFF.spad" 851747 851763 852018 852111) (-520 "IFAST.spad" 851361 851369 851737 851742) (-519 "IFARRAY.spad" 848854 848869 850544 850571) (-518 "IFAMON.spad" 848716 848733 848810 848815) (-517 "IEVALAB.spad" 848121 848133 848706 848711) (-516 "IEVALAB.spad" 847524 847538 848111 848116) (-515 "IDPO.spad" 847322 847334 847514 847519) (-514 "IDPOAMS.spad" 847078 847090 847312 847317) (-513 "IDPOAM.spad" 846798 846810 847068 847073) (-512 "IDPC.spad" 845736 845748 846788 846793) (-511 "IDPAM.spad" 845481 845493 845726 845731) (-510 "IDPAG.spad" 845228 845240 845471 845476) (-509 "IDENT.spad" 844878 844886 845218 845223) (-508 "IDECOMP.spad" 842117 842135 844868 844873) (-507 "IDEAL.spad" 837066 837105 842052 842057) (-506 "ICDEN.spad" 836255 836271 837056 837061) (-505 "ICARD.spad" 835446 835454 836245 836250) (-504 "IBPTOOLS.spad" 834053 834070 835436 835441) (-503 "IBITS.spad" 833256 833269 833689 833716) (-502 "IBATOOL.spad" 830233 830252 833246 833251) (-501 "IBACHIN.spad" 828740 828755 830223 830228) (-500 "IARRAY2.spad" 827728 827754 828347 828374) (-499 "IARRAY1.spad" 826773 826788 826911 826938) (-498 "IAN.spad" 824996 825004 826589 826682) (-497 "IALGFACT.spad" 824599 824632 824986 824991) (-496 "HYPCAT.spad" 824023 824031 824589 824594) (-495 "HYPCAT.spad" 823445 823455 824013 824018) (-494 "HOSTNAME.spad" 823253 823261 823435 823440) (-493 "HOMOTOP.spad" 822996 823006 823243 823248) (-492 "HOAGG.spad" 820278 820288 822986 822991) (-491 "HOAGG.spad" 817335 817347 820045 820050) (-490 "HEXADEC.spad" 815437 815445 815802 815895) (-489 "HEUGCD.spad" 814472 814483 815427 815432) (-488 "HELLFDIV.spad" 814062 814086 814462 814467) (-487 "HEAP.spad" 813454 813464 813669 813696) (-486 "HEADAST.spad" 812991 812999 813444 813449) (-485 "HDP.spad" 802834 802850 803211 803342) (-484 "HDMP.spad" 800048 800063 800664 800791) (-483 "HB.spad" 798299 798307 800038 800043) (-482 "HASHTBL.spad" 796769 796800 796980 797007) (-481 "HASAST.spad" 796485 796493 796759 796764) (-480 "HACKPI.spad" 795976 795984 796387 796480) (-479 "GTSET.spad" 794915 794931 795622 795649) (-478 "GSTBL.spad" 793434 793469 793608 793623) (-477 "GSERIES.spad" 790605 790632 791566 791715) (-476 "GROUP.spad" 789878 789886 790585 790600) (-475 "GROUP.spad" 789159 789169 789868 789873) (-474 "GROEBSOL.spad" 787653 787674 789149 789154) (-473 "GRMOD.spad" 786224 786236 787643 787648) (-472 "GRMOD.spad" 784793 784807 786214 786219) (-471 "GRIMAGE.spad" 777682 777690 784783 784788) (-470 "GRDEF.spad" 776061 776069 777672 777677) (-469 "GRAY.spad" 774524 774532 776051 776056) (-468 "GRALG.spad" 773601 773613 774514 774519) (-467 "GRALG.spad" 772676 772690 773591 773596) (-466 "GPOLSET.spad" 772130 772153 772358 772385) (-465 "GOSPER.spad" 771399 771417 772120 772125) (-464 "GMODPOL.spad" 770547 770574 771367 771394) (-463 "GHENSEL.spad" 769630 769644 770537 770542) (-462 "GENUPS.spad" 765923 765936 769620 769625) (-461 "GENUFACT.spad" 765500 765510 765913 765918) (-460 "GENPGCD.spad" 765086 765103 765490 765495) (-459 "GENMFACT.spad" 764538 764557 765076 765081) (-458 "GENEEZ.spad" 762489 762502 764528 764533) (-457 "GDMP.spad" 759545 759562 760319 760446) (-456 "GCNAALG.spad" 753468 753495 759339 759406) (-455 "GCDDOM.spad" 752644 752652 753394 753463) (-454 "GCDDOM.spad" 751882 751892 752634 752639) (-453 "GB.spad" 749408 749446 751838 751843) (-452 "GBINTERN.spad" 745428 745466 749398 749403) (-451 "GBF.spad" 741195 741233 745418 745423) (-450 "GBEUCLID.spad" 739077 739115 741185 741190) (-449 "GAUSSFAC.spad" 738390 738398 739067 739072) (-448 "GALUTIL.spad" 736716 736726 738346 738351) (-447 "GALPOLYU.spad" 735170 735183 736706 736711) (-446 "GALFACTU.spad" 733343 733362 735160 735165) (-445 "GALFACT.spad" 723532 723543 733333 733338) (-444 "FVFUN.spad" 720555 720563 723522 723527) (-443 "FVC.spad" 719607 719615 720545 720550) (-442 "FUNDESC.spad" 719285 719293 719597 719602) (-441 "FUNCTION.spad" 719134 719146 719275 719280) (-440 "FT.spad" 717431 717439 719124 719129) (-439 "FTEM.spad" 716596 716604 717421 717426) (-438 "FSUPFACT.spad" 715496 715515 716532 716537) (-437 "FST.spad" 713582 713590 715486 715491) (-436 "FSRED.spad" 713062 713078 713572 713577) (-435 "FSPRMELT.spad" 711944 711960 713019 713024) (-434 "FSPECF.spad" 710035 710051 711934 711939) (-433 "FS.spad" 704303 704313 709810 710030) (-432 "FS.spad" 698349 698361 703858 703863) (-431 "FSINT.spad" 698009 698025 698339 698344) (-430 "FSERIES.spad" 697200 697212 697829 697928) (-429 "FSCINT.spad" 696517 696533 697190 697195) (-428 "FSAGG.spad" 695634 695644 696473 696512) (-427 "FSAGG.spad" 694713 694725 695554 695559) (-426 "FSAGG2.spad" 693456 693472 694703 694708) (-425 "FS2UPS.spad" 687947 687981 693446 693451) (-424 "FS2.spad" 687594 687610 687937 687942) (-423 "FS2EXPXP.spad" 686719 686742 687584 687589) (-422 "FRUTIL.spad" 685673 685683 686709 686714) (-421 "FR.spad" 679389 679399 684697 684766) (-420 "FRNAALG.spad" 674508 674518 679331 679384) (-419 "FRNAALG.spad" 669639 669651 674464 674469) (-418 "FRNAAF2.spad" 669095 669113 669629 669634) (-417 "FRMOD.spad" 668505 668535 669026 669031) (-416 "FRIDEAL.spad" 667730 667751 668485 668500) (-415 "FRIDEAL2.spad" 667334 667366 667720 667725) (-414 "FRETRCT.spad" 666845 666855 667324 667329) (-413 "FRETRCT.spad" 666222 666234 666703 666708) (-412 "FRAMALG.spad" 664570 664583 666178 666217) (-411 "FRAMALG.spad" 662950 662965 664560 664565) (-410 "FRAC.spad" 660049 660059 660452 660625) (-409 "FRAC2.spad" 659654 659666 660039 660044) (-408 "FR2.spad" 658990 659002 659644 659649) (-407 "FPS.spad" 655805 655813 658880 658985) (-406 "FPS.spad" 652648 652658 655725 655730) (-405 "FPC.spad" 651694 651702 652550 652643) (-404 "FPC.spad" 650826 650836 651684 651689) (-403 "FPATMAB.spad" 650588 650598 650816 650821) (-402 "FPARFRAC.spad" 649075 649092 650578 650583) (-401 "FORTRAN.spad" 647581 647624 649065 649070) (-400 "FORT.spad" 646530 646538 647571 647576) (-399 "FORTFN.spad" 643700 643708 646520 646525) (-398 "FORTCAT.spad" 643384 643392 643690 643695) (-397 "FORMULA.spad" 640858 640866 643374 643379) (-396 "FORMULA1.spad" 640337 640347 640848 640853) (-395 "FORDER.spad" 640028 640052 640327 640332) (-394 "FOP.spad" 639229 639237 640018 640023) (-393 "FNLA.spad" 638653 638675 639197 639224) (-392 "FNCAT.spad" 637248 637256 638643 638648) (-391 "FNAME.spad" 637140 637148 637238 637243) (-390 "FMTC.spad" 636938 636946 637066 637135) (-389 "FMONOID.spad" 636603 636613 636894 636899) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2263533 2263538 2263543 2263548) (-2 NIL 2263513 2263518 2263523 2263528) (-1 NIL 2263493 2263498 2263503 2263508) (0 NIL 2263473 2263478 2263483 2263488) (-1296 "ZMOD.spad" 2263282 2263295 2263411 2263468) (-1295 "ZLINDEP.spad" 2262348 2262359 2263272 2263277) (-1294 "ZDSOLVE.spad" 2252293 2252315 2262338 2262343) (-1293 "YSTREAM.spad" 2251788 2251799 2252283 2252288) (-1292 "XRPOLY.spad" 2251008 2251028 2251644 2251713) (-1291 "XPR.spad" 2248803 2248816 2250726 2250825) (-1290 "XPOLY.spad" 2248358 2248369 2248659 2248728) (-1289 "XPOLYC.spad" 2247677 2247693 2248284 2248353) (-1288 "XPBWPOLY.spad" 2246114 2246134 2247457 2247526) (-1287 "XF.spad" 2244577 2244592 2246016 2246109) (-1286 "XF.spad" 2243020 2243037 2244461 2244466) (-1285 "XFALG.spad" 2240068 2240084 2242946 2243015) (-1284 "XEXPPKG.spad" 2239319 2239345 2240058 2240063) (-1283 "XDPOLY.spad" 2238933 2238949 2239175 2239244) (-1282 "XALG.spad" 2238593 2238604 2238889 2238928) (-1281 "WUTSET.spad" 2234432 2234449 2238239 2238266) (-1280 "WP.spad" 2233631 2233675 2234290 2234357) (-1279 "WHILEAST.spad" 2233429 2233438 2233621 2233626) (-1278 "WHEREAST.spad" 2233100 2233109 2233419 2233424) (-1277 "WFFINTBS.spad" 2230763 2230785 2233090 2233095) (-1276 "WEIER.spad" 2228985 2228996 2230753 2230758) (-1275 "VSPACE.spad" 2228658 2228669 2228953 2228980) (-1274 "VSPACE.spad" 2228351 2228364 2228648 2228653) (-1273 "VOID.spad" 2228028 2228037 2228341 2228346) (-1272 "VIEW.spad" 2225708 2225717 2228018 2228023) (-1271 "VIEWDEF.spad" 2220909 2220918 2225698 2225703) (-1270 "VIEW3D.spad" 2204870 2204879 2220899 2220904) (-1269 "VIEW2D.spad" 2192761 2192770 2204860 2204865) (-1268 "VECTOR.spad" 2191435 2191446 2191686 2191713) (-1267 "VECTOR2.spad" 2190074 2190087 2191425 2191430) (-1266 "VECTCAT.spad" 2187978 2187989 2190042 2190069) (-1265 "VECTCAT.spad" 2185689 2185702 2187755 2187760) (-1264 "VARIABLE.spad" 2185469 2185484 2185679 2185684) (-1263 "UTYPE.spad" 2185113 2185122 2185459 2185464) (-1262 "UTSODETL.spad" 2184408 2184432 2185069 2185074) (-1261 "UTSODE.spad" 2182624 2182644 2184398 2184403) (-1260 "UTS.spad" 2177437 2177465 2181091 2181188) (-1259 "UTSCAT.spad" 2174916 2174932 2177335 2177432) (-1258 "UTSCAT.spad" 2172039 2172057 2174460 2174465) (-1257 "UTS2.spad" 2171634 2171669 2172029 2172034) (-1256 "URAGG.spad" 2166307 2166318 2171624 2171629) (-1255 "URAGG.spad" 2160944 2160957 2166263 2166268) (-1254 "UPXSSING.spad" 2158589 2158615 2160025 2160158) (-1253 "UPXS.spad" 2155743 2155771 2156721 2156870) (-1252 "UPXSCONS.spad" 2153502 2153522 2153875 2154024) (-1251 "UPXSCCA.spad" 2152073 2152093 2153348 2153497) (-1250 "UPXSCCA.spad" 2150786 2150808 2152063 2152068) (-1249 "UPXSCAT.spad" 2149375 2149391 2150632 2150781) (-1248 "UPXS2.spad" 2148918 2148971 2149365 2149370) (-1247 "UPSQFREE.spad" 2147332 2147346 2148908 2148913) (-1246 "UPSCAT.spad" 2144943 2144967 2147230 2147327) (-1245 "UPSCAT.spad" 2142260 2142286 2144549 2144554) (-1244 "UPOLYC.spad" 2137300 2137311 2142102 2142255) (-1243 "UPOLYC.spad" 2132232 2132245 2137036 2137041) (-1242 "UPOLYC2.spad" 2131703 2131722 2132222 2132227) (-1241 "UP.spad" 2128902 2128917 2129289 2129442) (-1240 "UPMP.spad" 2127802 2127815 2128892 2128897) (-1239 "UPDIVP.spad" 2127367 2127381 2127792 2127797) (-1238 "UPDECOMP.spad" 2125612 2125626 2127357 2127362) (-1237 "UPCDEN.spad" 2124821 2124837 2125602 2125607) (-1236 "UP2.spad" 2124185 2124206 2124811 2124816) (-1235 "UNISEG.spad" 2123538 2123549 2124104 2124109) (-1234 "UNISEG2.spad" 2123035 2123048 2123494 2123499) (-1233 "UNIFACT.spad" 2122138 2122150 2123025 2123030) (-1232 "ULS.spad" 2112696 2112724 2113783 2114212) (-1231 "ULSCONS.spad" 2105092 2105112 2105462 2105611) (-1230 "ULSCCAT.spad" 2102829 2102849 2104938 2105087) (-1229 "ULSCCAT.spad" 2100674 2100696 2102785 2102790) (-1228 "ULSCAT.spad" 2098906 2098922 2100520 2100669) (-1227 "ULS2.spad" 2098420 2098473 2098896 2098901) (-1226 "UINT8.spad" 2098297 2098306 2098410 2098415) (-1225 "UINT64.spad" 2098173 2098182 2098287 2098292) (-1224 "UINT32.spad" 2098049 2098058 2098163 2098168) (-1223 "UINT16.spad" 2097925 2097934 2098039 2098044) (-1222 "UFD.spad" 2096990 2096999 2097851 2097920) (-1221 "UFD.spad" 2096117 2096128 2096980 2096985) (-1220 "UDVO.spad" 2094998 2095007 2096107 2096112) (-1219 "UDPO.spad" 2092491 2092502 2094954 2094959) (-1218 "TYPE.spad" 2092423 2092432 2092481 2092486) (-1217 "TYPEAST.spad" 2092342 2092351 2092413 2092418) (-1216 "TWOFACT.spad" 2090994 2091009 2092332 2092337) (-1215 "TUPLE.spad" 2090480 2090491 2090893 2090898) (-1214 "TUBETOOL.spad" 2087347 2087356 2090470 2090475) (-1213 "TUBE.spad" 2085994 2086011 2087337 2087342) (-1212 "TS.spad" 2084593 2084609 2085559 2085656) (-1211 "TSETCAT.spad" 2071720 2071737 2084561 2084588) (-1210 "TSETCAT.spad" 2058833 2058852 2071676 2071681) (-1209 "TRMANIP.spad" 2053199 2053216 2058539 2058544) (-1208 "TRIMAT.spad" 2052162 2052187 2053189 2053194) (-1207 "TRIGMNIP.spad" 2050689 2050706 2052152 2052157) (-1206 "TRIGCAT.spad" 2050201 2050210 2050679 2050684) (-1205 "TRIGCAT.spad" 2049711 2049722 2050191 2050196) (-1204 "TREE.spad" 2048286 2048297 2049318 2049345) (-1203 "TRANFUN.spad" 2048125 2048134 2048276 2048281) (-1202 "TRANFUN.spad" 2047962 2047973 2048115 2048120) (-1201 "TOPSP.spad" 2047636 2047645 2047952 2047957) (-1200 "TOOLSIGN.spad" 2047299 2047310 2047626 2047631) (-1199 "TEXTFILE.spad" 2045860 2045869 2047289 2047294) (-1198 "TEX.spad" 2043006 2043015 2045850 2045855) (-1197 "TEX1.spad" 2042562 2042573 2042996 2043001) (-1196 "TEMUTL.spad" 2042117 2042126 2042552 2042557) (-1195 "TBCMPPK.spad" 2040210 2040233 2042107 2042112) (-1194 "TBAGG.spad" 2039260 2039283 2040190 2040205) (-1193 "TBAGG.spad" 2038318 2038343 2039250 2039255) (-1192 "TANEXP.spad" 2037726 2037737 2038308 2038313) (-1191 "TABLE.spad" 2036137 2036160 2036407 2036434) (-1190 "TABLEAU.spad" 2035618 2035629 2036127 2036132) (-1189 "TABLBUMP.spad" 2032421 2032432 2035608 2035613) (-1188 "SYSTEM.spad" 2031649 2031658 2032411 2032416) (-1187 "SYSSOLP.spad" 2029132 2029143 2031639 2031644) (-1186 "SYSPTR.spad" 2029031 2029040 2029122 2029127) (-1185 "SYSNNI.spad" 2028213 2028224 2029021 2029026) (-1184 "SYSINT.spad" 2027617 2027628 2028203 2028208) (-1183 "SYNTAX.spad" 2023823 2023832 2027607 2027612) (-1182 "SYMTAB.spad" 2021891 2021900 2023813 2023818) (-1181 "SYMS.spad" 2017914 2017923 2021881 2021886) (-1180 "SYMPOLY.spad" 2016921 2016932 2017003 2017130) (-1179 "SYMFUNC.spad" 2016422 2016433 2016911 2016916) (-1178 "SYMBOL.spad" 2013925 2013934 2016412 2016417) (-1177 "SWITCH.spad" 2010696 2010705 2013915 2013920) (-1176 "SUTS.spad" 2007601 2007629 2009163 2009260) (-1175 "SUPXS.spad" 2004742 2004770 2005733 2005882) (-1174 "SUP.spad" 2001555 2001566 2002328 2002481) (-1173 "SUPFRACF.spad" 2000660 2000678 2001545 2001550) (-1172 "SUP2.spad" 2000052 2000065 2000650 2000655) (-1171 "SUMRF.spad" 1999026 1999037 2000042 2000047) (-1170 "SUMFS.spad" 1998663 1998680 1999016 1999021) (-1169 "SULS.spad" 1989208 1989236 1990308 1990737) (-1168 "SUCHTAST.spad" 1988977 1988986 1989198 1989203) (-1167 "SUCH.spad" 1988659 1988674 1988967 1988972) (-1166 "SUBSPACE.spad" 1980774 1980789 1988649 1988654) (-1165 "SUBRESP.spad" 1979944 1979958 1980730 1980735) (-1164 "STTF.spad" 1976043 1976059 1979934 1979939) (-1163 "STTFNC.spad" 1972511 1972527 1976033 1976038) (-1162 "STTAYLOR.spad" 1965165 1965176 1972392 1972397) (-1161 "STRTBL.spad" 1963670 1963687 1963819 1963846) (-1160 "STRING.spad" 1963079 1963088 1963093 1963120) (-1159 "STRICAT.spad" 1962867 1962876 1963047 1963074) (-1158 "STREAM.spad" 1959785 1959796 1962392 1962407) (-1157 "STREAM3.spad" 1959358 1959373 1959775 1959780) (-1156 "STREAM2.spad" 1958486 1958499 1959348 1959353) (-1155 "STREAM1.spad" 1958192 1958203 1958476 1958481) (-1154 "STINPROD.spad" 1957128 1957144 1958182 1958187) (-1153 "STEP.spad" 1956329 1956338 1957118 1957123) (-1152 "STBL.spad" 1954855 1954883 1955022 1955037) (-1151 "STAGG.spad" 1953930 1953941 1954845 1954850) (-1150 "STAGG.spad" 1953003 1953016 1953920 1953925) (-1149 "STACK.spad" 1952360 1952371 1952610 1952637) (-1148 "SREGSET.spad" 1950064 1950081 1952006 1952033) (-1147 "SRDCMPK.spad" 1948625 1948645 1950054 1950059) (-1146 "SRAGG.spad" 1943768 1943777 1948593 1948620) (-1145 "SRAGG.spad" 1938931 1938942 1943758 1943763) (-1144 "SQMATRIX.spad" 1936547 1936565 1937463 1937550) (-1143 "SPLTREE.spad" 1931099 1931112 1935983 1936010) (-1142 "SPLNODE.spad" 1927687 1927700 1931089 1931094) (-1141 "SPFCAT.spad" 1926496 1926505 1927677 1927682) (-1140 "SPECOUT.spad" 1925048 1925057 1926486 1926491) (-1139 "SPADXPT.spad" 1917187 1917196 1925038 1925043) (-1138 "spad-parser.spad" 1916652 1916661 1917177 1917182) (-1137 "SPADAST.spad" 1916353 1916362 1916642 1916647) (-1136 "SPACEC.spad" 1900552 1900563 1916343 1916348) (-1135 "SPACE3.spad" 1900328 1900339 1900542 1900547) (-1134 "SORTPAK.spad" 1899877 1899890 1900284 1900289) (-1133 "SOLVETRA.spad" 1897640 1897651 1899867 1899872) (-1132 "SOLVESER.spad" 1896168 1896179 1897630 1897635) (-1131 "SOLVERAD.spad" 1892194 1892205 1896158 1896163) (-1130 "SOLVEFOR.spad" 1890656 1890674 1892184 1892189) (-1129 "SNTSCAT.spad" 1890256 1890273 1890624 1890651) (-1128 "SMTS.spad" 1888528 1888554 1889821 1889918) (-1127 "SMP.spad" 1886003 1886023 1886393 1886520) (-1126 "SMITH.spad" 1884848 1884873 1885993 1885998) (-1125 "SMATCAT.spad" 1882958 1882988 1884792 1884843) (-1124 "SMATCAT.spad" 1881000 1881032 1882836 1882841) (-1123 "SKAGG.spad" 1879963 1879974 1880968 1880995) (-1122 "SINT.spad" 1878795 1878804 1879829 1879958) (-1121 "SIMPAN.spad" 1878523 1878532 1878785 1878790) (-1120 "SIG.spad" 1877853 1877862 1878513 1878518) (-1119 "SIGNRF.spad" 1876971 1876982 1877843 1877848) (-1118 "SIGNEF.spad" 1876250 1876267 1876961 1876966) (-1117 "SIGAST.spad" 1875635 1875644 1876240 1876245) (-1116 "SHP.spad" 1873563 1873578 1875591 1875596) (-1115 "SHDP.spad" 1863274 1863301 1863783 1863914) (-1114 "SGROUP.spad" 1862882 1862891 1863264 1863269) (-1113 "SGROUP.spad" 1862488 1862499 1862872 1862877) (-1112 "SGCF.spad" 1855651 1855660 1862478 1862483) (-1111 "SFRTCAT.spad" 1854581 1854598 1855619 1855646) (-1110 "SFRGCD.spad" 1853644 1853664 1854571 1854576) (-1109 "SFQCMPK.spad" 1848281 1848301 1853634 1853639) (-1108 "SFORT.spad" 1847720 1847734 1848271 1848276) (-1107 "SEXOF.spad" 1847563 1847603 1847710 1847715) (-1106 "SEX.spad" 1847455 1847464 1847553 1847558) (-1105 "SEXCAT.spad" 1845056 1845096 1847445 1847450) (-1104 "SET.spad" 1843380 1843391 1844477 1844516) (-1103 "SETMN.spad" 1841830 1841847 1843370 1843375) (-1102 "SETCAT.spad" 1841152 1841161 1841820 1841825) (-1101 "SETCAT.spad" 1840472 1840483 1841142 1841147) (-1100 "SETAGG.spad" 1837021 1837032 1840452 1840467) (-1099 "SETAGG.spad" 1833578 1833591 1837011 1837016) (-1098 "SEQAST.spad" 1833281 1833290 1833568 1833573) (-1097 "SEGXCAT.spad" 1832437 1832450 1833271 1833276) (-1096 "SEG.spad" 1832250 1832261 1832356 1832361) (-1095 "SEGCAT.spad" 1831175 1831186 1832240 1832245) (-1094 "SEGBIND.spad" 1830933 1830944 1831122 1831127) (-1093 "SEGBIND2.spad" 1830631 1830644 1830923 1830928) (-1092 "SEGAST.spad" 1830345 1830354 1830621 1830626) (-1091 "SEG2.spad" 1829780 1829793 1830301 1830306) (-1090 "SDVAR.spad" 1829056 1829067 1829770 1829775) (-1089 "SDPOL.spad" 1826482 1826493 1826773 1826900) (-1088 "SCPKG.spad" 1824571 1824582 1826472 1826477) (-1087 "SCOPE.spad" 1823724 1823733 1824561 1824566) (-1086 "SCACHE.spad" 1822420 1822431 1823714 1823719) (-1085 "SASTCAT.spad" 1822329 1822338 1822410 1822415) (-1084 "SAOS.spad" 1822201 1822210 1822319 1822324) (-1083 "SAERFFC.spad" 1821914 1821934 1822191 1822196) (-1082 "SAE.spad" 1820089 1820105 1820700 1820835) (-1081 "SAEFACT.spad" 1819790 1819810 1820079 1820084) (-1080 "RURPK.spad" 1817449 1817465 1819780 1819785) (-1079 "RULESET.spad" 1816902 1816926 1817439 1817444) (-1078 "RULE.spad" 1815142 1815166 1816892 1816897) (-1077 "RULECOLD.spad" 1814994 1815007 1815132 1815137) (-1076 "RTVALUE.spad" 1814729 1814738 1814984 1814989) (-1075 "RSTRCAST.spad" 1814446 1814455 1814719 1814724) (-1074 "RSETGCD.spad" 1810824 1810844 1814436 1814441) (-1073 "RSETCAT.spad" 1800760 1800777 1810792 1810819) (-1072 "RSETCAT.spad" 1790716 1790735 1800750 1800755) (-1071 "RSDCMPK.spad" 1789168 1789188 1790706 1790711) (-1070 "RRCC.spad" 1787552 1787582 1789158 1789163) (-1069 "RRCC.spad" 1785934 1785966 1787542 1787547) (-1068 "RPTAST.spad" 1785636 1785645 1785924 1785929) (-1067 "RPOLCAT.spad" 1764996 1765011 1785504 1785631) (-1066 "RPOLCAT.spad" 1744070 1744087 1764580 1764585) (-1065 "ROUTINE.spad" 1739953 1739962 1742717 1742744) (-1064 "ROMAN.spad" 1739281 1739290 1739819 1739948) (-1063 "ROIRC.spad" 1738361 1738393 1739271 1739276) (-1062 "RNS.spad" 1737264 1737273 1738263 1738356) (-1061 "RNS.spad" 1736253 1736264 1737254 1737259) (-1060 "RNG.spad" 1735988 1735997 1736243 1736248) (-1059 "RNGBIND.spad" 1735148 1735162 1735943 1735948) (-1058 "RMODULE.spad" 1734913 1734924 1735138 1735143) (-1057 "RMCAT2.spad" 1734333 1734390 1734903 1734908) (-1056 "RMATRIX.spad" 1733157 1733176 1733500 1733539) (-1055 "RMATCAT.spad" 1728736 1728767 1733113 1733152) (-1054 "RMATCAT.spad" 1724205 1724238 1728584 1728589) (-1053 "RLINSET.spad" 1723599 1723610 1724195 1724200) (-1052 "RINTERP.spad" 1723487 1723507 1723589 1723594) (-1051 "RING.spad" 1722957 1722966 1723467 1723482) (-1050 "RING.spad" 1722435 1722446 1722947 1722952) (-1049 "RIDIST.spad" 1721827 1721836 1722425 1722430) (-1048 "RGCHAIN.spad" 1720410 1720426 1721312 1721339) (-1047 "RGBCSPC.spad" 1720191 1720203 1720400 1720405) (-1046 "RGBCMDL.spad" 1719721 1719733 1720181 1720186) (-1045 "RF.spad" 1717363 1717374 1719711 1719716) (-1044 "RFFACTOR.spad" 1716825 1716836 1717353 1717358) (-1043 "RFFACT.spad" 1716560 1716572 1716815 1716820) (-1042 "RFDIST.spad" 1715556 1715565 1716550 1716555) (-1041 "RETSOL.spad" 1714975 1714988 1715546 1715551) (-1040 "RETRACT.spad" 1714403 1714414 1714965 1714970) (-1039 "RETRACT.spad" 1713829 1713842 1714393 1714398) (-1038 "RETAST.spad" 1713641 1713650 1713819 1713824) (-1037 "RESULT.spad" 1711701 1711710 1712288 1712315) (-1036 "RESRING.spad" 1711048 1711095 1711639 1711696) (-1035 "RESLATC.spad" 1710372 1710383 1711038 1711043) (-1034 "REPSQ.spad" 1710103 1710114 1710362 1710367) (-1033 "REP.spad" 1707657 1707666 1710093 1710098) (-1032 "REPDB.spad" 1707364 1707375 1707647 1707652) (-1031 "REP2.spad" 1697022 1697033 1707206 1707211) (-1030 "REP1.spad" 1691218 1691229 1696972 1696977) (-1029 "REGSET.spad" 1689015 1689032 1690864 1690891) (-1028 "REF.spad" 1688350 1688361 1688970 1688975) (-1027 "REDORDER.spad" 1687556 1687573 1688340 1688345) (-1026 "RECLOS.spad" 1686339 1686359 1687043 1687136) (-1025 "REALSOLV.spad" 1685479 1685488 1686329 1686334) (-1024 "REAL.spad" 1685351 1685360 1685469 1685474) (-1023 "REAL0Q.spad" 1682649 1682664 1685341 1685346) (-1022 "REAL0.spad" 1679493 1679508 1682639 1682644) (-1021 "RDUCEAST.spad" 1679214 1679223 1679483 1679488) (-1020 "RDIV.spad" 1678869 1678894 1679204 1679209) (-1019 "RDIST.spad" 1678436 1678447 1678859 1678864) (-1018 "RDETRS.spad" 1677300 1677318 1678426 1678431) (-1017 "RDETR.spad" 1675439 1675457 1677290 1677295) (-1016 "RDEEFS.spad" 1674538 1674555 1675429 1675434) (-1015 "RDEEF.spad" 1673548 1673565 1674528 1674533) (-1014 "RCFIELD.spad" 1670734 1670743 1673450 1673543) (-1013 "RCFIELD.spad" 1668006 1668017 1670724 1670729) (-1012 "RCAGG.spad" 1665934 1665945 1667996 1668001) (-1011 "RCAGG.spad" 1663789 1663802 1665853 1665858) (-1010 "RATRET.spad" 1663149 1663160 1663779 1663784) (-1009 "RATFACT.spad" 1662841 1662853 1663139 1663144) (-1008 "RANDSRC.spad" 1662160 1662169 1662831 1662836) (-1007 "RADUTIL.spad" 1661916 1661925 1662150 1662155) (-1006 "RADIX.spad" 1658837 1658851 1660383 1660476) (-1005 "RADFF.spad" 1657250 1657287 1657369 1657525) (-1004 "RADCAT.spad" 1656845 1656854 1657240 1657245) (-1003 "RADCAT.spad" 1656438 1656449 1656835 1656840) (-1002 "QUEUE.spad" 1655786 1655797 1656045 1656072) (-1001 "QUAT.spad" 1654367 1654378 1654710 1654775) (-1000 "QUATCT2.spad" 1653987 1654006 1654357 1654362) (-999 "QUATCAT.spad" 1652158 1652168 1653917 1653982) (-998 "QUATCAT.spad" 1650080 1650092 1651841 1651846) (-997 "QUAGG.spad" 1648908 1648918 1650048 1650075) (-996 "QQUTAST.spad" 1648677 1648685 1648898 1648903) (-995 "QFORM.spad" 1648142 1648156 1648667 1648672) (-994 "QFCAT.spad" 1646845 1646855 1648044 1648137) (-993 "QFCAT.spad" 1645139 1645151 1646340 1646345) (-992 "QFCAT2.spad" 1644832 1644848 1645129 1645134) (-991 "QEQUAT.spad" 1644391 1644399 1644822 1644827) (-990 "QCMPACK.spad" 1639138 1639157 1644381 1644386) (-989 "QALGSET.spad" 1635217 1635249 1639052 1639057) (-988 "QALGSET2.spad" 1633213 1633231 1635207 1635212) (-987 "PWFFINTB.spad" 1630629 1630650 1633203 1633208) (-986 "PUSHVAR.spad" 1629968 1629987 1630619 1630624) (-985 "PTRANFN.spad" 1626096 1626106 1629958 1629963) (-984 "PTPACK.spad" 1623184 1623194 1626086 1626091) (-983 "PTFUNC2.spad" 1623007 1623021 1623174 1623179) (-982 "PTCAT.spad" 1622262 1622272 1622975 1623002) (-981 "PSQFR.spad" 1621569 1621593 1622252 1622257) (-980 "PSEUDLIN.spad" 1620455 1620465 1621559 1621564) (-979 "PSETPK.spad" 1605888 1605904 1620333 1620338) (-978 "PSETCAT.spad" 1599808 1599831 1605868 1605883) (-977 "PSETCAT.spad" 1593702 1593727 1599764 1599769) (-976 "PSCURVE.spad" 1592685 1592693 1593692 1593697) (-975 "PSCAT.spad" 1591468 1591497 1592583 1592680) (-974 "PSCAT.spad" 1590341 1590372 1591458 1591463) (-973 "PRTITION.spad" 1589302 1589310 1590331 1590336) (-972 "PRTDAST.spad" 1589021 1589029 1589292 1589297) (-971 "PRS.spad" 1578583 1578600 1588977 1588982) (-970 "PRQAGG.spad" 1578018 1578028 1578551 1578578) (-969 "PROPLOG.spad" 1577317 1577325 1578008 1578013) (-968 "PROPFRML.spad" 1576133 1576144 1577307 1577312) (-967 "PROPERTY.spad" 1575621 1575629 1576123 1576128) (-966 "PRODUCT.spad" 1573303 1573315 1573587 1573642) (-965 "PR.spad" 1571695 1571707 1572394 1572521) (-964 "PRINT.spad" 1571447 1571455 1571685 1571690) (-963 "PRIMES.spad" 1569700 1569710 1571437 1571442) (-962 "PRIMELT.spad" 1567781 1567795 1569690 1569695) (-961 "PRIMCAT.spad" 1567408 1567416 1567771 1567776) (-960 "PRIMARR.spad" 1566413 1566423 1566591 1566618) (-959 "PRIMARR2.spad" 1565180 1565192 1566403 1566408) (-958 "PREASSOC.spad" 1564562 1564574 1565170 1565175) (-957 "PPCURVE.spad" 1563699 1563707 1564552 1564557) (-956 "PORTNUM.spad" 1563474 1563482 1563689 1563694) (-955 "POLYROOT.spad" 1562323 1562345 1563430 1563435) (-954 "POLY.spad" 1559658 1559668 1560173 1560300) (-953 "POLYLIFT.spad" 1558923 1558946 1559648 1559653) (-952 "POLYCATQ.spad" 1557041 1557063 1558913 1558918) (-951 "POLYCAT.spad" 1550511 1550532 1556909 1557036) (-950 "POLYCAT.spad" 1543319 1543342 1549719 1549724) (-949 "POLY2UP.spad" 1542771 1542785 1543309 1543314) (-948 "POLY2.spad" 1542368 1542380 1542761 1542766) (-947 "POLUTIL.spad" 1541309 1541338 1542324 1542329) (-946 "POLTOPOL.spad" 1540057 1540072 1541299 1541304) (-945 "POINT.spad" 1538895 1538905 1538982 1539009) (-944 "PNTHEORY.spad" 1535597 1535605 1538885 1538890) (-943 "PMTOOLS.spad" 1534372 1534386 1535587 1535592) (-942 "PMSYM.spad" 1533921 1533931 1534362 1534367) (-941 "PMQFCAT.spad" 1533512 1533526 1533911 1533916) (-940 "PMPRED.spad" 1532991 1533005 1533502 1533507) (-939 "PMPREDFS.spad" 1532445 1532467 1532981 1532986) (-938 "PMPLCAT.spad" 1531525 1531543 1532377 1532382) (-937 "PMLSAGG.spad" 1531110 1531124 1531515 1531520) (-936 "PMKERNEL.spad" 1530689 1530701 1531100 1531105) (-935 "PMINS.spad" 1530269 1530279 1530679 1530684) (-934 "PMFS.spad" 1529846 1529864 1530259 1530264) (-933 "PMDOWN.spad" 1529136 1529150 1529836 1529841) (-932 "PMASS.spad" 1528146 1528154 1529126 1529131) (-931 "PMASSFS.spad" 1527113 1527129 1528136 1528141) (-930 "PLOTTOOL.spad" 1526893 1526901 1527103 1527108) (-929 "PLOT.spad" 1521816 1521824 1526883 1526888) (-928 "PLOT3D.spad" 1518280 1518288 1521806 1521811) (-927 "PLOT1.spad" 1517437 1517447 1518270 1518275) (-926 "PLEQN.spad" 1504727 1504754 1517427 1517432) (-925 "PINTERP.spad" 1504349 1504368 1504717 1504722) (-924 "PINTERPA.spad" 1504133 1504149 1504339 1504344) (-923 "PI.spad" 1503742 1503750 1504107 1504128) (-922 "PID.spad" 1502712 1502720 1503668 1503737) (-921 "PICOERCE.spad" 1502369 1502379 1502702 1502707) (-920 "PGROEB.spad" 1500970 1500984 1502359 1502364) (-919 "PGE.spad" 1492587 1492595 1500960 1500965) (-918 "PGCD.spad" 1491477 1491494 1492577 1492582) (-917 "PFRPAC.spad" 1490626 1490636 1491467 1491472) (-916 "PFR.spad" 1487289 1487299 1490528 1490621) (-915 "PFOTOOLS.spad" 1486547 1486563 1487279 1487284) (-914 "PFOQ.spad" 1485917 1485935 1486537 1486542) (-913 "PFO.spad" 1485336 1485363 1485907 1485912) (-912 "PF.spad" 1484910 1484922 1485141 1485234) (-911 "PFECAT.spad" 1482592 1482600 1484836 1484905) (-910 "PFECAT.spad" 1480302 1480312 1482548 1482553) (-909 "PFBRU.spad" 1478190 1478202 1480292 1480297) (-908 "PFBR.spad" 1475750 1475773 1478180 1478185) (-907 "PERM.spad" 1471435 1471445 1475580 1475595) (-906 "PERMGRP.spad" 1466197 1466207 1471425 1471430) (-905 "PERMCAT.spad" 1464755 1464765 1466177 1466192) (-904 "PERMAN.spad" 1463287 1463301 1464745 1464750) (-903 "PENDTREE.spad" 1462628 1462638 1462916 1462921) (-902 "PDRING.spad" 1461179 1461189 1462608 1462623) (-901 "PDRING.spad" 1459738 1459750 1461169 1461174) (-900 "PDEPROB.spad" 1458753 1458761 1459728 1459733) (-899 "PDEPACK.spad" 1452793 1452801 1458743 1458748) (-898 "PDECOMP.spad" 1452263 1452280 1452783 1452788) (-897 "PDECAT.spad" 1450619 1450627 1452253 1452258) (-896 "PCOMP.spad" 1450472 1450485 1450609 1450614) (-895 "PBWLB.spad" 1449060 1449077 1450462 1450467) (-894 "PATTERN.spad" 1443599 1443609 1449050 1449055) (-893 "PATTERN2.spad" 1443337 1443349 1443589 1443594) (-892 "PATTERN1.spad" 1441673 1441689 1443327 1443332) (-891 "PATRES.spad" 1439248 1439260 1441663 1441668) (-890 "PATRES2.spad" 1438920 1438934 1439238 1439243) (-889 "PATMATCH.spad" 1437117 1437148 1438628 1438633) (-888 "PATMAB.spad" 1436546 1436556 1437107 1437112) (-887 "PATLRES.spad" 1435632 1435646 1436536 1436541) (-886 "PATAB.spad" 1435396 1435406 1435622 1435627) (-885 "PARTPERM.spad" 1432796 1432804 1435386 1435391) (-884 "PARSURF.spad" 1432230 1432258 1432786 1432791) (-883 "PARSU2.spad" 1432027 1432043 1432220 1432225) (-882 "script-parser.spad" 1431547 1431555 1432017 1432022) (-881 "PARSCURV.spad" 1430981 1431009 1431537 1431542) (-880 "PARSC2.spad" 1430772 1430788 1430971 1430976) (-879 "PARPCURV.spad" 1430234 1430262 1430762 1430767) (-878 "PARPC2.spad" 1430025 1430041 1430224 1430229) (-877 "PARAMAST.spad" 1429153 1429161 1430015 1430020) (-876 "PAN2EXPR.spad" 1428565 1428573 1429143 1429148) (-875 "PALETTE.spad" 1427535 1427543 1428555 1428560) (-874 "PAIR.spad" 1426522 1426535 1427123 1427128) (-873 "PADICRC.spad" 1423856 1423874 1425027 1425120) (-872 "PADICRAT.spad" 1421871 1421883 1422092 1422185) (-871 "PADIC.spad" 1421566 1421578 1421797 1421866) (-870 "PADICCT.spad" 1420115 1420127 1421492 1421561) (-869 "PADEPAC.spad" 1418804 1418823 1420105 1420110) (-868 "PADE.spad" 1417556 1417572 1418794 1418799) (-867 "OWP.spad" 1416796 1416826 1417414 1417481) (-866 "OVERSET.spad" 1416369 1416377 1416786 1416791) (-865 "OVAR.spad" 1416150 1416173 1416359 1416364) (-864 "OUT.spad" 1415236 1415244 1416140 1416145) (-863 "OUTFORM.spad" 1404628 1404636 1415226 1415231) (-862 "OUTBFILE.spad" 1404046 1404054 1404618 1404623) (-861 "OUTBCON.spad" 1403052 1403060 1404036 1404041) (-860 "OUTBCON.spad" 1402056 1402066 1403042 1403047) (-859 "OSI.spad" 1401531 1401539 1402046 1402051) (-858 "OSGROUP.spad" 1401449 1401457 1401521 1401526) (-857 "ORTHPOL.spad" 1399934 1399944 1401366 1401371) (-856 "OREUP.spad" 1399387 1399415 1399614 1399653) (-855 "ORESUP.spad" 1398688 1398712 1399067 1399106) (-854 "OREPCTO.spad" 1396545 1396557 1398608 1398613) (-853 "OREPCAT.spad" 1390692 1390702 1396501 1396540) (-852 "OREPCAT.spad" 1384729 1384741 1390540 1390545) (-851 "ORDSET.spad" 1383901 1383909 1384719 1384724) (-850 "ORDSET.spad" 1383071 1383081 1383891 1383896) (-849 "ORDRING.spad" 1382461 1382469 1383051 1383066) (-848 "ORDRING.spad" 1381859 1381869 1382451 1382456) (-847 "ORDMON.spad" 1381714 1381722 1381849 1381854) (-846 "ORDFUNS.spad" 1380846 1380862 1381704 1381709) (-845 "ORDFIN.spad" 1380666 1380674 1380836 1380841) (-844 "ORDCOMP.spad" 1379131 1379141 1380213 1380242) (-843 "ORDCOMP2.spad" 1378424 1378436 1379121 1379126) (-842 "OPTPROB.spad" 1377062 1377070 1378414 1378419) (-841 "OPTPACK.spad" 1369471 1369479 1377052 1377057) (-840 "OPTCAT.spad" 1367150 1367158 1369461 1369466) (-839 "OPSIG.spad" 1366804 1366812 1367140 1367145) (-838 "OPQUERY.spad" 1366353 1366361 1366794 1366799) (-837 "OP.spad" 1366095 1366105 1366175 1366242) (-836 "OPERCAT.spad" 1365561 1365571 1366085 1366090) (-835 "OPERCAT.spad" 1365025 1365037 1365551 1365556) (-834 "ONECOMP.spad" 1363770 1363780 1364572 1364601) (-833 "ONECOMP2.spad" 1363194 1363206 1363760 1363765) (-832 "OMSERVER.spad" 1362200 1362208 1363184 1363189) (-831 "OMSAGG.spad" 1361988 1361998 1362156 1362195) (-830 "OMPKG.spad" 1360604 1360612 1361978 1361983) (-829 "OM.spad" 1359577 1359585 1360594 1360599) (-828 "OMLO.spad" 1359002 1359014 1359463 1359502) (-827 "OMEXPR.spad" 1358836 1358846 1358992 1358997) (-826 "OMERR.spad" 1358381 1358389 1358826 1358831) (-825 "OMERRK.spad" 1357415 1357423 1358371 1358376) (-824 "OMENC.spad" 1356759 1356767 1357405 1357410) (-823 "OMDEV.spad" 1351068 1351076 1356749 1356754) (-822 "OMCONN.spad" 1350477 1350485 1351058 1351063) (-821 "OINTDOM.spad" 1350240 1350248 1350403 1350472) (-820 "OFMONOID.spad" 1348363 1348373 1350196 1350201) (-819 "ODVAR.spad" 1347624 1347634 1348353 1348358) (-818 "ODR.spad" 1347268 1347294 1347436 1347585) (-817 "ODPOL.spad" 1344650 1344660 1344990 1345117) (-816 "ODP.spad" 1334497 1334517 1334870 1335001) (-815 "ODETOOLS.spad" 1333146 1333165 1334487 1334492) (-814 "ODESYS.spad" 1330840 1330857 1333136 1333141) (-813 "ODERTRIC.spad" 1326849 1326866 1330797 1330802) (-812 "ODERED.spad" 1326248 1326272 1326839 1326844) (-811 "ODERAT.spad" 1323863 1323880 1326238 1326243) (-810 "ODEPRRIC.spad" 1320900 1320922 1323853 1323858) (-809 "ODEPROB.spad" 1320157 1320165 1320890 1320895) (-808 "ODEPRIM.spad" 1317491 1317513 1320147 1320152) (-807 "ODEPAL.spad" 1316877 1316901 1317481 1317486) (-806 "ODEPACK.spad" 1303543 1303551 1316867 1316872) (-805 "ODEINT.spad" 1302978 1302994 1303533 1303538) (-804 "ODEIFTBL.spad" 1300373 1300381 1302968 1302973) (-803 "ODEEF.spad" 1295864 1295880 1300363 1300368) (-802 "ODECONST.spad" 1295401 1295419 1295854 1295859) (-801 "ODECAT.spad" 1293999 1294007 1295391 1295396) (-800 "OCT.spad" 1292135 1292145 1292849 1292888) (-799 "OCTCT2.spad" 1291781 1291802 1292125 1292130) (-798 "OC.spad" 1289577 1289587 1291737 1291776) (-797 "OC.spad" 1287098 1287110 1289260 1289265) (-796 "OCAMON.spad" 1286946 1286954 1287088 1287093) (-795 "OASGP.spad" 1286761 1286769 1286936 1286941) (-794 "OAMONS.spad" 1286283 1286291 1286751 1286756) (-793 "OAMON.spad" 1286144 1286152 1286273 1286278) (-792 "OAGROUP.spad" 1286006 1286014 1286134 1286139) (-791 "NUMTUBE.spad" 1285597 1285613 1285996 1286001) (-790 "NUMQUAD.spad" 1273573 1273581 1285587 1285592) (-789 "NUMODE.spad" 1264927 1264935 1273563 1273568) (-788 "NUMINT.spad" 1262493 1262501 1264917 1264922) (-787 "NUMFMT.spad" 1261333 1261341 1262483 1262488) (-786 "NUMERIC.spad" 1253447 1253457 1261138 1261143) (-785 "NTSCAT.spad" 1251955 1251971 1253415 1253442) (-784 "NTPOLFN.spad" 1251506 1251516 1251872 1251877) (-783 "NSUP.spad" 1244552 1244562 1249092 1249245) (-782 "NSUP2.spad" 1243944 1243956 1244542 1244547) (-781 "NSMP.spad" 1240175 1240194 1240483 1240610) (-780 "NREP.spad" 1238553 1238567 1240165 1240170) (-779 "NPCOEF.spad" 1237799 1237819 1238543 1238548) (-778 "NORMRETR.spad" 1237397 1237436 1237789 1237794) (-777 "NORMPK.spad" 1235299 1235318 1237387 1237392) (-776 "NORMMA.spad" 1234987 1235013 1235289 1235294) (-775 "NONE.spad" 1234728 1234736 1234977 1234982) (-774 "NONE1.spad" 1234404 1234414 1234718 1234723) (-773 "NODE1.spad" 1233891 1233907 1234394 1234399) (-772 "NNI.spad" 1232786 1232794 1233865 1233886) (-771 "NLINSOL.spad" 1231412 1231422 1232776 1232781) (-770 "NIPROB.spad" 1229953 1229961 1231402 1231407) (-769 "NFINTBAS.spad" 1227513 1227530 1229943 1229948) (-768 "NETCLT.spad" 1227487 1227498 1227503 1227508) (-767 "NCODIV.spad" 1225703 1225719 1227477 1227482) (-766 "NCNTFRAC.spad" 1225345 1225359 1225693 1225698) (-765 "NCEP.spad" 1223511 1223525 1225335 1225340) (-764 "NASRING.spad" 1223107 1223115 1223501 1223506) (-763 "NASRING.spad" 1222701 1222711 1223097 1223102) (-762 "NARNG.spad" 1222053 1222061 1222691 1222696) (-761 "NARNG.spad" 1221403 1221413 1222043 1222048) (-760 "NAGSP.spad" 1220480 1220488 1221393 1221398) (-759 "NAGS.spad" 1210141 1210149 1220470 1220475) (-758 "NAGF07.spad" 1208572 1208580 1210131 1210136) (-757 "NAGF04.spad" 1202974 1202982 1208562 1208567) (-756 "NAGF02.spad" 1197043 1197051 1202964 1202969) (-755 "NAGF01.spad" 1192804 1192812 1197033 1197038) (-754 "NAGE04.spad" 1186504 1186512 1192794 1192799) (-753 "NAGE02.spad" 1177164 1177172 1186494 1186499) (-752 "NAGE01.spad" 1173166 1173174 1177154 1177159) (-751 "NAGD03.spad" 1171170 1171178 1173156 1173161) (-750 "NAGD02.spad" 1163917 1163925 1171160 1171165) (-749 "NAGD01.spad" 1158210 1158218 1163907 1163912) (-748 "NAGC06.spad" 1154085 1154093 1158200 1158205) (-747 "NAGC05.spad" 1152586 1152594 1154075 1154080) (-746 "NAGC02.spad" 1151853 1151861 1152576 1152581) (-745 "NAALG.spad" 1151394 1151404 1151821 1151848) (-744 "NAALG.spad" 1150955 1150967 1151384 1151389) (-743 "MULTSQFR.spad" 1147913 1147930 1150945 1150950) (-742 "MULTFACT.spad" 1147296 1147313 1147903 1147908) (-741 "MTSCAT.spad" 1145390 1145411 1147194 1147291) (-740 "MTHING.spad" 1145049 1145059 1145380 1145385) (-739 "MSYSCMD.spad" 1144483 1144491 1145039 1145044) (-738 "MSET.spad" 1142441 1142451 1144189 1144228) (-737 "MSETAGG.spad" 1142286 1142296 1142409 1142436) (-736 "MRING.spad" 1139263 1139275 1141994 1142061) (-735 "MRF2.spad" 1138833 1138847 1139253 1139258) (-734 "MRATFAC.spad" 1138379 1138396 1138823 1138828) (-733 "MPRFF.spad" 1136419 1136438 1138369 1138374) (-732 "MPOLY.spad" 1133890 1133905 1134249 1134376) (-731 "MPCPF.spad" 1133154 1133173 1133880 1133885) (-730 "MPC3.spad" 1132971 1133011 1133144 1133149) (-729 "MPC2.spad" 1132617 1132650 1132961 1132966) (-728 "MONOTOOL.spad" 1130968 1130985 1132607 1132612) (-727 "MONOID.spad" 1130287 1130295 1130958 1130963) (-726 "MONOID.spad" 1129604 1129614 1130277 1130282) (-725 "MONOGEN.spad" 1128352 1128365 1129464 1129599) (-724 "MONOGEN.spad" 1127122 1127137 1128236 1128241) (-723 "MONADWU.spad" 1125152 1125160 1127112 1127117) (-722 "MONADWU.spad" 1123180 1123190 1125142 1125147) (-721 "MONAD.spad" 1122340 1122348 1123170 1123175) (-720 "MONAD.spad" 1121498 1121508 1122330 1122335) (-719 "MOEBIUS.spad" 1120234 1120248 1121478 1121493) (-718 "MODULE.spad" 1120104 1120114 1120202 1120229) (-717 "MODULE.spad" 1119994 1120006 1120094 1120099) (-716 "MODRING.spad" 1119329 1119368 1119974 1119989) (-715 "MODOP.spad" 1117994 1118006 1119151 1119218) (-714 "MODMONOM.spad" 1117725 1117743 1117984 1117989) (-713 "MODMON.spad" 1114520 1114536 1115239 1115392) (-712 "MODFIELD.spad" 1113882 1113921 1114422 1114515) (-711 "MMLFORM.spad" 1112742 1112750 1113872 1113877) (-710 "MMAP.spad" 1112484 1112518 1112732 1112737) (-709 "MLO.spad" 1110943 1110953 1112440 1112479) (-708 "MLIFT.spad" 1109555 1109572 1110933 1110938) (-707 "MKUCFUNC.spad" 1109090 1109108 1109545 1109550) (-706 "MKRECORD.spad" 1108694 1108707 1109080 1109085) (-705 "MKFUNC.spad" 1108101 1108111 1108684 1108689) (-704 "MKFLCFN.spad" 1107069 1107079 1108091 1108096) (-703 "MKBCFUNC.spad" 1106564 1106582 1107059 1107064) (-702 "MINT.spad" 1106003 1106011 1106466 1106559) (-701 "MHROWRED.spad" 1104514 1104524 1105993 1105998) (-700 "MFLOAT.spad" 1103034 1103042 1104404 1104509) (-699 "MFINFACT.spad" 1102434 1102456 1103024 1103029) (-698 "MESH.spad" 1100216 1100224 1102424 1102429) (-697 "MDDFACT.spad" 1098427 1098437 1100206 1100211) (-696 "MDAGG.spad" 1097718 1097728 1098407 1098422) (-695 "MCMPLX.spad" 1093729 1093737 1094343 1094544) (-694 "MCDEN.spad" 1092939 1092951 1093719 1093724) (-693 "MCALCFN.spad" 1090061 1090087 1092929 1092934) (-692 "MAYBE.spad" 1089345 1089356 1090051 1090056) (-691 "MATSTOR.spad" 1086653 1086663 1089335 1089340) (-690 "MATRIX.spad" 1085357 1085367 1085841 1085868) (-689 "MATLIN.spad" 1082701 1082725 1085241 1085246) (-688 "MATCAT.spad" 1074430 1074452 1082669 1082696) (-687 "MATCAT.spad" 1066031 1066055 1074272 1074277) (-686 "MATCAT2.spad" 1065313 1065361 1066021 1066026) (-685 "MAPPKG3.spad" 1064228 1064242 1065303 1065308) (-684 "MAPPKG2.spad" 1063566 1063578 1064218 1064223) (-683 "MAPPKG1.spad" 1062394 1062404 1063556 1063561) (-682 "MAPPAST.spad" 1061709 1061717 1062384 1062389) (-681 "MAPHACK3.spad" 1061521 1061535 1061699 1061704) (-680 "MAPHACK2.spad" 1061290 1061302 1061511 1061516) (-679 "MAPHACK1.spad" 1060934 1060944 1061280 1061285) (-678 "MAGMA.spad" 1058724 1058741 1060924 1060929) (-677 "MACROAST.spad" 1058303 1058311 1058714 1058719) (-676 "M3D.spad" 1056023 1056033 1057681 1057686) (-675 "LZSTAGG.spad" 1053261 1053271 1056013 1056018) (-674 "LZSTAGG.spad" 1050497 1050509 1053251 1053256) (-673 "LWORD.spad" 1047202 1047219 1050487 1050492) (-672 "LSTAST.spad" 1046986 1046994 1047192 1047197) (-671 "LSQM.spad" 1045216 1045230 1045610 1045661) (-670 "LSPP.spad" 1044751 1044768 1045206 1045211) (-669 "LSMP.spad" 1043601 1043629 1044741 1044746) (-668 "LSMP1.spad" 1041419 1041433 1043591 1043596) (-667 "LSAGG.spad" 1041088 1041098 1041387 1041414) (-666 "LSAGG.spad" 1040777 1040789 1041078 1041083) (-665 "LPOLY.spad" 1039731 1039750 1040633 1040702) (-664 "LPEFRAC.spad" 1039002 1039012 1039721 1039726) (-663 "LO.spad" 1038403 1038417 1038936 1038963) (-662 "LOGIC.spad" 1038005 1038013 1038393 1038398) (-661 "LOGIC.spad" 1037605 1037615 1037995 1038000) (-660 "LODOOPS.spad" 1036535 1036547 1037595 1037600) (-659 "LODO.spad" 1035919 1035935 1036215 1036254) (-658 "LODOF.spad" 1034965 1034982 1035876 1035881) (-657 "LODOCAT.spad" 1033631 1033641 1034921 1034960) (-656 "LODOCAT.spad" 1032295 1032307 1033587 1033592) (-655 "LODO2.spad" 1031568 1031580 1031975 1032014) (-654 "LODO1.spad" 1030968 1030978 1031248 1031287) (-653 "LODEEF.spad" 1029770 1029788 1030958 1030963) (-652 "LNAGG.spad" 1025602 1025612 1029760 1029765) (-651 "LNAGG.spad" 1021398 1021410 1025558 1025563) (-650 "LMOPS.spad" 1018166 1018183 1021388 1021393) (-649 "LMODULE.spad" 1017934 1017944 1018156 1018161) (-648 "LMDICT.spad" 1017221 1017231 1017485 1017512) (-647 "LLINSET.spad" 1016618 1016628 1017211 1017216) (-646 "LITERAL.spad" 1016524 1016535 1016608 1016613) (-645 "LIST.spad" 1014259 1014269 1015671 1015698) (-644 "LIST3.spad" 1013570 1013584 1014249 1014254) (-643 "LIST2.spad" 1012272 1012284 1013560 1013565) (-642 "LIST2MAP.spad" 1009175 1009187 1012262 1012267) (-641 "LINSET.spad" 1008797 1008807 1009165 1009170) (-640 "LINEXP.spad" 1008231 1008241 1008777 1008792) (-639 "LINDEP.spad" 1007040 1007052 1008143 1008148) (-638 "LIMITRF.spad" 1004968 1004978 1007030 1007035) (-637 "LIMITPS.spad" 1003871 1003884 1004958 1004963) (-636 "LIE.spad" 1001887 1001899 1003161 1003306) (-635 "LIECAT.spad" 1001363 1001373 1001813 1001882) (-634 "LIECAT.spad" 1000867 1000879 1001319 1001324) (-633 "LIB.spad" 998917 998925 999526 999541) (-632 "LGROBP.spad" 996270 996289 998907 998912) (-631 "LF.spad" 995225 995241 996260 996265) (-630 "LFCAT.spad" 994284 994292 995215 995220) (-629 "LEXTRIPK.spad" 989787 989802 994274 994279) (-628 "LEXP.spad" 987790 987817 989767 989782) (-627 "LETAST.spad" 987489 987497 987780 987785) (-626 "LEADCDET.spad" 985887 985904 987479 987484) (-625 "LAZM3PK.spad" 984591 984613 985877 985882) (-624 "LAUPOL.spad" 983284 983297 984184 984253) (-623 "LAPLACE.spad" 982867 982883 983274 983279) (-622 "LA.spad" 982307 982321 982789 982828) (-621 "LALG.spad" 982083 982093 982287 982302) (-620 "LALG.spad" 981867 981879 982073 982078) (-619 "KVTFROM.spad" 981602 981612 981857 981862) (-618 "KTVLOGIC.spad" 981114 981122 981592 981597) (-617 "KRCFROM.spad" 980852 980862 981104 981109) (-616 "KOVACIC.spad" 979575 979592 980842 980847) (-615 "KONVERT.spad" 979297 979307 979565 979570) (-614 "KOERCE.spad" 979034 979044 979287 979292) (-613 "KERNEL.spad" 977689 977699 978818 978823) (-612 "KERNEL2.spad" 977392 977404 977679 977684) (-611 "KDAGG.spad" 976501 976523 977372 977387) (-610 "KDAGG.spad" 975618 975642 976491 976496) (-609 "KAFILE.spad" 974581 974597 974816 974843) (-608 "JORDAN.spad" 972410 972422 973871 974016) (-607 "JOINAST.spad" 972104 972112 972400 972405) (-606 "JAVACODE.spad" 971970 971978 972094 972099) (-605 "IXAGG.spad" 970103 970127 971960 971965) (-604 "IXAGG.spad" 968091 968117 969950 969955) (-603 "IVECTOR.spad" 966861 966876 967016 967043) (-602 "ITUPLE.spad" 966022 966032 966851 966856) (-601 "ITRIGMNP.spad" 964861 964880 966012 966017) (-600 "ITFUN3.spad" 964367 964381 964851 964856) (-599 "ITFUN2.spad" 964111 964123 964357 964362) (-598 "ITAYLOR.spad" 962105 962120 963975 964072) (-597 "ISUPS.spad" 954542 954557 961079 961176) (-596 "ISUMP.spad" 954043 954059 954532 954537) (-595 "ISTRING.spad" 953131 953144 953212 953239) (-594 "ISAST.spad" 952850 952858 953121 953126) (-593 "IRURPK.spad" 951567 951586 952840 952845) (-592 "IRSN.spad" 949571 949579 951557 951562) (-591 "IRRF2F.spad" 948056 948066 949527 949532) (-590 "IRREDFFX.spad" 947657 947668 948046 948051) (-589 "IROOT.spad" 945996 946006 947647 947652) (-588 "IR.spad" 943797 943811 945851 945878) (-587 "IR2.spad" 942825 942841 943787 943792) (-586 "IR2F.spad" 942031 942047 942815 942820) (-585 "IPRNTPK.spad" 941791 941799 942021 942026) (-584 "IPF.spad" 941356 941368 941596 941689) (-583 "IPADIC.spad" 941117 941143 941282 941351) (-582 "IP4ADDR.spad" 940674 940682 941107 941112) (-581 "IOMODE.spad" 940295 940303 940664 940669) (-580 "IOBFILE.spad" 939656 939664 940285 940290) (-579 "IOBCON.spad" 939521 939529 939646 939651) (-578 "INVLAPLA.spad" 939170 939186 939511 939516) (-577 "INTTR.spad" 932552 932569 939160 939165) (-576 "INTTOOLS.spad" 930307 930323 932126 932131) (-575 "INTSLPE.spad" 929627 929635 930297 930302) (-574 "INTRVL.spad" 929193 929203 929541 929622) (-573 "INTRF.spad" 927617 927631 929183 929188) (-572 "INTRET.spad" 927049 927059 927607 927612) (-571 "INTRAT.spad" 925776 925793 927039 927044) (-570 "INTPM.spad" 924161 924177 925419 925424) (-569 "INTPAF.spad" 922025 922043 924093 924098) (-568 "INTPACK.spad" 912399 912407 922015 922020) (-567 "INT.spad" 911847 911855 912253 912394) (-566 "INTHERTR.spad" 911121 911138 911837 911842) (-565 "INTHERAL.spad" 910791 910815 911111 911116) (-564 "INTHEORY.spad" 907230 907238 910781 910786) (-563 "INTG0.spad" 900963 900981 907162 907167) (-562 "INTFTBL.spad" 894992 895000 900953 900958) (-561 "INTFACT.spad" 894051 894061 894982 894987) (-560 "INTEF.spad" 892436 892452 894041 894046) (-559 "INTDOM.spad" 891059 891067 892362 892431) (-558 "INTDOM.spad" 889744 889754 891049 891054) (-557 "INTCAT.spad" 888003 888013 889658 889739) (-556 "INTBIT.spad" 887510 887518 887993 887998) (-555 "INTALG.spad" 886698 886725 887500 887505) (-554 "INTAF.spad" 886198 886214 886688 886693) (-553 "INTABL.spad" 884716 884747 884879 884906) (-552 "INT8.spad" 884596 884604 884706 884711) (-551 "INT64.spad" 884475 884483 884586 884591) (-550 "INT32.spad" 884354 884362 884465 884470) (-549 "INT16.spad" 884233 884241 884344 884349) (-548 "INS.spad" 881736 881744 884135 884228) (-547 "INS.spad" 879325 879335 881726 881731) (-546 "INPSIGN.spad" 878773 878786 879315 879320) (-545 "INPRODPF.spad" 877869 877888 878763 878768) (-544 "INPRODFF.spad" 876957 876981 877859 877864) (-543 "INNMFACT.spad" 875932 875949 876947 876952) (-542 "INMODGCD.spad" 875420 875450 875922 875927) (-541 "INFSP.spad" 873717 873739 875410 875415) (-540 "INFPROD0.spad" 872797 872816 873707 873712) (-539 "INFORM.spad" 869996 870004 872787 872792) (-538 "INFORM1.spad" 869621 869631 869986 869991) (-537 "INFINITY.spad" 869173 869181 869611 869616) (-536 "INETCLTS.spad" 869150 869158 869163 869168) (-535 "INEP.spad" 867688 867710 869140 869145) (-534 "INDE.spad" 867417 867434 867678 867683) (-533 "INCRMAPS.spad" 866838 866848 867407 867412) (-532 "INBFILE.spad" 865910 865918 866828 866833) (-531 "INBFF.spad" 861704 861715 865900 865905) (-530 "INBCON.spad" 859994 860002 861694 861699) (-529 "INBCON.spad" 858282 858292 859984 859989) (-528 "INAST.spad" 857943 857951 858272 858277) (-527 "IMPTAST.spad" 857651 857659 857933 857938) (-526 "IMATRIX.spad" 856596 856622 857108 857135) (-525 "IMATQF.spad" 855690 855734 856552 856557) (-524 "IMATLIN.spad" 854295 854319 855646 855651) (-523 "ILIST.spad" 852953 852968 853478 853505) (-522 "IIARRAY2.spad" 852341 852379 852560 852587) (-521 "IFF.spad" 851751 851767 852022 852115) (-520 "IFAST.spad" 851365 851373 851741 851746) (-519 "IFARRAY.spad" 848858 848873 850548 850575) (-518 "IFAMON.spad" 848720 848737 848814 848819) (-517 "IEVALAB.spad" 848125 848137 848710 848715) (-516 "IEVALAB.spad" 847528 847542 848115 848120) (-515 "IDPO.spad" 847326 847338 847518 847523) (-514 "IDPOAMS.spad" 847082 847094 847316 847321) (-513 "IDPOAM.spad" 846802 846814 847072 847077) (-512 "IDPC.spad" 845740 845752 846792 846797) (-511 "IDPAM.spad" 845485 845497 845730 845735) (-510 "IDPAG.spad" 845232 845244 845475 845480) (-509 "IDENT.spad" 844882 844890 845222 845227) (-508 "IDECOMP.spad" 842121 842139 844872 844877) (-507 "IDEAL.spad" 837070 837109 842056 842061) (-506 "ICDEN.spad" 836259 836275 837060 837065) (-505 "ICARD.spad" 835450 835458 836249 836254) (-504 "IBPTOOLS.spad" 834057 834074 835440 835445) (-503 "IBITS.spad" 833260 833273 833693 833720) (-502 "IBATOOL.spad" 830237 830256 833250 833255) (-501 "IBACHIN.spad" 828744 828759 830227 830232) (-500 "IARRAY2.spad" 827732 827758 828351 828378) (-499 "IARRAY1.spad" 826777 826792 826915 826942) (-498 "IAN.spad" 825000 825008 826593 826686) (-497 "IALGFACT.spad" 824603 824636 824990 824995) (-496 "HYPCAT.spad" 824027 824035 824593 824598) (-495 "HYPCAT.spad" 823449 823459 824017 824022) (-494 "HOSTNAME.spad" 823257 823265 823439 823444) (-493 "HOMOTOP.spad" 823000 823010 823247 823252) (-492 "HOAGG.spad" 820282 820292 822990 822995) (-491 "HOAGG.spad" 817339 817351 820049 820054) (-490 "HEXADEC.spad" 815441 815449 815806 815899) (-489 "HEUGCD.spad" 814476 814487 815431 815436) (-488 "HELLFDIV.spad" 814066 814090 814466 814471) (-487 "HEAP.spad" 813458 813468 813673 813700) (-486 "HEADAST.spad" 812991 812999 813448 813453) (-485 "HDP.spad" 802834 802850 803211 803342) (-484 "HDMP.spad" 800048 800063 800664 800791) (-483 "HB.spad" 798299 798307 800038 800043) (-482 "HASHTBL.spad" 796769 796800 796980 797007) (-481 "HASAST.spad" 796485 796493 796759 796764) (-480 "HACKPI.spad" 795976 795984 796387 796480) (-479 "GTSET.spad" 794915 794931 795622 795649) (-478 "GSTBL.spad" 793434 793469 793608 793623) (-477 "GSERIES.spad" 790605 790632 791566 791715) (-476 "GROUP.spad" 789878 789886 790585 790600) (-475 "GROUP.spad" 789159 789169 789868 789873) (-474 "GROEBSOL.spad" 787653 787674 789149 789154) (-473 "GRMOD.spad" 786224 786236 787643 787648) (-472 "GRMOD.spad" 784793 784807 786214 786219) (-471 "GRIMAGE.spad" 777682 777690 784783 784788) (-470 "GRDEF.spad" 776061 776069 777672 777677) (-469 "GRAY.spad" 774524 774532 776051 776056) (-468 "GRALG.spad" 773601 773613 774514 774519) (-467 "GRALG.spad" 772676 772690 773591 773596) (-466 "GPOLSET.spad" 772130 772153 772358 772385) (-465 "GOSPER.spad" 771399 771417 772120 772125) (-464 "GMODPOL.spad" 770547 770574 771367 771394) (-463 "GHENSEL.spad" 769630 769644 770537 770542) (-462 "GENUPS.spad" 765923 765936 769620 769625) (-461 "GENUFACT.spad" 765500 765510 765913 765918) (-460 "GENPGCD.spad" 765086 765103 765490 765495) (-459 "GENMFACT.spad" 764538 764557 765076 765081) (-458 "GENEEZ.spad" 762489 762502 764528 764533) (-457 "GDMP.spad" 759545 759562 760319 760446) (-456 "GCNAALG.spad" 753468 753495 759339 759406) (-455 "GCDDOM.spad" 752644 752652 753394 753463) (-454 "GCDDOM.spad" 751882 751892 752634 752639) (-453 "GB.spad" 749408 749446 751838 751843) (-452 "GBINTERN.spad" 745428 745466 749398 749403) (-451 "GBF.spad" 741195 741233 745418 745423) (-450 "GBEUCLID.spad" 739077 739115 741185 741190) (-449 "GAUSSFAC.spad" 738390 738398 739067 739072) (-448 "GALUTIL.spad" 736716 736726 738346 738351) (-447 "GALPOLYU.spad" 735170 735183 736706 736711) (-446 "GALFACTU.spad" 733343 733362 735160 735165) (-445 "GALFACT.spad" 723532 723543 733333 733338) (-444 "FVFUN.spad" 720555 720563 723522 723527) (-443 "FVC.spad" 719607 719615 720545 720550) (-442 "FUNDESC.spad" 719285 719293 719597 719602) (-441 "FUNCTION.spad" 719134 719146 719275 719280) (-440 "FT.spad" 717431 717439 719124 719129) (-439 "FTEM.spad" 716596 716604 717421 717426) (-438 "FSUPFACT.spad" 715496 715515 716532 716537) (-437 "FST.spad" 713582 713590 715486 715491) (-436 "FSRED.spad" 713062 713078 713572 713577) (-435 "FSPRMELT.spad" 711944 711960 713019 713024) (-434 "FSPECF.spad" 710035 710051 711934 711939) (-433 "FS.spad" 704303 704313 709810 710030) (-432 "FS.spad" 698349 698361 703858 703863) (-431 "FSINT.spad" 698009 698025 698339 698344) (-430 "FSERIES.spad" 697200 697212 697829 697928) (-429 "FSCINT.spad" 696517 696533 697190 697195) (-428 "FSAGG.spad" 695634 695644 696473 696512) (-427 "FSAGG.spad" 694713 694725 695554 695559) (-426 "FSAGG2.spad" 693456 693472 694703 694708) (-425 "FS2UPS.spad" 687947 687981 693446 693451) (-424 "FS2.spad" 687594 687610 687937 687942) (-423 "FS2EXPXP.spad" 686719 686742 687584 687589) (-422 "FRUTIL.spad" 685673 685683 686709 686714) (-421 "FR.spad" 679389 679399 684697 684766) (-420 "FRNAALG.spad" 674508 674518 679331 679384) (-419 "FRNAALG.spad" 669639 669651 674464 674469) (-418 "FRNAAF2.spad" 669095 669113 669629 669634) (-417 "FRMOD.spad" 668505 668535 669026 669031) (-416 "FRIDEAL.spad" 667730 667751 668485 668500) (-415 "FRIDEAL2.spad" 667334 667366 667720 667725) (-414 "FRETRCT.spad" 666845 666855 667324 667329) (-413 "FRETRCT.spad" 666222 666234 666703 666708) (-412 "FRAMALG.spad" 664570 664583 666178 666217) (-411 "FRAMALG.spad" 662950 662965 664560 664565) (-410 "FRAC.spad" 660049 660059 660452 660625) (-409 "FRAC2.spad" 659654 659666 660039 660044) (-408 "FR2.spad" 658990 659002 659644 659649) (-407 "FPS.spad" 655805 655813 658880 658985) (-406 "FPS.spad" 652648 652658 655725 655730) (-405 "FPC.spad" 651694 651702 652550 652643) (-404 "FPC.spad" 650826 650836 651684 651689) (-403 "FPATMAB.spad" 650588 650598 650816 650821) (-402 "FPARFRAC.spad" 649075 649092 650578 650583) (-401 "FORTRAN.spad" 647581 647624 649065 649070) (-400 "FORT.spad" 646530 646538 647571 647576) (-399 "FORTFN.spad" 643700 643708 646520 646525) (-398 "FORTCAT.spad" 643384 643392 643690 643695) (-397 "FORMULA.spad" 640858 640866 643374 643379) (-396 "FORMULA1.spad" 640337 640347 640848 640853) (-395 "FORDER.spad" 640028 640052 640327 640332) (-394 "FOP.spad" 639229 639237 640018 640023) (-393 "FNLA.spad" 638653 638675 639197 639224) (-392 "FNCAT.spad" 637248 637256 638643 638648) (-391 "FNAME.spad" 637140 637148 637238 637243) (-390 "FMTC.spad" 636938 636946 637066 637135) (-389 "FMONOID.spad" 636603 636613 636894 636899) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 4f5f0efb..66fcecce 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,16 +1,16 @@ -(188256 . 3465761906) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) -((((-567)) . T) (($) -2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T)) +(188328 . 3466723540) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) +((((-567)) . T) (($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-567)) . T)) -((($ $) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#2|) . T)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(|has| |#1| (-910)) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) +(|has| |#1| (-911)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -19,48 +19,48 @@ ((($) . T)) (((|#2| |#2|) . T)) ((((-144)) . T)) -((((-539)) . T) (((-1159)) . T) (((-225)) . T) (((-381)) . T) (((-893 (-381))) . T)) +((((-539)) . T) (((-1160)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) (((|#1|) . T)) ((((-225)) . T) (((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) -((($ $) . T) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -(-2797 (|has| |#1| (-821)) (|has| |#1| (-851))) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) +((($ $) . T) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +(-2800 (|has| |#1| (-821)) (|has| |#1| (-851))) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) ((((-863)) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-849)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-317 |#1|)) . T) (((-567)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) ((((-567)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) ((((-863)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) (((|#4|) . T)) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) ((((-863)) . T)) -((((-863)) |has| (-1095 |#1|) (-1101))) -((((-863)) . T) (((-1182)) . T)) +((((-863)) |has| (-1096 |#1|) (-1102))) +((((-863)) . T) (((-1183)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1182)) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(((|#2| (-485 (-2410 |#1|) (-772))) . T)) -(((|#1| (-534 (-1177))) . T)) +((((-1183)) . T)) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(((|#2| (-485 (-2414 |#1|) (-772))) . T)) +(((|#1| (-534 (-1178))) . T)) (((#0=(-871 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((((-1159)) . T) (((-959 (-129))) . T) (((-863)) . T)) +((((-1160)) . T) (((-960 (-129))) . T) (((-863)) . T)) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (|has| |#4| (-370)) (|has| |#3| (-370)) (((|#1|) . T)) -((((-1177)) . T)) +((((-1178)) . T)) ((((-509)) . T)) ((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) ((((-863)) . T)) @@ -71,22 +71,22 @@ (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-559)) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) . T)) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T)) ((($) . T)) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1177)) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1178)) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -((((-1177)) . T)) +((((-1178)) . T)) ((((-567)) . T) (($) . T)) ((((-584 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) ((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T) (((-567)) . T) (($) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -97,12 +97,12 @@ (((|#1| |#2|) . T)) ((((-863)) . T)) (((|#1|) . T)) -(|has| |#1| (-1101)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +(|has| |#1| (-1102)) +(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#1|) . T)) ((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) @@ -110,14 +110,14 @@ ((((-410 (-567))) . T) (($) . T) (((-567)) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) (((|#2|) . T) (((-567)) . T) ((|#6|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) +(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) ((($ $) . T)) ((($) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) @@ -126,30 +126,30 @@ (((|#1|) . T)) (|has| |#1| (-370)) (((|#1|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-567)) . T)) ((((-863)) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T) (((-567)) . T) (($) . T)) (|has| |#1| (-559)) (((|#1| |#1|) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(|has| |#1| (-1101)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(|has| |#1| (-1101)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(|has| |#1| (-1102)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(|has| |#1| (-1102)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (|has| |#1| (-849)) ((($) . T) (((-410 (-567))) . T)) ((((-863)) . T)) @@ -158,64 +158,64 @@ ((((-567) (-129)) . T)) ((($) . T) (((-410 (-567))) . T)) ((((-129)) . T)) -(-2797 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2797 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-2800 (|has| |#4| (-794)) (|has| |#4| (-849))) +(-2800 (|has| |#4| (-794)) (|has| |#4| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) (((|#1| |#2|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1182)) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1177) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1177) |#2|)))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1183)) . T)) +(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1178) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1178) |#2|)))) (((|#1| |#2|) . T)) -(|has| |#1| (-1101)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) +(|has| |#1| (-1102)) ((((-567)) . T) (((-410 (-567))) . T)) -(((|#1| (-1177) (-1089 (-1177)) (-534 (-1089 (-1177)))) . T)) +(((|#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) . T)) ((((-567) |#1|) . T)) ((((-567)) . T)) ((((-567)) . T)) -((((-911 |#1|)) . T)) +((((-912 |#1|)) . T)) (((|#1| (-534 |#2|)) . T)) ((((-567)) . T)) ((((-567)) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1| (-772)) . T)) (|has| |#2| (-794)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) (|has| |#2| (-849)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1159) |#1|) . T)) +((((-1160) |#1|) . T)) ((((-567) (-129)) . T)) (((|#1|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#3| (-772)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) ((($) . T) (((-410 (-567))) . T)) ((($) . T)) ((($) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((((-410 (-567))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-410 (-567))) . T) (((-567)) . T)) -((((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#2|) . T)) -((((-1177) |#2|) |has| |#2| (-517 (-1177) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) +((((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#2|) . T)) +((((-1178) |#2|) |has| |#2| (-517 (-1178) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) ((((-410 (-567))) . T) (((-567)) . T)) -((((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1083)) . T) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) +((((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (((|#1|) . T) (($) . T)) ((((-567)) . T)) ((((-567)) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) ((((-567)) . T)) ((((-567)) . T)) ((((-410 (-567))) . T) (($) . T)) -(((#0=(-700) (-1173 #0#)) . T)) +(((#0=(-700) (-1174 #0#)) . T)) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T)) @@ -226,19 +226,19 @@ ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-1159) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-1160) |#1|) . T)) (((|#3| |#3|) . T)) ((((-863)) . T)) ((((-863)) . T)) (((|#1| |#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T)) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -246,80 +246,80 @@ ((((-863)) . T)) ((((-567) |#1|) . T)) ((((-863)) . T)) -((((-169 (-225))) |has| |#1| (-1023)) (((-169 (-381))) |has| |#1| (-1023)) (((-539)) |has| |#1| (-615 (-539))) (((-1173 |#1|)) . T) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((((-169 (-225))) |has| |#1| (-1024)) (((-169 (-381))) |has| |#1| (-1024)) (((-539)) |has| |#1| (-615 (-539))) (((-1174 |#1|)) . T) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) (|has| |#1| (-365)) ((((-863)) . T)) ((($) . T)) ((($) . T)) ((((-129)) . T)) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) -(-2797 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) +(-2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) ((((-863)) . T)) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (|has| |#1| (-559)) -((((-567)) -2797 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1101))) (|has| |#4| (-1050))) ((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-1101))) (((-410 (-567))) -12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1101)))) -((((-567)) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (|has| |#3| (-1050))) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-1101))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((((-567)) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051))) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102)))) +((((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (|has| |#1| (-559)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) (|has| |#1| (-559)) (|has| |#1| (-559)) (|has| |#1| (-559)) ((((-700)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-1003)) (|has| |#1| (-1202))) +(-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-410 (-567))) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))) +(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))) ((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(((|#4| |#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($ $) |has| |#3| (-172))) +(((|#4| |#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172))) (((|#2|) . T)) (((|#1|) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567))))) +((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) ((((-863)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) . T) (((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567))))) -(((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($) |has| |#4| (-172))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172))) -((((-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) . T)) +((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T) (((-863)) . T)) +((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567))))) +(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) +((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) ((((-645 |#1|)) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) ((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) ((((-410 $) (-410 $)) |has| |#2| (-559)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T)) (((|#1|) . T)) -(|has| |#2| (-910)) -((((-1159) (-52)) . T)) +(|has| |#2| (-911)) +((((-1160) (-52)) . T)) ((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T)) -((((-539)) . T) (((-225)) . T) (((-381)) . T) (((-893 (-381))) . T)) +((((-539)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) (((|#1|) |has| |#1| (-172))) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-863)) . T)) @@ -329,82 +329,82 @@ ((((-863)) . T)) (|has| |#1| (-851)) (((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1101)) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +(|has| |#1| (-1102)) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) . T) (((-1182)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-1182)) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-863)) . T) (((-1183)) . T)) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-1183)) . T)) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-233)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1| (-534 (-819 (-1177)))) . T)) -(((|#1| (-972)) . T)) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#1| (-534 (-819 (-1178)))) . T)) +(((|#1| (-973)) . T)) ((((-567)) . T) ((|#2|) . T)) (((#0=(-871 |#1|) $) |has| #0# (-287 #0# #0#))) ((((-567) |#4|) . T)) ((((-567) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1152)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) -(|has| (-1253 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1253 |#1| |#2| |#3| |#4|) (-147)) +(|has| |#1| (-1153)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) +(|has| (-1254 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1254 |#1| |#2| |#3| |#4|) (-147)) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) |has| |#1| (-172))) -((((-1177)) -12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) -(|has| |#1| (-1101)) -((((-1159) |#1|) . T)) +((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) +(|has| |#1| (-1102)) +((((-1160) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -((((-1126 |#1| (-1177))) . T) (((-567)) . T) (((-819 (-1177))) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-1177)) . T)) +((((-1127 |#1| (-1178))) . T) (((-567)) . T) (((-819 (-1178))) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1178)) . T)) (|has| |#2| (-370)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1050))) +(((|#2|) |has| |#2| (-1051))) ((((-863)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (((|#1|) . T)) -((((-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((#0=(-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) #0#) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) +((((-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) ((((-863)) . T)) ((((-567) |#1|) . T)) -((((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381))))) (((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) +((((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) ((($) . T)) ((((-863)) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) ((((-863)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-863)) . T)) ((((-863)) . T)) -(|has| (-1252 |#2| |#3| |#4|) (-147)) -(|has| (-1252 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1101)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +(|has| (-1253 |#2| |#3| |#4|) (-147)) +(|has| (-1253 |#2| |#3| |#4|) (-145)) +(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-863)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) (((|#1|) . T)) ((((-567) |#1|) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-863)) |has| |#1| (-1101))) -(-2797 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)) (|has| |#1| (-1113))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-911 |#1|)) . T)) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) +((((-863)) |has| |#1| (-1102))) +(-2800 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-912 |#1|)) . T)) ((((-410 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-567) |#1|))) ((((-410 (-567))) . T) (($) . T)) @@ -414,13 +414,13 @@ ((((-863)) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) (|has| |#1| (-365)) -(-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) +(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-772) |#1|))) ((((-567)) . T)) ((((-567)) . T)) -((((-1143 |#2| (-410 (-953 |#1|)))) . T) (((-410 (-953 |#1|))) . T)) +((((-1144 |#2| (-410 (-954 |#1|)))) . T) (((-410 (-954 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) @@ -428,130 +428,130 @@ ((((-567) |#1|) . T)) ((((-863)) . T)) (((|#2|) . T)) -(-2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) ((($) |has| |#1| (-559)) (((-567)) . T)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) -((((-1259 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -((((-1263 |#2|)) . T) (((-1259 |#1| |#2| |#3|)) . T) (((-1231 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) +((((-1260 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) +((((-1264 |#2|)) . T) (((-1260 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T)) (((|#1|) . T)) -((((-1177)) -12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((((-1178)) -12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -(-2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) +(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) ((($ $) |has| |#1| (-559)) ((|#1| |#1|) . T)) -(((#0=(-700) (-1173 #0#)) . T)) +(((#0=(-700) (-1174 #0#)) . T)) ((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) ((((-410 (-567))) . T) (($) . T)) -((((-863)) . T) (((-1267 |#4|)) . T)) -((((-863)) . T) (((-1267 |#3|)) . T)) +((((-863)) . T) (((-1268 |#4|)) . T)) +((((-863)) . T) (((-1268 |#3|)) . T)) ((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) . T)) ((((-863)) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) ((($) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1259 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#3|) |has| |#3| (-1050))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(|has| (-1095 |#1|) (-1101)) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1260 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +(((|#3|) |has| |#3| (-1051))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +(|has| (-1096 |#1|) (-1102)) (((|#2| (-820 |#1|)) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-365)) ((((-567)) . T) ((|#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((#0=(-1083) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((#0=(-1084) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-863)) . T)) -((((-911 |#1|)) . T)) +((((-912 |#1|)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(((|#3|) |has| |#3| (-1101)) (((-567)) -12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) +(((|#3|) |has| |#3| (-1102)) (((-567)) -12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) (|has| |#1| (-365)) -((((-1182)) . T)) +((((-1183)) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) +((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) (|has| |#2| (-821)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-849)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-539)) |has| |#1| (-615 (-539)))) (((|#1| |#2|) . T)) -((((-1177)) -12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) -((((-1159) |#1|) . T)) +((((-1178)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) +((((-1160) |#1|) . T)) (((|#1| |#2| |#3| (-534 |#3|)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) ((((-863)) . T)) ((((-410 (-567))) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((((-410 (-567))) . T)) (|has| |#1| (-370)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((((-567)) . T)) ((((-567)) . T)) (((|#1|) . T) (((-567)) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((((-863)) . T)) ((((-863)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1050))) -((((-1177) #0=(-871 |#1|)) |has| #0# (-517 (-1177) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) +((((-1178) #0=(-871 |#1|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) (((|#1|) . T)) ((((-567) |#4|) . T)) ((((-567) |#3|) . T)) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) ((((-410 (-567))) . T) (((-567)) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) ((((-567)) . T)) ((((-567)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T)) (((|#1|) . T)) ((((-410 (-567))) . T) (($) . T)) @@ -559,7 +559,7 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) ((($) . T) (((-410 (-567))) . T)) (((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) (((|#1|) |has| |#1| (-559))) @@ -567,104 +567,104 @@ ((((-567) |#3|) . T)) ((((-863)) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) ((((-863)) . T)) ((((-567) |#1|) . T)) (((|#1|) . T)) ((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1177) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1178) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(((|#2| |#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172))) +((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) +(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) ((((-144)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-370)) (|has| |#2| (-370))) ((((-863)) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) (((|#1|) . T)) ((((-863)) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (|has| $ (-147)) -((((-1182)) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) +((((-1183)) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) ((((-567) |#1|) . T)) -((($) -2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) +((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (|has| |#1| (-365)) -(-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) +(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-772) |#1|))) (((|#1|) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) ((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((|#2| (-534 (-865 |#1|))) . T)) ((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((((-584 |#1|)) . T)) ((($) . T)) ((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) (((|#1|) . T) (($) . T)) ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-1175 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -((((-1263 |#2|)) . T) (((-1175 |#1| |#2| |#3|)) . T) (((-1168 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-1176 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) +((((-1264 |#2|)) . T) (((-1176 |#1| |#2| |#3|)) . T) (((-1169 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) (((|#4|) . T)) (((|#3|) . T)) ((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T)) -((((-1177)) -12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) +((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (((|#1|) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T)) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) ((((-567) |#2|) . T)) ((((-863)) . T)) ((($) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) . T)) ((((-863)) . T)) ((((-863)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1175 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -(((|#2|) |has| |#2| (-1050))) -(|has| |#1| (-1101)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1176 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((((-863)) . T)) +(((|#2|) |has| |#2| (-1051))) +(|has| |#1| (-1102)) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) ((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -(((#0=(-1083) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) ((($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1101)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#2|) |has| |#1| (-365))) ((((-567) |#1|) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) (((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) ((((-863)) . T)) ((((-410 |#2|) |#3|) . T)) (((|#1| (-410 (-567))) . T)) @@ -673,37 +673,37 @@ (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T) (((-1182)) . T)) +((((-863)) . T) (((-1183)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-1182)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-1183)) . T)) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-410 (-567))) . T) (($) . T)) ((((-410 (-567))) . T) (($) . T)) ((((-410 (-567))) . T) (($) . T)) (((|#2| |#3| (-865 |#1|)) . T)) -((((-1177)) |has| |#2| (-901 (-1177)))) +((((-1178)) |has| |#2| (-902 (-1178)))) (((|#1|) . T)) (((|#1| (-534 |#2|) |#2|) . T)) -(((|#1| (-772) (-1083)) . T)) +(((|#1| (-772) (-1084)) . T)) ((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(((|#1| (-534 (-1089 (-1177))) (-1089 (-1177))) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(((|#1| (-534 (-1090 (-1178))) (-1090 (-1178))) . T)) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T)) -((((-1000 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2797 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +((((-1001 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (|has| |#2| (-794)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#2| (-849)) -((((-894 |#1|)) . T) (((-820 |#1|)) . T)) -((((-820 (-1177))) . T)) +((((-895 |#1|)) . T) (((-820 |#1|)) . T)) +((((-820 (-1178))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -712,136 +712,136 @@ ((((-645 (-567))) . T)) ((((-645 (-567))) . T) (((-863)) . T)) ((((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) (|has| |#1| (-233)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-1259 |#1| |#2| |#3|) $) -12 (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-1260 |#1| |#2| |#3|) $) -12 (|has| (-1260 |#1| |#2| |#3|) (-287 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1141 |#1| |#2|)) |has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) -(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) +((((-1142 |#1| |#2|)) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) +(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (((|#2|) . T)) -((((-863)) -2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) (((-1267 |#2|)) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T) (($) . T)) +((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) ((((-567)) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -(|has| |#1| (-1101)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +(|has| |#1| (-1102)) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-567) (-144)) . T)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) ((((-567)) . T)) (((|#1|) . T) ((|#2|) . T) (((-567)) . T)) -((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) +((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((($) . T) (((-567)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) (((|#2|) |has| |#1| (-365))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-1182)) . T)) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-1183)) . T)) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| (-534 #0=(-1177)) #0#) . T)) +(((|#1| (-534 #0=(-1178)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-567)) . T)) (|has| |#4| (-172)) (|has| |#3| (-172)) -(((#0=(-410 (-953 |#1|)) #0#) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(|has| |#1| (-1101)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(|has| |#1| (-1101)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +(((#0=(-410 (-954 |#1|)) #0#) . T)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(|has| |#1| (-1102)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(|has| |#1| (-1102)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -((((-410 (-953 |#1|))) . T)) +((((-410 (-954 |#1|))) . T)) (((|#1|) . T) (((-567)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((((-863)) . T)) ((((-863)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1050)) (((-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1051)) (((-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((|#1| |#2|) . T)) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (|has| |#3| (-794)) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) (|has| |#3| (-849)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) (((|#2|) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) -(((|#1| (-1157 |#1|)) |has| |#1| (-849))) +(((|#1| (-1158 |#1|)) |has| |#1| (-849))) ((((-567) |#2|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#1|) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1152))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1153))) ((((-410 (-567))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#2|) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567))))) -(((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) +(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) ((((-863)) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-910))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-911))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#2|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) (((|#2|) . T)) -((($ $) . T) ((#0=(-1177) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1177)) |#1|) . T) ((#1# $) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) +((($ $) . T) ((#0=(-1178) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1178)) |#1|) . T) ((#1# $) . T)) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) ((((-567) |#2|) . T)) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((($) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050)))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) ((((-567) |#1|) . T)) (|has| (-410 |#2|) (-147)) (|has| (-410 |#2|) (-145)) @@ -854,40 +854,40 @@ (|has| |#1| (-559)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-863)) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (|has| |#1| (-38 (-410 (-567)))) -((((-391) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (|has| |#1| (-38 (-410 (-567)))) -(|has| |#2| (-1152)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-1216)) . T) (((-863)) . T) (((-1182)) . T)) +(|has| |#2| (-1153)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-1217)) . T) (((-863)) . T) (((-1183)) . T)) ((((-116 |#1|)) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) (((|#1|) . T)) -((((-391) (-1159)) . T)) +((((-391) (-1160)) . T)) (|has| |#1| (-559)) ((((-567) |#1|) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) (((|#2|) . T)) ((((-863)) . T)) ((((-820 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) -((((-1177) (-52)) . T)) +((((-1178) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) @@ -896,24 +896,24 @@ ((((-645 |#1|)) . T)) ((((-863)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#2|) |has| |#2| (-310 |#2|))) (((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1173 |#1|)) . T)) +(((|#1| (-1174 |#1|)) . T)) (|has| $ (-147)) (((|#2|) . T)) (((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) (|has| |#2| (-370)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1| |#2|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) (((|#1| |#2|) . T)) ((((-863)) . T)) @@ -921,81 +921,81 @@ ((((-863)) . T)) ((((-863)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-863)) . T)) -((((-1175 |#1| |#2| |#3|) $) -12 (|has| (-1175 |#1| |#2| |#3|) (-287 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) +((((-1176 |#1| |#2| |#3|) $) -12 (|has| (-1176 |#1| |#2| |#3|) (-287 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((#0=(-1259 |#1| |#2| |#3|) #0#) -12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1177) #0#) -12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1177) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -(-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((#0=(-1260 |#1| |#2| |#3|) #0#) -12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1178) #0#) -12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-567)) . T) (($) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((($) . T) (((-567)) . T) ((|#2|) . T)) ((((-567)) . T) (($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) ((((-410 (-567))) . T) (((-567)) . T)) ((((-567) (-144)) . T)) ((((-144)) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-112)) . T)) (((|#1|) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-225)) . #0=(|has| |#1| (-1023))) (((-381)) . #0#)) +((((-539)) |has| |#1| (-615 (-539))) (((-225)) . #0=(|has| |#1| (-1024))) (((-381)) . #0#)) ((((-863)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) (|has| |#1| (-821)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) (|has| |#1| (-559)) (|has| |#1| (-851)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) -(|has| |#1| (-910)) +((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) +(|has| |#1| (-911)) (((|#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-863)) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) -(((|#1| (-1267 |#1|) (-1267 |#1|)) . T)) +(((|#1| (-1268 |#1|) (-1268 |#1|)) . T)) ((((-567) (-144)) . T)) ((($) . T)) -(-2797 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -((((-1182)) . T) (((-863)) . T)) -((((-1182)) . T)) +(-2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +((((-1183)) . T) (((-863)) . T)) +((((-1183)) . T)) ((((-863)) . T)) -(|has| |#1| (-1101)) -(((|#1| (-972)) . T)) +(|has| |#1| (-1102)) +(((|#1| (-973)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((($) . T) (((-567)) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T)) (((|#1|) . T)) (|has| |#2| (-794)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (|has| |#2| (-849)) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +(-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-567)) . T)) (((|#2|) |has| |#2| (-172))) @@ -1007,24 +1007,24 @@ (((|#1|) . T)) ((((-410 (-567))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) (|has| |#1| (-829)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) -(|has| |#1| (-1101)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) +(|has| |#1| (-1102)) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) ((($) |has| |#1| (-559))) (((|#2|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1101))) -(((|#3|) |has| |#3| (-1101))) +(((|#4|) |has| |#4| (-1102))) +(((|#3|) |has| |#3| (-1102))) (|has| |#3| (-370)) -((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) ((((-863)) . T)) ((((-863)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1| |#1|) |has| |#1| (-172))) (|has| |#2| (-365)) @@ -1032,37 +1032,37 @@ (((|#1|) |has| |#1| (-172))) ((((-410 (-567))) . T) (((-567)) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) ((($) . T) (((-567)) . T)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) ((((-144)) . T)) (((|#1|) . T)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) ((((-144)) . T)) ((((-144)) . T)) ((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-567)) . T)) (((|#1| |#2| |#3|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (((|#1|) |has| |#1| (-172))) (|has| $ (-147)) (|has| $ (-147)) -((((-1182)) . T)) +((((-1183)) . T)) (((|#1|) |has| |#1| (-172))) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-863)) . T)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1050)) (|has| |#1| (-1113))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114))) ((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) (((|#1| (-410 (-567))) . T)) (((|#1|) . T)) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-1177)) . T)) +((((-1178)) . T)) (|has| |#1| (-559)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-559)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) @@ -1073,7 +1073,7 @@ (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#4| (-849)) -(((|#2| (-240 (-2410 |#1|) (-772)) (-865 |#1|)) . T)) +(((|#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) . T)) (|has| |#3| (-849)) (((|#1| (-534 |#3|) |#3|) . T)) (|has| |#1| (-147)) @@ -1087,21 +1087,21 @@ ((((-863)) . T)) (|has| |#1| (-145)) ((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-351)) (|has| |#1| (-370))) -((((-1143 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-351)) (|has| |#1| (-370))) +((((-1144 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1050))) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) ((((-863)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) ((((-700)) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (|has| |#1| (-559)) (((|#1|) . T)) (((|#1|) . T)) @@ -1110,13 +1110,13 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1177) (-52)) . T)) +((((-1178) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-1005 10)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-1006 10)) . T) (((-410 (-567))) . T) (((-863)) . T)) +((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) (((|#1|) . T)) -((((-1005 16)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-1006 16)) . T) (((-410 (-567))) . T) (((-863)) . T)) +((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) (((|#1| (-567)) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -1125,39 +1125,39 @@ (((|#1| (-410 (-567))) . T)) (((|#3|) . T) (((-613 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(((#0=(-1175 |#1| |#2| |#3|) #0#) -12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1177) #0#) -12 (|has| (-1175 |#1| |#2| |#3|) (-517 (-1177) (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(((#0=(-1176 |#1| |#2| |#3|) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1178) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) ((((-863)) . T)) ((((-863)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) ((((-863)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1177) (-52)) . T)) +((((-1178) (-52)) . T)) (((|#3|) . T)) ((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-829)) ((($) . T) (((-567)) . T) ((|#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| (-1095 |#1|) (-1101)) -(((|#2| |#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172))) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) +(|has| (-1096 |#1|) (-1102)) +(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) ((((-567)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) ((((-772)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) @@ -1165,7 +1165,7 @@ ((((-567)) . T)) (((|#2|) . T)) ((((-863)) . T)) -(((|#1| (-410 (-567)) (-1083)) . T)) +(((|#1| (-410 (-567)) (-1084)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (|has| |#1| (-559)) @@ -1173,103 +1173,103 @@ ((((-116 |#1|)) . T)) (((|#1|) . T)) ((((-410 (-567))) . T) (($) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((($) . T) (((-410 (-567))) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-567)) . T)) ((((-567)) . T)) -((((-893 (-567))) . T) (((-893 (-381))) . T) (((-539)) . T) (((-1177)) . T)) +((((-894 (-567))) . T) (((-894 (-381))) . T) (((-539)) . T) (((-1178)) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) ((($) . T)) (((|#1|) . T)) ((((-863)) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) +((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) ((((-871 |#1|)) . T)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) -(|has| |#2| (-1152)) -(((#0=(-52)) . T) (((-2 (|:| -1791 (-1177)) (|:| -4232 #0#))) . T)) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) +(|has| |#2| (-1153)) +(((#0=(-52)) . T) (((-2 (|:| -1795 (-1178)) (|:| -4237 #0#))) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -(((|#1| (-567) (-1083)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1| (-410 (-567)) (-1083)) . T)) -((($) -2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +(((|#1| (-567) (-1084)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| (-410 (-567)) (-1084)) . T)) +((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-567) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-370)) (-12 (|has| |#1| (-370)) (|has| |#2| (-370))) ((((-863)) . T)) -((((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) (((|#1|) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#4|) . T)) (|has| |#1| (-351)) -((((-567)) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (|has| |#3| (-1050))) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-1101))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) +((((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (((|#1|) . T)) (((|#4|) . T) (((-863)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2797 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) (((-567)) . T) ((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050)))) -(((|#2|) . T) (($) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) (((-567)) . T) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(((|#3|) . T) ((|#2|) . T) (($) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) (((-567)) . T) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051)))) +(((|#2|) . T) (($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) . T) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (|has| |#1| (-559)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) ((((-410 (-567))) . T) (((-567)) . T)) ((((-567)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) ((($) . T)) ((((-863)) . T)) (((|#1|) . T)) ((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((((-863)) . T)) -(((|#3| |#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($ $) |has| |#3| (-172))) -(|has| |#1| (-1023)) +(((|#3| |#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1024)) ((((-863)) . T)) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) ((((-567) (-112)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) (((|#1|) |has| |#1| (-310 |#1|))) -((((-1182)) . T)) +((((-1183)) . T)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) -((((-1177) $) |has| |#1| (-517 (-1177) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|))) -((((-1177)) |has| |#1| (-901 (-1177)))) -(-2797 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) +((((-1178) $) |has| |#1| (-517 (-1178) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|))) +((((-1178)) |has| |#1| (-902 (-1178)))) +(-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-391) |#1|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -(|has| |#1| (-1101)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +(|has| |#1| (-1102)) (((|#2|) . T) (((-863)) . T)) ((((-863)) . T)) (((|#2|) . T)) -((((-911 |#1|)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) +((((-912 |#1|)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) @@ -1278,29 +1278,29 @@ (((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) (((|#1| |#1|) . T)) (((#0=(-871 |#1|)) |has| #0# (-310 #0#))) -((((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T)) +((((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) (((|#1|) . T)) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((($) . T) (((-567)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1202)) +(|has| |#1| (-1203)) (((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) ((((-410 (-567))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1050))) -(((|#3|) |has| |#3| (-1050))) +(((|#4|) |has| |#4| (-1051))) +(((|#3|) |has| |#3| (-1051))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (|has| |#1| (-365)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((($ $) . T) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -1315,90 +1315,90 @@ (((|#1| |#2|) . T)) (|has| |#1| (-849)) (|has| |#1| (-849)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((($) . T)) -(((#0=(-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) #0#) |has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) +(((#0=(-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1101))) -((((-863)) -2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) (((-1267 |#2|)) . T)) +(((|#2|) |has| |#2| (-1102))) +((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T)) ((($) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1159) (-52)) . T)) +((((-1160) (-52)) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) +((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) ((((-863)) . T)) (((|#2|) . T)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) ((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T)) ((($) . T) (((-567)) . T)) ((((-567) (-144)) . T)) -((((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((|#1| |#2|) . T)) +((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T)) ((((-410 (-567))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-863)) . T)) -((((-911 |#1|)) . T)) +((((-912 |#1|)) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-849)) -((($) -2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) (|has| |#1| (-365)) (((|#1|) . T) (($) . T)) (|has| |#1| (-849)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-1177)) |has| |#1| (-901 (-1177)))) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-1178)) |has| |#1| (-902 (-1178)))) (|has| |#1| (-849)) ((((-509)) . T)) -(((|#1| (-1177)) . T)) -(((|#1| (-1267 |#1|) (-1267 |#1|)) . T)) -((((-863)) . T) (((-1182)) . T)) +(((|#1| (-1178)) . T)) +(((|#1| (-1268 |#1|) (-1268 |#1|)) . T)) +((((-863)) . T) (((-1183)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1182)) . T)) -(|has| |#1| (-1101)) -(((|#1| (-1177) (-819 (-1177)) (-534 (-819 (-1177)))) . T)) -((((-410 (-953 |#1|))) . T)) +((((-1183)) . T)) +(|has| |#1| (-1102)) +(((|#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) . T)) +((((-410 (-954 |#1|))) . T)) ((((-539)) . T)) ((((-863)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((|#1| |#2|) . T)) +((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-172))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567))))) +((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567))))) ((((-863)) . T)) ((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-509)) . T)) (|has| |#2| (-849)) ((((-509)) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1050))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) (|has| |#1| (-559)) ((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-1159) |#1|) . T)) -(|has| |#1| (-1152)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -((((-959 |#1|)) . T)) -(((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-567))) (((-567)) |has| |#1| (-1039 (-567))) (((-1177)) |has| |#1| (-1039 (-1177))) ((|#1|) . T)) +((((-1160) |#1|) . T)) +(|has| |#1| (-1153)) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +((((-960 |#1|)) . T)) +(((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-567))) (((-567)) |has| |#1| (-1040 (-567))) (((-1178)) |has| |#1| (-1040 (-1178))) ((|#1|) . T)) ((((-567) |#2|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381)))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) +((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-567)) . T)) ((((-645 |#4|)) . T) (((-863)) . T)) @@ -1406,37 +1406,37 @@ ((((-539)) |has| |#4| (-615 (-539)))) ((((-863)) . T) (((-645 |#4|)) . T)) ((($) |has| |#1| (-849))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -((((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) +((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) ((((-645 |#4|)) . T) (((-863)) . T)) ((((-539)) |has| |#4| (-615 (-539)))) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) (((|#1|) . T)) -((((-1177)) |has| (-410 |#2|) (-901 (-1177)))) +((((-1178)) |has| (-410 |#2|) (-902 (-1178)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) ((($) . T)) ((($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-863)) -2797 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1101))) (((-1267 |#3|)) . T)) +((((-863)) -2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) (((-1268 |#3|)) . T)) ((((-567) |#2|) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) -(((|#2| |#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) (((|#2|) . T) (((-567)) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#2|) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-1159) (-1177) (-567) (-225) (-863)) . T)) +((((-1160) (-1178) (-567) (-225) (-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) @@ -1469,12 +1469,12 @@ ((((-410 (-567))) . T) (($) . T)) ((((-863)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) ((($) . T) (((-410 (-567))) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) (|has| $ (-147)) ((((-410 |#2|)) . T)) -((((-410 (-567))) |has| #0=(-410 |#2|) (-1039 (-410 (-567)))) (((-567)) |has| #0# (-1039 (-567))) ((#0#) . T)) +((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-172))) (|has| |#2| (-145)) @@ -1482,30 +1482,30 @@ (((|#3|) |has| |#3| (-172))) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#2| (-233)) (((|#2|) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-1177) (-52)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-1178) (-52)) . T)) ((((-863)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) (((|#1| |#1|) . T)) -((((-1177)) |has| |#2| (-901 (-1177)))) +((((-1178)) |has| |#2| (-902 (-1178)))) ((((-129)) . T)) -((((-894 |#1|)) . T) ((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) +((((-895 |#1|)) . T) ((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) ((((-567) (-112)) . T)) (|has| |#1| (-559)) (((|#2|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-567)) . T) (((-820 (-1177))) . T)) +(((|#1|) . T) (((-567)) . T) (((-820 (-1178))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1514,27 +1514,27 @@ (|has| |#1| (-38 (-410 (-567)))) (((|#3|) . T)) (|has| |#1| (-38 (-410 (-567)))) -((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) +((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) (((|#1|) . T)) -((((-1005 2)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-1006 2)) . T) (((-410 (-567))) . T) (((-863)) . T)) +((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-1000 |#1|)) . T) ((|#1|) . T)) +((((-1001 |#1|)) . T) ((|#1|) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1173 |#1|)) . T)) +(((|#1| (-1174 |#1|)) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) (((|#3|) . T) (($) . T)) (|has| |#1| (-851)) (((|#1|) . T) (((-567)) . T) (($) . T)) (((|#2|) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) ((((-567) |#2|) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) @@ -1542,36 +1542,36 @@ ((((-567) |#3|) . T)) (((|#2|) . T)) ((((-863)) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-365)) -(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) +(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1159) (-52)) . T)) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-1160) (-52)) . T)) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#2|) |has| |#2| (-172))) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) ((((-567) |#3|) . T)) ((((-567) (-144)) . T)) ((((-144)) . T)) ((((-863)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) ((((-112)) . T)) (|has| |#1| (-147)) (((|#1|) . T)) @@ -1579,7 +1579,7 @@ ((($) . T)) (|has| |#1| (-559)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) ((((-144)) . T)) @@ -1587,97 +1587,97 @@ ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-1159) (-52)) . T)) +((((-1160) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1| |#2|) . T)) ((((-567) (-144)) . T)) -(((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-851)) -(((|#2| (-772) (-1083)) . T)) +(((|#2| (-772) (-1084)) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) (|has| |#1| (-792)) (((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2797 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) -(-2797 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) +(-2800 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) +(-2800 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) (((|#4|) . T)) (|has| |#1| (-145)) -((((-1159) |#1|) . T)) +((((-1160) |#1|) . T)) (|has| |#1| (-147)) (((|#1|) . T)) ((((-567)) . T)) ((((-863)) . T)) (((|#1| |#2|) . T)) ((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#3|) . T)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101))) (((-959 |#1|)) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))) (((-960 |#1|)) . T)) (|has| |#1| (-849)) (|has| |#1| (-849)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-959 |#1|)) . T)) -(((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-960 |#1|)) . T)) +(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) (|has| |#2| (-365)) (((|#1|) |has| |#1| (-172))) -(((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($) |has| |#4| (-172))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172))) -(((|#2|) |has| |#2| (-1050))) -((((-1159) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) -(((|#2| (-894 |#1|)) . T)) +(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) +(((|#2|) |has| |#2| (-1051))) +((((-1160) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) +(((|#2| (-895 |#1|)) . T)) ((($) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((((-391) (-1159)) . T)) +((((-391) (-1160)) . T)) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) (((-1267 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -1791 (-1159)) (|:| -4232 #0#))) . T)) +((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 #0#))) . T)) (((|#1|) . T)) ((((-863)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) ((((-144)) . T)) (|has| |#2| (-145)) ((((-567)) . T)) (|has| |#2| (-147)) (|has| |#1| (-476)) -(-2797 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) (|has| |#1| (-365)) ((((-863)) . T)) (|has| |#1| (-38 (-410 (-567)))) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) ((($) |has| |#1| (-559))) -((((-1182)) . T)) +((((-1183)) . T)) (|has| |#1| (-849)) (|has| |#1| (-849)) ((((-863)) . T)) (((|#2|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1177)) |has| |#1| (-901 (-1177)))) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-1178)) |has| |#1| (-902 (-1178)))) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) ((((-863)) . T)) ((((-863)) . T)) -(|has| |#1| (-1101)) -(((|#2| (-485 (-2410 |#1|) (-772)) (-865 |#1|)) . T)) +(|has| |#1| (-1102)) +(((|#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) . T)) ((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) -(((|#1| (-534 (-1177)) (-1177)) . T)) +(((|#1| (-534 (-1178)) (-1178)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-863)) . T)) @@ -1696,18 +1696,18 @@ (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-1177) (-52)) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-1178) (-52)) . T)) ((($ $) . T)) (((|#1| (-567)) . T)) -((((-911 |#1|)) . T)) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))) (($) -2797 (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)))) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) +((((-912 |#1|)) . T)) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) (|has| |#1| (-851)) (|has| |#1| (-851)) ((((-567) |#2|) . T)) @@ -1716,30 +1716,30 @@ ((((-567)) . T)) (|has| |#1| (-851)) ((((-690 |#2|)) . T) (((-863)) . T)) -((((-1259 |#1| |#2| |#3|)) -12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +((((-1260 |#1| |#2| |#3|)) -12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-410 (-953 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) +((((-410 (-954 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (((|#1|) |has| |#1| (-172))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(-2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-910))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-911))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) ((((-567) |#2|) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) (|has| |#1| (-351)) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (((|#2|) . T) (((-567)) . T)) ((($) . T) (((-410 (-567))) . T)) ((((-567) (-112)) . T)) (|has| |#1| (-821)) (|has| |#1| (-821)) (((|#1|) . T)) -(-2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-849)) (|has| |#1| (-849)) (|has| |#1| (-849)) @@ -1748,22 +1748,22 @@ ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-1177)) |has| |#1| (-901 (-1177))) (((-1083)) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T)) (((|#1|) . T)) (|has| |#1| (-849)) -(((#0=(-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) #0#) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(|has| |#1| (-1101)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +(((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(|has| |#1| (-1102)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1143 |#2| (-410 (-953 |#1|)))) . T) (((-410 (-953 |#1|))) . T) (((-567)) . T)) +((((-1144 |#2| (-410 (-954 |#1|)))) . T) (((-410 (-954 |#1|))) . T) (((-567)) . T)) (((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1775,14 +1775,14 @@ (((|#1| (-534 |#2|) |#2|) . T)) ((((-863)) . T)) ((((-144)) . T) (((-863)) . T)) -(((|#1| (-772) (-1083)) . T)) +(((|#1| (-772) (-1084)) . T)) (((|#3|) . T)) ((((-144)) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) -2797 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))) ((|#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) (((|#2|) |has| |#2| (-172))) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -1793,78 +1793,78 @@ (((|#2|) |has| |#1| (-365))) ((((-863)) . T)) (((|#2|) . T)) -(((|#1| (-1173 |#1|)) . T)) -((((-1083)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) +(((|#1| (-1174 |#1|)) . T)) +((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) ((($) . T) ((|#1|) . T) (((-410 (-567))) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) ((($) |has| |#1| (-559))) (((|#2|) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) . T)) ((($) |has| |#1| (-849))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(|has| |#1| (-910)) -((((-1177)) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(|has| |#1| (-911)) +((((-1178)) . T)) ((((-863)) . T)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((#0=(-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) #0#) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) (|has| |#1| (-851)) (|has| |#1| (-559)) ((((-584 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851)))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-911 |#1|)) . T)) +(-2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851)))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +((((-912 |#1|)) . T)) (((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-772)) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) ((((-673 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-863)) . T) (((-1182)) . T)) +((((-863)) . T) (((-1183)) . T)) ((((-539)) . T)) ((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-1182)) . T)) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-1183)) . T)) ((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T)) (((|#3|) . T) (((-567)) . T) (((-613 $)) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) (((|#2|) . T)) -(-2797 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1101))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) -(|has| |#1| (-1202)) -(|has| |#1| (-1202)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) -(|has| |#1| (-1202)) -(|has| |#1| (-1202)) +(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) +(|has| |#1| (-1203)) +(|has| |#1| (-1203)) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) +(|has| |#1| (-1203)) +(|has| |#1| (-1203)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-410 |#1|) #1#) . T) ((|#1| |#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) @@ -1877,55 +1877,55 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-1159) (-52)) . T)) -(|has| |#1| (-1101)) +((((-1160) (-52)) . T)) +(|has| |#1| (-1102)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(-2797 (|has| |#2| (-821)) (|has| |#2| (-851))) +(-2800 (|has| |#2| (-821)) (|has| |#2| (-851))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-567)) . T) (($) . T)) ((((-772)) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) ((($) . T) (((-567)) . T)) ((($) . T)) -(|has| |#2| (-910)) +(|has| |#2| (-911)) (|has| |#1| (-365)) -(((|#2|) |has| |#2| (-1101))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -((((-539)) . T) (((-410 (-1173 (-567)))) . T) (((-225)) . T) (((-381)) . T)) +(((|#2|) |has| |#2| (-1102))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((((-539)) . T) (((-410 (-1174 (-567)))) . T) (((-225)) . T) (((-381)) . T)) ((((-381)) . T) (((-225)) . T) (((-863)) . T)) -(|has| |#1| (-910)) -(|has| |#1| (-910)) -(|has| |#1| (-910)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) +(|has| |#1| (-911)) +(|has| |#1| (-911)) +(|has| |#1| (-911)) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) ((($) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) ((($) . T) ((|#2|) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-1175 |#1| |#2| |#3|)) -12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-1176 |#1| |#2| |#3|)) -12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) (((|#1|) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) ((((-863)) . T)) ((((-863)) . T)) ((($ $) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((($ $) . T)) ((((-567) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-567)) . T)) ((((-112)) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-38 (-410 (-567)))) (((|#1| (-567)) . T)) ((($) . T)) @@ -1934,33 +1934,33 @@ (((|#1|) . T)) ((((-567)) . T)) (((|#1| |#2|) . T)) -((((-1177)) |has| |#1| (-1050))) +((((-1178)) |has| |#1| (-1051))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (((|#1|) . T)) ((((-863)) . T)) (((|#1| (-567)) . T)) -(((|#1| (-1259 |#1| |#2| |#3|)) . T)) +(((|#1| (-1260 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-410 (-567))) . T)) -(((|#1| (-1231 |#1| |#2| |#3|)) . T)) +(((|#1| (-1232 |#1| |#2| |#3|)) . T)) (((|#1| (-772)) . T)) (((|#1|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-863)) . T)) -(|has| |#1| (-1101)) -((((-1159) |#1|) . T)) +(|has| |#1| (-1102)) +((((-1160) |#1|) . T)) ((($) . T)) (|has| |#2| (-147)) (|has| |#2| (-145)) -(((|#1| (-534 (-819 (-1177))) (-819 (-1177))) . T)) +(((|#1| (-534 (-819 (-1178))) (-819 (-1178))) . T)) ((((-863)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1050))) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1051))) ((((-567) (-112)) . T)) -((((-863)) |has| |#1| (-1101))) +((((-863)) |has| |#1| (-1102))) (((|#1|) . T) (((-567)) . T) (($) . T)) (|has| |#2| (-172)) ((((-567)) . T)) @@ -1968,108 +1968,108 @@ (((|#1|) . T)) ((((-567)) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-351))) ((((-863)) . T)) (|has| |#1| (-147)) (((|#3|) . T)) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((((-863)) . T)) -((((-1252 |#2| |#3| |#4|)) . T) (((-1253 |#1| |#2| |#3| |#4|)) . T)) +((((-1253 |#2| |#3| |#4|)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T)) ((((-863)) . T)) -((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) -2797 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-410 (-953 |#1|))) |has| |#1| (-559)) (((-953 |#1|)) |has| |#1| (-1050)) (((-1177)) . T)) +((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) -2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1178)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-772)) . T)) (((|#1|) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) |has| |#1| (-310 |#1|))) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) -((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381)))) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) +((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-559)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) (((|#1|) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1175 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (((|#1|) |has| |#1| (-172))) ((((-863)) . T)) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (((|#1|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1101))) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-1252 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1102))) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-1253 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-821)) (|has| |#1| (-821)) -(((|#1| (-567) (-1083)) . T)) +(((|#1| (-567) (-1084)) . T)) ((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|))) (|has| |#1| (-849)) (|has| |#1| (-849)) -(((|#1| (-567) (-1083)) . T)) -(-2797 (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -(((|#1| (-410 (-567)) (-1083)) . T)) -(((|#1| (-772) (-1083)) . T)) +(((|#1| (-567) (-1084)) . T)) +(-2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +(((|#1| (-410 (-567)) (-1084)) . T)) +(((|#1| (-772) (-1084)) . T)) (|has| |#1| (-851)) -(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) +(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-1101)) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +(|has| |#1| (-1102)) ((((-410 (-567))) |has| |#2| (-365)) (($) . T) (((-567)) . T)) -((((-567)) -2797 (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)))) +((((-567)) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))) (((|#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((|#2|) |has| |#1| (-365))) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) -((((-690 (-341 (-4142) (-4142 (QUOTE X) (QUOTE HESS)) (-700)))) . T)) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) +((((-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700)))) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) ((((-863)) . T)) (|has| |#3| (-849)) ((((-863)) . T)) -((((-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +((((-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) ((((-863)) . T)) -(((|#1| |#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050)))) +(((|#1| |#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) (((|#1|) . T)) ((((-567)) . T)) ((((-567)) . T)) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050)))) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) (((|#2|) |has| |#2| (-365))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) (|has| |#1| (-851)) (((|#1|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T) (((-567)) . T)) (((|#2|) . T)) ((((-567)) . T) ((|#3|) . T)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) |has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-910))) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-911))) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) ((((-863)) . T)) ((((-863)) . T)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) -((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) +((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) ((((-863)) . T)) (|has| |#1| (-38 (-410 (-567)))) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) @@ -2083,72 +2083,72 @@ (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1175 |#1| |#2| |#3|)) . T)) +(((|#1| (-1176 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-410 (-567))) . T)) -(((|#1| (-1168 |#1| |#2| |#3|)) . T)) +(((|#1| (-1169 |#1| |#2| |#3|)) . T)) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1| (-772)) . T)) (((|#1|) . T)) -((((-410 (-953 |#1|))) . T)) +((((-410 (-954 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) -((((-410 (-953 |#1|))) . T)) +((((-410 (-954 |#1|))) . T)) (((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) |has| |#1| (-172))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1177)) |has| |#1| (-1039 (-1177)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1178)) |has| |#1| (-1040 (-1178)))) (((|#1| |#2|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) -2797 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))) ((|#1|) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T)) ((((-144)) . T)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (((|#1|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-567)) . T)) ((((-863)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| (-410 |#2|) (-233)) ((((-645 |#1|)) . T)) -(|has| |#1| (-910)) -(((|#2|) |has| |#2| (-1050))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(|has| |#1| (-911)) +(((|#2|) |has| |#2| (-1051))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (|has| |#1| (-365)) (((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) ((((-871 |#1|)) . T)) ((((-863)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1101))) +(((|#2|) |has| |#2| (-1102))) (((|#1|) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-645 $)) . T) (((-1159)) . T) (((-1177)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) -((($) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) (((-567)) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050)))) +((((-645 $)) . T) (((-1160)) . T) (((-1178)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) +((($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) ((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T)) (((|#1|) . T)) ((((-863)) . T)) ((($) . T)) (((|#1| (-534 |#2|) |#2|) . T)) ((((-863)) . T)) -(((|#1| (-567) (-1083)) . T)) -(((|#1| (-410 (-567)) (-1083)) . T)) -((((-911 |#1|)) . T)) +(((|#1| (-567) (-1084)) . T)) +(((|#1| (-410 (-567)) (-1084)) . T)) +((((-912 |#1|)) . T)) ((((-863)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-772) (-1083)) . T)) +(((|#1| (-772) (-1084)) . T)) (((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-567)) -2797 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))) (((-410 (-567))) . T)) +(((|#1|) . T) (((-567)) -2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) . T)) (((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) @@ -2162,19 +2162,19 @@ ((((-863)) . T)) (((|#1| |#3|) . T)) ((((-863)) . T)) -(((|#1|) |has| |#1| (-172)) (((-953 |#1|)) . T) (((-567)) . T)) +(((|#1|) |has| |#1| (-172)) (((-954 |#1|)) . T) (((-567)) . T)) (((|#1|) |has| |#1| (-172))) ((((-700)) . T)) ((((-700)) . T)) (((|#2|) |has| |#2| (-172))) (|has| |#2| (-849)) -((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) -((((-112)) |has| |#1| (-1101)) (((-863)) -2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)) (|has| |#1| (-1113)) (|has| |#1| (-1101)))) +((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) +((((-112)) |has| |#1| (-1102)) (((-863)) -2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) @@ -2186,33 +2186,33 @@ ((((-700)) . T) (((-410 (-567))) . T) (((-567)) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#2|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-567) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) ((((-381)) . T)) ((((-700)) . T)) ((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) -((((-410 (-953 |#1|))) . T)) +((((-410 (-954 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1050))) -(|has| |#2| (-910)) -(|has| |#1| (-910)) +(((|#3|) |has| |#3| (-1051))) +(|has| |#2| (-911)) +(|has| |#1| (-911)) (|has| |#1| (-365)) -((((-1177)) |has| |#2| (-901 (-1177)))) +((((-1178)) |has| |#2| (-902 (-1178)))) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-410 (-567))) . T) (($) . T)) (|has| |#1| (-476)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-365)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1050)) (|has| |#1| (-1113))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114))) (|has| |#1| (-38 (-410 (-567)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) @@ -2233,18 +2233,18 @@ (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-851)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-567)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) (|has| |#1| (-370)) (|has| |#1| (-851)) -(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) +(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) ((((-116 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#2|) |has| |#2| (-172))) @@ -2255,51 +2255,51 @@ (|has| |#1| (-365)) ((((-863)) . T)) ((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-381)) . #0=(|has| |#1| (-1023))) (((-225)) . #0#)) +((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#1| (-1024))) (((-225)) . #0#)) (((|#1|) |has| |#1| (-365))) ((((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((($ $) . T) (((-613 $) $) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -((($) . T) (((-1253 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) -((($) -2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) -((($) . T) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +((($) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) +((($) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) +((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-365)) ((((-381)) . T) (((-567)) . T) (((-410 (-567))) . T)) ((((-645 (-781 |#1| (-865 |#2|)))) . T) (((-863)) . T)) ((((-539)) |has| (-781 |#1| (-865 |#2|)) (-615 (-539)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-381)) . T)) (((|#1|) |has| |#1| (-172))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (((|#1|) |has| |#1| (-172))) ((((-863)) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-911))) (((|#1|) . T)) ((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) ((((-772)) . T)) -(|has| |#1| (-1101)) -((($) -2797 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050)))) +(|has| |#1| (-1102)) +((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) ((((-863)) . T)) -((((-1177)) . T) (((-863)) . T)) +((((-1178)) . T) (((-863)) . T)) ((((-567)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) ((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-567)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(((#0=(-1252 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T)) ((((-567)) . T)) (|has| |#1| (-365)) -(-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) +(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) (|has| |#1| (-365)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -2315,52 +2315,52 @@ (((|#2|) . T)) ((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) ((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(|has| |#1| (-1101)) -((((-1143 |#2| |#1|)) . T) ((|#1|) . T) (((-567)) . T)) +(|has| |#1| (-1102)) +((((-1144 |#2| |#1|)) . T) ((|#1|) . T) (((-567)) . T)) (((|#1| |#2|) . T)) -((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567)))))) +((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) (((|#3|) |has| |#3| (-172))) (((|#2|) . T) (($) . T) (((-567)) . T)) (((|#1|) . T) (($) . T) (((-567)) . T)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) ((((-863)) . T)) ((((-567)) . T)) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-953 |#1|)) . T) (((-863)) . T)) +((((-954 |#1|)) . T) (((-863)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365))) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) -((((-953 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365))) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) +((((-954 |#1|)) . T)) ((($) . T)) ((((-567) |#1|) . T)) -((((-1177)) |has| (-410 |#2|) (-901 (-1177)))) -(((|#1|) . T) (($) -2797 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) +((((-1178)) |has| (-410 |#2|) (-902 (-1178)))) +(((|#1|) . T) (($) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) ((((-539)) |has| |#2| (-615 (-539)))) ((((-690 |#2|)) . T) (((-863)) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) ((((-871 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) -(-2797 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(-2800 (|has| |#4| (-794)) (|has| |#4| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) ((((-863)) . T)) (((|#1|) . T)) ((($) . T) (((-567)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#2|) |has| |#2| (-1050))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#2|) |has| |#2| (-1051))) (((|#3|) . T)) (((|#1|) . T)) ((((-410 |#2|)) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) (((|#1|) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) ((((-567) |#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2368,18 +2368,18 @@ ((((-410 (-567))) . T) (($) . T)) ((((-410 (-567))) . T) (($) . T)) ((((-410 (-567))) . T) (($) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-1221))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-1222))) ((($) . T)) -((((-410 (-567))) |has| #0=(-410 |#2|) (-1039 (-410 (-567)))) (((-567)) |has| #0# (-1039 (-567))) ((#0#) . T)) +((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T)) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) (((|#1| (-772)) . T)) (|has| |#1| (-851)) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-567)) . T)) (|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (|has| |#1| (-849)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) @@ -2400,63 +2400,63 @@ (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -((((-1159)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) +((((-1160)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) ((((-863)) . T)) -(((|#2|) . T) (((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1083)) . T) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) +(((|#2|) . T) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (((|#1| |#2|) . T)) ((((-144)) . T)) ((((-781 |#1| (-865 |#2|))) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -(|has| |#1| (-1202)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +(|has| |#1| (-1203)) ((((-863)) . T)) (((|#1|) . T)) -(-2797 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1101))) -((((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|))) +(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) +((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|))) (((|#2|) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-911 |#1|)) . T)) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((((-912 |#1|)) . T)) ((($) . T)) -((((-410 (-953 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-410 (-954 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-539)) |has| |#4| (-615 (-539)))) ((((-863)) . T) (((-645 |#4|)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-849)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) |has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) -(|has| |#1| (-1101)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) +(|has| |#1| (-1102)) (|has| |#1| (-365)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)))) ((((-673 |#1|)) . T)) -(((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172))) +(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) ((($) . T) (((-410 (-567))) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) +(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-849)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1101)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +(|has| |#1| (-1102)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-567)) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1101)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +(|has| |#1| (-1102)) (((|#2|) |has| |#2| (-172))) ((((-567)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-567)) . T)) @@ -2469,10 +2469,10 @@ ((((-863)) . T)) ((((-863)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)))) +((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) @@ -2482,35 +2482,35 @@ (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#2|) |has| |#2| (-365))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) (((|#2|) . T)) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((#0=(-781 |#1| (-865 |#2|)) #0#) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|))))) ((((-567)) . T) (($) . T)) ((((-865 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) -((((-1177)) |has| |#1| (-901 (-1177))) (((-1083)) . T)) -((((-1177)) |has| |#1| (-901 (-1177))) (((-1089 (-1177))) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T)) +((((-1178)) |has| |#1| (-902 (-1178))) (((-1090 (-1178))) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (|has| |#1| (-38 (-410 (-567)))) -(((|#4|) |has| |#4| (-1050)) (((-567)) -12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050)))) -(((|#3|) |has| |#3| (-1050)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) +(((|#4|) |has| |#4| (-1051)) (((-567)) -12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) +(((|#3|) |has| |#3| (-1051)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((($ $) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)) (|has| |#1| (-1113)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))) (|has| |#1| (-559)) (((|#2|) . T)) ((((-567)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) ((((-584 |#1|)) . T)) ((($) . T)) @@ -2519,7 +2519,7 @@ ((($) . T)) (((|#1|) . T)) ((((-863)) . T)) -(((|#2|) |has| |#2| (-6 (-4419 "*")))) +(((|#2|) |has| |#2| (-6 (-4420 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2529,74 +2529,74 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-567)) . T)) -((((-1252 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1253 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (((-567)) -2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))) (|has| |#1| (-1050))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2797 (|has| |#1| (-559)) (|has| |#1| (-1039 (-410 (-567))))) (((-410 (-953 |#1|))) |has| |#1| (-559)) (((-953 |#1|)) |has| |#1| (-1050)) (((-1177)) . T)) -((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) +((((-1253 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-567)) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2800 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1178)) . T)) +((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) ((($) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T)) -((((-1126 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -((((-1173 |#1|)) . T) (((-1083)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -((((-1126 |#1| (-1177))) . T) (((-1089 (-1177))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-1177)) . T)) -(|has| |#1| (-1101)) +((((-1127 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +((((-1174 |#1|)) . T) (((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +((((-1127 |#1| (-1178))) . T) (((-1090 (-1178))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1178)) . T)) +(|has| |#1| (-1102)) ((($) . T)) -(|has| |#1| (-1101)) -((((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))) (((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381))))) +(|has| |#1| (-1102)) +((((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))) (((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((|#1| |#2|) . T)) -((((-1177) |#1|) . T)) +((((-1178) |#1|) . T)) (((|#4|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1177) (-52)) . T)) -((((-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1178) (-52)) . T)) +((((-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) ((((-863)) . T)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1101))) -(((#0=(-1253 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) +(((#0=(-1254 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-172)) ((#0=(-410 (-567)) #0#) |has| |#1| (-559)) (($ $) |has| |#1| (-559))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-1253 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) (|has| |#1| (-365)) -((($) |has| |#1| (-849)) (((-567)) -2797 (|has| |#1| (-21)) (|has| |#1| (-849)))) +((($) |has| |#1| (-849)) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-849)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) ((((-410 (-567))) . T) (($) . T)) (((|#3|) |has| |#3| (-365))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) -((((-1177)) . T)) -((($) . T) (((-1252 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1252 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) +((((-1178)) . T)) +((($) . T) (((-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (((|#2| |#3|) . T)) -(-2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((|#1| (-534 |#2|)) . T)) (((|#1| (-772)) . T)) -(((|#1| (-534 (-1089 (-1177)))) . T)) +(((|#1| (-534 (-1090 (-1178)))) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(|has| |#2| (-910)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(|has| |#2| (-911)) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) ((((-863)) . T)) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172))) -((($ $) . T) ((#0=(-1252 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567))))) -((((-911 |#1|)) . T)) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) +((($ $) . T) ((#0=(-1253 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567))))) +((((-912 |#1|)) . T)) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((($) . T) (((-410 (-567))) . T)) ((((-863)) . T)) ((($) . T)) ((($) . T)) -(-2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (|has| |#1| (-365)) (|has| |#1| (-365)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1252 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) -(-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2797 (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) +((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) ((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-863)) . T)) @@ -2619,13 +2619,13 @@ (((|#1|) . T)) ((((-863)) . T)) (((|#2|) |has| |#2| (-172))) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T) (($) . T)) (((|#3|) . T) (((-567)) . T) (($) . T)) ((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) @@ -2635,40 +2635,40 @@ ((($ $) . T)) ((($) . T)) ((((-863)) . T)) -(((|#1| (-534 (-1177))) . T)) +(((|#1| (-534 (-1178))) . T)) (((|#1|) |has| |#1| (-172))) ((((-863)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (((|#2|) . T)) -(((|#2|) -2797 (|has| |#2| (-6 (-4419 "*"))) (|has| |#2| (-172)))) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(|has| |#2| (-910)) -(|has| |#1| (-910)) +(((|#2|) -2800 (|has| |#2| (-6 (-4420 "*"))) (|has| |#2| (-172)))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(|has| |#2| (-911)) +(|has| |#1| (-911)) (((|#2|) |has| |#2| (-172))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) ((((-863)) . T)) ((((-863)) . T)) -((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-567)) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-863)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-567)) . T)) (((|#1| (-410 (-567))) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-291)) (|has| |#1| (-365))) +(-2800 (|has| |#1| (-291)) (|has| |#1| (-365))) ((((-144)) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) (|has| |#1| (-849)) ((((-863)) . T)) ((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2678,20 +2678,20 @@ ((((-863)) . T)) ((((-863)) . T)) ((((-187)) . T) (((-863)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381))))) -((((-1177) (-52)) . T)) +((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381))))) +((((-1178) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-645 (-144))) . T) (((-1159)) . T)) +((((-645 (-144))) . T) (((-1160)) . T)) ((((-863)) . T)) -((((-1159)) . T)) -((((-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-1160)) . T)) +((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (|has| |#1| (-851)) ((((-863)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) @@ -2701,21 +2701,21 @@ ((((-539)) |has| |#4| (-615 (-539)))) ((((-863)) . T) (((-645 |#4|)) . T)) (((|#2|) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T)) -(-2797 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1050))) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -((((-1177) (-52)) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +((((-1178) (-52)) . T)) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -(|has| |#1| (-910)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(|has| |#1| (-910)) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(|has| |#1| (-911)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) +(|has| |#1| (-911)) (((|#1|) . T) (((-567)) . T) (((-410 (-567))) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) @@ -2723,22 +2723,22 @@ ((((-567)) . T)) (((#0=(-410 (-567)) #0#) . T) (($ $) . T)) ((((-410 (-567))) . T) (($) . T)) -(((|#1| (-410 (-567)) (-1083)) . T)) -(|has| |#1| (-1101)) +(((|#1| (-410 (-567)) (-1084)) . T)) +(|has| |#1| (-1102)) (|has| |#1| (-559)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (|has| |#1| (-821)) -(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) +(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) ((((-410 |#2|)) . T)) (|has| |#1| (-849)) -((((-1203 |#1|)) . T) (((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-1204 |#1|)) . T) (((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-567) #1#) . T) (($ $) . T)) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-147)) @@ -2750,39 +2750,39 @@ (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -1791 (-1177)) (|:| -4232 #0#))) . T)) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1795 (-1178)) (|:| -4237 #0#))) . T)) (|has| |#1| (-351)) ((((-567)) . T)) ((((-863)) . T)) (((|#1|) . T)) -(((#0=(-1253 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#))) +(((#0=(-1254 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#))) (|has| |#1| (-365)) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))) (($) -2797 (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050))) (((-567)) -2797 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)))) -(((#0=(-1083) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))) +(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((#0=(-410 (-567)) #0#) . T) ((#1=(-700) #1#) . T) (($ $) . T)) ((((-317 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) ((((-863)) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#1|) . T)) -(((|#1|) -2797 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) -(((|#1|) -2797 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) +(((|#1|) -2800 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) +(((|#1|) -2800 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) (((|#2|) . T)) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) ((((-582)) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-233)) ((((-865 |#1|)) . T)) -((((-1177)) |has| |#1| (-901 (-1177))) ((|#3|) . T)) +((((-1178)) |has| |#1| (-902 (-1178))) ((|#3|) . T)) ((((-645 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1023))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((((-410 (-567))) . T) (($) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) ((($) . T) (((-410 (-567))) . T)) ((((-863)) . T)) (|has| |#1| (-365)) @@ -2791,12 +2791,12 @@ ((((-567)) . T) (((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((((-567)) . T)) (((|#3|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#2|) . T)) (((|#1|) . T)) ((((-567)) . T)) -(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (($) . T) (((-567)) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (($) . T) (((-567)) . T)) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2806,7 +2806,7 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-567)) . T)) (((|#1|) . T) (((-567)) . T)) -(((|#1| (-1267 |#1|) (-1267 |#1|)) . T)) +(((|#1| (-1268 |#1|) (-1268 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-863)) . T)) @@ -2814,8 +2814,8 @@ (((|#2|) . T)) (((|#3|) . T)) (((#0=(-116 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((((-1126 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#2|) . T)) +((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) +((((-1127 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2824,7 +2824,7 @@ ((((-673 |#1|)) . T)) ((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) ((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) (((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381))))) +((((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) (((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) (((|#2|) . T) ((|#6|) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) ((((-144)) . T)) @@ -2833,47 +2833,47 @@ ((((-381)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) ((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T)) -(|has| |#2| (-910)) -(|has| |#1| (-910)) -(|has| |#1| (-910)) +(|has| |#2| (-911)) +(|has| |#1| (-911)) +(|has| |#1| (-911)) (((|#4|) . T)) -(|has| |#2| (-1023)) +(|has| |#2| (-1024)) ((($) . T)) -(|has| |#1| (-910)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(|has| |#1| (-911)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-365)) -((((-911 |#1|)) . T)) +((((-912 |#1|)) . T)) ((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) |has| |#1| (-849)) (((-567)) -2797 (|has| |#1| (-21)) (|has| |#1| (-849)))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) |has| |#1| (-849)) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-849)))) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(-2797 (|has| |#1| (-370)) (|has| |#1| (-851))) +(-2800 (|has| |#1| (-370)) (|has| |#1| (-851))) (((|#1|) . T)) ((((-772)) . T)) ((((-863)) . T)) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) ((((-410 |#2|) |#3|) . T)) ((($) . T) (((-410 (-567))) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T)) ((((-567)) . T) (($) . T)) ((((-567)) . T) (($) . T)) ((((-772) |#1|) . T)) -(((|#2| (-240 (-2410 |#1|) (-772))) . T)) +(((|#2| (-240 (-2414 |#1|) (-772))) . T)) (((|#1| (-534 |#3|)) . T)) ((((-410 (-567))) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -((((-1159)) . T) (((-863)) . T)) -(((#0=(-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) #0#) |has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) -((((-1159)) . T)) -(|has| |#1| (-910)) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((((-1160)) . T) (((-863)) . T)) +(((#0=(-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) +((((-1160)) . T)) +(|has| |#1| (-911)) (|has| |#2| (-365)) (((|#1|) . T) (($) . T) (((-567)) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) ((((-863)) . T)) (((|#1|) . T)) @@ -2890,13 +2890,13 @@ (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) -(-2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-38 (-410 (-567)))) (-12 (|has| |#1| (-548)) (|has| |#1| (-829))) ((((-863)) . T)) -((((-1177)) -2797 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-901 (-1177)))))) +((((-1178)) -2800 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1178)))))) (|has| |#1| (-365)) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (|has| |#1| (-365)) ((((-410 (-567))) . T) (($) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) @@ -2906,16 +2906,16 @@ (((|#2|) |has| |#1| (-365))) (((|#2|) |has| |#1| (-365))) ((((-567)) . T) (($) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2|) . T) (((-1177)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1177)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567))))) +(((|#2|) . T) (((-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567))))) (((|#2|) . T)) -((((-1177) #0=(-1253 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1177) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +((((-1178) #0=(-1254 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) ((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) ((((-613 $) $) . T) (($ $) . T)) -((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1173 (-700))) . T) (((-893 (-381))) . T)) +((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1174 (-700))) . T) (((-894 (-381))) . T)) (((|#3|) . T)) (|has| |#1| (-559)) (|has| (-410 |#2|) (-233)) @@ -2927,44 +2927,44 @@ ((($ $) . T)) ((($) . T)) ((((-863)) . T)) -((((-1177)) |has| |#2| (-901 (-1177)))) +((((-1178)) |has| |#2| (-902 (-1178)))) ((((-410 (-567))) . T) (($) . T)) (((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#2|) |has| |#1| (-365))) -((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-381)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-567))))) +((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567))))) (|has| |#1| (-365)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-365)) (((|#1|) . T)) ((($) . T) (((-567)) . T) ((|#2|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-365)) (((|#3|) . T)) -((((-1159)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) +((((-1160)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) (((|#1|) . T)) (|has| |#1| (-559)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#2|) . T)) (((|#2|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (|has| |#1| (-38 (-410 (-567)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-410 (-567)))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) -((((-1159) |#1|) . T)) +((((-1160) |#1|) . T)) (|has| |#1| (-147)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) (|has| |#1| (-147)) ((((-584 |#1|)) . T)) @@ -2975,74 +2975,74 @@ ((($) . T)) ((($) . T)) ((((-410 |#2|)) . T)) -((((-410 (-567))) |has| |#2| (-1039 (-567))) (((-567)) |has| |#2| (-1039 (-567))) (((-1177)) |has| |#2| (-1039 (-1177))) ((|#2|) . T)) +((((-410 (-567))) |has| |#2| (-1040 (-567))) (((-567)) |has| |#2| (-1040 (-567))) (((-1178)) |has| |#2| (-1040 (-1178))) ((|#2|) . T)) (((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-351))) (|has| |#1| (-147)) ((((-863)) . T)) ((($) . T)) -((((-1141 |#1| |#2|)) . T)) +((((-1142 |#1| |#2|)) . T)) (((|#1| (-567)) . T)) (((|#1| (-410 (-567))) . T)) -((((-567)) |has| |#2| (-887 (-567))) (((-381)) |has| |#2| (-887 (-381)))) +((((-567)) |has| |#2| (-888 (-567))) (((-381)) |has| |#2| (-888 (-381)))) (((|#2|) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#2|) . T)) ((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-1177) (-52)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-1178) (-52)) . T)) ((((-410 |#2|)) . T)) ((((-863)) . T)) (((|#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (|has| |#1| (-792)) (|has| |#1| (-792)) ((((-863)) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-225)) . T) (((-381)) . T) (((-893 (-381))) . T)) +((((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) ((((-863)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) ((((-863)) . T)) ((((-863)) . T)) (((|#2|) . T)) ((((-863)) . T)) -(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) +(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) (|has| |#1| (-365)) ((((-863)) . T)) (((|#2|) . T)) ((((-567)) . T)) ((((-863)) . T)) ((((-567)) . T)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) ((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) ((((-863)) . T)) ((((-863)) . T)) -((((-1159)) . T) (((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T)) +((((-1160)) . T) (((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) ((((-863)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) . T) ((#0=(-1252 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) +((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1177))) (|has| |#1| (-1050)) (|has| |#1| (-1113)) (|has| |#1| (-1101))) -(|has| |#1| (-1152)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))) +(|has| |#1| (-1153)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((((-567) |#1|) . T)) (((|#1|) . T)) (((#0=(-116 |#1|) $) |has| #0# (-287 #0# #0#))) @@ -3055,46 +3055,46 @@ (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-310 |#1|))) ((((-567) |#1|) . T)) -((((-1177) |#1|) . T)) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)))) +((((-1178) |#1|) . T)) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)))) (((|#1|) . T)) -(((|#1|) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050)))) +(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) ((((-567)) . T) (((-410 (-567))) . T)) (((|#1|) . T)) (|has| |#1| (-559)) ((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((((-381)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-365)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (|has| |#1| (-365)) (|has| |#1| (-559)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-781 |#1| (-865 |#2|))) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|))))) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-910)) +(|has| |#2| (-911)) (((|#1| (-534 |#2|)) . T)) (((|#1| (-772)) . T)) (|has| |#1| (-233)) -(((|#1| (-534 (-1089 (-1177)))) . T)) +(((|#1| (-534 (-1090 (-1178)))) . T)) (|has| |#2| (-365)) ((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) ((((-863)) . T)) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) ((((-863)) . T)) -((((-1121)) . T) (((-863)) . T)) +((((-1122)) . T) (((-863)) . T)) ((((-539)) . T) (((-863)) . T)) (((|#1|) . T)) ((($ $) . T) (((-613 $) $) . T)) @@ -3103,16 +3103,16 @@ ((((-567)) . T)) (((|#3|) . T)) ((((-863)) . T)) -(-2797 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T)) -((((-1126 |#1| |#2|)) . T) ((|#2|) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T)) -((((-1173 |#1|)) . T) (((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1083)) . T) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) -(-2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) -((((-1126 |#1| (-1177))) . T) (((-567)) . T) (((-1089 (-1177))) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-1177)) . T)) +(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) +((((-1127 |#1| |#2|)) . T) ((|#2|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) +((((-1174 |#1|)) . T) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) +(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) +((((-1127 |#1| (-1178))) . T) (((-567)) . T) (((-1090 (-1178))) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1178)) . T)) (((#0=(-584 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#1|) |has| |#1| (-172))) -(((|#1| (-1267 |#1|) (-1267 |#1|)) . T)) +(((|#1| (-1268 |#1|) (-1268 |#1|)) . T)) ((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) ((($) . T) (((-410 (-567))) . T)) (((|#1|) . T)) @@ -3120,13 +3120,13 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-410 (-567))) . T)) -(((|#2|) |has| |#2| (-6 (-4419 "*")))) +(((|#2|) |has| |#2| (-6 (-4420 "*")))) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) (((|#1|) . T)) ((((-863)) . T)) ((((-295 |#3|)) . T)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) @@ -3134,77 +3134,77 @@ (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) (((|#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) ((((-863)) . T)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| |#2| (-910)) -(|has| |#1| (-910)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(|has| |#2| (-911)) +(|has| |#1| (-911)) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-863)) . T)) (((|#1|) . T)) -((((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) . T)) +((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -((((-1177)) . T) ((|#1|) . T)) +((((-1178)) . T) ((|#1|) . T)) ((((-863)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T)) ((((-863)) . T)) ((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (((#0=(-410 (-567)) #0#) . T)) ((((-410 (-567))) . T)) (((|#1|) |has| |#1| (-172))) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1|) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1|) . T)) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) ((((-539)) . T)) ((((-863)) . T)) ((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-1177)) |has| |#2| (-901 (-1177))) (((-1083)) . T)) +((((-1178)) |has| |#2| (-902 (-1178))) (((-1084)) . T)) ((((-863)) . T)) -((((-1252 |#2| |#3| |#4|)) . T)) -((((-911 |#1|)) . T)) +((((-1253 |#2| |#3| |#4|)) . T)) +((((-912 |#1|)) . T)) ((($) . T) (((-410 (-567))) . T)) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((((-863)) . T)) -(|has| |#1| (-1221)) +(|has| |#1| (-1222)) (((|#2|) . T)) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((((-1177)) |has| |#1| (-901 (-1177)))) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((((-1178)) |has| |#1| (-902 (-1178)))) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) +(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) ((($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) +(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-559)))) +((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559)))) (|has| |#1| (-559)) (((|#1|) |has| |#1| (-365))) ((((-567)) . T)) (|has| |#1| (-792)) (|has| |#1| (-792)) -((((-1177) #0=(-116 |#1|)) |has| #0# (-517 (-1177) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) -(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) -((((-1083)) . T) ((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) +((((-1178) #0=(-116 |#1|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) +((((-1084)) . T) ((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3212,19 +3212,19 @@ ((((-567) (-772)) . T) ((|#3| (-772)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-863)) . T)) (|has| |#2| (-821)) (|has| |#2| (-821)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381)))) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) (((|#1|) . T)) ((((-871 |#1|)) . T)) ((((-871 |#1|)) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-910))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-911))) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) (|has| |#1| (-365)) @@ -3232,8 +3232,8 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) -(((|#2|) -2797 (|has| |#2| (-6 (-4419 "*"))) (|has| |#2| (-172)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) +(((|#2|) -2800 (|has| |#2| (-6 (-4420 "*"))) (|has| |#2| (-172)))) (((|#2|) . T)) (|has| |#1| (-365)) (((|#2|) . T)) @@ -3245,14 +3245,14 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#2| (-772)) . T)) -((((-1177)) . T)) +((((-1178)) . T)) ((((-871 |#1|)) . T)) -(-2797 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1050))) +(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((((-863)) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))) +(-2800 (|has| |#2| (-794)) (|has| |#2| (-849))) +(-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))) ((((-871 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-370)) @@ -3270,48 +3270,49 @@ (((|#1|) . T)) ((((-863)) . T)) ((($) . T) ((|#2|) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1101)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(|has| |#1| (-1102)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-863)) . T)) -(|has| |#2| (-910)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567))))) +(|has| |#2| (-911)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) +((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) ((((-863)) . T)) ((((-863)) . T)) -(((|#3|) |has| |#3| (-1050)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) -((((-1126 |#1| |#2|)) . T) (((-953 |#1|)) |has| |#2| (-615 (-1177))) (((-863)) . T)) -((((-953 |#1|)) |has| |#2| (-615 (-1177))) (((-1159)) -12 (|has| |#1| (-1039 (-567))) (|has| |#2| (-615 (-1177)))) (((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567))))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) -((((-1173 |#1|)) . T) (((-863)) . T)) +(((|#3|) |has| |#3| (-1051)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) +((((-1127 |#1| |#2|)) . T) (((-954 |#1|)) |has| |#2| (-615 (-1178))) (((-863)) . T)) +((((-954 |#1|)) |has| |#2| (-615 (-1178))) (((-1160)) -12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1178)))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) +((((-1174 |#1|)) . T) (((-863)) . T)) ((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) +((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) ((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T) (((-1177)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) (((-1178)) . T)) ((((-863)) . T)) ((((-567)) . T)) (((|#1|) . T)) ((($) . T)) -((((-381)) |has| |#1| (-887 (-381))) (((-567)) |has| |#1| (-887 (-567)))) +((((-381)) |has| |#1| (-888 (-381))) (((-567)) |has| |#1| (-888 (-567)))) ((((-567)) . T)) (((|#1|) . T)) ((((-863)) . T)) (((|#1|) . T)) ((((-863)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) ((((-645 |#1|)) . T)) -((($) . T) (((-567)) . T) (((-1253 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) -((((-567)) -2797 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) (($) -2797 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) -((((-1182)) . T)) -((((-1182)) . T)) +((($) . T) (((-567)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) +((((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) +((((-1183)) . T)) +((((-1183)) . T)) ((((-567)) . T) (((-410 (-567))) . T)) -((((-1182)) . T)) +((((-1183)) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) +((((-1183)) . T)) (((|#1|) |has| |#1| (-310 |#1|))) ((((-381)) . T)) ((((-863)) . T)) @@ -3321,26 +3322,26 @@ ((((-410 (-567))) . T) (($) . T)) ((((-410 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1101)) -(((|#2| (-485 (-2410 |#1|) (-772))) . T)) +(|has| |#1| (-1102)) +(((|#2| (-485 (-2414 |#1|) (-772))) . T)) ((((-567) |#1|) . T)) -((((-1159)) . T) (((-863)) . T)) +((((-1160)) . T) (((-863)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-534 (-1177))) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(((|#1| (-534 (-1178))) . T)) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((((-567)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1177)) |has| |#1| (-901 (-1177))) (((-1083)) . T)) +((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T)) (((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) (|has| |#1| (-559)) -(((#0=(-1252 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) +(((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) ((($) . T) (((-410 (-567))) . T)) ((($) . T)) ((($) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((((-863)) . T)) ((((-144)) . T)) (((|#1|) . T) (((-410 (-567))) . T)) @@ -3348,16 +3349,16 @@ (((|#1|) . T)) ((((-863)) . T)) (((|#1|) . T)) -(|has| |#1| (-1152)) +(|has| |#1| (-1153)) (((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T)) (((|#1|) . T)) ((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) +(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) ((((-863)) . T)) -((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T) ((|#2|) . T)) -((((-1083)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567))))) -((((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381)))) (((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567))))) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) +((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) ((|#2|) . T)) +((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) +((((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567))))) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) ((((-567) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) @@ -3369,220 +3370,222 @@ ((($) . T)) (((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) ((((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1101)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) +(|has| |#1| (-1102)) (|has| |#2| (-365)) -(((|#1|) . T) (($) -2797 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) +(((|#1|) . T) (($) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567)))) ((((-567)) . T)) -((((-1177)) -12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) -((((-1177)) -12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) +((((-1178)) -12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) +((((-1178)) -12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (((|#1|) . T)) (|has| |#1| (-233)) -(((|#2| (-240 (-2410 |#1|) (-772))) . T)) +(((|#2| (-240 (-2414 |#1|) (-772))) . T)) (((|#1| (-534 |#3|)) . T)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) (((|#1|) . T) (($) . T)) (((|#1| (-534 |#2|)) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1| (-772)) . T)) (|has| |#1| (-559)) -(-2797 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-863)) . T)) ((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -(-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) -(-2797 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) +(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) +(-2800 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((|#1|) |has| |#1| (-172))) -(((|#4|) |has| |#4| (-1050))) -(((|#3|) |has| |#3| (-1050))) +(((|#4|) |has| |#4| (-1051))) +(((|#3|) |has| |#3| (-1051))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -((((-567)) . T) (((-410 (-567))) -2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T)) -((((-1126 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#2|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) +((((-1127 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#2|) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) (((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) ((((-673 |#1|)) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) ((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) ((((-863)) . T)) -((((-645 $)) . T) (((-1159)) . T) (((-1177)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) +((((-645 $)) . T) (((-1160)) . T) (((-1178)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) ((($) . T) (((-410 (-567))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1101)) (((-567)) -12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1101))) (((-410 (-567))) -12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1101)))) -(((|#3|) |has| |#3| (-1101)) (((-567)) -12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) +(((|#4|) |has| |#4| (-1102)) (((-567)) -12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102)))) +(((|#3|) |has| |#3| (-1102)) (((-567)) -12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (|has| |#2| (-365)) -(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) +(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((|#1|) . T)) (|has| |#2| (-365)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) +(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) (((|#2| |#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) . T) (($) . T) (((-410 (-567))) . T)) (((|#2|) . T)) -((((-863)) |has| |#1| (-1101))) +((((-863)) |has| |#1| (-1102))) ((($) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-821)) (|has| |#2| (-821)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-365)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) (((|#1|) |has| |#2| (-420 |#1|))) (((|#1|) |has| |#2| (-420 |#1|))) -((((-1159)) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-645 |#1|)) . T) (((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1160)) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-645 |#1|)) . T) (((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) ((((-645 |#1|)) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-863)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1216)) . T) (((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) |has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1217)) . T) (((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((((-567) |#1|) . T)) ((((-567) |#1|) . T)) ((((-567) |#1|) . T)) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((((-567) |#1|) . T)) (((|#1|) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((((-1177)) |has| |#1| (-901 (-1177))) (((-819 (-1177))) . T)) -(-2797 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-1178)) |has| |#1| (-902 (-1178))) (((-819 (-1178))) . T)) +(-2800 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((((-820 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-863)) . T)) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((|#1| |#2|) . T)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) (|has| |#1| (-38 (-410 (-567)))) ((((-863)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) (((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) (|has| |#1| (-365)) -(-2797 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) +(-2800 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-365)) (((|#1|) . T)) -(((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) +(((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) ((((-567) |#1|) . T)) ((((-317 |#1|)) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((#0=(-700) (-1173 #0#)) . T)) -((((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) +(((#0=(-700) (-1174 #0#)) . T)) +((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-567)) . T) (((-410 (-567))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-849)) -(((|#2|) . T) (((-1177)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1177)))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2797 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(((|#2|) . T) (((-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559)))) ((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1126 |#1| (-1177))) . T) (((-819 (-1177))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-1177)) . T)) +((((-1127 |#1| (-1178))) . T) (((-819 (-1178))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1178)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1083) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1177) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1089 (-1177)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1178) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1090 (-1178)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(|has| |#2| (-910)) -((($) . T) ((#0=(-1252 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) +(|has| |#2| (-911)) +((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) (((|#1|) |has| |#1| (-172))) ((((-567) |#1|) . T)) (((|#1|) . T)) -((((-1182)) . T)) -(((#0=(-1253 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#))) +((((-1183)) . T)) +(((#0=(-1254 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) (|has| |#2| (-233)) (|has| $ (-147)) ((((-863)) . T)) -((($) . T) (((-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-863)) . T)) (|has| |#1| (-849)) ((((-129)) . T)) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) ((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T)) (((|#1|) . T)) ((((-129)) . T)) ((((-410 |#2|) |#3|) . T)) ((((-863)) . T)) -(-12 (|has| |#1| (-308)) (|has| |#1| (-910))) +(-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (((|#2| (-673 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-863)) |has| |#1| (-1101))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-863)) |has| |#1| (-1102))) (((|#4|) . T)) (|has| |#1| (-559)) -((($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-1177)) -2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) -(((|#1|) . T) (($) -2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) +((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-1178)) -2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) +(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) ((((-567) |#1|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (((|#1|) . T)) -(((|#1| (-534 (-819 (-1177)))) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) -((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1177)) |has| |#2| (-1039 (-1177)))) +(((|#1| (-534 (-819 (-1178)))) . T)) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1178)) |has| |#2| (-1040 (-1178)))) (((|#1|) . T)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((|#1|) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -(-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) ((($) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-559)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-410 |#2|)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T)) ((((-567)) . T)) @@ -3595,71 +3598,71 @@ ((((-567) |#1|) . T)) ((($) . T)) ((((-863)) . T)) -((($ $) . T) (((-1177) $) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567))))) +((($ $) . T) (((-1178) $) . T)) +((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) ((((-863)) . T)) ((((-863)) . T)) -((((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539))))) +((((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539))))) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) -(((|#1|) . T) (((-863)) . T) (((-1182)) . T)) +(((|#1|) . T) (((-863)) . T) (((-1183)) . T)) ((((-863)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) ((((-114)) . T) ((|#1|) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T)) -(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-129)) . T)) ((($) . T) (((-567)) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T)) +(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-863)) . T)) -((((-1259 |#1| |#2| |#3|)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))) +((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) ((($) . T) (((-567)) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1105)) . T)) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-1106)) . T)) ((((-863)) . T)) -((($) -2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) ((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) ((($) . T)) -((($) -2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-1260 |#1| |#2| |#3|)) . T)) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) -((((-1259 |#1| |#2| |#3|)) . T) (((-1231 |#1| |#2| |#3|)) . T)) -((((-1177)) . T) (((-863)) . T)) -(|has| |#2| (-910)) +((((-1260 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T)) +((((-1178)) . T) (((-863)) . T)) +(|has| |#2| (-911)) (((|#1|) . T)) -(|has| |#1| (-910)) +(|has| |#1| (-911)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-172))) ((((-700)) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) -((((-1182)) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) +((((-1183)) . T)) (((|#1|) |has| |#1| (-172))) -((((-1182)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) +((((-1183)) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) -((((-1182)) . T)) -((((-1253 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) +((((-1183)) . T)) +((((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) (((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559))) ((((-410 (-567))) . T) (($) . T)) (((|#1| (-567)) . T)) (((|#1|) |has| |#1| (-172))) ((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -((((-1182)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1183)) . T)) +((((-1183)) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) -(-2797 (|has| |#1| (-172)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-172)) (|has| |#1| (-559))) (((|#1| (-567)) . T)) (((|#1| (-410 (-567))) . T)) (((|#1| (-772)) . T)) @@ -3667,54 +3670,54 @@ (((|#1| (-534 |#2|) |#2|) . T)) ((((-567) |#1|) . T)) ((((-567) |#1|) . T)) -(|has| |#1| (-1101)) +(|has| |#1| (-1102)) ((((-567) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-893 (-381))) . T) (((-893 (-567))) . T) (((-1177)) . T) (((-539)) . T)) +((((-894 (-381))) . T) (((-894 (-567))) . T) (((-1178)) . T) (((-539)) . T)) (((|#1|) . T)) ((((-863)) . T)) -(-2797 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -(-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) +(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) ((((-567)) . T)) ((((-567)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2797 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050))) -((((-1177)) -12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) -(-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) +(-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-365)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1252 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) +((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) (|has| |#1| (-233)) ((($) . T) (((-567)) . T) (((-410 (-567))) . T)) ((($) . T) (((-567)) . T)) ((($) . T) (((-567)) . T)) -((($) . T) ((#0=(-1252 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) +((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) ((((-863)) . T)) -(((|#1| (-772) (-1083)) . T)) +(((|#1| (-772) (-1084)) . T)) ((((-567) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) ((((-567) |#1|) . T)) ((((-567) |#1|) . T)) ((((-116 |#1|)) . T)) ((((-410 (-567))) . T) (((-567)) . T)) -(((|#2|) |has| |#2| (-1050))) +(((|#2|) |has| |#2| (-1051))) ((((-410 (-567))) . T) (($) . T)) (((|#2|) . T)) ((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) ((((-567)) . T)) ((((-567)) . T)) -((((-1159) (-1177) (-567) (-225) (-863)) . T)) +((((-1160) (-1178) (-567) (-225) (-863)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-567)) . T) ((|#2|) |has| |#2| (-172))) ((((-114)) . T) ((|#1|) . T) (((-567)) . T)) -(-2797 (|has| |#1| (-351)) (|has| |#1| (-370))) +(-2800 (|has| |#1| (-351)) (|has| |#1| (-370))) (((|#1| |#2|) . T)) ((((-225)) . T)) ((((-410 (-567))) . T) (($) . T) (((-567)) . T)) @@ -3722,29 +3725,29 @@ ((($) . T) ((|#1|) . T)) ((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) |has| |#2| (-1101)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) +(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T)) (((|#1|) . T)) ((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) ((($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-910)) -(|has| |#1| (-910)) -((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-893 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-381))))) (((-893 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-567))))) (((-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539))))) +(|has| |#1| (-911)) +(|has| |#1| (-911)) +((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) (((-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) (((-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) (((-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539))))) ((((-863)) . T)) ((((-863)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#1|) . T) (((-567)) . T)) -((((-1182)) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) +((((-1183)) . T)) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-559))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) (((|#2|) . T)) -(-2797 (|has| |#1| (-21)) (|has| |#1| (-849))) +(-2800 (|has| |#1| (-21)) (|has| |#1| (-849))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-863)) -2797 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))))) +((((-863)) -2800 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) ((((-410 |#2|) |#3|) . T)) ((((-410 (-567))) . T) (($) . T)) (|has| |#1| (-38 (-410 (-567)))) @@ -3758,23 +3761,23 @@ (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((#0=(-567) #0#) . T)) ((($) . T) (((-410 (-567))) . T)) -(-2797 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1050))) -(-2797 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050))) -((((-863)) . T) (((-1182)) . T)) +(-2800 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051))) +(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +((((-863)) . T) (((-1183)) . T)) (|has| |#4| (-794)) -(-2797 (|has| |#4| (-794)) (|has| |#4| (-849))) +(-2800 (|has| |#4| (-794)) (|has| |#4| (-849))) (|has| |#4| (-849)) (|has| |#3| (-794)) -((((-1182)) . T)) -(-2797 (|has| |#3| (-794)) (|has| |#3| (-849))) +((((-1183)) . T)) +(-2800 (|has| |#3| (-794)) (|has| |#3| (-849))) (|has| |#3| (-849)) ((((-567)) . T)) (((|#2|) . T)) -((((-1177)) -2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) -((((-1177)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) +((((-1178)) -2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) +((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3782,18 +3785,18 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T)) ((((-865 |#1|)) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1141 |#1| |#2|)) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1142 |#1| |#2|)) . T)) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1023)) -(((|#2|) . T) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +(|has| |#1| (-1024)) +(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) ((((-863)) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-381)) . #0=(|has| |#2| (-1023))) (((-225)) . #0#)) +((((-539)) |has| |#2| (-615 (-539))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#2| (-1024))) (((-225)) . #0#)) ((((-295 |#3|)) . T)) -((((-1177) (-52)) . T)) +((((-1178) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))) @@ -3803,33 +3806,33 @@ ((($ $) . T)) ((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) ((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((((-1175 |#1| |#2| |#3|)) . T)) -((((-1175 |#1| |#2| |#3|)) . T) (((-1168 |#1| |#2| |#3|)) . T)) +((((-1176 |#1| |#2| |#3|)) . T)) +((((-1176 |#1| |#2| |#3|)) . T) (((-1169 |#1| |#2| |#3|)) . T)) ((((-863)) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) ((((-567) |#1|) . T)) -((((-1175 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-365)) -(((|#3|) . T) ((|#2|) . T) (($) -2797 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) ((|#4|) -2797 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050)))) -(((|#2|) . T) (($) -2797 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2797 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050)))) +(((|#3|) . T) ((|#2|) . T) (($) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051)))) +(((|#2|) . T) (($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-365)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((((-1177)) . T) ((|#1|) . T)) +((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) +((((-1178)) . T) ((|#1|) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) ((((-187)) . T) (((-863)) . T)) ((((-863)) . T)) (((|#1|) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) ((((-129)) . T) (((-863)) . T)) ((((-567) |#1|) . T)) ((((-129)) . T)) @@ -3838,50 +3841,50 @@ (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910))) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) ((((-863)) . T)) ((((-863)) . T)) ((((-863)) . T)) (((|#1| (-534 |#2|)) . T)) -((((-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) . T)) +((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T)) ((((-567) (-129)) . T)) (((|#1| (-567)) . T)) (((|#1| (-410 (-567))) . T)) (((|#1| (-772)) . T)) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) ((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -(-2797 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) -(-2797 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((($) . T)) (((|#2| (-534 (-865 |#1|))) . T)) -((((-1182)) . T)) -((((-1182)) . T)) +((((-1183)) . T)) +((((-1183)) . T)) ((((-567) |#1|) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) (((|#2|) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-863)) . T) (((-1182)) . T)) -((((-1182)) . T)) -((((-863)) -2797 (|has| |#1| (-614 (-863))) (|has| |#1| (-1101)))) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-863)) . T) (((-1183)) . T)) +((((-1183)) . T)) +((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) (((|#1|) . T)) (((|#2| (-772)) . T)) (((|#1| |#2|) . T)) -((((-1159) |#1|) . T)) +((((-1160) |#1|) . T)) ((((-410 |#2|)) . T)) -((((-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T)) +((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T)) (|has| |#1| (-559)) (|has| |#1| (-559)) ((($) . T) ((|#2|) . T)) @@ -3892,33 +3895,33 @@ ((((-567)) . T) (($) . T)) (((|#2| $) |has| |#2| (-287 |#2| |#2|))) (((|#1| (-645 |#1|)) |has| |#1| (-849))) -(-2797 (|has| |#1| (-233)) (|has| |#1| (-351))) -(-2797 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1263 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567))))) -(|has| |#1| (-1101)) +(-2800 (|has| |#1| (-233)) (|has| |#1| (-351))) +(-2800 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1264 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) +(|has| |#1| (-1102)) (((|#1|) . T)) -((((-1263 |#1|)) . T) (((-567)) . T) (($) -2797 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-1083)) . T) ((|#2|) . T) (((-410 (-567))) -2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) +((((-1264 |#1|)) . T) (((-567)) . T) (($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-1084)) . T) ((|#2|) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) ((((-410 (-567))) . T) (($) . T)) -((((-1000 |#1|)) . T) ((|#1|) . T) (((-567)) -2797 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567)))) (((-410 (-567))) -2797 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) -((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-1177)) |has| |#1| (-901 (-1177)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) -((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) +((((-1001 |#1|)) . T) ((|#1|) . T) (((-567)) -2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) -2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) +((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-1178)) |has| |#1| (-902 (-1178)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1141 |#1| |#2|) #0#) |has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|)))) +(((#0=(-1142 |#1| |#2|) #0#) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((#0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) #0#) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) (((#0=(-116 |#1|)) |has| #0# (-310 #0#))) ((($ $) . T)) -(-2797 (|has| |#1| (-851)) (|has| |#1| (-1101))) +(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102))) ((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-481 . -1101) T) ((-265 . -517) 188147) ((-247 . -517) 188090) ((-245 . -1101) 188040) ((-574 . -111) 188025) ((-534 . -23) T) ((-137 . -1101) T) ((-133 . -1101) T) ((-117 . -310) 187982) ((-138 . -1101) T) ((-482 . -517) 187774) ((-678 . -617) 187758) ((-695 . -102) T) ((-1142 . -517) 187677) ((-393 . -131) T) ((-1280 . -977) 187646) ((-1025 . -1052) 187583) ((-31 . -93) T) ((-603 . -492) 187567) ((-1025 . -641) 187504) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187454) ((-522 . -517) 187387) ((-356 . -1052) 187332) ((-59 . -517) 187265) ((-519 . -517) 187198) ((-421 . -901) 187157) ((-169 . -1050) T) ((-500 . -517) 187090) ((-499 . -517) 187023) ((-356 . -641) 186968) ((-800 . -1039) 186748) ((-700 . -38) 186713) ((-1240 . -617) 186461) ((-345 . -351) T) ((-1095 . -1094) 186445) ((-1095 . -1101) 186423) ((-856 . -617) 186320) ((-169 . -243) 186271) ((-169 . -233) 186222) ((-1095 . -1096) 186180) ((-873 . -287) 186138) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 186110) ((-1151 . -1193) 186089) ((-410 . -993) 186073) ((-48 . -1052) 186038) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 186003) ((-1282 . -649) 185977) ((-317 . -160) 185956) ((-317 . -143) 185935) ((-1151 . -107) 185885) ((-116 . -21) T) ((-40 . -231) 185862) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185838) ((-478 . -289) 185817) ((-1240 . -327) 185794) ((-1240 . -1050) T) ((-856 . -1050) T) ((-800 . -340) 185778) ((-139 . -185) T) ((-117 . -1152) NIL) ((-91 . -614) 185710) ((-480 . -131) T) ((-1240 . -233) T) ((-1097 . -493) 185691) ((-1097 . -614) 185657) ((-1091 . -493) 185638) ((-1091 . -614) 185604) ((-595 . -1217) T) ((-1074 . -493) 185585) ((-574 . -1050) T) ((-1074 . -614) 185551) ((-663 . -718) 185535) ((-1067 . -493) 185516) ((-1067 . -614) 185482) ((-959 . -289) 185459) ((-60 . -34) T) ((-1063 . -796) T) ((-1063 . -793) T) ((-1037 . -493) 185440) ((-1020 . -493) 185421) ((-817 . -727) T) ((-732 . -47) 185386) ((-624 . -38) 185373) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185304) ((-247 . -291) 185235) ((-1037 . -614) 185201) ((-1025 . -102) T) ((-1020 . -614) 185167) ((-627 . -493) 185148) ((-416 . -727) T) ((-117 . -38) 185093) ((-486 . -493) 185074) ((-627 . -614) 185040) ((-416 . -476) T) ((-218 . -493) 185021) ((-486 . -614) 184987) ((-356 . -102) T) ((-218 . -614) 184953) ((-1211 . -1059) T) ((-345 . -647) 184883) ((-712 . -1059) T) ((-1175 . -47) 184860) ((-1174 . -47) 184830) ((-1168 . -47) 184807) ((-128 . -289) 184782) ((-1036 . -151) 184728) ((-911 . -291) T) ((-1127 . -47) 184700) ((-695 . -310) NIL) ((-518 . -614) 184682) ((-513 . -614) 184664) ((-511 . -614) 184646) ((-328 . -1101) 184596) ((-713 . -455) 184527) ((-48 . -102) T) ((-1251 . -287) 184512) ((-1230 . -287) 184432) ((-645 . -667) 184416) ((-645 . -652) 184400) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184384) ((-606 . -493) 184366) ((-603 . -287) 184343) ((-606 . -614) 184310) ((-391 . -102) T) ((-1121 . -143) T) ((-126 . -614) 184242) ((-875 . -1101) T) ((-659 . -414) 184226) ((-715 . -614) 184208) ((-249 . -614) 184175) ((-187 . -614) 184157) ((-162 . -614) 184139) ((-157 . -614) 184121) ((-1282 . -727) T) ((-1103 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -887) NIL) ((-1291 . -131) T) ((-383 . -131) T) ((-893 . -617) 184089) ((-905 . -102) T) ((-732 . -1039) 183965) ((-534 . -131) T) ((-1088 . -414) 183949) ((-1001 . -492) 183933) ((-117 . -403) 183910) ((-1168 . -1217) 183889) ((-783 . -414) 183873) ((-781 . -414) 183857) ((-944 . -34) T) ((-695 . -1152) NIL) ((-252 . -649) 183692) ((-251 . -649) 183514) ((-818 . -921) 183493) ((-457 . -414) 183477) ((-603 . -19) 183461) ((-1147 . -1210) 183430) ((-1168 . -887) NIL) ((-1168 . -885) 183382) ((-603 . -605) 183359) ((-1203 . -614) 183291) ((-1176 . -614) 183273) ((-62 . -398) T) ((-1174 . -1039) 183208) ((-1168 . -1039) 183174) ((-695 . -38) 183124) ((-40 . -647) 183054) ((-477 . -287) 183039) ((-1223 . -614) 183021) ((-732 . -379) 183005) ((-839 . -614) 182987) ((-659 . -1059) T) ((-1251 . -1003) 182953) ((-1230 . -1003) 182919) ((-1089 . -617) 182903) ((-1064 . -1193) 182878) ((-1077 . -617) 182855) ((-873 . -615) 182662) ((-873 . -614) 182644) ((-1190 . -492) 182581) ((-421 . -1023) 182559) ((-48 . -310) 182546) ((-1064 . -107) 182492) ((-482 . -492) 182429) ((-523 . -1217) T) ((-1168 . -340) 182381) ((-1142 . -492) 182352) ((-1168 . -379) 182304) ((-1088 . -1059) T) ((-440 . -102) T) ((-183 . -1101) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1059) T) ((-781 . -1059) T) ((-732 . -901) 182281) ((-457 . -1059) T) ((-59 . -492) 182265) ((-1035 . -1057) 182239) ((-522 . -492) 182223) ((-519 . -492) 182207) ((-500 . -492) 182191) ((-499 . -492) 182175) ((-245 . -517) 182108) ((-1035 . -111) 182075) ((-1175 . -901) 181988) ((-1174 . -901) 181894) ((-1168 . -901) 181727) ((-1127 . -901) 181711) ((-671 . -1113) T) ((-356 . -1152) T) ((-646 . -93) T) ((-323 . -1057) 181693) ((-252 . -792) 181672) ((-252 . -795) 181623) ((-31 . -493) 181604) ((-252 . -794) 181583) ((-251 . -792) 181562) ((-251 . -795) 181513) ((-251 . -794) 181492) ((-31 . -614) 181458) ((-50 . -1059) T) ((-252 . -727) 181368) ((-251 . -727) 181278) ((-1211 . -1101) T) ((-671 . -23) T) ((-584 . -1059) T) ((-521 . -1059) T) ((-381 . -1057) 181243) ((-323 . -111) 181218) ((-73 . -385) T) ((-73 . -398) T) ((-1025 . -38) 181155) ((-695 . -403) 181137) ((-99 . -102) T) ((-712 . -1101) T) ((-1295 . -1052) 181124) ((-1004 . -145) 181096) ((-1004 . -147) 181068) ((-871 . -647) 181040) ((-381 . -111) 180996) ((-320 . -1221) 180975) ((-477 . -1003) 180941) ((-356 . -38) 180906) ((-40 . -372) 180878) ((-874 . -614) 180750) ((-127 . -125) 180734) ((-121 . -125) 180718) ((-837 . -1057) 180688) ((-834 . -21) 180640) ((-828 . -1057) 180624) ((-834 . -25) 180576) ((-320 . -559) 180527) ((-520 . -617) 180508) ((-567 . -829) T) ((-240 . -1217) T) ((-1035 . -617) 180477) ((-837 . -111) 180442) ((-828 . -111) 180421) ((-1251 . -614) 180403) ((-1230 . -614) 180385) ((-1230 . -615) 180056) ((-1173 . -910) 180035) ((-1126 . -910) 180014) ((-48 . -38) 179979) ((-1289 . -1113) T) ((-603 . -614) 179891) ((-603 . -615) 179852) ((-1287 . -1113) T) ((-363 . -617) 179836) ((-323 . -617) 179820) ((-240 . -1039) 179647) ((-1173 . -649) 179572) ((-1126 . -649) 179497) ((-855 . -649) 179471) ((-719 . -614) 179453) ((-549 . -370) T) ((-1289 . -23) T) ((-1287 . -23) T) ((-494 . -1101) T) ((-381 . -617) 179403) ((-381 . -619) 179385) ((-1035 . -1050) T) ((-866 . -102) T) ((-1190 . -287) 179364) ((-169 . -370) 179315) ((-1005 . -1217) T) ((-837 . -617) 179269) ((-828 . -617) 179224) ((-44 . -23) T) ((-482 . -287) 179203) ((-588 . -1101) T) ((-1147 . -1110) 179172) ((-1105 . -1104) 179124) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1113) T) ((-1295 . -102) T) ((-1005 . -885) 179106) ((-1005 . -887) 179088) ((-1211 . -718) 178985) ((-624 . -231) 178969) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1197 . -1101) T) ((-712 . -718) 178934) ((-240 . -379) 178903) ((-1005 . -1039) 178863) ((-381 . -1050) T) ((-223 . -1059) T) ((-117 . -231) 178840) ((-59 . -287) 178817) ((-152 . -23) T) ((-519 . -287) 178794) ((-328 . -517) 178727) ((-499 . -287) 178704) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1050) T) ((-828 . -1050) T) ((-713 . -950) 178673) ((-702 . -851) T) ((-477 . -614) 178655) ((-1253 . -1052) 178560) ((-583 . -647) 178532) ((-567 . -647) 178504) ((-498 . -647) 178454) ((-828 . -233) 178433) ((-134 . -851) T) ((-1253 . -641) 178325) ((-659 . -1101) T) ((-1190 . -605) 178304) ((-553 . -1193) 178283) ((-338 . -1101) T) ((-320 . -365) 178262) ((-410 . -147) 178241) ((-410 . -145) 178220) ((-965 . -1113) 178119) ((-240 . -901) 178051) ((-816 . -1113) 177961) ((-655 . -853) 177945) ((-482 . -605) 177924) ((-553 . -107) 177874) ((-1005 . -379) 177856) ((-1005 . -340) 177838) ((-97 . -1101) T) ((-965 . -23) 177649) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177519) ((-1177 . -614) 177501) ((-59 . -19) 177485) ((-1177 . -615) 177407) ((-1173 . -727) T) ((-1126 . -727) T) ((-519 . -19) 177391) ((-499 . -19) 177375) ((-59 . -605) 177352) ((-1088 . -1101) T) ((-902 . -102) 177330) ((-855 . -727) T) ((-783 . -1101) T) ((-519 . -605) 177307) ((-499 . -605) 177284) ((-781 . -1101) T) ((-781 . -1066) 177251) ((-464 . -1101) T) ((-457 . -1101) T) ((-588 . -718) 177226) ((-650 . -1101) T) ((-1259 . -47) 177203) ((-1253 . -102) T) ((-1252 . -47) 177173) ((-1231 . -47) 177150) ((-1211 . -172) 177101) ((-1174 . -308) 177080) ((-1168 . -308) 177059) ((-1097 . -617) 177040) ((-1091 . -617) 177021) ((-1081 . -559) 176972) ((-1005 . -901) NIL) ((-1081 . -1221) 176923) ((-671 . -131) T) ((-628 . -1113) T) ((-1074 . -617) 176904) ((-1067 . -617) 176885) ((-1037 . -617) 176866) ((-1020 . -617) 176847) ((-700 . -647) 176797) ((-276 . -1101) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1057) 176767) ((-712 . -172) T) ((-50 . -1101) T) ((-597 . -47) 176744) ((-225 . -649) 176709) ((-584 . -1101) T) ((-521 . -1101) T) ((-490 . -821) T) ((-490 . -921) T) ((-361 . -1221) T) ((-355 . -1221) T) ((-347 . -1221) T) ((-320 . -1113) T) ((-317 . -1052) 176619) ((-314 . -1052) 176548) ((-108 . -1221) T) ((-627 . -617) 176529) ((-361 . -559) T) ((-217 . -921) T) ((-217 . -821) T) ((-317 . -641) 176439) ((-314 . -641) 176368) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176349) ((-108 . -559) T) ((-659 . -718) 176319) ((-1168 . -1023) NIL) ((-218 . -617) 176300) ((-320 . -23) T) ((-67 . -1217) T) ((-1001 . -614) 176232) ((-695 . -231) 176214) ((-715 . -111) 176179) ((-645 . -34) T) ((-245 . -492) 176163) ((-1103 . -1099) 176147) ((-171 . -1101) T) ((-953 . -910) 176126) ((-1295 . -1152) T) ((-1291 . -21) T) ((-518 . -617) 176110) ((-1291 . -25) T) ((-1289 . -131) T) ((-1287 . -131) T) ((-484 . -910) 176089) ((-1280 . -102) T) ((-1263 . -614) 176055) ((-1252 . -1039) 175990) ((-1231 . -1217) 175969) ((-1231 . -887) NIL) ((-1231 . -885) 175921) ((-1088 . -718) 175770) ((-1063 . -649) 175757) ((-953 . -649) 175682) ((-783 . -718) 175511) ((-539 . -614) 175493) ((-539 . -615) 175474) ((-781 . -718) 175323) ((-1078 . -102) T) ((-383 . -25) T) ((-624 . -647) 175295) ((-383 . -21) T) ((-484 . -649) 175220) ((-464 . -718) 175191) ((-457 . -718) 175040) ((-988 . -102) T) ((-1231 . -1039) 175006) ((-1190 . -615) NIL) ((-1190 . -614) 174988) ((-738 . -102) T) ((-117 . -647) 174918) ((-606 . -617) 174900) ((-1143 . -1124) 174845) ((-1047 . -1210) 174774) ((-534 . -25) T) ((-902 . -310) 174712) ((-715 . -617) 174666) ((-682 . -93) T) ((-646 . -493) 174647) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174629) ((-345 . -1059) T) ((-290 . -1113) T) ((-646 . -614) 174582) ((-481 . -93) T) ((-357 . -614) 174564) ((-354 . -614) 174546) ((-346 . -614) 174528) ((-265 . -615) 174276) ((-265 . -614) 174258) ((-247 . -614) 174240) ((-247 . -615) 174101) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1211 . -517) 174068) ((-1142 . -614) 174050) ((-1121 . -641) 174037) ((-820 . -727) T) ((-820 . -858) T) ((-603 . -289) 174014) ((-584 . -718) 173979) ((-482 . -615) NIL) ((-482 . -614) 173961) ((-521 . -718) 173906) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1121 . -1052) 173893) ((-911 . -614) 173875) ((-389 . -727) T) ((-873 . -1057) 173827) ((-911 . -615) 173809) ((-873 . -111) 173747) ((-715 . -1050) T) ((-713 . -1243) 173731) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173663) ((-381 . -796) T) ((-223 . -1101) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173624) ((-59 . -614) 173536) ((-225 . -727) T) ((-519 . -615) 173497) ((-519 . -614) 173409) ((-500 . -614) 173341) ((-499 . -615) 173302) ((-499 . -614) 173214) ((-1081 . -365) 173165) ((-40 . -414) 173142) ((-77 . -1217) T) ((-872 . -910) NIL) ((-361 . -330) 173126) ((-361 . -365) T) ((-355 . -330) 173110) ((-355 . -365) T) ((-347 . -330) 173094) ((-347 . -365) T) ((-317 . -285) 173073) ((-108 . -365) T) ((-70 . -1217) T) ((-1231 . -340) 173025) ((-872 . -649) 172970) ((-1231 . -379) 172922) ((-965 . -131) 172777) ((-816 . -131) 172647) ((-959 . -652) 172631) ((-1088 . -172) 172542) ((-959 . -375) 172526) ((-1063 . -795) T) ((-1063 . -792) T) ((-873 . -617) 172424) ((-783 . -172) 172315) ((-781 . -172) 172226) ((-817 . -47) 172188) ((-1063 . -727) T) ((-328 . -492) 172172) ((-953 . -727) T) ((-1280 . -310) 172110) ((-457 . -172) 172021) ((-245 . -287) 171998) ((-1259 . -901) 171911) ((-1252 . -901) 171817) ((-1251 . -1057) 171652) ((-484 . -727) T) ((-1231 . -901) 171485) ((-1230 . -1057) 171293) ((-1211 . -291) 171272) ((-1187 . -1217) T) ((-1184 . -370) T) ((-1183 . -370) T) ((-1147 . -151) 171256) ((-1121 . -102) T) ((-1119 . -1101) T) ((-1081 . -23) T) ((-1081 . -1113) T) ((-1076 . -102) T) ((-1058 . -614) 171223) ((-928 . -956) T) ((-738 . -310) 171161) ((-75 . -1217) T) ((-665 . -384) 171133) ((-169 . -910) 171086) ((-30 . -956) T) ((-112 . -845) T) ((-1 . -614) 171068) ((-1004 . -412) 171040) ((-128 . -652) 171022) ((-50 . -621) 171006) ((-695 . -647) 170941) ((-597 . -901) 170854) ((-441 . -102) T) ((-128 . -375) 170836) ((-141 . -310) NIL) ((-873 . -1050) T) ((-834 . -851) 170815) ((-81 . -1217) T) ((-712 . -291) T) ((-40 . -1059) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170797) ((-169 . -649) 170707) ((-510 . -614) 170689) ((-353 . -147) 170671) ((-353 . -145) T) ((-361 . -1113) T) ((-355 . -1113) T) ((-347 . -1113) T) ((-1005 . -308) T) ((-915 . -308) T) ((-873 . -243) T) ((-108 . -1113) T) ((-873 . -233) 170650) ((-1251 . -111) 170471) ((-1230 . -111) 170260) ((-245 . -1255) 170244) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170231) ((-314 . -310) 170172) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1005 . -1023) T) ((-31 . -617) 170153) ((-108 . -23) T) ((-655 . -1052) 170137) ((-245 . -605) 170114) ((-334 . -1101) T) ((-655 . -641) 170084) ((-1253 . -38) 169976) ((-1240 . -910) 169955) ((-112 . -1101) T) ((-1036 . -102) T) ((-1240 . -649) 169880) ((-872 . -795) NIL) ((-856 . -649) 169854) ((-872 . -792) NIL) ((-817 . -887) NIL) ((-872 . -727) T) ((-1088 . -517) 169727) ((-783 . -517) 169674) ((-781 . -517) 169626) ((-574 . -649) 169613) ((-817 . -1039) 169441) ((-457 . -517) 169384) ((-391 . -392) T) ((-1251 . -617) 169197) ((-1230 . -617) 168945) ((-60 . -1217) T) ((-622 . -851) 168924) ((-503 . -662) T) ((-1147 . -977) 168893) ((-1025 . -647) 168830) ((-1004 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1057) 168665) ((-345 . -1101) T) ((-314 . -1152) NIL) ((-290 . -131) T) ((-397 . -1101) T) ((-871 . -1059) T) ((-695 . -372) 168632) ((-356 . -647) 168562) ((-223 . -621) 168539) ((-328 . -287) 168516) ((-477 . -111) 168337) ((-1251 . -1050) T) ((-1230 . -1050) T) ((-817 . -379) 168321) ((-169 . -727) T) ((-655 . -102) T) ((-1251 . -243) 168300) ((-1251 . -233) 168252) ((-1230 . -233) 168157) ((-1230 . -243) 168136) ((-1004 . -405) NIL) ((-671 . -640) 168084) ((-317 . -38) 167994) ((-314 . -38) 167923) ((-69 . -614) 167905) ((-320 . -496) 167871) ((-48 . -647) 167821) ((-1190 . -289) 167800) ((-1225 . -851) T) ((-1114 . -1113) 167710) ((-83 . -1217) T) ((-61 . -614) 167692) ((-482 . -289) 167671) ((-1282 . -1039) 167648) ((-1165 . -1101) T) ((-1114 . -23) 167518) ((-817 . -901) 167454) ((-1240 . -727) T) ((-1103 . -1217) T) ((-477 . -617) 167280) ((-1088 . -291) 167211) ((-967 . -1101) T) ((-894 . -102) T) ((-783 . -291) 167122) ((-328 . -19) 167106) ((-59 . -289) 167083) ((-781 . -291) 167014) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 166991) ((-328 . -605) 166968) ((-499 . -289) 166945) ((-457 . -291) 166876) ((-1036 . -310) 166727) ((-682 . -493) 166708) ((-574 . -727) T) ((-677 . -493) 166689) ((-682 . -614) 166639) ((-677 . -614) 166605) ((-663 . -614) 166587) ((-481 . -493) 166568) ((-481 . -614) 166534) ((-245 . -615) 166495) ((-245 . -493) 166472) ((-138 . -493) 166453) ((-137 . -493) 166434) ((-133 . -493) 166415) ((-245 . -614) 166307) ((-213 . -102) T) ((-138 . -614) 166273) ((-137 . -614) 166239) ((-133 . -614) 166205) ((-1148 . -34) T) ((-944 . -1217) T) ((-345 . -718) 166150) ((-671 . -25) T) ((-671 . -21) T) ((-1177 . -617) 166131) ((-477 . -1050) T) ((-636 . -420) 166096) ((-608 . -420) 166061) ((-1121 . -1152) T) ((-713 . -1052) 165884) ((-584 . -291) T) ((-521 . -291) T) ((-1252 . -308) 165863) ((-477 . -233) 165815) ((-477 . -243) 165794) ((-1231 . -308) 165773) ((-713 . -641) 165602) ((-1231 . -1023) NIL) ((-1081 . -131) T) ((-873 . -796) 165581) ((-144 . -102) T) ((-40 . -1101) T) ((-873 . -793) 165560) ((-645 . -1011) 165544) ((-583 . -1059) T) ((-567 . -1059) T) ((-498 . -1059) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165528) ((-314 . -403) 165489) ((-355 . -131) T) ((-347 . -131) T) ((-1182 . -1101) T) ((-1121 . -38) 165476) ((-1095 . -614) 165443) ((-108 . -131) T) ((-955 . -1101) T) ((-922 . -1101) T) ((-772 . -1101) T) ((-673 . -1101) T) ((-702 . -147) T) ((-116 . -147) T) ((-1289 . -21) T) ((-1289 . -25) T) ((-1287 . -21) T) ((-1287 . -25) T) ((-665 . -1057) 165427) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1057) 165379) ((-354 . -1057) 165331) ((-346 . -1057) 165283) ((-252 . -1217) T) ((-251 . -1217) T) ((-265 . -1057) 165126) ((-247 . -1057) 164969) ((-665 . -111) 164948) ((-550 . -845) T) ((-357 . -111) 164886) ((-354 . -111) 164824) ((-346 . -111) 164762) ((-265 . -111) 164591) ((-247 . -111) 164420) ((-818 . -1221) 164399) ((-624 . -414) 164383) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164289) ((-818 . -559) 164268) ((-252 . -1039) 164095) ((-251 . -1039) 163922) ((-126 . -119) 163906) ((-911 . -1057) 163871) ((-713 . -102) T) ((-700 . -1059) T) ((-539 . -619) 163774) ((-345 . -172) T) ((-88 . -614) 163756) ((-152 . -21) T) ((-152 . -25) T) ((-911 . -111) 163712) ((-40 . -718) 163657) ((-871 . -1101) T) ((-665 . -617) 163634) ((-646 . -617) 163615) ((-357 . -617) 163552) ((-354 . -617) 163489) ((-550 . -1101) T) ((-346 . -617) 163426) ((-328 . -615) 163387) ((-328 . -614) 163299) ((-265 . -617) 163052) ((-247 . -617) 162837) ((-1230 . -793) 162790) ((-1230 . -796) 162743) ((-252 . -379) 162712) ((-251 . -379) 162681) ((-655 . -38) 162651) ((-609 . -34) T) ((-485 . -1113) 162561) ((-478 . -34) T) ((-1114 . -131) 162431) ((-965 . -25) 162242) ((-911 . -617) 162192) ((-875 . -614) 162174) ((-965 . -21) 162129) ((-816 . -21) 162039) ((-816 . -25) 161890) ((-1223 . -370) T) ((-624 . -1059) T) ((-1179 . -559) 161869) ((-1173 . -47) 161846) ((-357 . -1050) T) ((-354 . -1050) T) ((-485 . -23) 161716) ((-346 . -1050) T) ((-265 . -1050) T) ((-247 . -1050) T) ((-1126 . -47) 161688) ((-117 . -1059) T) ((-1035 . -649) 161662) ((-959 . -34) T) ((-357 . -233) 161641) ((-357 . -243) T) ((-354 . -233) 161620) ((-354 . -243) T) ((-346 . -233) 161599) ((-346 . -243) T) ((-265 . -327) 161571) ((-247 . -327) 161528) ((-265 . -233) 161507) ((-1157 . -151) 161491) ((-252 . -901) 161423) ((-251 . -901) 161355) ((-1083 . -851) T) ((-417 . -1113) T) ((-1055 . -23) T) ((-911 . -1050) T) ((-323 . -649) 161337) ((-1025 . -849) T) ((-1211 . -1003) 161303) ((-1174 . -921) 161282) ((-1168 . -921) 161261) ((-1168 . -821) NIL) ((-1000 . -1052) 161157) ((-911 . -243) T) ((-818 . -365) 161136) ((-387 . -23) T) ((-127 . -1101) 161114) ((-121 . -1101) 161092) ((-911 . -233) T) ((-128 . -34) T) ((-381 . -649) 161057) ((-1000 . -641) 161005) ((-871 . -718) 160992) ((-1295 . -647) 160964) ((-1047 . -151) 160929) ((-40 . -172) T) ((-695 . -414) 160911) ((-713 . -310) 160898) ((-837 . -649) 160858) ((-828 . -649) 160832) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160811) ((-583 . -1101) T) ((-567 . -1101) T) ((-498 . -1101) T) ((-245 . -289) 160788) ((-314 . -231) 160749) ((-1173 . -887) NIL) ((-55 . -1101) T) ((-1126 . -887) 160608) ((-129 . -851) T) ((-1173 . -1039) 160488) ((-1126 . -1039) 160371) ((-183 . -614) 160353) ((-855 . -1039) 160249) ((-783 . -287) 160176) ((-818 . -1113) T) ((-1035 . -727) T) ((-603 . -652) 160160) ((-1047 . -977) 160089) ((-1000 . -102) T) ((-818 . -23) T) ((-713 . -1152) 160067) ((-695 . -1059) T) ((-603 . -375) 160051) ((-353 . -455) T) ((-345 . -291) T) ((-1268 . -1101) T) ((-248 . -1101) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1101) T) ((-700 . -1101) T) ((-363 . -476) T) ((-1211 . -614) 160033) ((-1173 . -379) 160017) ((-1126 . -379) 160001) ((-1025 . -414) 159963) ((-141 . -229) 159945) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 159927) ((-713 . -38) 159756) ((-1267 . -1265) 159740) ((-353 . -405) T) ((-1267 . -1101) 159690) ((-583 . -718) 159677) ((-567 . -718) 159664) ((-498 . -718) 159629) ((-1253 . -647) 159519) ((-317 . -630) 159498) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1217) T) ((-1081 . -640) 159446) ((-1173 . -901) 159389) ((-1126 . -901) 159373) ((-663 . -1057) 159357) ((-108 . -640) 159339) ((-485 . -131) 159209) ((-1179 . -1113) T) ((-953 . -47) 159178) ((-624 . -1101) T) ((-663 . -111) 159157) ((-494 . -614) 159123) ((-328 . -289) 159100) ((-484 . -47) 159057) ((-1179 . -23) T) ((-117 . -1101) T) ((-103 . -102) 159035) ((-1279 . -1113) T) ((-551 . -851) T) ((-1055 . -131) T) ((-1025 . -1059) T) ((-820 . -1039) 159019) ((-1004 . -725) 158991) ((-1279 . -23) T) ((-700 . -718) 158956) ((-588 . -614) 158938) ((-389 . -1039) 158922) ((-356 . -1059) T) ((-387 . -131) T) ((-325 . -1039) 158906) ((-1197 . -614) 158888) ((-1121 . -829) T) ((-225 . -887) 158870) ((-1005 . -921) T) ((-91 . -34) T) ((-1005 . -821) T) ((-915 . -921) T) ((-1106 . -1101) T) ((-1081 . -21) T) ((-490 . -1221) T) ((-1081 . -25) T) ((-1000 . -310) 158835) ((-715 . -649) 158795) ((-217 . -1221) T) ((-682 . -617) 158776) ((-225 . -1039) 158736) ((-40 . -291) T) ((-677 . -617) 158717) ((-490 . -559) T) ((-481 . -617) 158698) ((-317 . -647) 158382) ((-314 . -647) 158296) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158273) ((-138 . -617) 158254) ((-137 . -617) 158235) ((-133 . -617) 158216) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1059) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158198) ((-738 . -737) 158182) ((-338 . -614) 158164) ((-68 . -385) T) ((-68 . -398) T) ((-1103 . -107) 158148) ((-1063 . -887) 158130) ((-953 . -887) 158055) ((-654 . -1113) T) ((-624 . -718) 158042) ((-484 . -887) NIL) ((-1147 . -102) T) ((-1095 . -619) 158026) ((-1063 . -1039) 158008) ((-97 . -614) 157990) ((-480 . -147) T) ((-953 . -1039) 157870) ((-117 . -718) 157815) ((-654 . -23) T) ((-484 . -1039) 157691) ((-1088 . -615) NIL) ((-1088 . -614) 157673) ((-783 . -615) NIL) ((-783 . -614) 157634) ((-781 . -615) 157268) ((-781 . -614) 157182) ((-1114 . -640) 157088) ((-464 . -614) 157070) ((-457 . -614) 157052) ((-457 . -615) 156913) ((-1036 . -229) 156859) ((-873 . -910) 156838) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156820) ((-581 . -102) T) ((-357 . -1286) 156804) ((-354 . -1286) 156788) ((-346 . -1286) 156772) ((-127 . -517) 156705) ((-121 . -517) 156638) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156576) ((-222 . -102) 156554) ((-700 . -172) T) ((-695 . -1101) T) ((-873 . -649) 156506) ((-65 . -386) T) ((-276 . -614) 156488) ((-65 . -398) T) ((-953 . -379) 156472) ((-871 . -291) T) ((-50 . -614) 156454) ((-1000 . -38) 156402) ((-1121 . -647) 156374) ((-584 . -614) 156356) ((-484 . -379) 156340) ((-584 . -615) 156322) ((-521 . -614) 156304) ((-911 . -1286) 156291) ((-872 . -1217) T) ((-702 . -455) T) ((-498 . -517) 156257) ((-490 . -365) T) ((-357 . -370) 156236) ((-354 . -370) 156215) ((-346 . -370) 156194) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1290 . -1281) 156178) ((-872 . -885) 156155) ((-872 . -887) NIL) ((-965 . -851) 156054) ((-816 . -851) 156005) ((-1224 . -102) T) ((-655 . -657) 155989) ((-1203 . -34) T) ((-171 . -614) 155971) ((-1114 . -21) 155881) ((-1114 . -25) 155732) ((-872 . -1039) 155709) ((-953 . -901) 155690) ((-1240 . -47) 155667) ((-911 . -370) T) ((-59 . -652) 155651) ((-519 . -652) 155635) ((-484 . -901) 155612) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155596) ((-59 . -375) 155580) ((-624 . -172) T) ((-519 . -375) 155564) ((-499 . -375) 155548) ((-828 . -709) 155532) ((-1173 . -308) 155511) ((-1179 . -131) T) ((-1143 . -1052) 155495) ((-117 . -172) T) ((-1143 . -641) 155427) ((-1147 . -310) 155365) ((-169 . -1217) T) ((-1279 . -131) T) ((-867 . -1052) 155335) ((-636 . -745) 155319) ((-608 . -745) 155303) ((-1252 . -921) 155282) ((-1231 . -921) 155261) ((-1231 . -821) NIL) ((-867 . -641) 155231) ((-695 . -718) 155181) ((-1230 . -910) 155134) ((-1025 . -1101) T) ((-872 . -379) 155111) ((-872 . -340) 155088) ((-906 . -1113) T) ((-169 . -885) 155072) ((-169 . -887) 154997) ((-490 . -1113) T) ((-356 . -1101) T) ((-217 . -1113) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1039) 154893) ((-320 . -851) T) ((-1267 . -517) 154826) ((-1251 . -649) 154723) ((-1230 . -649) 154593) ((-873 . -795) 154572) ((-873 . -792) 154551) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154533) ((-174 . -455) T) ((-222 . -310) 154471) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1291 . -1284) 154450) ((-678 . -1039) 154434) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154389) ((-655 . -647) 154348) ((-48 . -1101) T) ((-713 . -231) 154332) ((-872 . -901) NIL) ((-1240 . -887) NIL) ((-890 . -102) T) ((-886 . -102) T) ((-391 . -1101) T) ((-169 . -379) 154316) ((-169 . -340) 154300) ((-1240 . -1039) 154180) ((-856 . -1039) 154076) ((-1143 . -102) T) ((-654 . -131) T) ((-117 . -517) 153984) ((-663 . -793) 153963) ((-663 . -796) 153942) ((-574 . -1039) 153924) ((-295 . -1274) 153894) ((-867 . -102) T) ((-964 . -559) 153873) ((-1211 . -1057) 153756) ((-1004 . -1052) 153701) ((-485 . -640) 153607) ((-905 . -1101) T) ((-1025 . -718) 153544) ((-712 . -1057) 153509) ((-1004 . -641) 153454) ((-618 . -102) T) ((-603 . -34) T) ((-1148 . -1217) T) ((-1211 . -111) 153323) ((-477 . -649) 153220) ((-356 . -718) 153165) ((-169 . -901) 153124) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 153080) ((-1295 . -1059) T) ((-1240 . -379) 153064) ((-421 . -1221) 153042) ((-1119 . -614) 153024) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1230 . -792) 152977) ((-1230 . -795) 152930) ((-1251 . -727) T) ((-1230 . -727) T) ((-48 . -718) 152895) ((-225 . -1023) T) ((-353 . -1274) 152872) ((-1253 . -414) 152838) ((-719 . -727) T) ((-334 . -614) 152820) ((-1240 . -901) 152763) ((-1211 . -617) 152645) ((-112 . -614) 152627) ((-112 . -615) 152609) ((-719 . -476) T) ((-712 . -617) 152559) ((-1290 . -1052) 152543) ((-485 . -21) 152453) ((-127 . -492) 152437) ((-121 . -492) 152421) ((-485 . -25) 152272) ((-1290 . -641) 152242) ((-624 . -291) T) ((-588 . -1057) 152217) ((-440 . -1101) T) ((-1063 . -308) T) ((-117 . -291) T) ((-1105 . -102) T) ((-1004 . -102) T) ((-588 . -111) 152185) ((-1143 . -310) 152123) ((-1211 . -1050) T) ((-1063 . -1023) T) ((-66 . -1217) T) ((-1055 . -25) T) ((-1055 . -21) T) ((-712 . -1050) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1025 . -172) T) ((-712 . -243) T) ((-1063 . -548) T) ((-713 . -647) 152033) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 152015) ((-410 . -1052) 151967) ((-397 . -614) 151949) ((-1121 . -849) T) ((-477 . -727) T) ((-893 . -1039) 151917) ((-410 . -641) 151869) ((-108 . -851) T) ((-659 . -1057) 151853) ((-490 . -131) T) ((-1253 . -1059) T) ((-217 . -131) T) ((-1157 . -102) 151831) ((-99 . -1101) T) ((-245 . -667) 151815) ((-245 . -652) 151799) ((-659 . -111) 151778) ((-588 . -617) 151762) ((-317 . -414) 151746) ((-245 . -375) 151730) ((-1160 . -235) 151677) ((-1000 . -231) 151661) ((-74 . -1217) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1290 . -102) T) ((-1197 . -617) 151643) ((-1088 . -1057) 151486) ((-265 . -910) 151465) ((-247 . -910) 151444) ((-783 . -1057) 151267) ((-781 . -1057) 151110) ((-609 . -1217) T) ((-1165 . -614) 151092) ((-1088 . -111) 150921) ((-1047 . -102) T) ((-478 . -1217) T) ((-464 . -1057) 150892) ((-457 . -1057) 150735) ((-665 . -649) 150719) ((-872 . -308) T) ((-783 . -111) 150528) ((-781 . -111) 150357) ((-357 . -649) 150309) ((-354 . -649) 150261) ((-346 . -649) 150213) ((-265 . -649) 150138) ((-247 . -649) 150063) ((-1159 . -851) T) ((-1089 . -1039) 150047) ((-464 . -111) 150008) ((-457 . -111) 149837) ((-1077 . -1039) 149814) ((-1001 . -34) T) ((-967 . -614) 149796) ((-959 . -1217) T) ((-126 . -1011) 149780) ((-964 . -1113) T) ((-872 . -1023) NIL) ((-736 . -1113) T) ((-716 . -1113) T) ((-659 . -617) 149698) ((-1267 . -492) 149682) ((-1143 . -38) 149642) ((-964 . -23) T) ((-911 . -649) 149607) ((-866 . -1101) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1052) 149591) ((-608 . -1052) 149575) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149559) ((-110 . -662) T) ((-608 . -641) 149543) ((-584 . -1057) 149508) ((-521 . -1057) 149453) ((-227 . -57) 149411) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149381) ((-584 . -111) 149337) ((-521 . -111) 149266) ((-1088 . -617) 149002) ((-421 . -1113) T) ((-317 . -1059) 148892) ((-314 . -1059) T) ((-128 . -1217) T) ((-783 . -617) 148640) ((-781 . -617) 148406) ((-659 . -1050) T) ((-1295 . -1101) T) ((-457 . -617) 148191) ((-169 . -308) 148122) ((-421 . -23) T) ((-40 . -614) 148104) ((-40 . -615) 148088) ((-108 . -993) 148070) ((-116 . -870) 148054) ((-650 . -617) 148038) ((-48 . -517) 148004) ((-1203 . -1011) 147988) ((-1182 . -614) 147955) ((-1190 . -34) T) ((-955 . -614) 147921) ((-922 . -614) 147903) ((-1114 . -851) 147854) ((-772 . -614) 147836) ((-673 . -614) 147818) ((-1157 . -310) 147756) ((-482 . -34) T) ((-1093 . -1217) T) ((-480 . -455) T) ((-1142 . -34) T) ((-1088 . -1050) T) ((-50 . -617) 147725) ((-783 . -1050) T) ((-781 . -1050) T) ((-648 . -235) 147709) ((-633 . -235) 147655) ((-584 . -617) 147605) ((-521 . -617) 147535) ((-1240 . -308) 147514) ((-1088 . -327) 147475) ((-457 . -1050) T) ((-1179 . -21) T) ((-1088 . -233) 147454) ((-783 . -327) 147431) ((-783 . -233) T) ((-781 . -327) 147403) ((-732 . -1221) 147382) ((-328 . -652) 147366) ((-1179 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147345) ((-328 . -375) 147329) ((-500 . -34) T) ((-499 . -34) T) ((-1004 . -1152) NIL) ((-732 . -559) 147260) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1047 . -310) 147168) ((-902 . -1101) 147146) ((-50 . -1050) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-1175 . -559) 147125) ((-1174 . -1221) 147104) ((-1174 . -559) 147055) ((-584 . -1050) T) ((-521 . -1050) T) ((-1168 . -1221) 147034) ((-363 . -1039) 147018) ((-323 . -1039) 147002) ((-1025 . -291) T) ((-381 . -887) 146984) ((-1168 . -559) 146935) ((-1004 . -38) 146880) ((-1000 . -647) 146803) ((-800 . -1113) T) ((-911 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1127 . -559) 146782) ((-356 . -291) T) ((-648 . -696) 146766) ((-381 . -1039) 146726) ((-295 . -1052) 146647) ((-1121 . -1059) T) ((-103 . -125) 146631) ((-295 . -641) 146573) ((-800 . -23) T) ((-1289 . -1284) 146549) ((-1267 . -287) 146526) ((-410 . -310) 146491) ((-1287 . -1284) 146470) ((-1253 . -1101) T) ((-871 . -614) 146452) ((-837 . -1039) 146421) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146403) ((-498 . -1003) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146387) ((-223 . -617) 146349) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1290 . -38) 146319) ((-117 . -287) 146270) ((-1267 . -19) 146254) ((-1267 . -605) 146231) ((-1280 . -1101) T) ((-353 . -1052) 146176) ((-1078 . -1101) T) ((-988 . -1101) T) ((-964 . -131) T) ((-738 . -1101) T) ((-353 . -641) 146121) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1152) 146099) ((-223 . -1050) T) ((-295 . -102) 145881) ((-141 . -1101) T) ((-700 . -1003) T) ((-91 . -1217) T) ((-127 . -614) 145813) ((-121 . -614) 145745) ((-1295 . -172) T) ((-1174 . -365) 145724) ((-1168 . -365) 145703) ((-317 . -1101) T) ((-421 . -131) T) ((-314 . -1101) T) ((-410 . -38) 145655) ((-1134 . -102) T) ((-1253 . -718) 145547) ((-655 . -1059) T) ((-1136 . -1262) T) ((-320 . -145) 145526) ((-320 . -147) 145505) ((-136 . -1101) T) ((-139 . -1101) T) ((-114 . -1101) T) ((-859 . -102) T) ((-583 . -614) 145487) ((-567 . -615) 145386) ((-567 . -614) 145368) ((-498 . -614) 145350) ((-498 . -615) 145295) ((-488 . -23) T) ((-485 . -851) 145246) ((-490 . -640) 145228) ((-966 . -614) 145210) ((-217 . -640) 145192) ((-225 . -407) T) ((-663 . -649) 145176) ((-55 . -614) 145158) ((-1173 . -921) 145137) ((-732 . -1113) T) ((-353 . -102) T) ((-1216 . -1084) T) ((-1121 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1057) 145082) ((-1159 . -1158) T) ((-1148 . -107) 145066) ((-1175 . -1113) T) ((-1174 . -1113) T) ((-518 . -1039) 145050) ((-1168 . -1113) T) ((-1127 . -1113) T) ((-345 . -111) 144979) ((-1005 . -1221) T) ((-126 . -1217) T) ((-915 . -1221) T) ((-695 . -287) NIL) ((-1268 . -614) 144961) ((-1175 . -23) T) ((-1174 . -23) T) ((-1168 . -23) T) ((-1005 . -559) T) ((-1143 . -231) 144945) ((-915 . -559) T) ((-1127 . -23) T) ((-248 . -614) 144927) ((-1076 . -1101) T) ((-800 . -131) T) ((-711 . -614) 144909) ((-317 . -718) 144819) ((-314 . -718) 144748) ((-700 . -614) 144730) ((-700 . -615) 144675) ((-410 . -403) 144659) ((-441 . -1101) T) ((-490 . -25) T) ((-490 . -21) T) ((-1121 . -1101) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144643) ((-715 . -1039) 144612) ((-1267 . -614) 144524) ((-1267 . -615) 144485) ((-1253 . -172) T) ((-245 . -34) T) ((-345 . -617) 144415) ((-397 . -617) 144397) ((-927 . -975) T) ((-1203 . -1217) T) ((-663 . -792) 144376) ((-663 . -795) 144355) ((-401 . -398) T) ((-526 . -102) 144333) ((-1036 . -1101) T) ((-222 . -996) 144317) ((-507 . -102) T) ((-624 . -614) 144299) ((-45 . -851) NIL) ((-624 . -615) 144276) ((-1036 . -611) 144251) ((-902 . -517) 144184) ((-345 . -1050) T) ((-117 . -615) NIL) ((-117 . -614) 144166) ((-873 . -1217) T) ((-671 . -420) 144150) ((-671 . -1124) 144095) ((-503 . -151) 144077) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1057) 144022) ((-873 . -885) 144006) ((-873 . -887) 143931) ((-713 . -1059) T) ((-695 . -1003) NIL) ((-1251 . -47) 143901) ((-1230 . -47) 143878) ((-1142 . -1011) 143849) ((-3 . |UnionCategory|) T) ((-1121 . -718) 143836) ((-1106 . -614) 143818) ((-1081 . -147) 143797) ((-1081 . -145) 143748) ((-967 . -617) 143732) ((-225 . -921) T) ((-40 . -111) 143661) ((-873 . -1039) 143525) ((-1005 . -365) T) ((-1004 . -231) 143502) ((-702 . -1052) 143489) ((-915 . -365) T) ((-702 . -641) 143476) ((-320 . -1205) 143442) ((-381 . -308) T) ((-320 . -1202) 143408) ((-317 . -172) 143387) ((-314 . -172) T) ((-584 . -1286) 143374) ((-521 . -1286) 143351) ((-361 . -147) 143330) ((-116 . -1052) 143317) ((-361 . -145) 143268) ((-355 . -147) 143247) ((-355 . -145) 143198) ((-347 . -147) 143177) ((-609 . -1193) 143153) ((-116 . -641) 143140) ((-347 . -145) 143091) ((-320 . -35) 143057) ((-478 . -1193) 143036) ((0 . |EnumerationCategory|) T) ((-320 . -95) 143002) ((-381 . -1023) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142952) ((-655 . -1101) T) ((-609 . -107) 142899) ((-488 . -131) T) ((-478 . -107) 142849) ((-240 . -1113) 142759) ((-873 . -379) 142743) ((-873 . -340) 142727) ((-240 . -23) 142597) ((-40 . -617) 142527) ((-1063 . -921) T) ((-1063 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1280 . -517) 142460) ((-1259 . -559) 142439) ((-353 . -1152) T) ((-328 . -34) T) ((-44 . -420) 142423) ((-1182 . -617) 142359) ((-874 . -1217) T) ((-393 . -745) 142343) ((-1252 . -1221) 142322) ((-1252 . -559) 142273) ((-1143 . -647) 142232) ((-732 . -131) T) ((-673 . -617) 142216) ((-1231 . -1221) 142195) ((-1231 . -559) 142146) ((-1230 . -1217) 142125) ((-1230 . -887) 141998) ((-1230 . -885) 141968) ((-1175 . -131) T) ((-312 . -1084) T) ((-1174 . -131) T) ((-738 . -517) 141901) ((-1168 . -131) T) ((-1127 . -131) T) ((-894 . -1101) T) ((-144 . -845) T) ((-1025 . -1003) T) ((-692 . -614) 141883) ((-1005 . -23) T) ((-526 . -310) 141821) ((-1005 . -1113) T) ((-141 . -517) NIL) ((-867 . -647) 141766) ((-1004 . -351) NIL) ((-972 . -23) T) ((-915 . -1113) T) ((-353 . -38) 141731) ((-915 . -23) T) ((-873 . -901) 141690) ((-82 . -614) 141672) ((-40 . -1050) T) ((-871 . -1057) 141659) ((-871 . -111) 141644) ((-702 . -102) T) ((-695 . -614) 141626) ((-603 . -1217) T) ((-598 . -559) 141605) ((-430 . -1113) T) ((-341 . -1052) 141589) ((-213 . -1101) T) ((-174 . -1052) 141521) ((-477 . -47) 141491) ((-134 . -102) T) ((-40 . -233) 141463) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141442) ((-341 . -641) 141426) ((-695 . -615) 141334) ((-317 . -517) 141300) ((-174 . -641) 141232) ((-314 . -517) 141124) ((-1251 . -1039) 141108) ((-1230 . -1039) 140894) ((-1000 . -414) 140878) ((-430 . -23) T) ((-1121 . -172) T) ((-1253 . -291) T) ((-655 . -718) 140848) ((-144 . -1101) T) ((-48 . -1003) T) ((-410 . -231) 140832) ((-296 . -235) 140782) ((-872 . -921) T) ((-872 . -821) NIL) ((-871 . -617) 140754) ((-865 . -851) T) ((-1230 . -340) 140724) ((-1230 . -379) 140694) ((-222 . -1122) 140678) ((-1267 . -289) 140655) ((-1211 . -649) 140580) ((-1004 . -647) 140510) ((-964 . -21) T) ((-964 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140475) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1000 . -1059) T) ((-871 . -1050) T) ((-775 . -102) T) ((-1252 . -365) 140454) ((-1251 . -901) 140360) ((-1231 . -365) 140339) ((-1230 . -901) 140190) ((-1025 . -614) 140172) ((-410 . -829) 140125) ((-1175 . -496) 140091) ((-169 . -921) 140022) ((-1174 . -496) 139988) ((-1168 . -496) 139954) ((-713 . -1101) T) ((-1127 . -496) 139920) ((-583 . -1057) 139907) ((-567 . -1057) 139894) ((-498 . -1057) 139859) ((-317 . -291) 139838) ((-314 . -291) T) ((-356 . -614) 139820) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139799) ((-583 . -111) 139784) ((-567 . -111) 139769) ((-498 . -111) 139725) ((-1177 . -887) 139692) ((-902 . -492) 139676) ((-48 . -614) 139658) ((-48 . -615) 139603) ((-240 . -131) 139473) ((-1290 . -647) 139432) ((-1240 . -921) 139411) ((-817 . -1221) 139390) ((-391 . -493) 139371) ((-1036 . -517) 139215) ((-391 . -614) 139181) ((-817 . -559) 139112) ((-588 . -649) 139087) ((-265 . -47) 139059) ((-247 . -47) 139016) ((-534 . -512) 138993) ((-583 . -617) 138965) ((-567 . -617) 138937) ((-498 . -617) 138870) ((-1075 . -1217) T) ((-1001 . -1217) T) ((-1259 . -23) T) ((-700 . -1057) 138835) ((-1259 . -1113) T) ((-1252 . -1113) T) ((-1252 . -23) T) ((-1231 . -1113) T) ((-1231 . -23) T) ((-1004 . -372) 138807) ((-112 . -370) T) ((-477 . -901) 138713) ((-1211 . -727) T) ((-905 . -614) 138695) ((-55 . -617) 138677) ((-91 . -107) 138661) ((-1121 . -291) T) ((-906 . -851) 138612) ((-702 . -1152) T) ((-700 . -111) 138568) ((-844 . -647) 138485) ((-598 . -1113) T) ((-597 . -1113) T) ((-713 . -718) 138314) ((-712 . -727) T) ((-1005 . -131) T) ((-972 . -131) T) ((-490 . -851) T) ((-915 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138251) ((-583 . -1050) T) ((-567 . -1050) T) ((-498 . -1050) T) ((-598 . -23) T) ((-345 . -1286) 138228) ((-320 . -455) 138207) ((-341 . -310) 138194) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 138168) ((-245 . -1011) 138152) ((-873 . -308) T) ((-1291 . -1281) 138136) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 138123) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1151 . -235) 138073) ((-1088 . -910) 138052) ((-116 . -38) 138039) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1023) 138017) ((-1280 . -492) 138001) ((-783 . -910) 137980) ((-781 . -910) 137959) ((-1190 . -1217) T) ((-457 . -910) 137938) ((-738 . -492) 137922) ((-1088 . -649) 137847) ((-700 . -617) 137782) ((-783 . -649) 137707) ((-624 . -1057) 137694) ((-482 . -1217) T) ((-345 . -370) T) ((-141 . -492) 137676) ((-781 . -649) 137601) ((-1142 . -1217) T) ((-552 . -851) T) ((-464 . -649) 137572) ((-265 . -887) 137431) ((-247 . -887) NIL) ((-117 . -1057) 137376) ((-457 . -649) 137301) ((-665 . -1039) 137278) ((-624 . -111) 137263) ((-393 . -1052) 137247) ((-357 . -1039) 137231) ((-354 . -1039) 137215) ((-346 . -1039) 137199) ((-265 . -1039) 137043) ((-247 . -1039) 136919) ((-117 . -111) 136848) ((-59 . -1217) T) ((-393 . -641) 136832) ((-622 . -1052) 136816) ((-522 . -1217) T) ((-519 . -1217) T) ((-500 . -1217) T) ((-499 . -1217) T) ((-440 . -614) 136798) ((-437 . -614) 136780) ((-622 . -641) 136764) ((-3 . -102) T) ((-1028 . -1210) 136733) ((-834 . -102) T) ((-690 . -57) 136691) ((-700 . -1050) T) ((-636 . -647) 136660) ((-608 . -647) 136629) ((-50 . -649) 136603) ((-290 . -455) T) ((-479 . -1210) 136572) ((0 . -102) T) ((-584 . -649) 136537) ((-521 . -649) 136482) ((-49 . -102) T) ((-911 . -1039) 136469) ((-700 . -243) T) ((-1081 . -412) 136448) ((-732 . -640) 136396) ((-1000 . -1101) T) ((-713 . -172) 136287) ((-624 . -617) 136182) ((-490 . -993) 136164) ((-265 . -379) 136148) ((-247 . -379) 136132) ((-402 . -1101) T) ((-1027 . -102) 136110) ((-341 . -38) 136094) ((-217 . -993) 136076) ((-117 . -617) 136006) ((-174 . -38) 135938) ((-1251 . -308) 135917) ((-1230 . -308) 135896) ((-659 . -727) T) ((-99 . -614) 135878) ((-480 . -1052) 135843) ((-1168 . -640) 135795) ((-480 . -641) 135760) ((-488 . -25) T) ((-488 . -21) T) ((-1230 . -1023) 135712) ((-1058 . -1217) T) ((-624 . -1050) T) ((-381 . -407) T) ((-393 . -102) T) ((-1106 . -619) 135627) ((-265 . -901) 135573) ((-247 . -901) 135550) ((-117 . -1050) T) ((-817 . -1113) T) ((-1088 . -727) T) ((-624 . -233) 135529) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1113) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1222 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1078 . -287) 135508) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135490) ((-695 . -1057) 135440) ((-1259 . -131) T) ((-1252 . -131) T) ((-1231 . -131) T) ((-1175 . -25) T) ((-1143 . -414) 135424) ((-636 . -369) 135356) ((-608 . -369) 135288) ((-1157 . -1150) 135272) ((-103 . -1101) 135250) ((-1175 . -21) T) ((-1174 . -21) T) ((-866 . -614) 135232) ((-1000 . -718) 135180) ((-223 . -649) 135147) ((-695 . -111) 135081) ((-50 . -727) T) ((-1174 . -25) T) ((-353 . -351) T) ((-1168 . -21) T) ((-1081 . -455) 135032) ((-1168 . -25) T) ((-713 . -517) 134979) ((-584 . -727) T) ((-521 . -727) T) ((-1127 . -21) T) ((-1127 . -25) T) ((-598 . -131) T) ((-295 . -647) 134714) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134693) ((-1225 . -102) T) ((-314 . -287) 134628) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134612) ((-1295 . -614) 134594) ((-1295 . -615) 134576) ((-1081 . -405) 134555) ((-1036 . -492) 134486) ((-567 . -796) T) ((-567 . -793) T) ((-1064 . -235) 134432) ((-361 . -405) 134383) ((-355 . -405) 134334) ((-347 . -405) 134285) ((-1282 . -1113) T) ((-1291 . -1052) 134269) ((-383 . -1052) 134253) ((-1291 . -641) 134223) ((-383 . -641) 134193) ((-695 . -617) 134128) ((-1282 . -23) T) ((-1269 . -102) T) ((-175 . -614) 134110) ((-1143 . -1059) T) ((-550 . -370) T) ((-671 . -745) 134094) ((-1179 . -145) 134073) ((-1179 . -147) 134052) ((-1147 . -1101) T) ((-1147 . -1072) 134021) ((-69 . -1217) T) ((-1025 . -1057) 133958) ((-353 . -647) 133888) ((-867 . -1059) T) ((-240 . -640) 133794) ((-695 . -1050) T) ((-356 . -1057) 133739) ((-61 . -1217) T) ((-1025 . -111) 133655) ((-902 . -614) 133566) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133545) ((-700 . -796) T) ((-700 . -793) T) ((-1004 . -414) 133522) ((-356 . -111) 133451) ((-381 . -921) T) ((-410 . -849) 133430) ((-713 . -291) 133341) ((-223 . -727) T) ((-1259 . -496) 133307) ((-1252 . -496) 133273) ((-1231 . -496) 133239) ((-581 . -1101) T) ((-317 . -1003) 133218) ((-222 . -1101) 133196) ((-1224 . -845) T) ((-320 . -974) 133158) ((-105 . -102) T) ((-48 . -1057) 133123) ((-1291 . -102) T) ((-383 . -102) T) ((-48 . -111) 133079) ((-1005 . -640) 133061) ((-1253 . -614) 133043) ((-534 . -102) T) ((-503 . -102) T) ((-1134 . -1135) 133027) ((-152 . -1274) 133011) ((-245 . -1217) T) ((-1216 . -102) T) ((-1025 . -617) 132948) ((-1173 . -1221) 132927) ((-356 . -617) 132857) ((-1126 . -1221) 132836) ((-240 . -21) 132746) ((-240 . -25) 132597) ((-127 . -119) 132581) ((-121 . -119) 132565) ((-44 . -745) 132549) ((-1173 . -559) 132460) ((-1126 . -559) 132391) ((-1224 . -1101) T) ((-1036 . -287) 132366) ((-1167 . -1084) T) ((-995 . -1084) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1113) 132276) ((-251 . -1113) 132186) ((-1025 . -1050) T) ((-1004 . -1059) T) ((-48 . -617) 132119) ((-345 . -649) 132064) ((-622 . -38) 132048) ((-1280 . -614) 132010) ((-1280 . -615) 131971) ((-1078 . -614) 131953) ((-1025 . -243) T) ((-356 . -1050) T) ((-816 . -1274) 131923) ((-252 . -23) T) ((-251 . -23) T) ((-988 . -614) 131905) ((-738 . -615) 131866) ((-738 . -614) 131848) ((-800 . -851) 131827) ((-1160 . -151) 131774) ((-1000 . -517) 131686) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131667) ((-1005 . -25) T) ((-141 . -614) 131649) ((-141 . -615) 131608) ((-911 . -308) T) ((-1005 . -21) T) ((-972 . -25) T) ((-915 . -21) T) ((-915 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131592) ((-48 . -1050) T) ((-1289 . -1281) 131576) ((-1287 . -1281) 131560) ((-1036 . -605) 131535) ((-317 . -615) 131396) ((-317 . -614) 131378) ((-314 . -615) NIL) ((-314 . -614) 131360) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131321) ((-553 . -235) 131271) ((-139 . -614) 131238) ((-136 . -614) 131220) ((-114 . -614) 131202) ((-480 . -38) 131167) ((-1291 . -1288) 131146) ((-1282 . -131) T) ((-1290 . -1059) T) ((-1083 . -102) T) ((-88 . -1217) T) ((-503 . -310) NIL) ((-1001 . -107) 131130) ((-890 . -1101) T) ((-886 . -1101) T) ((-1267 . -652) 131114) ((-1267 . -375) 131098) ((-328 . -1217) T) ((-595 . -851) T) ((-1143 . -1101) T) ((-1143 . -1054) 131038) ((-103 . -517) 130971) ((-928 . -614) 130953) ((-345 . -727) T) ((-30 . -614) 130935) ((-867 . -1101) T) ((-844 . -1059) 130914) ((-40 . -649) 130859) ((-225 . -1221) T) ((-410 . -1059) T) ((-1159 . -151) 130841) ((-1000 . -291) 130792) ((-618 . -1101) T) ((-225 . -559) T) ((-320 . -1248) 130776) ((-320 . -1245) 130746) ((-702 . -647) 130718) ((-1190 . -1193) 130697) ((-1076 . -614) 130679) ((-1190 . -107) 130629) ((-648 . -151) 130613) ((-633 . -151) 130559) ((-116 . -647) 130531) ((-482 . -1193) 130510) ((-490 . -147) T) ((-490 . -145) NIL) ((-1121 . -615) 130425) ((-441 . -614) 130407) ((-217 . -147) T) ((-217 . -145) NIL) ((-1121 . -614) 130389) ((-129 . -102) T) ((-52 . -102) T) ((-1231 . -640) 130341) ((-482 . -107) 130291) ((-994 . -23) T) ((-1291 . -38) 130261) ((-1173 . -1113) T) ((-1126 . -1113) T) ((-1063 . -1221) T) ((-312 . -102) T) ((-855 . -1113) T) ((-953 . -1221) 130240) ((-484 . -1221) 130219) ((-1063 . -559) T) ((-953 . -559) 130150) ((-1173 . -23) T) ((-1126 . -23) T) ((-855 . -23) T) ((-484 . -559) 130081) ((-1143 . -718) 130013) ((-671 . -1052) 129997) ((-1147 . -517) 129930) ((-671 . -641) 129914) ((-1036 . -615) NIL) ((-1036 . -614) 129896) ((-96 . -1084) T) ((-867 . -718) 129866) ((-1211 . -47) 129835) ((-252 . -131) T) ((-251 . -131) T) ((-1105 . -1101) T) ((-1004 . -1101) T) ((-62 . -614) 129817) ((-1168 . -851) NIL) ((-1025 . -793) T) ((-1025 . -796) T) ((-1295 . -1057) 129804) ((-1295 . -111) 129789) ((-1259 . -25) T) ((-1259 . -21) T) ((-871 . -649) 129776) ((-1252 . -21) T) ((-1252 . -25) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-1028 . -151) 129760) ((-873 . -821) 129739) ((-873 . -921) T) ((-713 . -287) 129666) ((-598 . -21) T) ((-341 . -647) 129625) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129542) ((-40 . -727) T) ((-222 . -517) 129475) ((-597 . -25) T) ((-479 . -151) 129459) ((-466 . -151) 129443) ((-922 . -795) T) ((-922 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1101) T) ((-505 . -1101) T) ((-772 . -727) T) ((-225 . -365) T) ((-1289 . -1052) 129427) ((-1287 . -1052) 129411) ((-1289 . -641) 129381) ((-1157 . -1101) 129359) ((-872 . -1221) T) ((-1287 . -641) 129329) ((-655 . -614) 129311) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1052) 129295) ((-1295 . -617) 129277) ((-1290 . -1101) T) ((-671 . -102) T) ((-361 . -1274) 129261) ((-355 . -1274) 129245) ((-44 . -641) 129229) ((-347 . -1274) 129213) ((-551 . -102) T) ((-523 . -851) 129192) ((-1047 . -1101) T) ((-818 . -455) 129171) ((-152 . -1052) 129155) ((-1047 . -1072) 129084) ((-1028 . -977) 129053) ((-820 . -1113) T) ((-1004 . -718) 128998) ((-152 . -641) 128982) ((-389 . -1113) T) ((-479 . -977) 128951) ((-466 . -977) 128920) ((-110 . -151) 128902) ((-73 . -614) 128884) ((-894 . -614) 128866) ((-1081 . -725) 128845) ((-1295 . -1050) T) ((-817 . -640) 128793) ((-295 . -1059) 128735) ((-169 . -1221) 128640) ((-225 . -1113) T) ((-325 . -23) T) ((-1168 . -993) 128592) ((-844 . -1101) T) ((-1253 . -1057) 128497) ((-1127 . -741) 128476) ((-1251 . -921) 128455) ((-1230 . -921) 128434) ((-871 . -727) T) ((-169 . -559) 128345) ((-583 . -649) 128332) ((-567 . -649) 128319) ((-410 . -1101) T) ((-264 . -1101) T) ((-213 . -614) 128301) ((-498 . -649) 128266) ((-225 . -23) T) ((-1230 . -821) 128219) ((-1289 . -102) T) ((-356 . -1286) 128196) ((-1287 . -102) T) ((-1253 . -111) 128088) ((-816 . -1052) 127985) ((-816 . -641) 127927) ((-144 . -614) 127909) ((-994 . -131) T) ((-44 . -102) T) ((-240 . -851) 127860) ((-1240 . -1221) 127839) ((-103 . -492) 127823) ((-1290 . -718) 127793) ((-1088 . -47) 127754) ((-1063 . -1113) T) ((-953 . -1113) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127731) ((-781 . -47) 127703) ((-1240 . -559) 127614) ((-356 . -370) T) ((-484 . -1113) T) ((-1173 . -131) T) ((-1126 . -131) T) ((-457 . -47) 127593) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1063 . -23) T) ((-953 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1143 . -517) 127526) ((-594 . -1084) T) ((-588 . -1039) 127510) ((-1253 . -617) 127384) ((-484 . -23) T) ((-353 . -1059) T) ((-1211 . -901) 127365) ((-671 . -310) 127303) ((-1114 . -1274) 127273) ((-700 . -649) 127238) ((-1004 . -172) T) ((-964 . -145) 127217) ((-636 . -1101) T) ((-608 . -1101) T) ((-964 . -147) 127196) ((-1005 . -851) T) ((-736 . -147) 127175) ((-736 . -145) 127154) ((-972 . -851) T) ((-834 . -647) 127071) ((-477 . -921) 127050) ((-320 . -1052) 126885) ((-317 . -1057) 126795) ((-314 . -1057) 126724) ((-1000 . -287) 126682) ((-410 . -718) 126634) ((-320 . -641) 126475) ((-702 . -849) T) ((-1253 . -1050) T) ((-317 . -111) 126371) ((-314 . -111) 126284) ((-965 . -102) T) ((-816 . -102) 126074) ((-713 . -615) NIL) ((-713 . -614) 126056) ((-659 . -1039) 125952) ((-1253 . -327) 125896) ((-1036 . -289) 125871) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125822) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1147 . -492) 125806) ((-1088 . -887) NIL) ((-872 . -1113) T) ((-117 . -910) NIL) ((-1289 . -1288) 125782) ((-1287 . -1288) 125761) ((-783 . -887) NIL) ((-781 . -887) 125620) ((-1282 . -25) T) ((-1282 . -21) T) ((-1214 . -102) 125598) ((-1107 . -398) T) ((-624 . -649) 125585) ((-457 . -887) NIL) ((-676 . -102) 125563) ((-1088 . -1039) 125390) ((-872 . -23) T) ((-783 . -1039) 125249) ((-781 . -1039) 125106) ((-117 . -649) 125051) ((-457 . -1039) 124927) ((-317 . -617) 124491) ((-314 . -617) 124374) ((-393 . -647) 124343) ((-650 . -1039) 124327) ((-628 . -102) T) ((-222 . -492) 124311) ((-1267 . -34) T) ((-622 . -647) 124270) ((-290 . -1052) 124257) ((-136 . -617) 124241) ((-290 . -641) 124228) ((-636 . -718) 124212) ((-608 . -718) 124196) ((-671 . -38) 124156) ((-320 . -102) T) ((-85 . -614) 124138) ((-50 . -1039) 124122) ((-1121 . -1057) 124109) ((-1088 . -379) 124093) ((-783 . -379) 124077) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1039) 124064) ((-521 . -1039) 124041) ((-60 . -57) 124003) ((-325 . -131) T) ((-317 . -1050) 123893) ((-314 . -1050) T) ((-169 . -1113) T) ((-781 . -379) 123877) ((-45 . -151) 123827) ((-1005 . -993) 123809) ((-457 . -379) 123793) ((-410 . -172) T) ((-317 . -243) 123772) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1101) 123554) ((-225 . -131) T) ((-1121 . -111) 123539) ((-169 . -23) T) ((-800 . -147) 123518) ((-800 . -145) 123497) ((-252 . -640) 123403) ((-251 . -640) 123309) ((-320 . -285) 123275) ((-1157 . -517) 123208) ((-480 . -647) 123158) ((-1134 . -1101) T) ((-225 . -1061) T) ((-816 . -310) 123096) ((-1088 . -901) 123031) ((-783 . -901) 122974) ((-781 . -901) 122958) ((-1289 . -38) 122928) ((-1287 . -38) 122898) ((-1240 . -1113) T) ((-856 . -1113) T) ((-457 . -901) 122875) ((-859 . -1101) T) ((-1240 . -23) T) ((-1121 . -617) 122847) ((-574 . -1113) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -921) T) ((-354 . -921) T) ((-290 . -102) T) ((-346 . -921) T) ((-1063 . -131) T) ((-971 . -1084) T) ((-953 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -910) NIL) ((-1047 . -517) 122748) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122686) ((-636 . -762) T) ((-608 . -762) T) ((-1231 . -851) NIL) ((-1081 . -1052) 122596) ((-1004 . -291) T) ((-695 . -649) 122546) ((-252 . -21) T) ((-353 . -1101) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122530) ((-2 . -102) T) ((-911 . -921) T) ((-1081 . -641) 122398) ((-485 . -1274) 122368) ((-1121 . -1050) T) ((-712 . -308) T) ((-361 . -1052) 122320) ((-355 . -1052) 122272) ((-347 . -1052) 122224) ((-361 . -641) 122176) ((-223 . -1039) 122153) ((-355 . -641) 122105) ((-108 . -1052) 122055) ((-347 . -641) 122007) ((-295 . -718) 121949) ((-702 . -1059) T) ((-490 . -455) T) ((-410 . -517) 121861) ((-108 . -641) 121811) ((-217 . -455) T) ((-1121 . -233) T) ((-296 . -151) 121761) ((-1000 . -615) 121722) ((-1000 . -614) 121704) ((-990 . -614) 121686) ((-116 . -1059) T) ((-655 . -1057) 121670) ((-225 . -496) T) ((-402 . -614) 121652) ((-402 . -615) 121629) ((-1055 . -1274) 121599) ((-655 . -111) 121578) ((-1143 . -492) 121562) ((-1291 . -647) 121521) ((-383 . -647) 121490) ((-816 . -38) 121460) ((-63 . -444) T) ((-63 . -398) T) ((-1160 . -102) T) ((-872 . -131) T) ((-487 . -102) 121438) ((-1295 . -370) T) ((-1081 . -102) T) ((-1062 . -102) T) ((-353 . -718) 121383) ((-732 . -147) 121362) ((-732 . -145) 121341) ((-655 . -617) 121259) ((-1025 . -649) 121196) ((-526 . -1101) 121174) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1101) T) ((-356 . -649) 121119) ((-1173 . -640) 121067) ((-1126 . -640) 121015) ((-387 . -512) 120994) ((-834 . -849) 120973) ((-381 . -1221) T) ((-695 . -727) T) ((-341 . -1059) T) ((-1231 . -993) 120925) ((-174 . -1059) T) ((-103 . -614) 120857) ((-1175 . -145) 120836) ((-1175 . -147) 120815) ((-381 . -559) T) ((-1174 . -147) 120794) ((-1174 . -145) 120773) ((-1168 . -145) 120680) ((-410 . -291) T) ((-1168 . -147) 120587) ((-1127 . -147) 120566) ((-1127 . -145) 120545) ((-320 . -38) 120386) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1050) T) ((-48 . -649) 120351) ((-1114 . -1052) 120248) ((-894 . -617) 120225) ((-1114 . -641) 120167) ((-1167 . -102) T) ((-995 . -102) T) ((-994 . -21) T) ((-127 . -1011) 120151) ((-121 . -1011) 120135) ((-994 . -25) T) ((-902 . -119) 120119) ((-1159 . -102) T) ((-1240 . -131) T) ((-1173 . -25) T) ((-1173 . -21) T) ((-856 . -131) T) ((-1126 . -25) T) ((-1126 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 120098) ((-648 . -102) 120076) ((-633 . -102) T) ((-1160 . -310) 119871) ((-574 . -131) T) ((-622 . -849) 119850) ((-1157 . -492) 119834) ((-1151 . -151) 119784) ((-1147 . -614) 119746) ((-1147 . -615) 119707) ((-1025 . -792) T) ((-1025 . -795) T) ((-1025 . -727) T) ((-713 . -1057) 119530) ((-487 . -310) 119468) ((-456 . -420) 119438) ((-353 . -172) T) ((-290 . -38) 119425) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1039) 119402) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119211) ((-671 . -231) 119195) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 119144) ((-108 . -310) NIL) ((-72 . -398) T) ((-1114 . -102) 118934) ((-834 . -414) 118918) ((-1121 . -796) T) ((-1121 . -793) T) ((-702 . -1101) T) ((-581 . -614) 118900) ((-381 . -365) T) ((-169 . -496) 118878) ((-222 . -614) 118810) ((-134 . -1101) T) ((-116 . -1101) T) ((-48 . -727) T) ((-1047 . -492) 118775) ((-141 . -428) 118757) ((-141 . -370) T) ((-1028 . -102) T) ((-515 . -512) 118736) ((-713 . -617) 118492) ((-479 . -102) T) ((-466 . -102) T) ((-1035 . -1113) T) ((-1224 . -614) 118474) ((-1182 . -1039) 118410) ((-1175 . -35) 118376) ((-1175 . -95) 118342) ((-1175 . -1205) 118308) ((-1175 . -1202) 118274) ((-1159 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1081 . -1152) 118253) ((-1174 . -1202) 118219) ((-1174 . -1205) 118185) ((-1035 . -23) T) ((-1174 . -95) 118151) ((-574 . -496) T) ((-1174 . -35) 118117) ((-1168 . -1202) 118083) ((-1168 . -1205) 118049) ((-1168 . -95) 118015) ((-363 . -1113) T) ((-361 . -1152) 117994) ((-355 . -1152) 117973) ((-347 . -1152) 117952) ((-1168 . -35) 117918) ((-1127 . -35) 117884) ((-1127 . -95) 117850) ((-108 . -1152) T) ((-1127 . -1205) 117816) ((-834 . -1059) 117795) ((-648 . -310) 117733) ((-633 . -310) 117584) ((-1127 . -1202) 117550) ((-713 . -1050) T) ((-1063 . -640) 117532) ((-1081 . -38) 117400) ((-953 . -640) 117348) ((-1005 . -147) T) ((-1005 . -145) NIL) ((-381 . -1113) T) ((-325 . -25) T) ((-323 . -23) T) ((-944 . -851) 117327) ((-713 . -327) 117304) ((-484 . -640) 117252) ((-40 . -1039) 117140) ((-713 . -233) T) ((-702 . -718) 117127) ((-341 . -1101) T) ((-174 . -1101) T) ((-332 . -851) T) ((-421 . -455) 117077) ((-381 . -23) T) ((-361 . -38) 117042) ((-355 . -38) 117007) ((-347 . -38) 116972) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1113) T) ((-108 . -38) 116922) ((-828 . -1113) T) ((-775 . -1101) T) ((-116 . -718) 116909) ((-673 . -1039) 116893) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1157 . -287) 116870) ((-1114 . -310) 116808) ((-485 . -1052) 116705) ((-1103 . -235) 116689) ((-64 . -399) T) ((-64 . -398) T) ((-110 . -102) T) ((-485 . -641) 116631) ((-40 . -379) 116608) ((-96 . -102) T) ((-654 . -853) 116592) ((-1136 . -1084) T) ((-1063 . -21) T) ((-1063 . -25) T) ((-1055 . -1052) 116576) ((-816 . -231) 116545) ((-953 . -25) T) ((-953 . -21) T) ((-1055 . -641) 116487) ((-622 . -1059) T) ((-1121 . -370) T) ((-1028 . -310) 116425) ((-671 . -647) 116384) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1052) 116368) ((-890 . -614) 116350) ((-886 . -614) 116332) ((-526 . -517) 116265) ((-252 . -851) 116216) ((-251 . -851) 116167) ((-387 . -641) 116137) ((-872 . -640) 116114) ((-479 . -310) 116052) ((-466 . -310) 115990) ((-353 . -291) T) ((-1157 . -1255) 115974) ((-1143 . -614) 115936) ((-1143 . -615) 115897) ((-1141 . -102) T) ((-1000 . -1057) 115793) ((-40 . -901) 115745) ((-1157 . -605) 115722) ((-1295 . -649) 115709) ((-867 . -493) 115686) ((-1064 . -151) 115632) ((-873 . -1221) T) ((-1000 . -111) 115514) ((-341 . -718) 115498) ((-867 . -614) 115460) ((-174 . -718) 115392) ((-410 . -287) 115350) ((-873 . -559) T) ((-108 . -403) 115332) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115314) ((-99 . -727) T) ((-485 . -102) 115104) ((-99 . -476) T) ((-116 . -172) T) ((-1289 . -647) 115063) ((-1287 . -647) 115022) ((-1114 . -38) 114992) ((-169 . -640) 114940) ((-1055 . -102) T) ((-1000 . -617) 114830) ((-872 . -25) T) ((-816 . -238) 114809) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114752) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114730) ((-127 . -1217) T) ((-121 . -1217) T) ((-818 . -1052) 114681) ((-818 . -641) 114623) ((-1035 . -131) T) ((-671 . -369) 114607) ((-152 . -647) 114566) ((-1000 . -1050) T) ((-1240 . -640) 114514) ((-1105 . -614) 114496) ((-1004 . -614) 114478) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1101) T) ((-1004 . -615) 114462) ((-1000 . -243) 114441) ((-1000 . -233) 114420) ((-1295 . -727) T) ((-1259 . -145) 114399) ((-834 . -1101) T) ((-1259 . -147) 114378) ((-1252 . -147) 114357) ((-1252 . -145) 114336) ((-1251 . -1221) 114315) ((-1231 . -145) 114222) ((-1231 . -147) 114129) ((-1230 . -1221) 114108) ((-381 . -131) T) ((-567 . -887) 114090) ((0 . -1101) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1101) T) ((-1253 . -649) 113995) ((-1251 . -559) 113946) ((-715 . -1113) T) ((-1230 . -559) 113897) ((-567 . -1039) 113879) ((-597 . -147) 113858) ((-597 . -145) 113837) ((-498 . -1039) 113780) ((-1136 . -1138) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-965 . -647) 113724) ((-715 . -23) T) ((-509 . -614) 113690) ((-505 . -614) 113672) ((-816 . -647) 113422) ((-1291 . -1059) T) ((-381 . -1061) T) ((-1027 . -1101) 113400) ((-55 . -1039) 113382) ((-902 . -34) T) ((-485 . -310) 113320) ((-594 . -102) T) ((-1157 . -615) 113281) ((-1157 . -614) 113213) ((-1179 . -1052) 113096) ((-45 . -102) T) ((-818 . -102) T) ((-1179 . -641) 112993) ((-1240 . -25) T) ((-1240 . -21) T) ((-856 . -25) T) ((-44 . -369) 112977) ((-856 . -21) T) ((-732 . -455) 112928) ((-1290 . -614) 112910) ((-1279 . -1052) 112880) ((-1055 . -310) 112818) ((-672 . -1084) T) ((-607 . -1084) T) ((-393 . -1101) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1084) T) ((-161 . -1084) T) ((-156 . -1084) T) ((-154 . -1084) T) ((-1279 . -641) 112788) ((-622 . -1101) T) ((-700 . -887) 112770) ((-1267 . -1217) T) ((-227 . -310) 112708) ((-144 . -370) T) ((-1047 . -615) 112650) ((-1047 . -614) 112593) ((-314 . -910) NIL) ((-1225 . -845) T) ((-700 . -1039) 112538) ((-712 . -921) T) ((-477 . -1221) 112517) ((-1174 . -455) 112496) ((-1168 . -455) 112475) ((-331 . -102) T) ((-873 . -1113) T) ((-320 . -647) 112357) ((-317 . -649) 112178) ((-314 . -649) 112107) ((-477 . -559) 112058) ((-341 . -517) 112024) ((-553 . -151) 111974) ((-40 . -308) T) ((-844 . -614) 111956) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1081 . -231) 111926) ((-515 . -102) T) ((-410 . -615) 111733) ((-410 . -614) 111715) ((-264 . -614) 111697) ((-116 . -291) T) ((-1253 . -727) T) ((-1251 . -365) 111676) ((-1230 . -365) 111655) ((-1280 . -34) T) ((-1225 . -1101) T) ((-117 . -1217) T) ((-108 . -231) 111637) ((-1179 . -102) T) ((-480 . -1101) T) ((-526 . -492) 111621) ((-738 . -34) T) ((-654 . -1052) 111605) ((-485 . -38) 111575) ((-654 . -641) 111545) ((-141 . -34) T) ((-117 . -885) 111522) ((-117 . -887) NIL) ((-624 . -1039) 111405) ((-645 . -851) 111384) ((-1279 . -102) T) ((-296 . -102) T) ((-713 . -370) 111363) ((-117 . -1039) 111340) ((-393 . -718) 111324) ((-622 . -718) 111308) ((-45 . -310) 111112) ((-817 . -145) 111091) ((-817 . -147) 111070) ((-290 . -647) 111042) ((-1290 . -384) 111021) ((-820 . -851) T) ((-1269 . -1101) T) ((-1160 . -229) 110968) ((-389 . -851) 110947) ((-1259 . -1205) 110913) ((-1259 . -1202) 110879) ((-1252 . -1202) 110845) ((-518 . -131) T) ((-1252 . -1205) 110811) ((-1231 . -1202) 110777) ((-1231 . -1205) 110743) ((-1259 . -35) 110709) ((-1259 . -95) 110675) ((-636 . -614) 110644) ((-608 . -614) 110613) ((-225 . -851) T) ((-1252 . -95) 110579) ((-1252 . -35) 110545) ((-1251 . -1113) T) ((-1121 . -649) 110532) ((-1231 . -95) 110498) ((-1230 . -1113) T) ((-595 . -151) 110480) ((-1081 . -351) 110459) ((-174 . -291) T) ((-117 . -379) 110436) ((-117 . -340) 110413) ((-1231 . -35) 110379) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110228) ((-314 . -727) T) ((-477 . -365) 110207) ((-361 . -351) 110186) ((-355 . -351) 110165) ((-347 . -351) 110144) ((-317 . -476) 110123) ((-1251 . -23) T) ((-1230 . -23) T) ((-719 . -1113) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 110088) ((-45 . -283) 110038) ((-105 . -1101) T) ((-68 . -614) 110020) ((-971 . -102) T) ((-865 . -102) T) ((-624 . -901) 109979) ((-1291 . -1101) T) ((-383 . -1101) T) ((-82 . -1217) T) ((-1216 . -1101) T) ((-1063 . -851) T) ((-117 . -901) NIL) ((-783 . -921) 109958) ((-714 . -851) T) ((-534 . -1101) T) ((-503 . -1101) T) ((-357 . -1221) T) ((-354 . -1221) T) ((-346 . -1221) T) ((-265 . -1221) 109937) ((-247 . -1221) 109916) ((-536 . -861) T) ((-1114 . -231) 109885) ((-1159 . -829) T) ((-1143 . -1057) 109869) ((-393 . -762) T) ((-695 . -1217) T) ((-692 . -1039) 109853) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109784) ((-247 . -559) 109715) ((-528 . -1084) T) ((-1143 . -111) 109694) ((-456 . -745) 109664) ((-867 . -1057) 109634) ((-818 . -38) 109576) ((-695 . -885) 109558) ((-695 . -887) 109540) ((-296 . -310) 109344) ((-911 . -1221) T) ((-1157 . -289) 109321) ((-1081 . -647) 109216) ((-671 . -414) 109200) ((-867 . -111) 109165) ((-1005 . -455) T) ((-695 . -1039) 109110) ((-911 . -559) T) ((-536 . -614) 109092) ((-584 . -921) T) ((-490 . -1052) 109042) ((-477 . -1113) T) ((-521 . -921) T) ((-915 . -455) T) ((-65 . -614) 109024) ((-217 . -1052) 108974) ((-490 . -641) 108924) ((-361 . -647) 108861) ((-355 . -647) 108798) ((-347 . -647) 108735) ((-633 . -229) 108681) ((-217 . -641) 108631) ((-108 . -647) 108581) ((-477 . -23) T) ((-1121 . -795) T) ((-873 . -131) T) ((-1121 . -792) T) ((-1282 . -1284) 108560) ((-1121 . -727) T) ((-655 . -649) 108534) ((-295 . -614) 108275) ((-1143 . -617) 108193) ((-1036 . -34) T) ((-816 . -849) 108172) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1291 . -718) 108142) ((-695 . -379) 108124) ((-695 . -340) 108106) ((-480 . -172) T) ((-383 . -718) 108076) ((-867 . -617) 108011) ((-872 . -851) NIL) ((-567 . -1023) T) ((-498 . -1023) T) ((-1134 . -614) 107993) ((-1114 . -238) 107972) ((-214 . -102) T) ((-1151 . -102) T) ((-71 . -614) 107954) ((-1143 . -1050) T) ((-1179 . -38) 107851) ((-859 . -614) 107833) ((-567 . -548) T) ((-671 . -1059) T) ((-732 . -950) 107786) ((-1143 . -233) 107765) ((-1083 . -1101) T) ((-1035 . -25) T) ((-1035 . -21) T) ((-1004 . -1057) 107710) ((-906 . -102) T) ((-867 . -1050) T) ((-695 . -901) NIL) ((-357 . -330) 107694) ((-357 . -365) T) ((-354 . -330) 107678) ((-354 . -365) T) ((-346 . -330) 107662) ((-346 . -365) T) ((-490 . -102) T) ((-1279 . -38) 107632) ((-549 . -851) T) ((-526 . -688) 107582) ((-217 . -102) T) ((-1025 . -1039) 107462) ((-1004 . -111) 107391) ((-1175 . -974) 107360) ((-523 . -151) 107344) ((-1081 . -372) 107323) ((-353 . -614) 107305) ((-323 . -21) T) ((-356 . -1039) 107282) ((-323 . -25) T) ((-1174 . -974) 107244) ((-1168 . -974) 107213) ((-76 . -614) 107195) ((-1127 . -974) 107162) ((-700 . -308) T) ((-129 . -845) T) ((-911 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-911 . -330) 107149) ((-86 . -614) 107131) ((-700 . -1023) T) ((-678 . -851) T) ((-1251 . -131) T) ((-1230 . -131) T) ((-902 . -1011) 107115) ((-837 . -21) T) ((-48 . -1039) 107058) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1114 . -647) 106808) ((-1289 . -1059) T) ((-552 . -102) T) ((-1287 . -1059) T) ((-655 . -727) T) ((-1105 . -619) 106711) ((-1004 . -617) 106641) ((-1290 . -1057) 106625) ((-816 . -414) 106594) ((-103 . -119) 106578) ((-129 . -1101) T) ((-52 . -1101) T) ((-927 . -614) 106560) ((-872 . -993) 106537) ((-824 . -102) T) ((-1290 . -111) 106516) ((-654 . -38) 106486) ((-574 . -851) T) ((-357 . -1113) T) ((-354 . -1113) T) ((-346 . -1113) T) ((-265 . -1113) T) ((-247 . -1113) T) ((-624 . -308) 106465) ((-1151 . -310) 106269) ((-665 . -23) T) ((-527 . -1084) T) ((-312 . -1101) T) ((-485 . -231) 106238) ((-152 . -1059) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1004 . -1050) T) ((-713 . -910) 106217) ((-1157 . -617) 106194) ((-1004 . -233) 106166) ((-1004 . -243) T) ((-117 . -1023) NIL) ((-911 . -1113) T) ((-1252 . -455) 106145) ((-1231 . -455) 106124) ((-526 . -614) 106056) ((-713 . -649) 105981) ((-410 . -1057) 105933) ((-507 . -614) 105915) ((-911 . -23) T) ((-490 . -310) NIL) ((-1290 . -617) 105871) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105809) ((-816 . -1059) 105739) ((-738 . -1099) 105723) ((-1251 . -496) 105689) ((-1230 . -496) 105655) ((-551 . -845) T) ((-141 . -1099) 105637) ((-480 . -291) T) ((-1290 . -1050) T) ((-1222 . -102) T) ((-1064 . -102) T) ((-844 . -617) 105505) ((-503 . -517) NIL) ((-485 . -238) 105484) ((-410 . -617) 105382) ((-964 . -1052) 105265) ((-736 . -1052) 105235) ((-964 . -641) 105132) ((-1173 . -145) 105111) ((-736 . -641) 105081) ((-456 . -1052) 105051) ((-1173 . -147) 105030) ((-1126 . -147) 105009) ((-1126 . -145) 104988) ((-636 . -1057) 104972) ((-608 . -1057) 104956) ((-456 . -641) 104926) ((-1175 . -1258) 104910) ((-1175 . -1245) 104887) ((-671 . -1101) T) ((-671 . -1054) 104827) ((-1174 . -1250) 104788) ((-551 . -1101) T) ((-490 . -1152) T) ((-1174 . -1245) 104758) ((-1174 . -1248) 104742) ((-1168 . -1229) 104703) ((-217 . -1152) T) ((-345 . -921) T) ((-819 . -267) 104687) ((-636 . -111) 104666) ((-608 . -111) 104645) ((-1168 . -1245) 104622) ((-844 . -1050) 104601) ((-1168 . -1227) 104585) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1052) 104559) ((-410 . -1050) T) ((-320 . -1059) T) ((-695 . -308) T) ((-421 . -641) 104533) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104512) ((-490 . -38) 104462) ((-217 . -38) 104412) ((-477 . -496) 104378) ((-1224 . -370) T) ((-1159 . -1145) T) ((-1102 . -102) T) ((-702 . -614) 104360) ((-702 . -615) 104275) ((-715 . -21) T) ((-715 . -25) T) ((-1136 . -102) T) ((-485 . -647) 104025) ((-134 . -614) 104007) ((-116 . -614) 103989) ((-157 . -25) T) ((-1289 . -1101) T) ((-873 . -640) 103937) ((-1287 . -1101) T) ((-964 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103888) ((-44 . -1101) T) ((-1089 . -851) T) ((-1064 . -310) 103739) ((-665 . -131) T) ((-1055 . -647) 103708) ((-671 . -718) 103692) ((-290 . -1059) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103661) ((-421 . -102) T) ((-152 . -1101) T) ((-45 . -229) 103611) ((-800 . -1052) 103595) ((-959 . -851) 103574) ((-1000 . -649) 103512) ((-800 . -641) 103496) ((-240 . -1274) 103466) ((-1025 . -308) T) ((-295 . -1057) 103387) ((-911 . -131) T) ((-40 . -921) T) ((-490 . -403) 103369) ((-356 . -308) T) ((-217 . -403) 103351) ((-1081 . -414) 103335) ((-295 . -111) 103251) ((-1184 . -851) T) ((-1183 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103233) ((-1253 . -47) 103177) ((-225 . -147) T) ((-174 . -614) 103159) ((-1114 . -849) 103138) ((-775 . -614) 103120) ((-128 . -851) T) ((-609 . -235) 103067) ((-478 . -235) 103017) ((-1289 . -718) 102987) ((-48 . -308) T) ((-1287 . -718) 102957) ((-65 . -617) 102886) ((-965 . -1101) T) ((-816 . -1101) 102676) ((-313 . -102) T) ((-902 . -1217) T) ((-48 . -1023) T) ((-1230 . -640) 102584) ((-690 . -102) 102562) ((-44 . -718) 102546) ((-553 . -102) T) ((-295 . -617) 102477) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102413) ((-671 . -762) T) ((-1214 . -1101) 102391) ((-353 . -1057) 102336) ((-676 . -1101) 102314) ((-1063 . -147) T) ((-953 . -147) 102293) ((-953 . -145) 102272) ((-800 . -102) T) ((-152 . -718) 102256) ((-484 . -147) 102235) ((-484 . -145) 102214) ((-353 . -111) 102143) ((-1081 . -1059) T) ((-323 . -851) 102122) ((-1259 . -974) 102091) ((-628 . -1101) T) ((-1252 . -974) 102053) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 102003) ((-361 . -1059) T) ((-355 . -1059) T) ((-347 . -1059) T) ((-295 . -1050) 101945) ((-1231 . -974) 101914) ((-381 . -851) T) ((-108 . -1059) T) ((-1000 . -727) T) ((-871 . -921) T) ((-844 . -796) 101893) ((-844 . -793) 101872) ((-421 . -310) 101811) ((-471 . -102) T) ((-597 . -974) 101780) ((-320 . -1101) T) ((-410 . -796) 101759) ((-410 . -793) 101738) ((-503 . -492) 101720) ((-1253 . -1039) 101686) ((-1251 . -21) T) ((-1251 . -25) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-816 . -718) 101628) ((-353 . -617) 101558) ((-700 . -407) T) ((-1280 . -1217) T) ((-607 . -102) T) ((-1114 . -414) 101527) ((-1004 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1179 . -647) 101437) ((-738 . -1217) T) ((-732 . -1052) 101280) ((-44 . -762) T) ((-732 . -641) 101129) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 101113) ((-141 . -1217) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1216 . -93) T) ((-353 . -1050) T) ((-70 . -385) T) ((-70 . -398) T) ((-1166 . -102) T) ((-671 . -517) 101046) ((-1279 . -647) 100991) ((-690 . -310) 100929) ((-964 . -38) 100826) ((-1181 . -614) 100808) ((-736 . -38) 100778) ((-553 . -310) 100582) ((-1175 . -1052) 100465) ((-317 . -1217) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1217) T) ((-290 . -1101) T) ((-1174 . -1052) 100300) ((-1168 . -1052) 100090) ((-1127 . -1052) 99973) ((-1175 . -641) 99870) ((-1174 . -641) 99711) ((-712 . -1221) T) ((-1168 . -641) 99507) ((-1157 . -652) 99491) ((-1127 . -641) 99388) ((-1211 . -559) 99367) ((-820 . -388) 99351) ((-712 . -559) T) ((-317 . -885) 99335) ((-317 . -887) 99260) ((-314 . -885) 99221) ((-314 . -887) NIL) ((-800 . -310) 99186) ((-320 . -718) 99027) ((-389 . -388) 99011) ((-325 . -324) 98988) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 98962) ((-317 . -1039) 98625) ((-225 . -1202) T) ((-225 . -1205) T) ((-3 . -614) 98607) ((-314 . -1039) 98537) ((-2 . -1101) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98519) ((-1114 . -1059) 98449) ((-583 . -921) T) ((-567 . -821) T) ((-567 . -921) T) ((-498 . -921) T) ((-136 . -1039) 98433) ((-225 . -95) T) ((-169 . -147) 98412) ((-75 . -444) T) ((0 . -614) 98394) ((-75 . -398) T) ((-169 . -145) 98345) ((-225 . -35) T) ((-49 . -614) 98327) ((-480 . -1059) T) ((-490 . -231) 98309) ((-487 . -969) 98293) ((-485 . -849) 98272) ((-217 . -231) 98254) ((-81 . -444) T) ((-81 . -398) T) ((-1147 . -34) T) ((-816 . -172) 98233) ((-732 . -102) T) ((-654 . -647) 98192) ((-1027 . -614) 98159) ((-503 . -287) 98134) ((-317 . -379) 98103) ((-314 . -379) 98064) ((-314 . -340) 98025) ((-1086 . -614) 98007) ((-817 . -950) 97954) ((-663 . -131) T) ((-1240 . -145) 97933) ((-1240 . -147) 97912) ((-1175 . -102) T) ((-1174 . -102) T) ((-1168 . -102) T) ((-1160 . -1101) T) ((-1127 . -102) T) ((-222 . -34) T) ((-290 . -718) 97899) ((-1160 . -611) 97875) ((-595 . -310) NIL) ((-487 . -1101) 97853) ((-393 . -614) 97835) ((-513 . -851) T) ((-1151 . -229) 97785) ((-1259 . -1258) 97769) ((-1259 . -1245) 97746) ((-1252 . -1250) 97707) ((-1252 . -1245) 97677) ((-1252 . -1248) 97661) ((-1231 . -1229) 97622) ((-1231 . -1245) 97599) ((-622 . -614) 97581) ((-1231 . -1227) 97565) ((-700 . -921) T) ((-1175 . -285) 97531) ((-1174 . -285) 97497) ((-1168 . -285) 97463) ((-1081 . -1101) T) ((-1062 . -1101) T) ((-48 . -303) T) ((-317 . -901) 97429) ((-314 . -901) NIL) ((-1062 . -1069) 97408) ((-1121 . -887) 97390) ((-800 . -38) 97374) ((-265 . -640) 97322) ((-247 . -640) 97270) ((-702 . -1057) 97257) ((-597 . -1245) 97234) ((-1127 . -285) 97200) ((-320 . -172) 97131) ((-361 . -1101) T) ((-355 . -1101) T) ((-347 . -1101) T) ((-503 . -19) 97113) ((-1121 . -1039) 97095) ((-1103 . -151) 97079) ((-108 . -1101) T) ((-116 . -1057) 97066) ((-712 . -365) T) ((-503 . -605) 97041) ((-702 . -111) 97026) ((-439 . -102) T) ((-250 . -102) T) ((-45 . -1150) 96976) ((-116 . -111) 96961) ((-636 . -721) T) ((-608 . -721) T) ((-1269 . -614) 96943) ((-1225 . -614) 96925) ((-1223 . -851) T) ((-816 . -517) 96858) ((-1036 . -1217) T) ((-240 . -1052) 96755) ((-1211 . -1113) T) ((-1211 . -23) T) ((-944 . -151) 96739) ((-1173 . -455) 96670) ((-1168 . -310) 96555) ((-240 . -641) 96497) ((-1167 . -1101) T) ((-1159 . -1101) T) ((-1143 . -649) 96471) ((-528 . -102) T) ((-523 . -102) 96421) ((-1127 . -310) 96408) ((-1126 . -455) 96359) ((-1088 . -1221) 96338) ((-783 . -1221) 96317) ((-781 . -1221) 96296) ((-62 . -1217) T) ((-480 . -614) 96248) ((-480 . -615) 96170) ((-1088 . -559) 96101) ((-995 . -1101) T) ((-783 . -559) 96012) ((-781 . -559) 95943) ((-485 . -414) 95912) ((-624 . -921) 95891) ((-457 . -1221) 95870) ((-732 . -310) 95857) ((-702 . -617) 95829) ((-401 . -614) 95811) ((-676 . -517) 95744) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95675) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -921) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95657) ((-116 . -617) 95629) ((-1081 . -718) 95497) ((-1005 . -1052) 95447) ((-1005 . -641) 95397) ((-944 . -981) 95381) ((-915 . -641) 95333) ((-915 . -1052) 95285) ((-911 . -21) T) ((-911 . -25) T) ((-873 . -851) 95236) ((-867 . -649) 95196) ((-712 . -1113) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1050) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1101) 95174) ((-633 . -611) 95149) ((-633 . -1101) T) ((-584 . -1221) T) ((-584 . -559) T) ((-521 . -1221) T) ((-521 . -559) T) ((-490 . -647) 95099) ((-430 . -1052) 95083) ((-430 . -641) 95067) ((-361 . -718) 95019) ((-355 . -718) 94971) ((-341 . -1057) 94955) ((-347 . -718) 94907) ((-341 . -111) 94886) ((-174 . -1057) 94818) ((-217 . -647) 94768) ((-174 . -111) 94679) ((-108 . -718) 94629) ((-275 . -1101) T) ((-274 . -1101) T) ((-273 . -1101) T) ((-272 . -1101) T) ((-271 . -1101) T) ((-270 . -1101) T) ((-269 . -1101) T) ((-212 . -1101) T) ((-211 . -1101) T) ((-169 . -1205) 94607) ((-169 . -1202) 94585) ((-209 . -1101) T) ((-208 . -1101) T) ((-116 . -1050) T) ((-207 . -1101) T) ((-206 . -1101) T) ((-203 . -1101) T) ((-202 . -1101) T) ((-201 . -1101) T) ((-200 . -1101) T) ((-199 . -1101) T) ((-198 . -1101) T) ((-197 . -1101) T) ((-196 . -1101) T) ((-195 . -1101) T) ((-194 . -1101) T) ((-193 . -1101) T) ((-240 . -102) 94375) ((-169 . -35) 94353) ((-169 . -95) 94331) ((-655 . -1039) 94227) ((-485 . -1059) 94157) ((-1114 . -1101) 93947) ((-1143 . -34) T) ((-671 . -492) 93931) ((-73 . -1217) T) ((-105 . -614) 93913) ((-1291 . -614) 93895) ((-383 . -614) 93877) ((-341 . -617) 93829) ((-174 . -617) 93746) ((-1216 . -493) 93727) ((-732 . -38) 93576) ((-574 . -1205) T) ((-574 . -1202) T) ((-534 . -614) 93558) ((-523 . -310) 93496) ((-503 . -614) 93478) ((-503 . -615) 93460) ((-1216 . -614) 93426) ((-1168 . -1152) NIL) ((-1028 . -1072) 93395) ((-1028 . -1101) T) ((-1005 . -102) T) ((-972 . -102) T) ((-915 . -102) T) ((-894 . -1039) 93372) ((-1143 . -727) T) ((-1004 . -649) 93317) ((-479 . -1101) T) ((-466 . -1101) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1064 . -229) 93263) ((-1175 . -38) 93160) ((-867 . -727) T) ((-695 . -921) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1174 . -38) 93001) ((-341 . -1050) T) ((-1168 . -38) 92797) ((-1081 . -172) T) ((-174 . -1050) T) ((-1127 . -38) 92694) ((-713 . -47) 92671) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92645) ((-500 . -57) 92595) ((-353 . -1286) 92572) ((-225 . -455) T) ((-320 . -291) 92523) ((-347 . -172) T) ((-174 . -243) T) ((-1230 . -851) 92422) ((-108 . -172) T) ((-873 . -993) 92406) ((-659 . -1113) T) ((-584 . -365) T) ((-584 . -330) 92393) ((-521 . -330) 92370) ((-521 . -365) T) ((-317 . -308) 92349) ((-314 . -308) T) ((-603 . -851) 92328) ((-1114 . -718) 92270) ((-523 . -283) 92254) ((-659 . -23) T) ((-421 . -231) 92238) ((-314 . -1023) NIL) ((-338 . -23) T) ((-103 . -1011) 92222) ((-45 . -36) 92201) ((-613 . -1101) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92139) ((-1088 . -1113) T) ((-1290 . -649) 92113) ((-783 . -1113) T) ((-781 . -1113) T) ((-457 . -1113) T) ((-1063 . -455) T) ((-953 . -455) 92064) ((-1116 . -1084) T) ((-110 . -1101) T) ((-1088 . -23) T) ((-818 . -1059) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 92015) ((-1160 . -517) 91798) ((-383 . -384) 91777) ((-1179 . -414) 91761) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1101) T) ((-487 . -517) 91694) ((-1259 . -1052) 91577) ((-1259 . -641) 91474) ((-1252 . -641) 91315) ((-1252 . -1052) 91150) ((-290 . -291) T) ((-1231 . -1052) 90940) ((-1083 . -614) 90922) ((-1083 . -615) 90903) ((-410 . -910) 90882) ((-1231 . -641) 90678) ((-50 . -1113) T) ((-1211 . -131) T) ((-1025 . -921) T) ((-1004 . -727) T) ((-844 . -649) 90651) ((-713 . -887) NIL) ((-598 . -1052) 90611) ((-584 . -1113) T) ((-521 . -1113) T) ((-597 . -1052) 90494) ((-1168 . -403) 90446) ((-1005 . -310) NIL) ((-816 . -492) 90430) ((-598 . -641) 90403) ((-356 . -921) T) ((-597 . -641) 90300) ((-1157 . -34) T) ((-410 . -649) 90252) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1039) 90132) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 90103) ((-1141 . -1101) T) ((-1282 . -1281) 90087) ((-702 . -796) T) ((-702 . -793) T) ((-1121 . -308) T) ((-381 . -147) T) ((-281 . -614) 90069) ((-1230 . -993) 90039) ((-48 . -921) T) ((-676 . -492) 90023) ((-252 . -1274) 89993) ((-251 . -1274) 89963) ((-1177 . -851) T) ((-1114 . -172) 89942) ((-1121 . -1023) T) ((-1047 . -34) T) ((-837 . -147) 89921) ((-837 . -145) 89900) ((-738 . -107) 89884) ((-613 . -132) T) ((-485 . -1101) 89674) ((-1179 . -1059) T) ((-872 . -455) T) ((-85 . -1217) T) ((-240 . -38) 89644) ((-141 . -107) 89626) ((-713 . -379) 89610) ((-834 . -617) 89478) ((-1290 . -727) T) ((-1279 . -1059) T) ((-1121 . -548) T) ((-582 . -102) T) ((-129 . -493) 89460) ((-1259 . -102) T) ((-393 . -1057) 89444) ((-1252 . -102) T) ((-1173 . -950) 89413) ((-129 . -614) 89380) ((-52 . -614) 89362) ((-1126 . -950) 89329) ((-654 . -414) 89313) ((-1231 . -102) T) ((-1159 . -517) NIL) ((-622 . -1057) 89297) ((-663 . -25) T) ((-663 . -21) T) ((-964 . -647) 89207) ((-736 . -647) 89152) ((-716 . -647) 89124) ((-393 . -111) 89103) ((-222 . -255) 89087) ((-1055 . -1054) 89027) ((-1055 . -1101) T) ((-1005 . -1152) T) ((-819 . -1101) T) ((-456 . -647) 88942) ((-345 . -1221) T) ((-636 . -649) 88926) ((-622 . -111) 88905) ((-608 . -649) 88889) ((-598 . -102) T) ((-312 . -493) 88870) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1101) T) ((-387 . -1101) T) ((-312 . -614) 88836) ((-227 . -1101) 88814) ((-648 . -517) 88747) ((-633 . -517) 88591) ((-834 . -1050) 88570) ((-645 . -151) 88554) ((-345 . -559) T) ((-713 . -901) 88497) ((-553 . -229) 88447) ((-1259 . -285) 88413) ((-1252 . -285) 88379) ((-1081 . -291) 88330) ((-490 . -849) T) ((-223 . -1113) T) ((-1231 . -285) 88296) ((-1211 . -496) 88262) ((-1005 . -38) 88212) ((-217 . -849) T) ((-421 . -647) 88171) ((-915 . -38) 88123) ((-844 . -795) 88102) ((-844 . -792) 88081) ((-844 . -727) 88060) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 87991) ((-430 . -38) 87975) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 87954) ((-410 . -792) 87933) ((-410 . -727) T) ((-503 . -289) 87908) ((-480 . -1057) 87873) ((-659 . -131) T) ((-622 . -617) 87842) ((-1114 . -517) 87775) ((-338 . -131) T) ((-169 . -405) 87754) ((-485 . -718) 87696) ((-816 . -287) 87673) ((-480 . -111) 87629) ((-654 . -1059) T) ((-817 . -1052) 87472) ((-1278 . -1084) T) ((-1240 . -455) 87403) ((-817 . -641) 87252) ((-1277 . -1084) T) ((-1088 . -131) T) ((-1055 . -718) 87194) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1028 . -517) 87127) ((-622 . -1050) T) ((-594 . -1101) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1101) T) ((-387 . -718) 87097) ((-818 . -1101) T) ((-479 . -517) 87030) ((-466 . -517) 86963) ((-456 . -369) 86933) ((-45 . -611) 86912) ((-317 . -303) T) ((-480 . -617) 86862) ((-1231 . -310) 86747) ((-671 . -614) 86709) ((-59 . -851) 86688) ((-1005 . -403) 86670) ((-551 . -614) 86652) ((-800 . -647) 86611) ((-816 . -605) 86588) ((-519 . -851) 86567) ((-499 . -851) 86546) ((-40 . -1221) T) ((-1000 . -1039) 86442) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86302) ((-345 . -330) 86279) ((-345 . -365) T) ((-323 . -324) 86256) ((-320 . -287) 86241) ((-40 . -559) T) ((-381 . -1202) T) ((-381 . -1205) T) ((-1036 . -1193) 86216) ((-1190 . -235) 86166) ((-1168 . -231) 86118) ((-331 . -1101) T) ((-381 . -95) T) ((-381 . -35) T) ((-1036 . -107) 86064) ((-480 . -1050) T) ((-1291 . -1057) 86048) ((-482 . -235) 85998) ((-1160 . -492) 85932) ((-1282 . -1052) 85916) ((-383 . -1057) 85900) ((-1282 . -641) 85870) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85849) ((-715 . -145) 85828) ((-487 . -492) 85812) ((-488 . -337) 85781) ((-1291 . -111) 85760) ((-515 . -1101) T) ((-485 . -172) 85739) ((-1000 . -379) 85723) ((-416 . -102) T) ((-383 . -111) 85702) ((-1000 . -340) 85686) ((-280 . -984) 85670) ((-279 . -984) 85654) ((-1289 . -614) 85636) ((-1287 . -614) 85618) ((-110 . -517) NIL) ((-1173 . -1243) 85602) ((-855 . -853) 85586) ((-1179 . -1101) T) ((-103 . -1217) T) ((-953 . -950) 85547) ((-818 . -718) 85489) ((-1231 . -1152) NIL) ((-484 . -950) 85434) ((-1063 . -143) T) ((-60 . -102) 85412) ((-44 . -614) 85394) ((-78 . -614) 85376) ((-353 . -649) 85321) ((-1279 . -1101) T) ((-514 . -851) T) ((-345 . -1113) T) ((-296 . -1101) T) ((-1000 . -901) 85280) ((-296 . -611) 85259) ((-1291 . -617) 85208) ((-1259 . -38) 85105) ((-1252 . -38) 84946) ((-1231 . -38) 84742) ((-490 . -1059) T) ((-383 . -617) 84726) ((-217 . -1059) T) ((-345 . -23) T) ((-152 . -614) 84708) ((-834 . -796) 84687) ((-834 . -793) 84666) ((-1216 . -617) 84647) ((-598 . -38) 84620) ((-597 . -38) 84517) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1003) 84483) ((-79 . -614) 84465) ((-713 . -308) 84444) ((-295 . -727) 84346) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84325) ((-1282 . -102) T) ((-40 . -365) T) ((-873 . -147) 84304) ((-488 . -647) 84286) ((-873 . -145) 84265) ((-1159 . -492) 84247) ((-1291 . -1050) T) ((-485 . -517) 84180) ((-1147 . -1217) T) ((-965 . -614) 84162) ((-648 . -492) 84146) ((-633 . -492) 84077) ((-816 . -614) 83808) ((-48 . -27) T) ((-1179 . -718) 83705) ((-654 . -1101) T) ((-862 . -861) T) ((-439 . -366) 83679) ((-732 . -647) 83589) ((-1103 . -102) T) ((-971 . -1101) T) ((-865 . -1101) T) ((-817 . -310) 83576) ((-536 . -530) T) ((-536 . -579) T) ((-1287 . -384) 83548) ((-1055 . -517) 83481) ((-1160 . -287) 83457) ((-240 . -231) 83426) ((-252 . -1052) 83323) ((-251 . -1052) 83220) ((-1279 . -718) 83190) ((-1167 . -93) T) ((-995 . -93) T) ((-818 . -172) 83169) ((-252 . -641) 83111) ((-251 . -641) 83053) ((-1214 . -493) 83030) ((-227 . -517) 82963) ((-622 . -796) 82942) ((-622 . -793) 82921) ((-1214 . -614) 82833) ((-222 . -1217) T) ((-676 . -614) 82765) ((-1175 . -647) 82675) ((-1157 . -1011) 82659) ((-944 . -102) 82609) ((-353 . -727) T) ((-862 . -614) 82591) ((-1174 . -647) 82473) ((-1168 . -647) 82310) ((-1127 . -647) 82220) ((-1231 . -403) 82172) ((-1114 . -492) 82156) ((-60 . -310) 82094) ((-332 . -102) T) ((-1211 . -21) T) ((-1211 . -25) T) ((-40 . -1113) T) ((-712 . -21) T) ((-628 . -614) 82076) ((-518 . -324) 82055) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-922 . -1113) T) ((-40 . -23) T) ((-772 . -1113) T) ((-567 . -1221) T) ((-498 . -1221) T) ((-320 . -614) 82037) ((-1005 . -231) 82019) ((-169 . -166) 82003) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1251 . -147) 81982) ((-1160 . -605) 81958) ((-1251 . -145) 81937) ((-1028 . -492) 81921) ((-1230 . -145) 81846) ((-1230 . -147) 81771) ((-1282 . -1288) 81750) ((-479 . -492) 81734) ((-466 . -492) 81718) ((-526 . -34) T) ((-654 . -718) 81688) ((-112 . -968) T) ((-663 . -851) 81667) ((-1179 . -172) 81618) ((-367 . -102) T) ((-240 . -238) 81597) ((-252 . -102) T) ((-251 . -102) T) ((-1240 . -950) 81566) ((-245 . -851) 81545) ((-817 . -38) 81394) ((-45 . -517) 81186) ((-1159 . -287) 81161) ((-214 . -1101) T) ((-1151 . -1101) T) ((-1151 . -611) 81140) ((-588 . -25) T) ((-588 . -21) T) ((-1103 . -310) 81078) ((-964 . -414) 81062) ((-700 . -1221) T) ((-633 . -287) 81037) ((-1088 . -640) 80985) ((-783 . -640) 80933) ((-781 . -640) 80881) ((-345 . -131) T) ((-290 . -614) 80863) ((-906 . -1101) T) ((-700 . -559) T) ((-129 . -617) 80845) ((-871 . -1113) T) ((-457 . -640) 80793) ((-906 . -904) 80777) ((-381 . -455) T) ((-490 . -1101) T) ((-944 . -310) 80715) ((-702 . -649) 80702) ((-552 . -845) T) ((-217 . -1101) T) ((-317 . -921) 80681) ((-314 . -921) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80668) ((-477 . -145) 80647) ((-421 . -414) 80631) ((-477 . -147) 80610) ((-110 . -492) 80592) ((-312 . -617) 80573) ((-2 . -614) 80555) ((-186 . -102) T) ((-1159 . -19) 80537) ((-1159 . -605) 80512) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1145) T) ((-1114 . -287) 80489) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80239) ((-498 . -365) T) ((-1282 . -38) 80209) ((-1173 . -1052) 80032) ((-1143 . -1217) T) ((-1126 . -1052) 79875) ((-855 . -1052) 79859) ((-633 . -605) 79834) ((-1173 . -641) 79663) ((-1126 . -641) 79512) ((-855 . -641) 79482) ((-1289 . -1057) 79466) ((-1287 . -1057) 79450) ((-552 . -1101) T) ((-1088 . -25) T) ((-1088 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1221) T) ((-964 . -1059) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1059) T) ((-716 . -1059) T) ((-671 . -1057) 79434) ((-520 . -1084) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1251 . -1202) 79400) ((-1251 . -1205) 79366) ((-1143 . -1039) 79262) ((-818 . -291) 79241) ((-1251 . -95) 79207) ((-824 . -1101) T) ((-1234 . -102) 79185) ((-967 . -968) T) ((-671 . -111) 79164) ((-296 . -517) 78956) ((-1231 . -231) 78908) ((-1230 . -1202) 78874) ((-1230 . -1205) 78840) ((-252 . -310) 78778) ((-251 . -310) 78716) ((-1225 . -370) T) ((-1160 . -615) NIL) ((-1160 . -614) 78698) ((-1222 . -845) T) ((-1143 . -379) 78682) ((-1121 . -821) T) ((-96 . -93) T) ((-1121 . -921) T) ((-1114 . -605) 78659) ((-1081 . -615) 78643) ((-1005 . -647) 78593) ((-915 . -647) 78530) ((-816 . -289) 78507) ((-487 . -614) 78439) ((-609 . -151) 78386) ((-490 . -718) 78336) ((-421 . -1059) T) ((-485 . -492) 78320) ((-430 . -647) 78279) ((-328 . -851) 78258) ((-341 . -649) 78232) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78182) ((-169 . -725) 78153) ((-174 . -649) 78085) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 78035) ((-1081 . -614) 78017) ((-1062 . -614) 77999) ((-994 . -102) T) ((-863 . -102) T) ((-800 . -414) 77962) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -896) T) ((-583 . -1113) T) ((-567 . -1113) T) ((-498 . -1113) T) ((-361 . -614) 77944) ((-355 . -614) 77926) ((-347 . -614) 77908) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77838) ((-108 . -614) 77780) ((-211 . -896) T) ((-959 . -151) 77764) ((-772 . -131) T) ((-671 . -617) 77682) ((-134 . -727) T) ((-116 . -727) T) ((-1251 . -35) 77648) ((-1055 . -492) 77632) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1230 . -95) 77598) ((-1230 . -35) 77564) ((-1173 . -102) T) ((-1126 . -102) T) ((-855 . -102) T) ((-227 . -492) 77548) ((-1289 . -111) 77527) ((-1287 . -111) 77506) ((-44 . -1057) 77490) ((-1289 . -617) 77436) ((-1240 . -1243) 77420) ((-856 . -853) 77404) ((-1289 . -1050) T) ((-1179 . -291) 77383) ((-110 . -287) 77358) ((-1287 . -617) 77287) ((-128 . -151) 77269) ((-1143 . -901) 77228) ((-44 . -111) 77207) ((-1222 . -1101) T) ((-1182 . -1262) T) ((-1167 . -493) 77188) ((-1167 . -614) 77154) ((-671 . -1050) T) ((-1159 . -615) NIL) ((-1159 . -614) 77136) ((-1064 . -611) 77111) ((-1064 . -1101) T) ((-995 . -493) 77092) ((-74 . -444) T) ((-74 . -398) T) ((-995 . -614) 77058) ((-152 . -1057) 77042) ((-671 . -233) 77021) ((-574 . -557) 77005) ((-357 . -147) 76984) ((-357 . -145) 76935) ((-354 . -147) 76914) ((-354 . -145) 76865) ((-346 . -147) 76844) ((-346 . -145) 76795) ((-265 . -145) 76774) ((-265 . -147) 76753) ((-252 . -38) 76723) ((-247 . -147) 76702) ((-117 . -365) T) ((-247 . -145) 76681) ((-251 . -38) 76651) ((-152 . -111) 76630) ((-1004 . -1039) 76518) ((-1168 . -849) NIL) ((-695 . -1221) T) ((-800 . -1059) T) ((-700 . -1113) T) ((-1287 . -1050) T) ((-1157 . -1217) T) ((-1004 . -379) 76495) ((-911 . -145) T) ((-911 . -147) 76477) ((-871 . -131) T) ((-816 . -1057) 76374) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1052) 76339) ((-648 . -614) 76271) ((-648 . -615) 76232) ((-633 . -615) NIL) ((-633 . -614) 76214) ((-490 . -172) T) ((-225 . -641) 76179) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1205) 76145) ((-477 . -1202) 76111) ((-275 . -614) 76093) ((-274 . -614) 76075) ((-273 . -614) 76057) ((-272 . -614) 76039) ((-271 . -614) 76021) ((-503 . -652) 76003) ((-270 . -614) 75985) ((-341 . -727) T) ((-269 . -614) 75967) ((-110 . -19) 75949) ((-174 . -727) T) ((-503 . -375) 75931) ((-212 . -614) 75913) ((-523 . -1150) 75897) ((-503 . -123) T) ((-110 . -605) 75872) ((-211 . -614) 75854) ((-477 . -35) 75820) ((-477 . -95) 75786) ((-209 . -614) 75768) ((-208 . -614) 75750) ((-207 . -614) 75732) ((-206 . -614) 75714) ((-203 . -614) 75696) ((-202 . -614) 75678) ((-201 . -614) 75660) ((-200 . -614) 75642) ((-199 . -614) 75624) ((-198 . -614) 75606) ((-197 . -614) 75588) ((-539 . -1104) 75540) ((-196 . -614) 75522) ((-195 . -614) 75504) ((-45 . -492) 75441) ((-194 . -614) 75423) ((-193 . -614) 75405) ((-152 . -617) 75374) ((-1116 . -102) T) ((-816 . -111) 75264) ((-645 . -102) 75214) ((-485 . -287) 75191) ((-1114 . -614) 74922) ((-1102 . -1101) T) ((-1047 . -1217) T) ((-1290 . -1039) 74906) ((-1063 . -1052) 74893) ((-1173 . -310) 74880) ((-953 . -1052) 74723) ((-1136 . -1101) T) ((-1126 . -310) 74710) ((-624 . -1113) T) ((-1063 . -641) 74697) ((-1097 . -1084) T) ((-953 . -641) 74546) ((-1091 . -1084) T) ((-484 . -1052) 74389) ((-1074 . -1084) T) ((-1067 . -1084) T) ((-1037 . -1084) T) ((-1020 . -1084) T) ((-117 . -1113) T) ((-484 . -641) 74238) ((-820 . -102) T) ((-627 . -1084) T) ((-624 . -23) T) ((-1151 . -517) 74030) ((-486 . -1084) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1084) T) ((-964 . -1101) T) ((-152 . -1050) T) ((-732 . -414) 74014) ((-117 . -23) T) ((-1004 . -901) 73966) ((-736 . -1101) T) ((-716 . -1101) T) ((-456 . -1101) T) ((-410 . -1217) T) ((-317 . -433) 73950) ((-594 . -93) T) ((-1259 . -647) 73860) ((-1028 . -615) 73821) ((-1025 . -1221) T) ((-225 . -102) T) ((-1028 . -614) 73783) ((-1252 . -647) 73665) ((-817 . -231) 73649) ((-816 . -617) 73379) ((-1231 . -647) 73216) ((-1025 . -559) T) ((-834 . -649) 73189) ((-356 . -1221) T) ((-479 . -614) 73151) ((-479 . -615) 73112) ((-466 . -615) 73073) ((-466 . -614) 73035) ((-598 . -647) 72994) ((-410 . -885) 72978) ((-320 . -1057) 72813) ((-410 . -887) 72738) ((-597 . -647) 72648) ((-844 . -1039) 72544) ((-490 . -517) NIL) ((-485 . -605) 72521) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1101) T) ((-410 . -1039) 72385) ((-320 . -111) 72206) ((-695 . -365) T) ((-225 . -285) T) ((-1214 . -617) 72183) ((-48 . -1221) T) ((-816 . -1050) 72113) ((-1173 . -1152) 72091) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1160 . -289) 72067) ((-48 . -559) T) ((-1063 . -102) T) ((-953 . -102) T) ((-872 . -1052) 72012) ((-317 . -27) 71991) ((-816 . -233) 71943) ((-249 . -836) 71925) ((-240 . -849) 71904) ((-187 . -836) 71886) ((-714 . -102) T) ((-296 . -492) 71823) ((-872 . -641) 71768) ((-484 . -102) T) ((-732 . -1059) T) ((-613 . -614) 71750) ((-613 . -615) 71611) ((-410 . -379) 71595) ((-410 . -340) 71579) ((-320 . -617) 71405) ((-1173 . -38) 71234) ((-1126 . -38) 71083) ((-855 . -38) 71053) ((-393 . -649) 71037) ((-645 . -310) 70975) ((-964 . -718) 70872) ((-736 . -718) 70842) ((-222 . -107) 70826) ((-45 . -287) 70751) ((-622 . -649) 70725) ((-313 . -1101) T) ((-290 . -1057) 70712) ((-110 . -614) 70694) ((-110 . -615) 70676) ((-456 . -718) 70646) ((-817 . -254) 70585) ((-690 . -1101) 70563) ((-553 . -1101) T) ((-1175 . -1059) T) ((-1174 . -1059) T) ((-96 . -493) 70544) ((-1168 . -1059) T) ((-290 . -111) 70529) ((-1127 . -1059) T) ((-553 . -611) 70508) ((-96 . -614) 70474) ((-1005 . -849) T) ((-227 . -688) 70432) ((-695 . -1113) T) ((-1211 . -741) 70408) ((-1025 . -365) T) ((-839 . -836) 70390) ((-834 . -795) 70369) ((-410 . -901) 70328) ((-320 . -1050) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1052) 70238) ((-68 . -1217) T) ((-834 . -792) 70217) ((-421 . -718) 70191) ((-800 . -1101) T) ((-713 . -921) 70170) ((-700 . -131) T) ((-169 . -641) 69998) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69977) ((-320 . -233) 69929) ((-320 . -243) 69908) ((-217 . -291) T) ((-129 . -370) T) ((-1251 . -455) 69887) ((-1230 . -455) 69866) ((-356 . -330) 69843) ((-356 . -365) T) ((-1141 . -614) 69825) ((-45 . -1255) 69775) ((-872 . -102) T) ((-645 . -283) 69759) ((-700 . -1061) T) ((-1278 . -102) T) ((-1277 . -102) T) ((-480 . -649) 69724) ((-471 . -1101) T) ((-45 . -605) 69649) ((-1159 . -289) 69624) ((-290 . -617) 69596) ((-40 . -640) 69535) ((-1240 . -1052) 69358) ((-856 . -1052) 69342) ((-48 . -365) T) ((-1107 . -614) 69324) ((-1240 . -641) 69153) ((-856 . -641) 69123) ((-633 . -289) 69098) ((-817 . -647) 69008) ((-574 . -1052) 68995) ((-485 . -614) 68726) ((-240 . -414) 68695) ((-953 . -310) 68682) ((-574 . -641) 68669) ((-65 . -1217) T) ((-1064 . -517) 68513) ((-672 . -1101) T) ((-624 . -131) T) ((-484 . -310) 68500) ((-607 . -1101) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1050) T) ((-180 . -1101) T) ((-161 . -1101) T) ((-156 . -1101) T) ((-154 . -1101) T) ((-456 . -762) T) ((-31 . -1084) T) ((-964 . -172) 68451) ((-971 . -93) T) ((-1081 . -1057) 68361) ((-622 . -795) 68340) ((-595 . -1101) T) ((-622 . -792) 68319) ((-622 . -727) T) ((-296 . -287) 68298) ((-295 . -1217) T) ((-1055 . -614) 68260) ((-1055 . -615) 68221) ((-1025 . -1113) T) ((-169 . -102) T) ((-276 . -851) T) ((-1166 . -1101) T) ((-819 . -614) 68203) ((-1114 . -289) 68180) ((-1103 . -229) 68164) ((-1004 . -308) T) ((-800 . -718) 68148) ((-361 . -1057) 68100) ((-356 . -1113) T) ((-355 . -1057) 68052) ((-417 . -614) 68034) ((-387 . -614) 68016) ((-347 . -1057) 67968) ((-227 . -614) 67900) ((-1081 . -111) 67796) ((-1025 . -23) T) ((-108 . -1057) 67746) ((-899 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67725) ((-421 . -172) T) ((-361 . -111) 67663) ((-355 . -111) 67601) ((-347 . -111) 67539) ((-252 . -231) 67508) ((-251 . -231) 67477) ((-356 . -23) T) ((-71 . -1217) T) ((-225 . -38) 67442) ((-108 . -111) 67376) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67354) ((-48 . -1113) T) ((-922 . -25) T) ((-772 . -25) T) ((-1291 . -649) 67328) ((-1151 . -492) 67265) ((-488 . -1101) T) ((-1282 . -647) 67224) ((-1240 . -102) T) ((-1063 . -1152) T) ((-856 . -102) T) ((-240 . -1059) 67154) ((-965 . -793) 67107) ((-965 . -796) 67060) ((-383 . -649) 67044) ((-48 . -23) T) ((-816 . -796) 66995) ((-816 . -793) 66946) ((-551 . -370) T) ((-296 . -605) 66925) ((-480 . -727) T) ((-574 . -102) T) ((-1081 . -617) 66743) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66700) ((-654 . -287) 66679) ((-112 . -662) T) ((-361 . -617) 66616) ((-355 . -617) 66553) ((-347 . -617) 66490) ((-76 . -1217) T) ((-108 . -617) 66440) ((-1063 . -38) 66427) ((-665 . -376) 66406) ((-953 . -38) 66255) ((-732 . -1101) T) ((-484 . -38) 66104) ((-86 . -1217) T) ((-594 . -493) 66085) ((-574 . -285) T) ((-1231 . -849) NIL) ((-594 . -614) 66051) ((-1175 . -1101) T) ((-1174 . -1101) T) ((-1081 . -1050) T) ((-353 . -1039) 66028) ((-818 . -493) 66012) ((-1005 . -1059) T) ((-45 . -614) 65994) ((-45 . -615) NIL) ((-915 . -1059) T) ((-818 . -614) 65963) ((-1168 . -1101) T) ((-1148 . -102) 65941) ((-1081 . -243) 65892) ((-430 . -1059) T) ((-361 . -1050) T) ((-367 . -366) 65869) ((-355 . -1050) T) ((-347 . -1050) T) ((-252 . -238) 65848) ((-251 . -238) 65827) ((-1081 . -233) 65752) ((-1127 . -1101) T) ((-295 . -901) 65711) ((-108 . -1050) T) ((-695 . -131) T) ((-421 . -517) 65553) ((-361 . -233) 65532) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65511) ((-355 . -243) T) ((-347 . -233) 65490) ((-347 . -243) T) ((-1167 . -617) 65471) ((-169 . -310) 65436) ((-108 . -243) T) ((-108 . -233) T) ((-995 . -617) 65417) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65392) ((-1114 . -1057) 65289) ((-872 . -1152) NIL) ((-331 . -614) 65271) ((-410 . -1023) 65249) ((-1114 . -111) 65139) ((-692 . -1262) T) ((-439 . -1101) T) ((-250 . -1101) T) ((-1291 . -727) T) ((-63 . -614) 65121) ((-872 . -38) 65066) ((-526 . -1217) T) ((-603 . -151) 65050) ((-515 . -614) 65032) ((-1240 . -310) 65019) ((-732 . -718) 64868) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64850) ((-498 . -640) 64810) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64761) ((-528 . -1101) T) ((-523 . -1101) 64711) ((-247 . -455) 64662) ((-1151 . -287) 64641) ((-1179 . -614) 64623) ((-690 . -517) 64556) ((-964 . -291) 64535) ((-553 . -517) 64327) ((-252 . -647) 64147) ((-251 . -647) 63954) ((-1279 . -614) 63923) ((-1173 . -231) 63907) ((-1114 . -617) 63637) ((-169 . -1152) 63616) ((-1279 . -493) 63600) ((-1175 . -718) 63497) ((-1174 . -718) 63338) ((-893 . -102) T) ((-1168 . -718) 63134) ((-1127 . -718) 63031) ((-1157 . -675) 63015) ((-357 . -405) 62966) ((-354 . -405) 62917) ((-346 . -405) 62868) ((-1025 . -131) T) ((-800 . -517) 62780) ((-296 . -615) NIL) ((-296 . -614) 62762) ((-911 . -455) T) ((-965 . -370) 62715) ((-816 . -370) 62694) ((-513 . -512) 62673) ((-511 . -512) 62652) ((-490 . -287) NIL) ((-485 . -289) 62629) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1113) T) ((-169 . -38) 62457) ((-1251 . -974) 62419) ((-1148 . -310) 62357) ((-1230 . -974) 62326) ((-911 . -405) T) ((-1114 . -1050) 62256) ((-1253 . -559) T) ((-1151 . -605) 62235) ((-112 . -851) T) ((-1064 . -492) 62166) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1240 . -1152) 62144) ((-1114 . -233) 62096) ((-48 . -131) T) ((-1198 . -102) T) ((-240 . -1101) 61886) ((-872 . -403) 61863) ((-1089 . -102) T) ((-1077 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1240 . -38) 61692) ((-856 . -38) 61662) ((-1035 . -1052) 61636) ((-732 . -172) 61547) ((-654 . -614) 61529) ((-646 . -1084) T) ((-1035 . -641) 61513) ((-574 . -38) 61500) ((-971 . -493) 61481) ((-971 . -614) 61447) ((-959 . -102) 61397) ((-865 . -614) 61379) ((-865 . -615) 61301) ((-595 . -517) NIL) ((-1259 . -1059) T) ((-1252 . -1059) T) ((-323 . -1052) 61283) ((-1231 . -1059) T) ((-1295 . -1113) T) ((-323 . -641) 61265) ((-1211 . -147) 61244) ((-1211 . -145) 61223) ((-1185 . -102) T) ((-1184 . -102) T) ((-1183 . -102) T) ((-598 . -1059) T) ((-597 . -1059) T) ((-1175 . -172) 61174) ((-1174 . -172) 61105) ((-381 . -1052) 61070) ((-1168 . -172) 61001) ((-1127 . -172) 60952) ((-1005 . -1101) T) ((-972 . -1101) T) ((-915 . -1101) T) ((-381 . -641) 60917) ((-800 . -798) 60901) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60878) ((-702 . -887) 60860) ((-430 . -1101) T) ((-317 . -1221) 60839) ((-314 . -1221) T) ((-169 . -403) 60823) ((-837 . -1052) 60793) ((-477 . -974) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60737) ((-828 . -1052) 60721) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1039) 60703) ((-317 . -559) 60682) ((-314 . -559) T) ((-837 . -641) 60652) ((-828 . -641) 60622) ((-1295 . -23) T) ((-134 . -1039) 60604) ((-96 . -617) 60585) ((-994 . -647) 60567) ((-485 . -1057) 60464) ((-45 . -289) 60389) ((-240 . -718) 60331) ((-520 . -102) T) ((-485 . -111) 60221) ((-1093 . -102) 60191) ((-1035 . -102) T) ((-1173 . -647) 60101) ((-1126 . -647) 60011) ((-855 . -647) 59970) ((-645 . -829) 59949) ((-732 . -517) 59892) ((-1055 . -1057) 59876) ((-1136 . -93) T) ((-1064 . -287) 59851) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1101) T) ((-671 . -649) 59825) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1057) 59809) ((-1055 . -111) 59788) ((-817 . -414) 59772) ((-117 . -25) T) ((-89 . -614) 59754) ((-117 . -21) T) ((-609 . -310) 59549) ((-478 . -310) 59353) ((-1151 . -615) NIL) ((-387 . -111) 59332) ((-381 . -102) T) ((-214 . -614) 59314) ((-1151 . -614) 59296) ((-1168 . -517) 59065) ((-1005 . -718) 59015) ((-1127 . -517) 58985) ((-915 . -718) 58937) ((-485 . -617) 58667) ((-353 . -308) T) ((-1190 . -151) 58617) ((-959 . -310) 58555) ((-837 . -102) T) ((-430 . -718) 58539) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58489) ((-1251 . -1250) 58468) ((-1121 . -1221) T) ((-341 . -1039) 58435) ((-1251 . -1245) 58405) ((-1251 . -1248) 58389) ((-1230 . -1229) 58368) ((-80 . -614) 58350) ((-906 . -614) 58332) ((-1230 . -1245) 58309) ((-1121 . -559) T) ((-922 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58239) ((-490 . -614) 58180) ((-381 . -285) T) ((-1230 . -1227) 58164) ((-1253 . -1113) T) ((-217 . -615) 58094) ((-217 . -614) 58035) ((-1289 . -649) 58009) ((-1064 . -605) 57984) ((-819 . -617) 57968) ((-59 . -151) 57952) ((-519 . -151) 57936) ((-499 . -151) 57920) ((-361 . -1286) 57904) ((-355 . -1286) 57888) ((-347 . -1286) 57872) ((-317 . -365) 57851) ((-314 . -365) T) ((-485 . -1050) 57781) ((-695 . -640) 57763) ((-1287 . -649) 57737) ((-128 . -310) NIL) ((-1253 . -23) T) ((-690 . -492) 57721) ((-64 . -614) 57703) ((-1114 . -796) 57654) ((-1114 . -793) 57605) ((-553 . -492) 57542) ((-671 . -34) T) ((-485 . -233) 57494) ((-296 . -289) 57473) ((-240 . -172) 57452) ((-817 . -1059) T) ((-44 . -649) 57410) ((-1081 . -370) 57361) ((-732 . -291) 57292) ((-523 . -517) 57225) ((-818 . -1057) 57176) ((-1088 . -145) 57155) ((-552 . -614) 57137) ((-361 . -370) 57116) ((-355 . -370) 57095) ((-347 . -370) 57074) ((-1088 . -147) 57053) ((-872 . -231) 57030) ((-818 . -111) 56972) ((-783 . -145) 56951) ((-783 . -147) 56930) ((-265 . -950) 56897) ((-252 . -849) 56876) ((-247 . -950) 56821) ((-251 . -849) 56800) ((-781 . -145) 56779) ((-781 . -147) 56758) ((-152 . -649) 56732) ((-582 . -1101) T) ((-457 . -147) 56711) ((-457 . -145) 56690) ((-671 . -727) T) ((-824 . -614) 56672) ((-1259 . -1101) T) ((-1252 . -1101) T) ((-1231 . -1101) T) ((-1211 . -1205) 56638) ((-1211 . -1202) 56604) ((-1175 . -291) 56583) ((-1174 . -291) 56534) ((-1168 . -291) 56485) ((-1127 . -291) 56464) ((-341 . -901) 56445) ((-1005 . -172) T) ((-915 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56395) ((-598 . -1101) T) ((-597 . -1101) T) ((-477 . -1248) 56379) ((-477 . -1245) 56349) ((-421 . -287) 56277) ((-550 . -851) T) ((-317 . -1113) 56126) ((-314 . -1113) T) ((-1211 . -35) 56092) ((-1211 . -95) 56058) ((-84 . -614) 56040) ((-91 . -102) 56018) ((-1295 . -131) T) ((-715 . -1052) 55988) ((-594 . -617) 55969) ((-584 . -145) T) ((-584 . -147) 55951) ((-521 . -147) 55933) ((-521 . -145) T) ((-715 . -641) 55903) ((-317 . -23) 55755) ((-40 . -344) 55729) ((-314 . -23) T) ((-818 . -617) 55643) ((-1159 . -652) 55625) ((-1282 . -1059) T) ((-1159 . -375) 55607) ((-816 . -649) 55455) ((-1097 . -102) T) ((-1091 . -102) T) ((-1074 . -102) T) ((-169 . -231) 55439) ((-1067 . -102) T) ((-1037 . -102) T) ((-1020 . -102) T) ((-595 . -492) 55421) ((-627 . -102) T) ((-240 . -517) 55354) ((-486 . -102) T) ((-1289 . -727) T) ((-1287 . -727) T) ((-218 . -102) T) ((-1179 . -1057) 55237) ((-1063 . -647) 55209) ((-953 . -647) 55119) ((-1179 . -111) 54988) ((-484 . -647) 54898) ((-862 . -173) T) ((-818 . -1050) T) ((-682 . -1084) T) ((-677 . -1084) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54858) ((-511 . -102) T) ((-481 . -1084) T) ((-1279 . -1057) 54828) ((-138 . -1084) T) ((-137 . -1084) T) ((-133 . -1084) T) ((-1035 . -38) 54812) ((-818 . -233) T) ((-818 . -243) 54791) ((-1279 . -111) 54756) ((-1259 . -718) 54653) ((-1252 . -718) 54494) ((-553 . -287) 54473) ((-1240 . -231) 54457) ((-1222 . -614) 54439) ((-607 . -93) T) ((-1064 . -615) NIL) ((-1064 . -614) 54421) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1231 . -718) 54217) ((-1004 . -921) T) ((-152 . -727) T) ((-1179 . -617) 54070) ((-1114 . -370) 54049) ((-1025 . -25) T) ((-1005 . -517) NIL) ((-252 . -414) 54018) ((-251 . -414) 53987) ((-1025 . -21) T) ((-873 . -1052) 53939) ((-598 . -718) 53912) ((-597 . -718) 53809) ((-800 . -287) 53767) ((-126 . -102) 53745) ((-834 . -1039) 53641) ((-169 . -829) 53620) ((-320 . -649) 53517) ((-816 . -34) T) ((-715 . -102) T) ((-1121 . -1113) T) ((-1027 . -1217) T) ((-873 . -641) 53469) ((-381 . -38) 53434) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1274) 53418) ((-354 . -1274) 53402) ((-346 . -1274) 53386) ((-169 . -351) 53365) ((-567 . -851) T) ((-1121 . -23) T) ((-87 . -614) 53347) ((-702 . -308) T) ((-837 . -38) 53317) ((-828 . -38) 53287) ((-1279 . -617) 53229) ((-1253 . -131) T) ((-1151 . -289) 53208) ((-965 . -727) 53107) ((-965 . -794) 53060) ((-965 . -795) 53013) ((-816 . -792) 52992) ((-116 . -308) T) ((-91 . -310) 52930) ((-676 . -34) T) ((-553 . -605) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52860) ((-816 . -794) 52839) ((-702 . -1023) T) ((-654 . -1057) 52823) ((-872 . -647) 52753) ((-816 . -727) 52663) ((-965 . -476) 52616) ((-485 . -796) 52567) ((-485 . -793) 52518) ((-911 . -1274) 52505) ((-1179 . -1050) T) ((-654 . -111) 52484) ((-1179 . -327) 52461) ((-1203 . -102) 52439) ((-1102 . -614) 52421) ((-702 . -548) T) ((-817 . -1101) T) ((-1279 . -1050) T) ((-1136 . -493) 52402) ((-1223 . -102) T) ((-416 . -1101) T) ((-1136 . -614) 52368) ((-252 . -1059) 52298) ((-251 . -1059) 52228) ((-839 . -102) T) ((-290 . -649) 52215) ((-595 . -287) 52190) ((-690 . -688) 52148) ((-964 . -614) 52130) ((-873 . -102) T) ((-736 . -614) 52112) ((-716 . -614) 52094) ((-1259 . -172) 52045) ((-1252 . -172) 51976) ((-1231 . -172) 51907) ((-700 . -851) T) ((-1005 . -291) T) ((-456 . -614) 51889) ((-628 . -727) T) ((-60 . -1101) 51867) ((-245 . -151) 51851) ((-915 . -291) T) ((-1025 . -1013) T) ((-628 . -476) T) ((-713 . -1221) 51830) ((-654 . -617) 51748) ((-169 . -647) 51643) ((-1267 . -851) 51622) ((-598 . -172) 51601) ((-597 . -172) 51552) ((-1251 . -641) 51393) ((-1251 . -1052) 51228) ((-1230 . -641) 51042) ((-1230 . -1052) 50850) ((-713 . -559) 50761) ((-410 . -921) T) ((-410 . -821) 50740) ((-320 . -795) T) ((-971 . -617) 50721) ((-320 . -727) T) ((-421 . -614) 50703) ((-421 . -615) 50610) ((-645 . -1150) 50594) ((-110 . -652) 50576) ((-174 . -308) T) ((-126 . -310) 50514) ((-110 . -375) 50496) ((-401 . -1217) T) ((-317 . -131) 50367) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50351) ((-655 . -1113) T) ((-595 . -19) 50333) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1101) T) ((-595 . -605) 50308) ((-480 . -1039) 50268) ((-654 . -1050) T) ((-655 . -23) T) ((-1282 . -1101) T) ((-31 . -102) T) ((-1240 . -647) 50178) ((-856 . -647) 50137) ((-817 . -718) 49986) ((-580 . -861) T) ((-574 . -647) 49958) ((-117 . -851) NIL) ((-1173 . -414) 49942) ((-1126 . -414) 49926) ((-855 . -414) 49910) ((-874 . -102) 49861) ((-1251 . -102) T) ((-1231 . -517) 49630) ((-1230 . -102) T) ((-1203 . -310) 49568) ((-1175 . -287) 49553) ((-1174 . -287) 49538) ((-528 . -93) T) ((-1168 . -287) 49386) ((-313 . -614) 49368) ((-1103 . -1101) T) ((-1081 . -649) 49278) ((-712 . -455) T) ((-690 . -614) 49210) ((-290 . -727) T) ((-108 . -910) NIL) ((-690 . -615) 49171) ((-602 . -614) 49153) ((-580 . -614) 49135) ((-553 . -615) NIL) ((-553 . -614) 49117) ((-532 . -614) 49099) ((-514 . -512) 49078) ((-490 . -1057) 49028) ((-477 . -1052) 48863) ((-510 . -512) 48842) ((-477 . -641) 48683) ((-217 . -1057) 48633) ((-361 . -649) 48585) ((-355 . -649) 48537) ((-225 . -849) T) ((-347 . -649) 48489) ((-603 . -102) 48439) ((-485 . -370) 48418) ((-108 . -649) 48368) ((-490 . -111) 48302) ((-240 . -492) 48286) ((-345 . -147) 48268) ((-345 . -145) T) ((-169 . -372) 48239) ((-944 . -1265) 48223) ((-217 . -111) 48157) ((-873 . -310) 48122) ((-944 . -1101) 48072) ((-800 . -615) 48033) ((-800 . -614) 48015) ((-719 . -102) T) ((-332 . -1101) T) ((-214 . -617) 47992) ((-1121 . -131) T) ((-715 . -38) 47962) ((-317 . -496) 47941) ((-503 . -1217) T) ((-1251 . -285) 47907) ((-1230 . -285) 47873) ((-328 . -151) 47857) ((-442 . -1101) T) ((-1064 . -289) 47832) ((-1282 . -718) 47802) ((-1160 . -34) T) ((-1291 . -1039) 47779) ((-471 . -614) 47761) ((-487 . -34) T) ((-383 . -1039) 47745) ((-1173 . -1059) T) ((-1126 . -1059) T) ((-855 . -1059) T) ((-1063 . -849) T) ((-490 . -617) 47695) ((-217 . -617) 47645) ((-817 . -172) 47556) ((-523 . -287) 47533) ((-1259 . -291) 47512) ((-1198 . -366) 47486) ((-1089 . -267) 47470) ((-672 . -493) 47451) ((-672 . -614) 47417) ((-607 . -493) 47398) ((-117 . -993) 47375) ((-607 . -614) 47325) ((-477 . -102) T) ((-180 . -493) 47306) ((-180 . -614) 47272) ((-161 . -493) 47253) ((-156 . -493) 47234) ((-154 . -493) 47215) ((-161 . -614) 47181) ((-156 . -614) 47147) ((-367 . -1101) T) ((-252 . -1101) T) ((-251 . -1101) T) ((-154 . -614) 47113) ((-1252 . -291) 47064) ((-1231 . -291) 47015) ((-873 . -1152) 46993) ((-1175 . -1003) 46959) ((-609 . -366) 46899) ((-1174 . -1003) 46865) ((-609 . -229) 46812) ((-695 . -851) T) ((-595 . -614) 46794) ((-595 . -615) NIL) ((-478 . -229) 46744) ((-490 . -1050) T) ((-1168 . -1003) 46710) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1050) T) ((-1127 . -1003) 46676) ((-1081 . -727) T) ((-713 . -1113) T) ((-598 . -291) 46655) ((-597 . -291) 46634) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1166 . -614) 46616) ((-873 . -38) 46568) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1255) 46552) ((-1295 . -25) T) ((-477 . -285) 46518) ((-1295 . -21) T) ((-1230 . -310) 46457) ((-1177 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-523 . -605) 46378) ((-1114 . -649) 46226) ((-603 . -310) 46164) ((-45 . -652) 46114) ((-45 . -667) 46064) ((-45 . -375) 46014) ((-1159 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45996) ((-240 . -287) 45973) ((-186 . -1101) T) ((-1088 . -455) 45924) ((-817 . -517) 45798) ((-665 . -1052) 45782) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45713) ((-665 . -641) 45697) ((-357 . -1052) 45649) ((-354 . -1052) 45601) ((-346 . -1052) 45553) ((-265 . -1052) 45396) ((-247 . -1052) 45239) ((-781 . -455) 45190) ((-357 . -641) 45142) ((-354 . -641) 45094) ((-346 . -641) 45046) ((-265 . -641) 44895) ((-247 . -641) 44744) ((-457 . -455) 44695) ((-953 . -414) 44679) ((-732 . -614) 44661) ((-252 . -718) 44603) ((-251 . -718) 44545) ((-732 . -615) 44406) ((-484 . -414) 44390) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -921) T) ((-1001 . -102) 44368) ((-911 . -1052) 44333) ((-1025 . -851) T) ((-60 . -517) 44266) ((-911 . -641) 44231) ((-1230 . -1152) 44183) ((-1005 . -287) NIL) ((-225 . -1059) T) ((-381 . -829) T) ((-1114 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1234 . -1094) 44167) ((-1234 . -1101) 44145) ((-240 . -605) 44122) ((-1234 . -1096) 44079) ((-1175 . -614) 44061) ((-1174 . -614) 44043) ((-1168 . -614) 44025) ((-1168 . -615) NIL) ((-1127 . -614) 44007) ((-873 . -403) 43991) ((-539 . -102) T) ((-1251 . -38) 43832) ((-1230 . -38) 43646) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1263 . -102) T) ((-1253 . -21) T) ((-1253 . -25) T) ((-1114 . -792) 43625) ((-1114 . -795) 43576) ((-1114 . -794) 43555) ((-994 . -1101) T) ((-1028 . -34) T) ((-863 . -1101) T) ((-1114 . -727) 43465) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43444) ((-1190 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1063 . -1059) T) ((-953 . -1059) T) ((-317 . -640) 43350) ((-314 . -640) 43311) ((-1173 . -1101) T) ((-484 . -1059) T) ((-482 . -102) T) ((-439 . -614) 43293) ((-1126 . -1101) T) ((-250 . -614) 43275) ((-855 . -1101) T) ((-1142 . -102) T) ((-817 . -291) 43206) ((-964 . -1057) 43089) ((-480 . -1023) T) ((-736 . -1057) 43059) ((-1035 . -647) 43018) ((-456 . -1057) 42988) ((-1148 . -1122) 42972) ((-1103 . -517) 42905) ((-964 . -111) 42774) ((-911 . -102) T) ((-736 . -111) 42739) ((-528 . -493) 42720) ((-528 . -614) 42686) ((-59 . -102) 42636) ((-523 . -615) 42597) ((-523 . -614) 42509) ((-522 . -102) 42487) ((-519 . -102) 42437) ((-500 . -102) 42415) ((-499 . -102) 42365) ((-456 . -111) 42328) ((-252 . -172) 42307) ((-251 . -172) 42286) ((-323 . -647) 42268) ((-421 . -1057) 42242) ((-1211 . -974) 42204) ((-1000 . -1113) T) ((-381 . -647) 42154) ((-1136 . -617) 42135) ((-944 . -517) 42068) ((-490 . -796) T) ((-477 . -38) 41909) ((-421 . -111) 41876) ((-490 . -793) T) ((-1001 . -310) 41814) ((-217 . -796) T) ((-217 . -793) T) ((-1000 . -23) T) ((-713 . -131) T) ((-1230 . -403) 41784) ((-837 . -647) 41729) ((-828 . -647) 41688) ((-317 . -25) 41540) ((-169 . -414) 41524) ((-317 . -21) 41395) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-964 . -617) 41248) ((-110 . -34) T) ((-736 . -617) 41204) ((-716 . -617) 41186) ((-485 . -649) 41034) ((-872 . -1059) T) ((-595 . -289) 41009) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1173 . -718) 40838) ((-1058 . -102) 40816) ((-1126 . -718) 40665) ((-1121 . -640) 40647) ((-855 . -718) 40617) ((-671 . -1217) T) ((-1 . -102) T) ((-421 . -617) 40525) ((-240 . -614) 40256) ((-1116 . -1101) T) ((-1240 . -414) 40240) ((-1190 . -310) 40044) ((-964 . -1050) T) ((-736 . -1050) T) ((-716 . -1050) T) ((-645 . -1101) 39994) ((-1055 . -649) 39978) ((-856 . -414) 39962) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39949) ((-247 . -310) 39936) ((-964 . -327) 39915) ((-387 . -649) 39899) ((-671 . -1039) 39795) ((-482 . -310) 39599) ((-252 . -517) 39532) ((-251 . -517) 39465) ((-1142 . -310) 39391) ((-820 . -1101) T) ((-800 . -1057) 39375) ((-1259 . -287) 39360) ((-1252 . -287) 39345) ((-1231 . -287) 39193) ((-389 . -1101) T) ((-325 . -1101) T) ((-421 . -1050) T) ((-169 . -1059) T) ((-59 . -310) 39131) ((-800 . -111) 39110) ((-597 . -287) 39095) ((-522 . -310) 39033) ((-519 . -310) 38971) ((-500 . -310) 38909) ((-499 . -310) 38847) ((-421 . -233) 38826) ((-485 . -34) T) ((-1005 . -615) 38756) ((-225 . -1101) T) ((-1005 . -614) 38716) ((-972 . -614) 38676) ((-972 . -615) 38651) ((-915 . -614) 38633) ((-700 . -147) T) ((-702 . -921) T) ((-702 . -821) T) ((-430 . -614) 38615) ((-1121 . -21) T) ((-1121 . -25) T) ((-671 . -379) 38599) ((-116 . -921) T) ((-873 . -231) 38583) ((-78 . -1217) T) ((-126 . -125) 38567) ((-1055 . -34) T) ((-1289 . -1039) 38541) ((-1287 . -1039) 38498) ((-1240 . -1059) T) ((-856 . -1059) T) ((-485 . -792) 38477) ((-357 . -1152) 38456) ((-354 . -1152) 38435) ((-346 . -1152) 38414) ((-485 . -795) 38365) ((-485 . -794) 38344) ((-227 . -34) T) ((-485 . -727) 38254) ((-800 . -617) 38100) ((-663 . -1052) 38084) ((-60 . -492) 38068) ((-574 . -1059) T) ((-663 . -641) 38052) ((-1173 . -172) 37943) ((-1126 . -172) 37854) ((-1063 . -1101) T) ((-1088 . -950) 37799) ((-953 . -1101) T) ((-818 . -649) 37750) ((-783 . -950) 37719) ((-714 . -1101) T) ((-781 . -950) 37686) ((-519 . -283) 37670) ((-671 . -901) 37629) ((-484 . -1101) T) ((-457 . -950) 37596) ((-79 . -1217) T) ((-357 . -38) 37561) ((-354 . -38) 37526) ((-346 . -38) 37491) ((-265 . -38) 37340) ((-247 . -38) 37189) ((-911 . -1152) T) ((-527 . -493) 37170) ((-624 . -147) 37149) ((-624 . -145) 37128) ((-527 . -614) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1050) T) ((-345 . -455) T) ((-1259 . -1003) 37060) ((-1252 . -1003) 37026) ((-1231 . -1003) 36992) ((-911 . -38) 36957) ((-225 . -718) 36922) ((-320 . -47) 36892) ((-40 . -412) 36864) ((-140 . -614) 36846) ((-1000 . -131) T) ((-816 . -1217) T) ((-174 . -921) T) ((-552 . -370) T) ((-607 . -617) 36827) ((-345 . -405) T) ((-715 . -647) 36772) ((-672 . -617) 36753) ((-180 . -617) 36734) ((-161 . -617) 36715) ((-156 . -617) 36696) ((-154 . -617) 36677) ((-523 . -289) 36654) ((-1230 . -231) 36624) ((-816 . -1039) 36451) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1103 . -492) 36435) ((-676 . -1217) T) ((-481 . -102) T) ((-245 . -102) 36385) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1101) T) ((-1179 . -649) 36310) ((-1063 . -718) 36297) ((-732 . -1057) 36140) ((-1173 . -517) 36087) ((-953 . -718) 35936) ((-1126 . -517) 35888) ((-1278 . -1101) T) ((-1277 . -1101) T) ((-484 . -718) 35737) ((-67 . -614) 35719) ((-732 . -111) 35548) ((-944 . -492) 35532) ((-1279 . -649) 35492) ((-818 . -727) T) ((-1175 . -1057) 35375) ((-1174 . -1057) 35210) ((-1168 . -1057) 35000) ((-1127 . -1057) 34883) ((-1004 . -1221) T) ((-1095 . -102) 34861) ((-816 . -379) 34830) ((-582 . -614) 34812) ((-549 . -1101) T) ((-1004 . -559) T) ((-1175 . -111) 34681) ((-1174 . -111) 34502) ((-1168 . -111) 34271) ((-1127 . -111) 34140) ((-1106 . -1104) 34104) ((-381 . -849) T) ((-1259 . -614) 34086) ((-1252 . -614) 34068) ((-873 . -647) 34005) ((-1231 . -614) 33987) ((-1231 . -615) NIL) ((-240 . -289) 33964) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1101) T) ((-732 . -617) 33749) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33731) ((-597 . -614) 33713) ((-899 . -1101) T) ((-842 . -1101) T) ((-809 . -1101) T) ((-770 . -1101) T) ((-659 . -853) 33697) ((-678 . -1101) T) ((-816 . -901) 33629) ((-1222 . -370) T) ((-40 . -405) NIL) ((-1175 . -617) 33511) ((-1121 . -662) T) ((-872 . -718) 33456) ((-252 . -492) 33440) ((-251 . -492) 33424) ((-1174 . -617) 33167) ((-1168 . -617) 32962) ((-713 . -640) 32910) ((-654 . -649) 32884) ((-1127 . -617) 32766) ((-296 . -34) T) ((-732 . -1050) T) ((-584 . -1274) 32753) ((-521 . -1274) 32730) ((-1240 . -1101) T) ((-1173 . -291) 32641) ((-1126 . -291) 32572) ((-1063 . -172) T) ((-856 . -1101) T) ((-953 . -172) 32483) ((-783 . -1243) 32467) ((-645 . -517) 32400) ((-77 . -614) 32382) ((-732 . -327) 32347) ((-1179 . -727) T) ((-574 . -1101) T) ((-484 . -172) 32258) ((-245 . -310) 32196) ((-1143 . -1113) T) ((-70 . -614) 32178) ((-1279 . -727) T) ((-1175 . -1050) T) ((-1174 . -1050) T) ((-328 . -102) 32128) ((-1168 . -1050) T) ((-1143 . -23) T) ((-1127 . -1050) T) ((-91 . -1122) 32112) ((-867 . -1113) T) ((-1175 . -233) 32071) ((-1174 . -243) 32050) ((-1174 . -233) 32002) ((-1168 . -233) 31889) ((-1168 . -243) 31868) ((-320 . -901) 31774) ((-867 . -23) T) ((-169 . -718) 31602) ((-410 . -1221) T) ((-1102 . -370) T) ((-1004 . -365) T) ((-871 . -455) T) ((-1025 . -147) T) ((-944 . -287) 31579) ((-314 . -851) NIL) ((-1251 . -647) 31461) ((-875 . -102) T) ((-1230 . -647) 31316) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31297) ((-356 . -147) 31279) ((-356 . -145) T) ((-1148 . -1101) 31257) ((-456 . -721) T) ((-75 . -614) 31239) ((-114 . -851) T) ((-245 . -283) 31223) ((-240 . -1057) 31120) ((-81 . -614) 31102) ((-736 . -370) 31055) ((-1177 . -829) T) ((-738 . -235) 31039) ((-1160 . -1217) T) ((-141 . -235) 31021) ((-240 . -111) 30911) ((-1240 . -718) 30740) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30710) ((-487 . -1217) T) ((-953 . -517) 30657) ((-654 . -727) T) ((-574 . -718) 30644) ((-1035 . -1059) T) ((-484 . -517) 30587) ((-944 . -19) 30571) ((-944 . -605) 30548) ((-817 . -615) NIL) ((-817 . -614) 30530) ((-1211 . -1052) 30413) ((-1005 . -1057) 30363) ((-416 . -614) 30345) ((-252 . -287) 30322) ((-251 . -287) 30299) ((-490 . -910) NIL) ((-317 . -29) 30269) ((-108 . -1217) T) ((-1004 . -1113) T) ((-217 . -910) NIL) ((-1211 . -641) 30166) ((-915 . -1057) 30118) ((-1081 . -1039) 30014) ((-1005 . -111) 29948) ((-712 . -1052) 29913) ((-1004 . -23) T) ((-915 . -111) 29851) ((-738 . -696) 29835) ((-712 . -641) 29800) ((-265 . -231) 29784) ((-430 . -1057) 29768) ((-381 . -1059) T) ((-240 . -617) 29498) ((-695 . -1205) NIL) ((-490 . -649) 29448) ((-477 . -647) 29330) ((-108 . -885) 29312) ((-108 . -887) 29294) ((-695 . -1202) NIL) ((-217 . -649) 29244) ((-361 . -1039) 29228) ((-355 . -1039) 29212) ((-328 . -310) 29150) ((-347 . -1039) 29134) ((-225 . -291) T) ((-430 . -111) 29113) ((-60 . -614) 29045) ((-169 . -172) T) ((-1121 . -851) T) ((-108 . -1039) 29005) ((-893 . -1101) T) ((-837 . -1059) T) ((-828 . -1059) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -993) 28966) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1050) 28896) ((-1151 . -34) T) ((-480 . -921) T) ((-1000 . -640) 28844) ((-252 . -605) 28821) ((-251 . -605) 28798) ((-1081 . -379) 28782) ((-872 . -517) 28690) ((-240 . -233) 28642) ((-1159 . -1217) T) ((-1005 . -617) 28592) ((-915 . -617) 28529) ((-825 . -614) 28511) ((-1290 . -1113) T) ((-1282 . -614) 28493) ((-1240 . -172) 28384) ((-430 . -617) 28353) ((-108 . -379) 28335) ((-108 . -340) 28317) ((-1063 . -291) T) ((-953 . -291) 28248) ((-800 . -370) 28227) ((-648 . -1217) T) ((-633 . -1217) T) ((-588 . -1052) 28202) ((-484 . -291) 28133) ((-574 . -172) T) ((-328 . -283) 28117) ((-1290 . -23) T) ((-1211 . -102) T) ((-1198 . -1101) T) ((-1089 . -1101) T) ((-1077 . -1101) T) ((-588 . -641) 28092) ((-83 . -614) 28074) ((-1184 . -845) T) ((-1183 . -845) T) ((-712 . -102) T) ((-357 . -351) 28053) ((-609 . -1101) T) ((-354 . -351) 28032) ((-346 . -351) 28011) ((-478 . -1101) T) ((-1190 . -229) 27961) ((-265 . -254) 27923) ((-1143 . -131) T) ((-609 . -611) 27899) ((-1081 . -901) 27832) ((-1005 . -1050) T) ((-915 . -1050) T) ((-478 . -611) 27811) ((-1168 . -793) NIL) ((-1168 . -796) NIL) ((-1103 . -615) 27772) ((-482 . -229) 27722) ((-1103 . -614) 27704) ((-1005 . -243) T) ((-1005 . -233) T) ((-430 . -1050) T) ((-959 . -1101) 27654) ((-915 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1113) 27633) ((-108 . -901) NIL) ((-1211 . -285) 27599) ((-873 . -849) 27578) ((-1114 . -1217) T) ((-906 . -727) T) ((-169 . -517) 27490) ((-1000 . -25) T) ((-906 . -476) T) ((-410 . -1113) T) ((-490 . -795) T) ((-490 . -792) T) ((-911 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1000 . -21) T) ((-217 . -727) T) ((-844 . -23) 27442) ((-1185 . -1101) T) ((-659 . -1052) 27426) ((-1184 . -1101) T) ((-527 . -617) 27407) ((-1183 . -1101) T) ((-320 . -308) 27386) ((-1036 . -235) 27332) ((-659 . -641) 27302) ((-410 . -23) T) ((-944 . -615) 27263) ((-944 . -614) 27175) ((-645 . -492) 27159) ((-45 . -1011) 27109) ((-618 . -968) T) ((-494 . -102) T) ((-332 . -614) 27091) ((-1114 . -1039) 26918) ((-595 . -652) 26900) ((-130 . -1101) T) ((-128 . -1101) T) ((-595 . -375) 26882) ((-345 . -1274) 26859) ((-442 . -614) 26841) ((-1240 . -517) 26788) ((-1088 . -1052) 26631) ((-1028 . -1217) T) ((-872 . -291) T) ((-1173 . -287) 26558) ((-1088 . -641) 26407) ((-1001 . -996) 26391) ((-783 . -1052) 26214) ((-781 . -1052) 26057) ((-783 . -641) 25886) ((-781 . -641) 25735) ((-479 . -1217) T) ((-466 . -1217) T) ((-588 . -102) T) ((-464 . -1052) 25706) ((-457 . -1052) 25549) ((-665 . -647) 25518) ((-624 . -455) 25497) ((-464 . -641) 25468) ((-457 . -641) 25317) ((-357 . -647) 25254) ((-354 . -647) 25191) ((-346 . -647) 25128) ((-265 . -647) 25038) ((-247 . -647) 24948) ((-1282 . -384) 24920) ((-520 . -1101) T) ((-117 . -455) T) ((-1197 . -102) T) ((-1093 . -1101) 24890) ((-1035 . -1101) T) ((-1116 . -93) T) ((-894 . -851) T) ((-1259 . -111) 24759) ((-353 . -1221) T) ((-1259 . -1057) 24642) ((-1114 . -379) 24611) ((-1252 . -1057) 24446) ((-1231 . -1057) 24236) ((-1252 . -111) 24057) ((-1231 . -111) 23826) ((-1211 . -310) 23813) ((-1004 . -131) T) ((-911 . -647) 23763) ((-367 . -614) 23745) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1057) 23705) ((-597 . -1057) 23588) ((-584 . -1052) 23553) ((-521 . -1052) 23498) ((-363 . -1101) T) ((-323 . -1101) T) ((-252 . -614) 23459) ((-251 . -614) 23420) ((-584 . -641) 23385) ((-521 . -641) 23330) ((-695 . -412) 23297) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23250) ((-597 . -111) 23119) ((-381 . -1101) T) ((-338 . -102) T) ((-169 . -291) 23030) ((-1230 . -849) 22983) ((-715 . -1059) T) ((-1148 . -517) 22916) ((-1114 . -901) 22848) ((-837 . -1101) T) ((-828 . -1101) T) ((-826 . -1101) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -885) 22832) ((-110 . -1217) T) ((-1088 . -102) T) ((-1064 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1259 . -617) 22714) ((-1252 . -617) 22457) ((-464 . -102) T) ((-457 . -102) T) ((-1231 . -617) 22252) ((-240 . -796) 22203) ((-240 . -793) 22154) ((-650 . -102) T) ((-598 . -617) 22112) ((-597 . -617) 21994) ((-1240 . -291) 21905) ((-665 . -635) 21889) ((-186 . -614) 21871) ((-645 . -287) 21848) ((-1035 . -718) 21832) ((-574 . -291) T) ((-964 . -649) 21757) ((-1290 . -131) T) ((-736 . -649) 21717) ((-716 . -649) 21704) ((-276 . -102) T) ((-456 . -649) 21634) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1259 . -1050) T) ((-1252 . -1050) T) ((-1231 . -1050) T) ((-510 . -647) 21616) ((-323 . -718) 21598) ((-1259 . -233) 21557) ((-1252 . -243) 21536) ((-1252 . -233) 21488) ((-1231 . -233) 21375) ((-1231 . -243) 21354) ((-1211 . -38) 21251) ((-598 . -1050) T) ((-597 . -1050) T) ((-1005 . -796) T) ((-1005 . -793) T) ((-972 . -796) T) ((-972 . -793) T) ((-873 . -1059) T) ((-109 . -614) 21233) ((-695 . -455) T) ((-381 . -718) 21198) ((-421 . -649) 21172) ((-871 . -870) 21156) ((-712 . -38) 21121) ((-597 . -233) 21080) ((-40 . -725) 21052) ((-353 . -330) 21029) ((-353 . -365) T) ((-1081 . -308) 20980) ((-295 . -1113) 20861) ((-1107 . -1217) T) ((-171 . -102) T) ((-1234 . -614) 20828) ((-844 . -131) 20780) ((-645 . -1255) 20764) ((-837 . -718) 20734) ((-828 . -718) 20704) ((-485 . -1217) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20681) ((-410 . -131) T) ((-523 . -667) 20665) ((-108 . -308) T) ((-295 . -23) 20548) ((-523 . -652) 20532) ((-695 . -405) NIL) ((-523 . -375) 20516) ((-292 . -614) 20498) ((-91 . -1101) 20476) ((-108 . -1023) T) ((-567 . -143) T) ((-1267 . -151) 20460) ((-485 . -1039) 20287) ((-1253 . -145) 20248) ((-1253 . -147) 20209) ((-1055 . -1217) T) ((-994 . -614) 20191) ((-863 . -614) 20173) ((-817 . -1057) 20016) ((-1278 . -93) T) ((-1277 . -93) T) ((-1173 . -615) NIL) ((-1097 . -1101) T) ((-1091 . -1101) T) ((-1088 . -310) 20003) ((-1074 . -1101) T) ((-227 . -1217) T) ((-1067 . -1101) T) ((-1037 . -1101) T) ((-1020 . -1101) T) ((-783 . -310) 19990) ((-781 . -310) 19977) ((-1173 . -614) 19959) ((-817 . -111) 19788) ((-1126 . -614) 19770) ((-627 . -1101) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19757) ((-486 . -1101) T) ((-1126 . -615) 19505) ((-1035 . -172) T) ((-944 . -289) 19482) ((-218 . -1101) T) ((-855 . -614) 19464) ((-609 . -517) 19247) ((-81 . -617) 19188) ((-819 . -1039) 19172) ((-478 . -517) 18964) ((-964 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1113) T) ((-1180 . -614) 18946) ((-223 . -102) T) ((-485 . -379) 18915) ((-518 . -1101) T) ((-513 . -1101) T) ((-511 . -1101) T) ((-800 . -649) 18889) ((-1025 . -455) T) ((-959 . -517) 18822) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18801) ((-381 . -172) T) ((-1251 . -1059) T) ((-1230 . -1059) T) ((-225 . -1003) T) ((-817 . -617) 18538) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1221) T) ((-1143 . -640) 18486) ((-583 . -870) 18470) ((-1282 . -1057) 18454) ((-1160 . -1193) 18430) ((-702 . -559) T) ((-126 . -1101) 18408) ((-715 . -1101) T) ((-485 . -901) 18340) ((-249 . -1101) T) ((-187 . -1101) T) ((-659 . -38) 18310) ((-356 . -405) T) ((-317 . -147) 18289) ((-317 . -145) 18268) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18224) ((-314 . -145) 18180) ((-48 . -455) T) ((-162 . -1101) T) ((-157 . -1101) T) ((-1160 . -107) 18127) ((-783 . -1152) 18105) ((-690 . -34) T) ((-1282 . -111) 18084) ((-553 . -34) T) ((-487 . -107) 18068) ((-252 . -289) 18045) ((-251 . -289) 18022) ((-872 . -287) 17973) ((-45 . -1217) T) ((-1223 . -845) T) ((-817 . -1050) T) ((-663 . -647) 17942) ((-1179 . -47) 17919) ((-817 . -327) 17881) ((-1088 . -38) 17730) ((-817 . -233) 17709) ((-783 . -38) 17538) ((-781 . -38) 17387) ((-1116 . -493) 17368) ((-457 . -38) 17217) ((-1116 . -614) 17183) ((-1119 . -102) T) ((-645 . -615) 17144) ((-645 . -614) 17056) ((-584 . -1152) T) ((-521 . -1152) T) ((-1148 . -492) 17040) ((-345 . -1052) 16985) ((-1203 . -1101) 16963) ((-1143 . -25) T) ((-1143 . -21) T) ((-345 . -641) 16908) ((-1282 . -617) 16857) ((-477 . -1059) T) ((-1223 . -1101) T) ((-1231 . -793) NIL) ((-1231 . -796) NIL) ((-1000 . -851) 16836) ((-839 . -1101) T) ((-820 . -614) 16818) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1221) T) ((-584 . -38) 16783) ((-521 . -38) 16748) ((-389 . -614) 16730) ((-334 . -102) T) ((-325 . -614) 16712) ((-169 . -287) 16670) ((-63 . -1217) T) ((-112 . -102) T) ((-873 . -1101) T) ((-174 . -559) T) ((-715 . -718) 16640) ((-295 . -131) 16523) ((-225 . -614) 16505) ((-225 . -615) 16435) ((-1004 . -640) 16374) ((-1282 . -1050) T) ((-1121 . -147) T) ((-633 . -1193) 16349) ((-732 . -910) 16328) ((-595 . -34) T) ((-648 . -107) 16312) ((-633 . -107) 16258) ((-1240 . -287) 16185) ((-732 . -649) 16110) ((-296 . -1217) T) ((-1179 . -1039) 16006) ((-944 . -619) 15983) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1168 . -910) NIL) ((-1063 . -615) 15898) ((-1063 . -614) 15880) ((-953 . -614) 15862) ((-714 . -493) 15812) ((-345 . -102) T) ((-252 . -1057) 15709) ((-251 . -1057) 15606) ((-397 . -102) T) ((-31 . -1101) T) ((-953 . -615) 15467) ((-714 . -614) 15402) ((-1280 . -1210) 15371) ((-484 . -614) 15353) ((-484 . -615) 15214) ((-265 . -414) 15198) ((-247 . -414) 15182) ((-252 . -111) 15072) ((-251 . -111) 14962) ((-1175 . -649) 14887) ((-1174 . -649) 14784) ((-1168 . -649) 14636) ((-1127 . -649) 14561) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1004 . -25) T) ((-1004 . -21) T) ((-874 . -1101) 14512) ((-40 . -1052) 14457) ((-873 . -718) 14409) ((-40 . -641) 14354) ((-381 . -291) T) ((-169 . -1003) 14305) ((-695 . -390) T) ((-1000 . -998) 14289) ((-702 . -1113) T) ((-695 . -166) 14271) ((-1251 . -1101) T) ((-1230 . -1101) T) ((-317 . -1202) 14250) ((-317 . -1205) 14229) ((-1165 . -102) T) ((-317 . -960) 14208) ((-134 . -1113) T) ((-116 . -1113) T) ((-603 . -1265) 14192) ((-702 . -23) T) ((-603 . -1101) 14142) ((-317 . -95) 14121) ((-91 . -517) 14054) ((-174 . -365) T) ((-252 . -617) 13784) ((-251 . -617) 13514) ((-317 . -35) 13493) ((-609 . -492) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-967 . -102) T) ((-719 . -1101) T) ((-478 . -492) 13364) ((-410 . -640) 13312) ((-654 . -1039) 13208) ((-959 . -492) 13192) ((-357 . -1059) T) ((-354 . -1059) T) ((-346 . -1059) T) ((-265 . -1059) T) ((-247 . -1059) T) ((-872 . -615) NIL) ((-872 . -614) 13174) ((-1278 . -493) 13155) ((-1277 . -493) 13136) ((-1290 . -21) T) ((-1278 . -614) 13102) ((-1277 . -614) 13068) ((-574 . -1003) T) ((-732 . -727) T) ((-1290 . -25) T) ((-252 . -1050) 12998) ((-251 . -1050) 12928) ((-72 . -1217) T) ((-252 . -233) 12880) ((-251 . -233) 12832) ((-40 . -102) T) ((-911 . -1059) T) ((-1182 . -102) T) ((-128 . -492) 12814) ((-1175 . -727) T) ((-1174 . -727) T) ((-1168 . -727) T) ((-1168 . -792) NIL) ((-1168 . -795) NIL) ((-955 . -102) T) ((-922 . -102) T) ((-871 . -1052) 12801) ((-1127 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12788) ((-549 . -614) 12770) ((-477 . -1101) T) ((-341 . -1113) T) ((-174 . -1113) T) ((-320 . -921) 12749) ((-1251 . -718) 12590) ((-873 . -172) T) ((-1230 . -718) 12404) ((-844 . -21) 12356) ((-844 . -25) 12308) ((-245 . -1150) 12292) ((-126 . -517) 12225) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11991) ((-169 . -614) 11973) ((-174 . -23) T) ((-645 . -289) 11950) ((-523 . -34) T) ((-899 . -614) 11932) ((-89 . -1217) T) ((-842 . -614) 11914) ((-809 . -614) 11896) ((-770 . -614) 11878) ((-678 . -614) 11860) ((-240 . -649) 11708) ((-1177 . -1101) T) ((-1173 . -1057) 11531) ((-1151 . -1217) T) ((-1126 . -1057) 11374) ((-855 . -1057) 11358) ((-1234 . -619) 11342) ((-1173 . -111) 11151) ((-1126 . -111) 10980) ((-855 . -111) 10959) ((-1224 . -851) T) ((-1240 . -615) NIL) ((-1240 . -614) 10941) ((-345 . -1152) T) ((-856 . -614) 10923) ((-1077 . -287) 10902) ((-80 . -1217) T) ((-1005 . -910) NIL) ((-609 . -287) 10878) ((-1203 . -517) 10811) ((-490 . -1217) T) ((-574 . -614) 10793) ((-478 . -287) 10772) ((-1211 . -647) 10682) ((-520 . -93) T) ((-1088 . -231) 10666) ((-217 . -1217) T) ((-1005 . -649) 10616) ((-959 . -287) 10593) ((-290 . -921) T) ((-818 . -308) 10572) ((-871 . -102) T) ((-783 . -231) 10556) ((-915 . -649) 10508) ((-712 . -647) 10458) ((-695 . -725) 10425) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10390) ((-490 . -885) 10372) ((-490 . -887) 10354) ((-477 . -718) 10195) ((-217 . -885) 10177) ((-64 . -1217) T) ((-217 . -887) 10159) ((-608 . -25) T) ((-430 . -649) 10133) ((-1173 . -617) 9902) ((-490 . -1039) 9862) ((-873 . -517) 9774) ((-1126 . -617) 9566) ((-855 . -617) 9484) ((-217 . -1039) 9444) ((-240 . -34) T) ((-1001 . -1101) 9422) ((-583 . -1052) 9409) ((-567 . -1052) 9396) ((-498 . -1052) 9361) ((-1251 . -172) 9292) ((-1230 . -172) 9223) ((-583 . -641) 9210) ((-567 . -641) 9197) ((-498 . -641) 9162) ((-713 . -145) 9141) ((-713 . -147) 9120) ((-702 . -131) T) ((-136 . -468) 9097) ((-1148 . -614) 9029) ((-659 . -657) 9013) ((-128 . -287) 8988) ((-116 . -131) T) ((-480 . -1221) T) ((-609 . -605) 8964) ((-478 . -605) 8943) ((-338 . -337) 8912) ((-539 . -1101) T) ((-480 . -559) T) ((-1173 . -1050) T) ((-1126 . -1050) T) ((-855 . -1050) T) ((-240 . -792) 8891) ((-240 . -795) 8842) ((-240 . -794) 8821) ((-1173 . -327) 8798) ((-240 . -727) 8708) ((-959 . -19) 8692) ((-490 . -379) 8674) ((-490 . -340) 8656) ((-1126 . -327) 8628) ((-356 . -1274) 8605) ((-217 . -379) 8587) ((-217 . -340) 8569) ((-959 . -605) 8546) ((-1173 . -233) T) ((-1263 . -1101) T) ((-665 . -1101) T) ((-646 . -1101) T) ((-1190 . -1101) T) ((-1088 . -254) 8483) ((-588 . -647) 8443) ((-357 . -1101) T) ((-354 . -1101) T) ((-346 . -1101) T) ((-265 . -1101) T) ((-247 . -1101) T) ((-84 . -1217) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1190 . -611) 8378) ((-1230 . -517) 8238) ((-1142 . -1101) T) ((-1116 . -617) 8219) ((-482 . -1101) T) ((-1081 . -921) 8170) ((-1005 . -795) T) ((-482 . -611) 8149) ((-252 . -796) 8100) ((-252 . -793) 8051) ((-251 . -796) 8002) ((-40 . -1152) NIL) ((-251 . -793) 7953) ((-1005 . -792) T) ((-128 . -19) 7935) ((-1005 . -727) T) ((-700 . -1052) 7900) ((-972 . -795) T) ((-915 . -727) T) ((-911 . -1101) T) ((-128 . -605) 7875) ((-700 . -641) 7840) ((-91 . -492) 7824) ((-490 . -901) NIL) ((-893 . -614) 7806) ((-225 . -1057) 7771) ((-873 . -291) T) ((-217 . -901) NIL) ((-834 . -1113) 7750) ((-59 . -1101) 7700) ((-522 . -1101) 7678) ((-519 . -1101) 7628) ((-500 . -1101) 7606) ((-499 . -1101) 7556) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7487) ((-361 . -921) T) ((-355 . -921) T) ((-347 . -921) T) ((-225 . -111) 7443) ((-834 . -23) 7395) ((-430 . -727) T) ((-108 . -921) T) ((-40 . -38) 7340) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7319) ((-317 . -455) 7298) ((-314 . -455) T) ((-659 . -647) 7257) ((-603 . -517) 7190) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7054) ((-295 . -21) 6937) ((-45 . -1193) 6916) ((-66 . -614) 6898) ((-55 . -102) T) ((-338 . -647) 6880) ((-45 . -107) 6830) ((-820 . -617) 6814) ((-1268 . -102) T) ((-1267 . -102) 6764) ((-1259 . -649) 6689) ((-1252 . -649) 6586) ((-1231 . -649) 6438) ((-1103 . -428) 6422) ((-1103 . -370) 6401) ((-389 . -617) 6385) ((-325 . -617) 6369) ((-1231 . -910) NIL) ((-1198 . -614) 6351) ((-1064 . -1217) T) ((-1088 . -647) 6261) ((-1063 . -1057) 6248) ((-1063 . -111) 6233) ((-953 . -1057) 6076) ((-953 . -111) 5905) ((-783 . -647) 5815) ((-781 . -647) 5725) ((-624 . -1052) 5712) ((-665 . -718) 5696) ((-624 . -641) 5683) ((-484 . -1057) 5526) ((-480 . -365) T) ((-464 . -647) 5482) ((-457 . -647) 5392) ((-225 . -617) 5342) ((-357 . -718) 5294) ((-354 . -718) 5246) ((-117 . -1052) 5191) ((-346 . -718) 5143) ((-265 . -718) 4992) ((-247 . -718) 4841) ((-1097 . -93) T) ((-1091 . -93) T) ((-117 . -641) 4786) ((-1074 . -93) T) ((-944 . -652) 4770) ((-1067 . -93) T) ((-484 . -111) 4599) ((-1058 . -1101) 4577) ((-1037 . -93) T) ((-944 . -375) 4561) ((-248 . -102) T) ((-1020 . -93) T) ((-74 . -614) 4543) ((-964 . -47) 4522) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1101) T) ((-622 . -1113) T) ((-1089 . -614) 4504) ((-627 . -93) T) ((-1077 . -614) 4486) ((-911 . -718) 4451) ((-126 . -492) 4435) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1217) T) ((-218 . -93) T) ((-609 . -614) 4417) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4399) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4358) ((-514 . -1101) T) ((-510 . -1101) T) ((-127 . -310) 4296) ((-121 . -310) 4234) ((-598 . -649) 4208) ((-597 . -649) 4133) ((-584 . -647) 4083) ((-225 . -1050) T) ((-521 . -647) 4013) ((-381 . -1003) T) ((-225 . -243) T) ((-225 . -233) T) ((-1063 . -617) 3985) ((-1063 . -619) 3966) ((-959 . -615) 3927) ((-959 . -614) 3839) ((-953 . -617) 3628) ((-871 . -38) 3615) ((-714 . -617) 3565) ((-1251 . -291) 3516) ((-1230 . -291) 3467) ((-484 . -617) 3252) ((-1121 . -455) T) ((-505 . -851) T) ((-317 . -1140) 3231) ((-1000 . -147) 3210) ((-1000 . -145) 3189) ((-498 . -310) 3176) ((-296 . -1193) 3155) ((-1185 . -614) 3137) ((-1184 . -614) 3119) ((-1183 . -614) 3101) ((-872 . -1057) 3046) ((-480 . -1113) T) ((-139 . -836) 3028) ((-114 . -836) 3009) ((-624 . -102) T) ((-1203 . -492) 2993) ((-252 . -370) 2972) ((-251 . -370) 2951) ((-1063 . -1050) T) ((-296 . -107) 2901) ((-130 . -614) 2883) ((-128 . -615) NIL) ((-128 . -614) 2827) ((-117 . -102) T) ((-953 . -1050) T) ((-872 . -111) 2756) ((-480 . -23) T) ((-484 . -1050) T) ((-1063 . -233) T) ((-953 . -327) 2725) ((-484 . -327) 2682) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2593) ((-247 . -172) 2504) ((-964 . -1039) 2400) ((-520 . -493) 2381) ((-736 . -1039) 2352) ((-520 . -614) 2318) ((-1106 . -102) T) ((-1093 . -614) 2277) ((-1035 . -614) 2259) ((-695 . -1052) 2209) ((-1280 . -151) 2193) ((-1278 . -617) 2174) ((-1277 . -617) 2155) ((-1272 . -614) 2137) ((-1259 . -727) T) ((-695 . -641) 2087) ((-1252 . -727) T) ((-1231 . -792) NIL) ((-1231 . -795) NIL) ((-169 . -1057) 1997) ((-911 . -172) T) ((-872 . -617) 1927) ((-1231 . -727) T) ((-1004 . -344) 1901) ((-223 . -647) 1853) ((-1001 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1152) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1039) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1267 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1011) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1023) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1023) T) ((-872 . -1050) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -910) 987) ((-1291 . -1113) T) ((-1240 . -1057) 810) ((-856 . -1057) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1217) T) ((-1291 . -23) T) ((-817 . -649) 719) ((-553 . -1217) T) ((-421 . -340) 703) ((-574 . -1057) 690) ((-1240 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1190 . -517) 30) ((-682 . -1101) T) ((-677 . -1101) T) ((-663 . -1101) T))
\ No newline at end of file +(((-481 . -1102) T) ((-265 . -517) 188219) ((-247 . -517) 188162) ((-245 . -1102) 188112) ((-574 . -111) 188097) ((-534 . -23) T) ((-137 . -1102) T) ((-133 . -1102) T) ((-117 . -310) 188054) ((-138 . -1102) T) ((-482 . -517) 187846) ((-678 . -617) 187830) ((-695 . -102) T) ((-1143 . -517) 187749) ((-393 . -131) T) ((-1281 . -978) 187718) ((-1026 . -1053) 187655) ((-31 . -93) T) ((-603 . -492) 187639) ((-1026 . -641) 187576) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187526) ((-522 . -517) 187459) ((-356 . -1053) 187404) ((-59 . -517) 187337) ((-519 . -517) 187270) ((-421 . -902) 187229) ((-169 . -1051) T) ((-500 . -517) 187162) ((-499 . -517) 187095) ((-356 . -641) 187040) ((-800 . -1040) 186820) ((-700 . -38) 186785) ((-1241 . -617) 186533) ((-345 . -351) T) ((-1096 . -1095) 186517) ((-1096 . -1102) 186495) ((-856 . -617) 186392) ((-169 . -243) 186343) ((-169 . -233) 186294) ((-1096 . -1097) 186252) ((-873 . -287) 186210) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 186182) ((-1152 . -1194) 186161) ((-410 . -994) 186145) ((-48 . -1053) 186110) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 186075) ((-1283 . -649) 186049) ((-317 . -160) 186028) ((-317 . -143) 186007) ((-1152 . -107) 185957) ((-116 . -21) T) ((-40 . -231) 185934) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185910) ((-478 . -289) 185889) ((-1241 . -327) 185866) ((-1241 . -1051) T) ((-856 . -1051) T) ((-800 . -340) 185850) ((-139 . -185) T) ((-117 . -1153) NIL) ((-91 . -614) 185782) ((-480 . -131) T) ((-1241 . -233) T) ((-1098 . -493) 185763) ((-1098 . -614) 185729) ((-1092 . -493) 185710) ((-1092 . -614) 185676) ((-595 . -1218) T) ((-1075 . -493) 185657) ((-574 . -1051) T) ((-1075 . -614) 185623) ((-663 . -718) 185607) ((-1068 . -493) 185588) ((-1068 . -614) 185554) ((-960 . -289) 185531) ((-60 . -34) T) ((-1064 . -796) T) ((-1064 . -793) T) ((-1038 . -493) 185512) ((-1021 . -493) 185493) ((-817 . -727) T) ((-732 . -47) 185458) ((-624 . -38) 185445) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185376) ((-247 . -291) 185307) ((-1038 . -614) 185273) ((-1026 . -102) T) ((-1021 . -614) 185239) ((-627 . -493) 185220) ((-416 . -727) T) ((-117 . -38) 185165) ((-486 . -493) 185146) ((-627 . -614) 185112) ((-416 . -476) T) ((-218 . -493) 185093) ((-486 . -614) 185059) ((-356 . -102) T) ((-218 . -614) 185025) ((-1212 . -1060) T) ((-345 . -647) 184955) ((-712 . -1060) T) ((-1176 . -47) 184932) ((-1175 . -47) 184902) ((-1169 . -47) 184879) ((-128 . -289) 184854) ((-1037 . -151) 184800) ((-912 . -291) T) ((-1128 . -47) 184772) ((-695 . -310) NIL) ((-518 . -614) 184754) ((-513 . -614) 184736) ((-511 . -614) 184718) ((-328 . -1102) 184668) ((-713 . -455) 184599) ((-48 . -102) T) ((-1252 . -287) 184584) ((-1231 . -287) 184504) ((-645 . -667) 184488) ((-645 . -652) 184472) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184456) ((-606 . -493) 184438) ((-603 . -287) 184415) ((-606 . -614) 184382) ((-391 . -102) T) ((-1122 . -143) T) ((-126 . -614) 184314) ((-875 . -1102) T) ((-659 . -414) 184298) ((-715 . -614) 184280) ((-249 . -614) 184247) ((-187 . -614) 184229) ((-162 . -614) 184211) ((-157 . -614) 184193) ((-1283 . -727) T) ((-1104 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -888) NIL) ((-1292 . -131) T) ((-383 . -131) T) ((-894 . -617) 184161) ((-906 . -102) T) ((-732 . -1040) 184037) ((-534 . -131) T) ((-1089 . -414) 184021) ((-1002 . -492) 184005) ((-117 . -403) 183982) ((-1169 . -1218) 183961) ((-783 . -414) 183945) ((-781 . -414) 183929) ((-945 . -34) T) ((-695 . -1153) NIL) ((-252 . -649) 183764) ((-251 . -649) 183586) ((-818 . -922) 183565) ((-457 . -414) 183549) ((-603 . -19) 183533) ((-1148 . -1211) 183502) ((-1169 . -888) NIL) ((-1169 . -886) 183454) ((-603 . -605) 183431) ((-1204 . -614) 183363) ((-1177 . -614) 183345) ((-62 . -398) T) ((-1175 . -1040) 183280) ((-1169 . -1040) 183246) ((-695 . -38) 183196) ((-40 . -647) 183126) ((-477 . -287) 183111) ((-1224 . -614) 183093) ((-732 . -379) 183077) ((-839 . -614) 183059) ((-659 . -1060) T) ((-1252 . -1004) 183025) ((-1231 . -1004) 182991) ((-1090 . -617) 182975) ((-1065 . -1194) 182950) ((-1078 . -617) 182927) ((-873 . -615) 182734) ((-873 . -614) 182716) ((-1191 . -492) 182653) ((-421 . -1024) 182631) ((-48 . -310) 182618) ((-1065 . -107) 182564) ((-482 . -492) 182501) ((-523 . -1218) T) ((-1169 . -340) 182453) ((-1143 . -492) 182424) ((-1169 . -379) 182376) ((-1089 . -1060) T) ((-440 . -102) T) ((-183 . -1102) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1060) T) ((-781 . -1060) T) ((-732 . -902) 182353) ((-457 . -1060) T) ((-59 . -492) 182337) ((-1036 . -1058) 182311) ((-522 . -492) 182295) ((-519 . -492) 182279) ((-500 . -492) 182263) ((-499 . -492) 182247) ((-245 . -517) 182180) ((-1036 . -111) 182147) ((-1176 . -902) 182060) ((-1175 . -902) 181966) ((-1169 . -902) 181799) ((-1128 . -902) 181783) ((-671 . -1114) T) ((-356 . -1153) T) ((-646 . -93) T) ((-323 . -1058) 181765) ((-252 . -792) 181744) ((-252 . -795) 181695) ((-31 . -493) 181676) ((-252 . -794) 181655) ((-251 . -792) 181634) ((-251 . -795) 181585) ((-251 . -794) 181564) ((-31 . -614) 181530) ((-50 . -1060) T) ((-252 . -727) 181440) ((-251 . -727) 181350) ((-1212 . -1102) T) ((-671 . -23) T) ((-584 . -1060) T) ((-521 . -1060) T) ((-381 . -1058) 181315) ((-323 . -111) 181290) ((-73 . -385) T) ((-73 . -398) T) ((-1026 . -38) 181227) ((-695 . -403) 181209) ((-99 . -102) T) ((-712 . -1102) T) ((-1296 . -1053) 181196) ((-1005 . -145) 181168) ((-1005 . -147) 181140) ((-871 . -647) 181112) ((-381 . -111) 181068) ((-320 . -1222) 181047) ((-477 . -1004) 181013) ((-356 . -38) 180978) ((-40 . -372) 180950) ((-874 . -614) 180822) ((-127 . -125) 180806) ((-121 . -125) 180790) ((-837 . -1058) 180760) ((-834 . -21) 180712) ((-828 . -1058) 180696) ((-834 . -25) 180648) ((-320 . -559) 180599) ((-520 . -617) 180580) ((-567 . -829) T) ((-240 . -1218) T) ((-1036 . -617) 180549) ((-837 . -111) 180514) ((-828 . -111) 180493) ((-1252 . -614) 180475) ((-1231 . -614) 180457) ((-1231 . -615) 180128) ((-1174 . -911) 180107) ((-1127 . -911) 180086) ((-48 . -38) 180051) ((-1290 . -1114) T) ((-603 . -614) 179963) ((-603 . -615) 179924) ((-1288 . -1114) T) ((-363 . -617) 179908) ((-323 . -617) 179892) ((-240 . -1040) 179719) ((-1174 . -649) 179644) ((-1127 . -649) 179569) ((-855 . -649) 179543) ((-719 . -614) 179525) ((-549 . -370) T) ((-1290 . -23) T) ((-1288 . -23) T) ((-494 . -1102) T) ((-381 . -617) 179475) ((-381 . -619) 179457) ((-1036 . -1051) T) ((-866 . -102) T) ((-1191 . -287) 179436) ((-169 . -370) 179387) ((-1006 . -1218) T) ((-837 . -617) 179341) ((-828 . -617) 179296) ((-44 . -23) T) ((-482 . -287) 179275) ((-588 . -1102) T) ((-1148 . -1111) 179244) ((-1106 . -1105) 179196) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1114) T) ((-1296 . -102) T) ((-1006 . -886) 179178) ((-1006 . -888) 179160) ((-1212 . -718) 179057) ((-624 . -231) 179041) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1198 . -1102) T) ((-712 . -718) 179006) ((-240 . -379) 178975) ((-1006 . -1040) 178935) ((-381 . -1051) T) ((-223 . -1060) T) ((-117 . -231) 178912) ((-59 . -287) 178889) ((-152 . -23) T) ((-519 . -287) 178866) ((-328 . -517) 178799) ((-499 . -287) 178776) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1051) T) ((-828 . -1051) T) ((-713 . -951) 178745) ((-702 . -851) T) ((-477 . -614) 178727) ((-1254 . -1053) 178632) ((-583 . -647) 178604) ((-567 . -647) 178576) ((-498 . -647) 178526) ((-828 . -233) 178505) ((-134 . -851) T) ((-1254 . -641) 178397) ((-659 . -1102) T) ((-1191 . -605) 178376) ((-553 . -1194) 178355) ((-338 . -1102) T) ((-320 . -365) 178334) ((-410 . -147) 178313) ((-410 . -145) 178292) ((-966 . -1114) 178191) ((-240 . -902) 178123) ((-816 . -1114) 178033) ((-655 . -853) 178017) ((-482 . -605) 177996) ((-553 . -107) 177946) ((-1006 . -379) 177928) ((-1006 . -340) 177910) ((-97 . -1102) T) ((-966 . -23) 177721) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177591) ((-1178 . -614) 177573) ((-59 . -19) 177557) ((-1178 . -615) 177479) ((-1174 . -727) T) ((-1127 . -727) T) ((-519 . -19) 177463) ((-499 . -19) 177447) ((-59 . -605) 177424) ((-1089 . -1102) T) ((-903 . -102) 177402) ((-855 . -727) T) ((-783 . -1102) T) ((-519 . -605) 177379) ((-499 . -605) 177356) ((-781 . -1102) T) ((-781 . -1067) 177323) ((-464 . -1102) T) ((-457 . -1102) T) ((-588 . -718) 177298) ((-650 . -1102) T) ((-1260 . -47) 177275) ((-1254 . -102) T) ((-1253 . -47) 177245) ((-1232 . -47) 177222) ((-1212 . -172) 177173) ((-1175 . -308) 177152) ((-1169 . -308) 177131) ((-1098 . -617) 177112) ((-1092 . -617) 177093) ((-1082 . -559) 177044) ((-1006 . -902) NIL) ((-1082 . -1222) 176995) ((-671 . -131) T) ((-628 . -1114) T) ((-1075 . -617) 176976) ((-1068 . -617) 176957) ((-1038 . -617) 176938) ((-1021 . -617) 176919) ((-700 . -647) 176869) ((-276 . -1102) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1058) 176839) ((-712 . -172) T) ((-50 . -1102) T) ((-597 . -47) 176816) ((-225 . -649) 176781) ((-584 . -1102) T) ((-521 . -1102) T) ((-490 . -821) T) ((-490 . -922) T) ((-361 . -1222) T) ((-355 . -1222) T) ((-347 . -1222) T) ((-320 . -1114) T) ((-317 . -1053) 176691) ((-314 . -1053) 176620) ((-108 . -1222) T) ((-627 . -617) 176601) ((-361 . -559) T) ((-217 . -922) T) ((-217 . -821) T) ((-317 . -641) 176511) ((-314 . -641) 176440) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176421) ((-108 . -559) T) ((-659 . -718) 176391) ((-1169 . -1024) NIL) ((-218 . -617) 176372) ((-320 . -23) T) ((-67 . -1218) T) ((-1002 . -614) 176304) ((-695 . -231) 176286) ((-715 . -111) 176251) ((-645 . -34) T) ((-245 . -492) 176235) ((-1104 . -1100) 176219) ((-171 . -1102) T) ((-954 . -911) 176198) ((-1296 . -1153) T) ((-1292 . -21) T) ((-1292 . -25) T) ((-518 . -617) 176182) ((-1290 . -131) T) ((-1288 . -131) T) ((-1281 . -102) T) ((-484 . -911) 176161) ((-1264 . -614) 176127) ((-1253 . -1040) 176062) ((-1232 . -1218) 176041) ((-1232 . -888) NIL) ((-1232 . -886) 175993) ((-1232 . -1040) 175959) ((-1089 . -718) 175808) ((-1064 . -649) 175795) ((-954 . -649) 175720) ((-783 . -718) 175549) ((-539 . -614) 175531) ((-539 . -615) 175512) ((-781 . -718) 175361) ((-1079 . -102) T) ((-383 . -25) T) ((-624 . -647) 175333) ((-383 . -21) T) ((-484 . -649) 175258) ((-464 . -718) 175229) ((-457 . -718) 175078) ((-989 . -102) T) ((-1191 . -615) NIL) ((-1191 . -614) 175060) ((-1144 . -1125) 175005) ((-738 . -102) T) ((-117 . -647) 174935) ((-606 . -617) 174917) ((-1048 . -1211) 174846) ((-903 . -310) 174784) ((-534 . -25) T) ((-877 . -93) T) ((-715 . -617) 174738) ((-682 . -93) T) ((-646 . -493) 174719) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174701) ((-345 . -1060) T) ((-290 . -1114) T) ((-646 . -614) 174654) ((-481 . -93) T) ((-357 . -614) 174636) ((-354 . -614) 174618) ((-346 . -614) 174600) ((-265 . -615) 174348) ((-265 . -614) 174330) ((-247 . -614) 174312) ((-247 . -615) 174173) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1212 . -517) 174140) ((-1143 . -614) 174122) ((-1122 . -641) 174109) ((-820 . -727) T) ((-820 . -858) T) ((-603 . -289) 174086) ((-584 . -718) 174051) ((-482 . -615) NIL) ((-482 . -614) 174033) ((-521 . -718) 173978) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1122 . -1053) 173965) ((-912 . -614) 173947) ((-389 . -727) T) ((-873 . -1058) 173899) ((-912 . -615) 173881) ((-873 . -111) 173819) ((-715 . -1051) T) ((-713 . -1244) 173803) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173735) ((-381 . -796) T) ((-223 . -1102) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173696) ((-59 . -614) 173608) ((-225 . -727) T) ((-519 . -615) 173569) ((-519 . -614) 173481) ((-500 . -614) 173413) ((-499 . -615) 173374) ((-499 . -614) 173286) ((-1082 . -365) 173237) ((-40 . -414) 173214) ((-77 . -1218) T) ((-872 . -911) NIL) ((-361 . -330) 173198) ((-361 . -365) T) ((-355 . -330) 173182) ((-355 . -365) T) ((-347 . -330) 173166) ((-347 . -365) T) ((-317 . -285) 173145) ((-108 . -365) T) ((-70 . -1218) T) ((-1232 . -340) 173097) ((-872 . -649) 173042) ((-1232 . -379) 172994) ((-966 . -131) 172849) ((-816 . -131) 172719) ((-960 . -652) 172703) ((-1089 . -172) 172614) ((-960 . -375) 172598) ((-1064 . -795) T) ((-1064 . -792) T) ((-873 . -617) 172496) ((-783 . -172) 172387) ((-781 . -172) 172298) ((-817 . -47) 172260) ((-1064 . -727) T) ((-328 . -492) 172244) ((-954 . -727) T) ((-1281 . -310) 172182) ((-457 . -172) 172093) ((-245 . -287) 172070) ((-1260 . -902) 171983) ((-1253 . -902) 171889) ((-1252 . -1058) 171724) ((-484 . -727) T) ((-1232 . -902) 171557) ((-1231 . -1058) 171365) ((-1212 . -291) 171344) ((-1188 . -1218) T) ((-1185 . -370) T) ((-1184 . -370) T) ((-1148 . -151) 171328) ((-1122 . -102) T) ((-1120 . -1102) T) ((-1082 . -23) T) ((-1082 . -1114) T) ((-1077 . -102) T) ((-1059 . -614) 171295) ((-929 . -957) T) ((-738 . -310) 171233) ((-75 . -1218) T) ((-665 . -384) 171205) ((-169 . -911) 171158) ((-30 . -957) T) ((-112 . -845) T) ((-1 . -614) 171140) ((-1005 . -412) 171112) ((-128 . -652) 171094) ((-50 . -621) 171078) ((-695 . -647) 171013) ((-597 . -902) 170926) ((-441 . -102) T) ((-128 . -375) 170908) ((-141 . -310) NIL) ((-873 . -1051) T) ((-834 . -851) 170887) ((-81 . -1218) T) ((-712 . -291) T) ((-40 . -1060) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170869) ((-169 . -649) 170779) ((-510 . -614) 170761) ((-353 . -147) 170743) ((-353 . -145) T) ((-361 . -1114) T) ((-355 . -1114) T) ((-347 . -1114) T) ((-1006 . -308) T) ((-916 . -308) T) ((-873 . -243) T) ((-108 . -1114) T) ((-873 . -233) 170722) ((-1252 . -111) 170543) ((-1231 . -111) 170332) ((-245 . -1256) 170316) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170303) ((-314 . -310) 170244) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1006 . -1024) T) ((-31 . -617) 170225) ((-108 . -23) T) ((-655 . -1053) 170209) ((-245 . -605) 170186) ((-334 . -1102) T) ((-655 . -641) 170156) ((-1254 . -38) 170048) ((-1241 . -911) 170027) ((-112 . -1102) T) ((-1037 . -102) T) ((-1241 . -649) 169952) ((-872 . -795) NIL) ((-856 . -649) 169926) ((-872 . -792) NIL) ((-817 . -888) NIL) ((-872 . -727) T) ((-1089 . -517) 169799) ((-783 . -517) 169746) ((-781 . -517) 169698) ((-574 . -649) 169685) ((-817 . -1040) 169513) ((-457 . -517) 169456) ((-391 . -392) T) ((-1252 . -617) 169269) ((-1231 . -617) 169017) ((-60 . -1218) T) ((-622 . -851) 168996) ((-503 . -662) T) ((-1148 . -978) 168965) ((-1026 . -647) 168902) ((-1005 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1058) 168737) ((-345 . -1102) T) ((-314 . -1153) NIL) ((-290 . -131) T) ((-397 . -1102) T) ((-871 . -1060) T) ((-695 . -372) 168704) ((-356 . -647) 168634) ((-223 . -621) 168611) ((-328 . -287) 168588) ((-477 . -111) 168409) ((-1252 . -1051) T) ((-1231 . -1051) T) ((-817 . -379) 168393) ((-169 . -727) T) ((-655 . -102) T) ((-1252 . -243) 168372) ((-1252 . -233) 168324) ((-1231 . -233) 168229) ((-1231 . -243) 168208) ((-1005 . -405) NIL) ((-671 . -640) 168156) ((-317 . -38) 168066) ((-314 . -38) 167995) ((-69 . -614) 167977) ((-320 . -496) 167943) ((-48 . -647) 167893) ((-1191 . -289) 167872) ((-1226 . -851) T) ((-1115 . -1114) 167782) ((-83 . -1218) T) ((-61 . -614) 167764) ((-482 . -289) 167743) ((-1283 . -1040) 167720) ((-1166 . -1102) T) ((-1115 . -23) 167590) ((-817 . -902) 167526) ((-1241 . -727) T) ((-1104 . -1218) T) ((-477 . -617) 167352) ((-1089 . -291) 167283) ((-968 . -1102) T) ((-895 . -102) T) ((-783 . -291) 167194) ((-328 . -19) 167178) ((-59 . -289) 167155) ((-781 . -291) 167086) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 167063) ((-328 . -605) 167040) ((-499 . -289) 167017) ((-457 . -291) 166948) ((-1037 . -310) 166799) ((-877 . -493) 166780) ((-877 . -614) 166746) ((-682 . -493) 166727) ((-574 . -727) T) ((-677 . -493) 166708) ((-682 . -614) 166658) ((-677 . -614) 166624) ((-663 . -614) 166606) ((-481 . -493) 166587) ((-481 . -614) 166553) ((-245 . -615) 166514) ((-245 . -493) 166491) ((-138 . -493) 166472) ((-137 . -493) 166453) ((-133 . -493) 166434) ((-245 . -614) 166326) ((-213 . -102) T) ((-138 . -614) 166292) ((-137 . -614) 166258) ((-133 . -614) 166224) ((-1149 . -34) T) ((-945 . -1218) T) ((-345 . -718) 166169) ((-671 . -25) T) ((-671 . -21) T) ((-1178 . -617) 166150) ((-477 . -1051) T) ((-636 . -420) 166115) ((-608 . -420) 166080) ((-1122 . -1153) T) ((-713 . -1053) 165903) ((-584 . -291) T) ((-521 . -291) T) ((-1253 . -308) 165882) ((-477 . -233) 165834) ((-477 . -243) 165813) ((-1232 . -308) 165792) ((-713 . -641) 165621) ((-1232 . -1024) NIL) ((-1082 . -131) T) ((-873 . -796) 165600) ((-144 . -102) T) ((-40 . -1102) T) ((-873 . -793) 165579) ((-645 . -1012) 165563) ((-583 . -1060) T) ((-567 . -1060) T) ((-498 . -1060) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165547) ((-314 . -403) 165508) ((-355 . -131) T) ((-347 . -131) T) ((-1183 . -1102) T) ((-1122 . -38) 165495) ((-1096 . -614) 165462) ((-108 . -131) T) ((-956 . -1102) T) ((-923 . -1102) T) ((-772 . -1102) T) ((-673 . -1102) T) ((-702 . -147) T) ((-116 . -147) T) ((-1290 . -21) T) ((-1290 . -25) T) ((-1288 . -21) T) ((-1288 . -25) T) ((-665 . -1058) 165446) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1058) 165398) ((-354 . -1058) 165350) ((-346 . -1058) 165302) ((-252 . -1218) T) ((-251 . -1218) T) ((-265 . -1058) 165145) ((-247 . -1058) 164988) ((-665 . -111) 164967) ((-550 . -845) T) ((-357 . -111) 164905) ((-354 . -111) 164843) ((-346 . -111) 164781) ((-265 . -111) 164610) ((-247 . -111) 164439) ((-818 . -1222) 164418) ((-624 . -414) 164402) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164308) ((-818 . -559) 164287) ((-252 . -1040) 164114) ((-251 . -1040) 163941) ((-126 . -119) 163925) ((-912 . -1058) 163890) ((-713 . -102) T) ((-700 . -1060) T) ((-539 . -619) 163793) ((-345 . -172) T) ((-88 . -614) 163775) ((-152 . -21) T) ((-152 . -25) T) ((-912 . -111) 163731) ((-40 . -718) 163676) ((-871 . -1102) T) ((-665 . -617) 163653) ((-646 . -617) 163634) ((-357 . -617) 163571) ((-354 . -617) 163508) ((-550 . -1102) T) ((-346 . -617) 163445) ((-328 . -615) 163406) ((-328 . -614) 163318) ((-265 . -617) 163071) ((-247 . -617) 162856) ((-1231 . -793) 162809) ((-1231 . -796) 162762) ((-252 . -379) 162731) ((-251 . -379) 162700) ((-655 . -38) 162670) ((-609 . -34) T) ((-485 . -1114) 162580) ((-478 . -34) T) ((-1115 . -131) 162450) ((-966 . -25) 162261) ((-912 . -617) 162211) ((-875 . -614) 162193) ((-966 . -21) 162148) ((-816 . -21) 162058) ((-816 . -25) 161909) ((-1224 . -370) T) ((-624 . -1060) T) ((-1180 . -559) 161888) ((-1174 . -47) 161865) ((-357 . -1051) T) ((-354 . -1051) T) ((-485 . -23) 161735) ((-346 . -1051) T) ((-265 . -1051) T) ((-247 . -1051) T) ((-1127 . -47) 161707) ((-117 . -1060) T) ((-1036 . -649) 161681) ((-960 . -34) T) ((-357 . -233) 161660) ((-357 . -243) T) ((-354 . -233) 161639) ((-354 . -243) T) ((-346 . -233) 161618) ((-346 . -243) T) ((-265 . -327) 161590) ((-247 . -327) 161547) ((-265 . -233) 161526) ((-1158 . -151) 161510) ((-252 . -902) 161442) ((-251 . -902) 161374) ((-1084 . -851) T) ((-417 . -1114) T) ((-1056 . -23) T) ((-912 . -1051) T) ((-323 . -649) 161356) ((-1026 . -849) T) ((-1212 . -1004) 161322) ((-1175 . -922) 161301) ((-1169 . -922) 161280) ((-1169 . -821) NIL) ((-1001 . -1053) 161176) ((-912 . -243) T) ((-818 . -365) 161155) ((-387 . -23) T) ((-127 . -1102) 161133) ((-121 . -1102) 161111) ((-912 . -233) T) ((-128 . -34) T) ((-381 . -649) 161076) ((-1001 . -641) 161024) ((-871 . -718) 161011) ((-1296 . -647) 160983) ((-1048 . -151) 160948) ((-40 . -172) T) ((-695 . -414) 160930) ((-713 . -310) 160917) ((-837 . -649) 160877) ((-828 . -649) 160851) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160830) ((-583 . -1102) T) ((-567 . -1102) T) ((-498 . -1102) T) ((-245 . -289) 160807) ((-314 . -231) 160768) ((-1174 . -888) NIL) ((-55 . -1102) T) ((-1127 . -888) 160627) ((-129 . -851) T) ((-1174 . -1040) 160507) ((-1127 . -1040) 160390) ((-183 . -614) 160372) ((-855 . -1040) 160268) ((-783 . -287) 160195) ((-818 . -1114) T) ((-1036 . -727) T) ((-603 . -652) 160179) ((-1048 . -978) 160108) ((-1001 . -102) T) ((-818 . -23) T) ((-713 . -1153) 160086) ((-695 . -1060) T) ((-603 . -375) 160070) ((-353 . -455) T) ((-345 . -291) T) ((-1269 . -1102) T) ((-248 . -1102) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1102) T) ((-700 . -1102) T) ((-363 . -476) T) ((-1212 . -614) 160052) ((-1174 . -379) 160036) ((-1127 . -379) 160020) ((-1026 . -414) 159982) ((-141 . -229) 159964) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 159946) ((-713 . -38) 159775) ((-1268 . -1266) 159759) ((-353 . -405) T) ((-1268 . -1102) 159709) ((-583 . -718) 159696) ((-567 . -718) 159683) ((-498 . -718) 159648) ((-1254 . -647) 159538) ((-317 . -630) 159517) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1218) T) ((-1082 . -640) 159465) ((-1174 . -902) 159408) ((-1127 . -902) 159392) ((-663 . -1058) 159376) ((-108 . -640) 159358) ((-485 . -131) 159228) ((-1180 . -1114) T) ((-954 . -47) 159197) ((-624 . -1102) T) ((-663 . -111) 159176) ((-494 . -614) 159142) ((-328 . -289) 159119) ((-484 . -47) 159076) ((-1180 . -23) T) ((-117 . -1102) T) ((-103 . -102) 159054) ((-1280 . -1114) T) ((-551 . -851) T) ((-1056 . -131) T) ((-1026 . -1060) T) ((-820 . -1040) 159038) ((-1005 . -725) 159010) ((-1280 . -23) T) ((-700 . -718) 158975) ((-588 . -614) 158957) ((-389 . -1040) 158941) ((-356 . -1060) T) ((-387 . -131) T) ((-325 . -1040) 158925) ((-1198 . -614) 158907) ((-1122 . -829) T) ((-1107 . -1102) T) ((-225 . -888) 158889) ((-1006 . -922) T) ((-91 . -34) T) ((-1006 . -821) T) ((-916 . -922) T) ((-1082 . -21) T) ((-1082 . -25) T) ((-490 . -1222) T) ((-1001 . -310) 158854) ((-877 . -617) 158835) ((-715 . -649) 158795) ((-217 . -1222) T) ((-682 . -617) 158776) ((-225 . -1040) 158736) ((-40 . -291) T) ((-677 . -617) 158717) ((-490 . -559) T) ((-481 . -617) 158698) ((-317 . -647) 158382) ((-314 . -647) 158296) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158273) ((-138 . -617) 158254) ((-137 . -617) 158235) ((-133 . -617) 158216) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1060) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158198) ((-738 . -737) 158182) ((-338 . -614) 158164) ((-68 . -385) T) ((-68 . -398) T) ((-1104 . -107) 158148) ((-1064 . -888) 158130) ((-954 . -888) 158055) ((-654 . -1114) T) ((-624 . -718) 158042) ((-484 . -888) NIL) ((-1148 . -102) T) ((-1096 . -619) 158026) ((-1064 . -1040) 158008) ((-97 . -614) 157990) ((-480 . -147) T) ((-954 . -1040) 157870) ((-117 . -718) 157815) ((-654 . -23) T) ((-484 . -1040) 157691) ((-1089 . -615) NIL) ((-1089 . -614) 157673) ((-783 . -615) NIL) ((-783 . -614) 157634) ((-781 . -615) 157268) ((-781 . -614) 157182) ((-1115 . -640) 157088) ((-464 . -614) 157070) ((-457 . -614) 157052) ((-457 . -615) 156913) ((-1037 . -229) 156859) ((-873 . -911) 156838) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156820) ((-581 . -102) T) ((-357 . -1287) 156804) ((-354 . -1287) 156788) ((-346 . -1287) 156772) ((-127 . -517) 156705) ((-121 . -517) 156638) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156576) ((-222 . -102) 156554) ((-700 . -172) T) ((-695 . -1102) T) ((-873 . -649) 156506) ((-65 . -386) T) ((-276 . -614) 156488) ((-65 . -398) T) ((-954 . -379) 156472) ((-871 . -291) T) ((-50 . -614) 156454) ((-1001 . -38) 156402) ((-1122 . -647) 156374) ((-584 . -614) 156356) ((-484 . -379) 156340) ((-584 . -615) 156322) ((-521 . -614) 156304) ((-912 . -1287) 156291) ((-872 . -1218) T) ((-702 . -455) T) ((-498 . -517) 156257) ((-490 . -365) T) ((-357 . -370) 156236) ((-354 . -370) 156215) ((-346 . -370) 156194) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1291 . -1282) 156178) ((-872 . -886) 156155) ((-872 . -888) NIL) ((-966 . -851) 156054) ((-816 . -851) 156005) ((-1225 . -102) T) ((-655 . -657) 155989) ((-1204 . -34) T) ((-171 . -614) 155971) ((-1115 . -21) 155881) ((-1115 . -25) 155732) ((-872 . -1040) 155709) ((-954 . -902) 155690) ((-1241 . -47) 155667) ((-912 . -370) T) ((-59 . -652) 155651) ((-519 . -652) 155635) ((-484 . -902) 155612) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155596) ((-59 . -375) 155580) ((-624 . -172) T) ((-519 . -375) 155564) ((-499 . -375) 155548) ((-828 . -709) 155532) ((-1174 . -308) 155511) ((-1180 . -131) T) ((-1144 . -1053) 155495) ((-117 . -172) T) ((-1144 . -641) 155427) ((-1148 . -310) 155365) ((-169 . -1218) T) ((-1280 . -131) T) ((-867 . -1053) 155335) ((-636 . -745) 155319) ((-608 . -745) 155303) ((-1253 . -922) 155282) ((-1232 . -922) 155261) ((-1232 . -821) NIL) ((-867 . -641) 155231) ((-695 . -718) 155181) ((-1231 . -911) 155134) ((-1026 . -1102) T) ((-872 . -379) 155111) ((-872 . -340) 155088) ((-907 . -1114) T) ((-169 . -886) 155072) ((-169 . -888) 154997) ((-490 . -1114) T) ((-356 . -1102) T) ((-217 . -1114) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1040) 154893) ((-320 . -851) T) ((-1268 . -517) 154826) ((-1252 . -649) 154723) ((-1231 . -649) 154593) ((-873 . -795) 154572) ((-873 . -792) 154551) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154533) ((-174 . -455) T) ((-222 . -310) 154471) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1292 . -1285) 154450) ((-678 . -1040) 154434) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154389) ((-655 . -647) 154348) ((-48 . -1102) T) ((-713 . -231) 154332) ((-872 . -902) NIL) ((-1241 . -888) NIL) ((-891 . -102) T) ((-887 . -102) T) ((-391 . -1102) T) ((-169 . -379) 154316) ((-169 . -340) 154300) ((-1241 . -1040) 154180) ((-856 . -1040) 154076) ((-1144 . -102) T) ((-654 . -131) T) ((-117 . -517) 153984) ((-663 . -793) 153963) ((-663 . -796) 153942) ((-574 . -1040) 153924) ((-295 . -1275) 153894) ((-867 . -102) T) ((-965 . -559) 153873) ((-1212 . -1058) 153756) ((-1005 . -1053) 153701) ((-485 . -640) 153607) ((-906 . -1102) T) ((-1026 . -718) 153544) ((-712 . -1058) 153509) ((-1005 . -641) 153454) ((-618 . -102) T) ((-603 . -34) T) ((-1149 . -1218) T) ((-1212 . -111) 153323) ((-477 . -649) 153220) ((-356 . -718) 153165) ((-169 . -902) 153124) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 153080) ((-1296 . -1060) T) ((-1241 . -379) 153064) ((-421 . -1222) 153042) ((-1120 . -614) 153024) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1231 . -792) 152977) ((-1231 . -795) 152930) ((-1252 . -727) T) ((-1231 . -727) T) ((-48 . -718) 152895) ((-225 . -1024) T) ((-353 . -1275) 152872) ((-1254 . -414) 152838) ((-719 . -727) T) ((-334 . -614) 152820) ((-1241 . -902) 152763) ((-1212 . -617) 152645) ((-112 . -614) 152627) ((-112 . -615) 152609) ((-719 . -476) T) ((-712 . -617) 152559) ((-1291 . -1053) 152543) ((-485 . -21) 152453) ((-127 . -492) 152437) ((-121 . -492) 152421) ((-485 . -25) 152272) ((-1291 . -641) 152242) ((-624 . -291) T) ((-588 . -1058) 152217) ((-440 . -1102) T) ((-1064 . -308) T) ((-117 . -291) T) ((-1106 . -102) T) ((-1005 . -102) T) ((-588 . -111) 152185) ((-1144 . -310) 152123) ((-1212 . -1051) T) ((-1064 . -1024) T) ((-66 . -1218) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-712 . -1051) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1026 . -172) T) ((-712 . -243) T) ((-1064 . -548) T) ((-713 . -647) 152033) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 152015) ((-410 . -1053) 151967) ((-397 . -614) 151949) ((-1122 . -849) T) ((-477 . -727) T) ((-894 . -1040) 151917) ((-410 . -641) 151869) ((-108 . -851) T) ((-659 . -1058) 151853) ((-490 . -131) T) ((-1254 . -1060) T) ((-217 . -131) T) ((-1158 . -102) 151831) ((-99 . -1102) T) ((-245 . -667) 151815) ((-245 . -652) 151799) ((-659 . -111) 151778) ((-588 . -617) 151762) ((-317 . -414) 151746) ((-245 . -375) 151730) ((-1161 . -235) 151677) ((-1001 . -231) 151661) ((-74 . -1218) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1291 . -102) T) ((-1198 . -617) 151643) ((-1089 . -1058) 151486) ((-265 . -911) 151465) ((-247 . -911) 151444) ((-783 . -1058) 151267) ((-781 . -1058) 151110) ((-609 . -1218) T) ((-1166 . -614) 151092) ((-1089 . -111) 150921) ((-1048 . -102) T) ((-478 . -1218) T) ((-464 . -1058) 150892) ((-457 . -1058) 150735) ((-665 . -649) 150719) ((-872 . -308) T) ((-783 . -111) 150528) ((-781 . -111) 150357) ((-357 . -649) 150309) ((-354 . -649) 150261) ((-346 . -649) 150213) ((-265 . -649) 150138) ((-247 . -649) 150063) ((-1160 . -851) T) ((-1090 . -1040) 150047) ((-464 . -111) 150008) ((-457 . -111) 149837) ((-1078 . -1040) 149814) ((-1002 . -34) T) ((-968 . -614) 149796) ((-960 . -1218) T) ((-126 . -1012) 149780) ((-965 . -1114) T) ((-872 . -1024) NIL) ((-736 . -1114) T) ((-716 . -1114) T) ((-659 . -617) 149698) ((-1268 . -492) 149682) ((-1144 . -38) 149642) ((-965 . -23) T) ((-912 . -649) 149607) ((-866 . -1102) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1053) 149591) ((-608 . -1053) 149575) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149559) ((-110 . -662) T) ((-608 . -641) 149543) ((-584 . -1058) 149508) ((-521 . -1058) 149453) ((-227 . -57) 149411) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149381) ((-584 . -111) 149337) ((-521 . -111) 149266) ((-1089 . -617) 149002) ((-421 . -1114) T) ((-317 . -1060) 148892) ((-314 . -1060) T) ((-128 . -1218) T) ((-783 . -617) 148640) ((-781 . -617) 148406) ((-659 . -1051) T) ((-1296 . -1102) T) ((-457 . -617) 148191) ((-169 . -308) 148122) ((-421 . -23) T) ((-40 . -614) 148104) ((-40 . -615) 148088) ((-108 . -994) 148070) ((-116 . -870) 148054) ((-650 . -617) 148038) ((-48 . -517) 148004) ((-1204 . -1012) 147988) ((-1183 . -614) 147955) ((-1191 . -34) T) ((-956 . -614) 147921) ((-923 . -614) 147903) ((-1115 . -851) 147854) ((-772 . -614) 147836) ((-673 . -614) 147818) ((-1158 . -310) 147756) ((-482 . -34) T) ((-1094 . -1218) T) ((-480 . -455) T) ((-1143 . -34) T) ((-1089 . -1051) T) ((-50 . -617) 147725) ((-783 . -1051) T) ((-781 . -1051) T) ((-648 . -235) 147709) ((-633 . -235) 147655) ((-584 . -617) 147605) ((-521 . -617) 147535) ((-1241 . -308) 147514) ((-1089 . -327) 147475) ((-457 . -1051) T) ((-1180 . -21) T) ((-1089 . -233) 147454) ((-783 . -327) 147431) ((-783 . -233) T) ((-781 . -327) 147403) ((-732 . -1222) 147382) ((-328 . -652) 147366) ((-1180 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147345) ((-328 . -375) 147329) ((-500 . -34) T) ((-499 . -34) T) ((-1005 . -1153) NIL) ((-732 . -559) 147260) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1048 . -310) 147168) ((-903 . -1102) 147146) ((-50 . -1051) T) ((-1280 . -21) T) ((-1280 . -25) T) ((-1176 . -559) 147125) ((-1175 . -1222) 147104) ((-1175 . -559) 147055) ((-584 . -1051) T) ((-521 . -1051) T) ((-1169 . -1222) 147034) ((-363 . -1040) 147018) ((-323 . -1040) 147002) ((-1026 . -291) T) ((-381 . -888) 146984) ((-1169 . -559) 146935) ((-1005 . -38) 146880) ((-1001 . -647) 146803) ((-800 . -1114) T) ((-912 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1128 . -559) 146782) ((-356 . -291) T) ((-648 . -696) 146766) ((-381 . -1040) 146726) ((-295 . -1053) 146647) ((-1122 . -1060) T) ((-103 . -125) 146631) ((-295 . -641) 146573) ((-800 . -23) T) ((-1290 . -1285) 146549) ((-1268 . -287) 146526) ((-410 . -310) 146491) ((-1288 . -1285) 146470) ((-1254 . -1102) T) ((-871 . -614) 146452) ((-837 . -1040) 146421) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146403) ((-498 . -1004) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146387) ((-223 . -617) 146349) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1291 . -38) 146319) ((-117 . -287) 146270) ((-1268 . -19) 146254) ((-1268 . -605) 146231) ((-1281 . -1102) T) ((-353 . -1053) 146176) ((-1079 . -1102) T) ((-989 . -1102) T) ((-965 . -131) T) ((-738 . -1102) T) ((-353 . -641) 146121) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1153) 146099) ((-223 . -1051) T) ((-295 . -102) 145881) ((-141 . -1102) T) ((-700 . -1004) T) ((-91 . -1218) T) ((-127 . -614) 145813) ((-121 . -614) 145745) ((-1296 . -172) T) ((-1175 . -365) 145724) ((-1169 . -365) 145703) ((-317 . -1102) T) ((-421 . -131) T) ((-314 . -1102) T) ((-410 . -38) 145655) ((-1135 . -102) T) ((-1254 . -718) 145547) ((-655 . -1060) T) ((-1137 . -1263) T) ((-320 . -145) 145526) ((-320 . -147) 145505) ((-136 . -1102) T) ((-139 . -1102) T) ((-114 . -1102) T) ((-859 . -102) T) ((-583 . -614) 145487) ((-567 . -615) 145386) ((-567 . -614) 145368) ((-498 . -614) 145350) ((-498 . -615) 145295) ((-488 . -23) T) ((-485 . -851) 145246) ((-490 . -640) 145228) ((-967 . -614) 145210) ((-217 . -640) 145192) ((-225 . -407) T) ((-663 . -649) 145176) ((-55 . -614) 145158) ((-1174 . -922) 145137) ((-732 . -1114) T) ((-353 . -102) T) ((-1217 . -1085) T) ((-1122 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1058) 145082) ((-1160 . -1159) T) ((-1149 . -107) 145066) ((-1176 . -1114) T) ((-1175 . -1114) T) ((-518 . -1040) 145050) ((-1169 . -1114) T) ((-1128 . -1114) T) ((-345 . -111) 144979) ((-1006 . -1222) T) ((-126 . -1218) T) ((-916 . -1222) T) ((-695 . -287) NIL) ((-1269 . -614) 144961) ((-1176 . -23) T) ((-1175 . -23) T) ((-1169 . -23) T) ((-1006 . -559) T) ((-1144 . -231) 144945) ((-916 . -559) T) ((-1128 . -23) T) ((-248 . -614) 144927) ((-1077 . -1102) T) ((-800 . -131) T) ((-711 . -614) 144909) ((-317 . -718) 144819) ((-314 . -718) 144748) ((-700 . -614) 144730) ((-700 . -615) 144675) ((-410 . -403) 144659) ((-441 . -1102) T) ((-490 . -25) T) ((-490 . -21) T) ((-1122 . -1102) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144643) ((-715 . -1040) 144612) ((-1268 . -614) 144524) ((-1268 . -615) 144485) ((-1254 . -172) T) ((-245 . -34) T) ((-345 . -617) 144415) ((-397 . -617) 144397) ((-928 . -976) T) ((-1204 . -1218) T) ((-663 . -792) 144376) ((-663 . -795) 144355) ((-401 . -398) T) ((-526 . -102) 144333) ((-1037 . -1102) T) ((-222 . -997) 144317) ((-507 . -102) T) ((-624 . -614) 144299) ((-45 . -851) NIL) ((-624 . -615) 144276) ((-1037 . -611) 144251) ((-903 . -517) 144184) ((-345 . -1051) T) ((-117 . -615) NIL) ((-117 . -614) 144166) ((-873 . -1218) T) ((-671 . -420) 144150) ((-671 . -1125) 144095) ((-503 . -151) 144077) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1058) 144022) ((-873 . -886) 144006) ((-873 . -888) 143931) ((-713 . -1060) T) ((-695 . -1004) NIL) ((-1252 . -47) 143901) ((-1231 . -47) 143878) ((-1143 . -1012) 143849) ((-3 . |UnionCategory|) T) ((-1122 . -718) 143836) ((-1107 . -614) 143818) ((-1082 . -147) 143797) ((-1082 . -145) 143748) ((-968 . -617) 143732) ((-225 . -922) T) ((-40 . -111) 143661) ((-873 . -1040) 143525) ((-1006 . -365) T) ((-1005 . -231) 143502) ((-702 . -1053) 143489) ((-916 . -365) T) ((-702 . -641) 143476) ((-320 . -1206) 143442) ((-381 . -308) T) ((-320 . -1203) 143408) ((-317 . -172) 143387) ((-314 . -172) T) ((-584 . -1287) 143374) ((-521 . -1287) 143351) ((-361 . -147) 143330) ((-116 . -1053) 143317) ((-361 . -145) 143268) ((-355 . -147) 143247) ((-355 . -145) 143198) ((-347 . -147) 143177) ((-609 . -1194) 143153) ((-116 . -641) 143140) ((-347 . -145) 143091) ((-320 . -35) 143057) ((-478 . -1194) 143036) ((0 . |EnumerationCategory|) T) ((-320 . -95) 143002) ((-381 . -1024) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142952) ((-655 . -1102) T) ((-609 . -107) 142899) ((-488 . -131) T) ((-478 . -107) 142849) ((-240 . -1114) 142759) ((-873 . -379) 142743) ((-873 . -340) 142727) ((-240 . -23) 142597) ((-40 . -617) 142527) ((-1064 . -922) T) ((-1064 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1281 . -517) 142460) ((-1260 . -559) 142439) ((-353 . -1153) T) ((-328 . -34) T) ((-44 . -420) 142423) ((-1183 . -617) 142359) ((-874 . -1218) T) ((-393 . -745) 142343) ((-1253 . -1222) 142322) ((-1253 . -559) 142273) ((-1144 . -647) 142232) ((-732 . -131) T) ((-673 . -617) 142216) ((-1232 . -1222) 142195) ((-1232 . -559) 142146) ((-1231 . -1218) 142125) ((-1231 . -888) 141998) ((-1231 . -886) 141968) ((-1176 . -131) T) ((-312 . -1085) T) ((-1175 . -131) T) ((-738 . -517) 141901) ((-1169 . -131) T) ((-1128 . -131) T) ((-895 . -1102) T) ((-144 . -845) T) ((-1026 . -1004) T) ((-692 . -614) 141883) ((-1006 . -23) T) ((-526 . -310) 141821) ((-1006 . -1114) T) ((-141 . -517) NIL) ((-867 . -647) 141766) ((-1005 . -351) NIL) ((-973 . -23) T) ((-916 . -1114) T) ((-353 . -38) 141731) ((-916 . -23) T) ((-873 . -902) 141690) ((-82 . -614) 141672) ((-40 . -1051) T) ((-871 . -1058) 141659) ((-871 . -111) 141644) ((-702 . -102) T) ((-695 . -614) 141626) ((-603 . -1218) T) ((-598 . -559) 141605) ((-430 . -1114) T) ((-341 . -1053) 141589) ((-213 . -1102) T) ((-174 . -1053) 141521) ((-477 . -47) 141491) ((-134 . -102) T) ((-40 . -233) 141463) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141442) ((-341 . -641) 141426) ((-695 . -615) 141334) ((-317 . -517) 141300) ((-174 . -641) 141232) ((-314 . -517) 141124) ((-1252 . -1040) 141108) ((-1231 . -1040) 140894) ((-1001 . -414) 140878) ((-430 . -23) T) ((-1122 . -172) T) ((-1254 . -291) T) ((-655 . -718) 140848) ((-144 . -1102) T) ((-48 . -1004) T) ((-410 . -231) 140832) ((-296 . -235) 140782) ((-872 . -922) T) ((-872 . -821) NIL) ((-871 . -617) 140754) ((-865 . -851) T) ((-1231 . -340) 140724) ((-1231 . -379) 140694) ((-222 . -1123) 140678) ((-1268 . -289) 140655) ((-1212 . -649) 140580) ((-1005 . -647) 140510) ((-965 . -21) T) ((-965 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140475) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1001 . -1060) T) ((-871 . -1051) T) ((-775 . -102) T) ((-1253 . -365) 140454) ((-1252 . -902) 140360) ((-1232 . -365) 140339) ((-1231 . -902) 140190) ((-1026 . -614) 140172) ((-410 . -829) 140125) ((-1176 . -496) 140091) ((-169 . -922) 140022) ((-1175 . -496) 139988) ((-1169 . -496) 139954) ((-713 . -1102) T) ((-1128 . -496) 139920) ((-583 . -1058) 139907) ((-567 . -1058) 139894) ((-498 . -1058) 139859) ((-317 . -291) 139838) ((-314 . -291) T) ((-356 . -614) 139820) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139799) ((-583 . -111) 139784) ((-567 . -111) 139769) ((-498 . -111) 139725) ((-1178 . -888) 139692) ((-903 . -492) 139676) ((-48 . -614) 139658) ((-48 . -615) 139603) ((-240 . -131) 139473) ((-1291 . -647) 139432) ((-1241 . -922) 139411) ((-817 . -1222) 139390) ((-391 . -493) 139371) ((-1037 . -517) 139215) ((-391 . -614) 139181) ((-817 . -559) 139112) ((-588 . -649) 139087) ((-265 . -47) 139059) ((-247 . -47) 139016) ((-534 . -512) 138993) ((-583 . -617) 138965) ((-567 . -617) 138937) ((-498 . -617) 138870) ((-1076 . -1218) T) ((-1002 . -1218) T) ((-1260 . -23) T) ((-700 . -1058) 138835) ((-1260 . -1114) T) ((-1253 . -1114) T) ((-1253 . -23) T) ((-1232 . -1114) T) ((-1232 . -23) T) ((-1005 . -372) 138807) ((-112 . -370) T) ((-477 . -902) 138713) ((-1212 . -727) T) ((-906 . -614) 138695) ((-55 . -617) 138677) ((-91 . -107) 138661) ((-1122 . -291) T) ((-907 . -851) 138612) ((-702 . -1153) T) ((-700 . -111) 138568) ((-844 . -647) 138485) ((-598 . -1114) T) ((-597 . -1114) T) ((-713 . -718) 138314) ((-712 . -727) T) ((-1006 . -131) T) ((-973 . -131) T) ((-490 . -851) T) ((-916 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138251) ((-583 . -1051) T) ((-567 . -1051) T) ((-498 . -1051) T) ((-598 . -23) T) ((-345 . -1287) 138228) ((-320 . -455) 138207) ((-341 . -310) 138194) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 138168) ((-245 . -1012) 138152) ((-873 . -308) T) ((-1292 . -1282) 138136) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 138123) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1152 . -235) 138073) ((-1089 . -911) 138052) ((-116 . -38) 138039) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1024) 138017) ((-1281 . -492) 138001) ((-783 . -911) 137980) ((-781 . -911) 137959) ((-1191 . -1218) T) ((-457 . -911) 137938) ((-738 . -492) 137922) ((-1089 . -649) 137847) ((-700 . -617) 137782) ((-783 . -649) 137707) ((-624 . -1058) 137694) ((-482 . -1218) T) ((-345 . -370) T) ((-141 . -492) 137676) ((-781 . -649) 137601) ((-1143 . -1218) T) ((-552 . -851) T) ((-464 . -649) 137572) ((-265 . -888) 137431) ((-247 . -888) NIL) ((-117 . -1058) 137376) ((-457 . -649) 137301) ((-665 . -1040) 137278) ((-624 . -111) 137263) ((-393 . -1053) 137247) ((-357 . -1040) 137231) ((-354 . -1040) 137215) ((-346 . -1040) 137199) ((-265 . -1040) 137043) ((-247 . -1040) 136919) ((-117 . -111) 136848) ((-59 . -1218) T) ((-393 . -641) 136832) ((-622 . -1053) 136816) ((-522 . -1218) T) ((-519 . -1218) T) ((-500 . -1218) T) ((-499 . -1218) T) ((-440 . -614) 136798) ((-437 . -614) 136780) ((-622 . -641) 136764) ((-3 . -102) T) ((-1029 . -1211) 136733) ((-834 . -102) T) ((-690 . -57) 136691) ((-700 . -1051) T) ((-636 . -647) 136660) ((-608 . -647) 136629) ((-50 . -649) 136603) ((-290 . -455) T) ((-479 . -1211) 136572) ((0 . -102) T) ((-584 . -649) 136537) ((-521 . -649) 136482) ((-49 . -102) T) ((-912 . -1040) 136469) ((-700 . -243) T) ((-1082 . -412) 136448) ((-732 . -640) 136396) ((-1001 . -1102) T) ((-713 . -172) 136287) ((-624 . -617) 136182) ((-490 . -994) 136164) ((-265 . -379) 136148) ((-247 . -379) 136132) ((-402 . -1102) T) ((-1028 . -102) 136110) ((-341 . -38) 136094) ((-217 . -994) 136076) ((-117 . -617) 136006) ((-174 . -38) 135938) ((-1252 . -308) 135917) ((-1231 . -308) 135896) ((-659 . -727) T) ((-99 . -614) 135878) ((-480 . -1053) 135843) ((-1169 . -640) 135795) ((-480 . -641) 135760) ((-488 . -25) T) ((-488 . -21) T) ((-1231 . -1024) 135712) ((-1059 . -1218) T) ((-624 . -1051) T) ((-381 . -407) T) ((-393 . -102) T) ((-1107 . -619) 135627) ((-265 . -902) 135573) ((-247 . -902) 135550) ((-117 . -1051) T) ((-817 . -1114) T) ((-1089 . -727) T) ((-624 . -233) 135529) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1114) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1223 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1079 . -287) 135508) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135490) ((-695 . -1058) 135440) ((-1260 . -131) T) ((-1253 . -131) T) ((-1232 . -131) T) ((-1176 . -25) T) ((-1144 . -414) 135424) ((-636 . -369) 135356) ((-608 . -369) 135288) ((-1158 . -1151) 135272) ((-103 . -1102) 135250) ((-1176 . -21) T) ((-1175 . -21) T) ((-866 . -614) 135232) ((-1001 . -718) 135180) ((-223 . -649) 135147) ((-695 . -111) 135081) ((-50 . -727) T) ((-1175 . -25) T) ((-353 . -351) T) ((-1169 . -21) T) ((-1082 . -455) 135032) ((-1169 . -25) T) ((-713 . -517) 134979) ((-584 . -727) T) ((-521 . -727) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-598 . -131) T) ((-295 . -647) 134714) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134693) ((-1226 . -102) T) ((-314 . -287) 134628) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134612) ((-1296 . -614) 134594) ((-1296 . -615) 134576) ((-1082 . -405) 134555) ((-1037 . -492) 134486) ((-567 . -796) T) ((-567 . -793) T) ((-1065 . -235) 134432) ((-361 . -405) 134383) ((-355 . -405) 134334) ((-347 . -405) 134285) ((-1283 . -1114) T) ((-1292 . -1053) 134269) ((-383 . -1053) 134253) ((-1292 . -641) 134223) ((-383 . -641) 134193) ((-695 . -617) 134128) ((-1283 . -23) T) ((-1270 . -102) T) ((-175 . -614) 134110) ((-1144 . -1060) T) ((-550 . -370) T) ((-671 . -745) 134094) ((-1180 . -145) 134073) ((-1180 . -147) 134052) ((-1148 . -1102) T) ((-1148 . -1073) 134021) ((-69 . -1218) T) ((-1026 . -1058) 133958) ((-353 . -647) 133888) ((-867 . -1060) T) ((-240 . -640) 133794) ((-695 . -1051) T) ((-356 . -1058) 133739) ((-61 . -1218) T) ((-1026 . -111) 133655) ((-903 . -614) 133566) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133545) ((-700 . -796) T) ((-700 . -793) T) ((-1005 . -414) 133522) ((-356 . -111) 133451) ((-381 . -922) T) ((-410 . -849) 133430) ((-713 . -291) 133341) ((-223 . -727) T) ((-1260 . -496) 133307) ((-1253 . -496) 133273) ((-1232 . -496) 133239) ((-581 . -1102) T) ((-317 . -1004) 133218) ((-222 . -1102) 133196) ((-1225 . -845) T) ((-320 . -975) 133158) ((-105 . -102) T) ((-48 . -1058) 133123) ((-1292 . -102) T) ((-383 . -102) T) ((-48 . -111) 133079) ((-1006 . -640) 133061) ((-1254 . -614) 133043) ((-534 . -102) T) ((-503 . -102) T) ((-1135 . -1136) 133027) ((-152 . -1275) 133011) ((-245 . -1218) T) ((-1217 . -102) T) ((-1026 . -617) 132948) ((-1174 . -1222) 132927) ((-356 . -617) 132857) ((-1127 . -1222) 132836) ((-240 . -21) 132746) ((-240 . -25) 132597) ((-127 . -119) 132581) ((-121 . -119) 132565) ((-44 . -745) 132549) ((-1174 . -559) 132460) ((-1127 . -559) 132391) ((-1225 . -1102) T) ((-1037 . -287) 132366) ((-1168 . -1085) T) ((-996 . -1085) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1114) 132276) ((-251 . -1114) 132186) ((-1026 . -1051) T) ((-1005 . -1060) T) ((-48 . -617) 132119) ((-345 . -649) 132064) ((-622 . -38) 132048) ((-1281 . -614) 132010) ((-1281 . -615) 131971) ((-1079 . -614) 131953) ((-1026 . -243) T) ((-356 . -1051) T) ((-816 . -1275) 131923) ((-252 . -23) T) ((-251 . -23) T) ((-989 . -614) 131905) ((-738 . -615) 131866) ((-738 . -614) 131848) ((-800 . -851) 131827) ((-1161 . -151) 131774) ((-1001 . -517) 131686) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131667) ((-1006 . -25) T) ((-141 . -614) 131649) ((-141 . -615) 131608) ((-912 . -308) T) ((-1006 . -21) T) ((-973 . -25) T) ((-916 . -21) T) ((-916 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131592) ((-48 . -1051) T) ((-1290 . -1282) 131576) ((-1288 . -1282) 131560) ((-1037 . -605) 131535) ((-317 . -615) 131396) ((-317 . -614) 131378) ((-314 . -615) NIL) ((-314 . -614) 131360) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131321) ((-553 . -235) 131271) ((-139 . -614) 131238) ((-136 . -614) 131220) ((-114 . -614) 131202) ((-480 . -38) 131167) ((-1292 . -1289) 131146) ((-1283 . -131) T) ((-1291 . -1060) T) ((-1084 . -102) T) ((-88 . -1218) T) ((-503 . -310) NIL) ((-1002 . -107) 131130) ((-891 . -1102) T) ((-887 . -1102) T) ((-1268 . -652) 131114) ((-1268 . -375) 131098) ((-328 . -1218) T) ((-595 . -851) T) ((-1144 . -1102) T) ((-1144 . -1055) 131038) ((-103 . -517) 130971) ((-929 . -614) 130953) ((-345 . -727) T) ((-30 . -614) 130935) ((-867 . -1102) T) ((-844 . -1060) 130914) ((-40 . -649) 130859) ((-225 . -1222) T) ((-410 . -1060) T) ((-1160 . -151) 130841) ((-1001 . -291) 130792) ((-618 . -1102) T) ((-225 . -559) T) ((-320 . -1249) 130776) ((-320 . -1246) 130746) ((-702 . -647) 130718) ((-1191 . -1194) 130697) ((-1077 . -614) 130679) ((-1191 . -107) 130629) ((-648 . -151) 130613) ((-633 . -151) 130559) ((-116 . -647) 130531) ((-482 . -1194) 130510) ((-490 . -147) T) ((-490 . -145) NIL) ((-1122 . -615) 130425) ((-441 . -614) 130407) ((-217 . -147) T) ((-217 . -145) NIL) ((-1122 . -614) 130389) ((-129 . -102) T) ((-52 . -102) T) ((-1232 . -640) 130341) ((-482 . -107) 130291) ((-995 . -23) T) ((-1292 . -38) 130261) ((-1174 . -1114) T) ((-1127 . -1114) T) ((-1064 . -1222) T) ((-312 . -102) T) ((-855 . -1114) T) ((-954 . -1222) 130240) ((-484 . -1222) 130219) ((-1064 . -559) T) ((-954 . -559) 130150) ((-1174 . -23) T) ((-1127 . -23) T) ((-855 . -23) T) ((-484 . -559) 130081) ((-1144 . -718) 130013) ((-671 . -1053) 129997) ((-1148 . -517) 129930) ((-671 . -641) 129914) ((-1037 . -615) NIL) ((-1037 . -614) 129896) ((-96 . -1085) T) ((-867 . -718) 129866) ((-1212 . -47) 129835) ((-252 . -131) T) ((-251 . -131) T) ((-1106 . -1102) T) ((-1005 . -1102) T) ((-62 . -614) 129817) ((-1169 . -851) NIL) ((-1026 . -793) T) ((-1026 . -796) T) ((-1296 . -1058) 129804) ((-1296 . -111) 129789) ((-1260 . -25) T) ((-1260 . -21) T) ((-871 . -649) 129776) ((-1253 . -21) T) ((-1253 . -25) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-1029 . -151) 129760) ((-873 . -821) 129739) ((-873 . -922) T) ((-713 . -287) 129666) ((-598 . -21) T) ((-341 . -647) 129625) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129542) ((-40 . -727) T) ((-222 . -517) 129475) ((-597 . -25) T) ((-479 . -151) 129459) ((-466 . -151) 129443) ((-923 . -795) T) ((-923 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1102) T) ((-505 . -1102) T) ((-772 . -727) T) ((-225 . -365) T) ((-1290 . -1053) 129427) ((-1288 . -1053) 129411) ((-1290 . -641) 129381) ((-1158 . -1102) 129359) ((-872 . -1222) T) ((-1288 . -641) 129329) ((-655 . -614) 129311) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1053) 129295) ((-1296 . -617) 129277) ((-1291 . -1102) T) ((-671 . -102) T) ((-361 . -1275) 129261) ((-355 . -1275) 129245) ((-44 . -641) 129229) ((-347 . -1275) 129213) ((-551 . -102) T) ((-523 . -851) 129192) ((-1048 . -1102) T) ((-818 . -455) 129171) ((-152 . -1053) 129155) ((-1048 . -1073) 129084) ((-1029 . -978) 129053) ((-820 . -1114) T) ((-1005 . -718) 128998) ((-152 . -641) 128982) ((-389 . -1114) T) ((-479 . -978) 128951) ((-466 . -978) 128920) ((-110 . -151) 128902) ((-73 . -614) 128884) ((-895 . -614) 128866) ((-1082 . -725) 128845) ((-1296 . -1051) T) ((-817 . -640) 128793) ((-295 . -1060) 128735) ((-169 . -1222) 128640) ((-225 . -1114) T) ((-325 . -23) T) ((-1169 . -994) 128592) ((-844 . -1102) T) ((-1254 . -1058) 128497) ((-1128 . -741) 128476) ((-1252 . -922) 128455) ((-1231 . -922) 128434) ((-871 . -727) T) ((-169 . -559) 128345) ((-583 . -649) 128332) ((-567 . -649) 128319) ((-410 . -1102) T) ((-264 . -1102) T) ((-213 . -614) 128301) ((-498 . -649) 128266) ((-225 . -23) T) ((-1231 . -821) 128219) ((-1290 . -102) T) ((-356 . -1287) 128196) ((-1288 . -102) T) ((-1254 . -111) 128088) ((-816 . -1053) 127985) ((-816 . -641) 127927) ((-144 . -614) 127909) ((-995 . -131) T) ((-44 . -102) T) ((-240 . -851) 127860) ((-1241 . -1222) 127839) ((-103 . -492) 127823) ((-1291 . -718) 127793) ((-1089 . -47) 127754) ((-1064 . -1114) T) ((-954 . -1114) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127731) ((-781 . -47) 127703) ((-1241 . -559) 127614) ((-356 . -370) T) ((-484 . -1114) T) ((-1174 . -131) T) ((-1127 . -131) T) ((-457 . -47) 127593) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1064 . -23) T) ((-954 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1144 . -517) 127526) ((-594 . -1085) T) ((-588 . -1040) 127510) ((-1254 . -617) 127384) ((-484 . -23) T) ((-353 . -1060) T) ((-1212 . -902) 127365) ((-671 . -310) 127303) ((-1115 . -1275) 127273) ((-700 . -649) 127238) ((-1005 . -172) T) ((-965 . -145) 127217) ((-636 . -1102) T) ((-608 . -1102) T) ((-965 . -147) 127196) ((-1006 . -851) T) ((-736 . -147) 127175) ((-736 . -145) 127154) ((-973 . -851) T) ((-834 . -647) 127071) ((-477 . -922) 127050) ((-320 . -1053) 126885) ((-317 . -1058) 126795) ((-314 . -1058) 126724) ((-1001 . -287) 126682) ((-410 . -718) 126634) ((-320 . -641) 126475) ((-702 . -849) T) ((-1254 . -1051) T) ((-317 . -111) 126371) ((-314 . -111) 126284) ((-966 . -102) T) ((-816 . -102) 126074) ((-713 . -615) NIL) ((-713 . -614) 126056) ((-659 . -1040) 125952) ((-1254 . -327) 125896) ((-1037 . -289) 125871) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125822) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1148 . -492) 125806) ((-1089 . -888) NIL) ((-872 . -1114) T) ((-117 . -911) NIL) ((-1290 . -1289) 125782) ((-1288 . -1289) 125761) ((-783 . -888) NIL) ((-781 . -888) 125620) ((-1283 . -25) T) ((-1283 . -21) T) ((-1215 . -102) 125598) ((-1108 . -398) T) ((-624 . -649) 125585) ((-457 . -888) NIL) ((-676 . -102) 125563) ((-1089 . -1040) 125390) ((-872 . -23) T) ((-783 . -1040) 125249) ((-781 . -1040) 125106) ((-117 . -649) 125051) ((-457 . -1040) 124927) ((-317 . -617) 124491) ((-314 . -617) 124374) ((-393 . -647) 124343) ((-650 . -1040) 124327) ((-628 . -102) T) ((-222 . -492) 124311) ((-1268 . -34) T) ((-622 . -647) 124270) ((-290 . -1053) 124257) ((-136 . -617) 124241) ((-290 . -641) 124228) ((-636 . -718) 124212) ((-608 . -718) 124196) ((-671 . -38) 124156) ((-320 . -102) T) ((-85 . -614) 124138) ((-50 . -1040) 124122) ((-1122 . -1058) 124109) ((-1089 . -379) 124093) ((-783 . -379) 124077) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1040) 124064) ((-521 . -1040) 124041) ((-60 . -57) 124003) ((-325 . -131) T) ((-317 . -1051) 123893) ((-314 . -1051) T) ((-169 . -1114) T) ((-781 . -379) 123877) ((-45 . -151) 123827) ((-1006 . -994) 123809) ((-457 . -379) 123793) ((-410 . -172) T) ((-317 . -243) 123772) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1102) 123554) ((-225 . -131) T) ((-1122 . -111) 123539) ((-169 . -23) T) ((-800 . -147) 123518) ((-800 . -145) 123497) ((-252 . -640) 123403) ((-251 . -640) 123309) ((-320 . -285) 123275) ((-1158 . -517) 123208) ((-480 . -647) 123158) ((-1135 . -1102) T) ((-225 . -1062) T) ((-816 . -310) 123096) ((-1089 . -902) 123031) ((-783 . -902) 122974) ((-781 . -902) 122958) ((-1290 . -38) 122928) ((-1288 . -38) 122898) ((-1241 . -1114) T) ((-856 . -1114) T) ((-457 . -902) 122875) ((-859 . -1102) T) ((-1241 . -23) T) ((-1122 . -617) 122847) ((-574 . -1114) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -922) T) ((-354 . -922) T) ((-290 . -102) T) ((-346 . -922) T) ((-1064 . -131) T) ((-972 . -1085) T) ((-954 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -911) NIL) ((-1048 . -517) 122748) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122686) ((-636 . -762) T) ((-608 . -762) T) ((-1232 . -851) NIL) ((-1082 . -1053) 122596) ((-1005 . -291) T) ((-695 . -649) 122546) ((-252 . -21) T) ((-353 . -1102) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122530) ((-2 . -102) T) ((-912 . -922) T) ((-1082 . -641) 122398) ((-485 . -1275) 122368) ((-1122 . -1051) T) ((-712 . -308) T) ((-361 . -1053) 122320) ((-355 . -1053) 122272) ((-347 . -1053) 122224) ((-361 . -641) 122176) ((-223 . -1040) 122153) ((-355 . -641) 122105) ((-108 . -1053) 122055) ((-347 . -641) 122007) ((-295 . -718) 121949) ((-702 . -1060) T) ((-490 . -455) T) ((-410 . -517) 121861) ((-108 . -641) 121811) ((-217 . -455) T) ((-1122 . -233) T) ((-296 . -151) 121761) ((-1001 . -615) 121722) ((-1001 . -614) 121704) ((-991 . -614) 121686) ((-116 . -1060) T) ((-655 . -1058) 121670) ((-225 . -496) T) ((-402 . -614) 121652) ((-402 . -615) 121629) ((-1056 . -1275) 121599) ((-655 . -111) 121578) ((-1144 . -492) 121562) ((-1292 . -647) 121521) ((-383 . -647) 121490) ((-816 . -38) 121460) ((-63 . -444) T) ((-63 . -398) T) ((-1161 . -102) T) ((-872 . -131) T) ((-487 . -102) 121438) ((-1296 . -370) T) ((-1082 . -102) T) ((-1063 . -102) T) ((-353 . -718) 121383) ((-732 . -147) 121362) ((-732 . -145) 121341) ((-655 . -617) 121259) ((-1026 . -649) 121196) ((-526 . -1102) 121174) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1102) T) ((-356 . -649) 121119) ((-1174 . -640) 121067) ((-1127 . -640) 121015) ((-387 . -512) 120994) ((-834 . -849) 120973) ((-381 . -1222) T) ((-695 . -727) T) ((-341 . -1060) T) ((-1232 . -994) 120925) ((-174 . -1060) T) ((-103 . -614) 120857) ((-1176 . -145) 120836) ((-1176 . -147) 120815) ((-381 . -559) T) ((-1175 . -147) 120794) ((-1175 . -145) 120773) ((-1169 . -145) 120680) ((-410 . -291) T) ((-1169 . -147) 120587) ((-1128 . -147) 120566) ((-1128 . -145) 120545) ((-320 . -38) 120386) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1051) T) ((-48 . -649) 120351) ((-1115 . -1053) 120248) ((-895 . -617) 120225) ((-1115 . -641) 120167) ((-1168 . -102) T) ((-996 . -102) T) ((-995 . -21) T) ((-127 . -1012) 120151) ((-121 . -1012) 120135) ((-995 . -25) T) ((-903 . -119) 120119) ((-1160 . -102) T) ((-1241 . -131) T) ((-1174 . -25) T) ((-1174 . -21) T) ((-856 . -131) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 120098) ((-648 . -102) 120076) ((-633 . -102) T) ((-1161 . -310) 119871) ((-574 . -131) T) ((-622 . -849) 119850) ((-1158 . -492) 119834) ((-1152 . -151) 119784) ((-1148 . -614) 119746) ((-1148 . -615) 119707) ((-1026 . -792) T) ((-1026 . -795) T) ((-1026 . -727) T) ((-713 . -1058) 119530) ((-487 . -310) 119468) ((-456 . -420) 119438) ((-353 . -172) T) ((-290 . -38) 119425) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1040) 119402) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119211) ((-671 . -231) 119195) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 119144) ((-108 . -310) NIL) ((-72 . -398) T) ((-1115 . -102) 118934) ((-834 . -414) 118918) ((-1122 . -796) T) ((-1122 . -793) T) ((-702 . -1102) T) ((-581 . -614) 118900) ((-381 . -365) T) ((-169 . -496) 118878) ((-222 . -614) 118810) ((-134 . -1102) T) ((-116 . -1102) T) ((-48 . -727) T) ((-1048 . -492) 118775) ((-141 . -428) 118757) ((-141 . -370) T) ((-1029 . -102) T) ((-515 . -512) 118736) ((-713 . -617) 118492) ((-479 . -102) T) ((-466 . -102) T) ((-1036 . -1114) T) ((-1225 . -614) 118474) ((-1183 . -1040) 118410) ((-1176 . -35) 118376) ((-1176 . -95) 118342) ((-1176 . -1206) 118308) ((-1176 . -1203) 118274) ((-1160 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1082 . -1153) 118253) ((-1175 . -1203) 118219) ((-1175 . -1206) 118185) ((-1036 . -23) T) ((-1175 . -95) 118151) ((-574 . -496) T) ((-1175 . -35) 118117) ((-1169 . -1203) 118083) ((-1169 . -1206) 118049) ((-1169 . -95) 118015) ((-363 . -1114) T) ((-361 . -1153) 117994) ((-355 . -1153) 117973) ((-347 . -1153) 117952) ((-1169 . -35) 117918) ((-1128 . -35) 117884) ((-1128 . -95) 117850) ((-108 . -1153) T) ((-1128 . -1206) 117816) ((-834 . -1060) 117795) ((-648 . -310) 117733) ((-633 . -310) 117584) ((-1128 . -1203) 117550) ((-713 . -1051) T) ((-1064 . -640) 117532) ((-1082 . -38) 117400) ((-954 . -640) 117348) ((-1006 . -147) T) ((-1006 . -145) NIL) ((-381 . -1114) T) ((-325 . -25) T) ((-323 . -23) T) ((-945 . -851) 117327) ((-713 . -327) 117304) ((-484 . -640) 117252) ((-40 . -1040) 117140) ((-713 . -233) T) ((-702 . -718) 117127) ((-341 . -1102) T) ((-174 . -1102) T) ((-332 . -851) T) ((-421 . -455) 117077) ((-381 . -23) T) ((-361 . -38) 117042) ((-355 . -38) 117007) ((-347 . -38) 116972) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1114) T) ((-108 . -38) 116922) ((-828 . -1114) T) ((-775 . -1102) T) ((-116 . -718) 116909) ((-673 . -1040) 116893) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1158 . -287) 116870) ((-1115 . -310) 116808) ((-485 . -1053) 116705) ((-1104 . -235) 116689) ((-64 . -399) T) ((-64 . -398) T) ((-110 . -102) T) ((-485 . -641) 116631) ((-40 . -379) 116608) ((-96 . -102) T) ((-654 . -853) 116592) ((-1137 . -1085) T) ((-1064 . -21) T) ((-1064 . -25) T) ((-1056 . -1053) 116576) ((-816 . -231) 116545) ((-954 . -25) T) ((-954 . -21) T) ((-1056 . -641) 116487) ((-622 . -1060) T) ((-1122 . -370) T) ((-1029 . -310) 116425) ((-671 . -647) 116384) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1053) 116368) ((-891 . -614) 116350) ((-887 . -614) 116332) ((-526 . -517) 116265) ((-252 . -851) 116216) ((-251 . -851) 116167) ((-387 . -641) 116137) ((-872 . -640) 116114) ((-479 . -310) 116052) ((-466 . -310) 115990) ((-353 . -291) T) ((-1158 . -1256) 115974) ((-1144 . -614) 115936) ((-1144 . -615) 115897) ((-1142 . -102) T) ((-1001 . -1058) 115793) ((-40 . -902) 115745) ((-1158 . -605) 115722) ((-1296 . -649) 115709) ((-867 . -493) 115686) ((-1065 . -151) 115632) ((-873 . -1222) T) ((-1001 . -111) 115514) ((-341 . -718) 115498) ((-867 . -614) 115460) ((-174 . -718) 115392) ((-410 . -287) 115350) ((-873 . -559) T) ((-108 . -403) 115332) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115314) ((-99 . -727) T) ((-485 . -102) 115104) ((-99 . -476) T) ((-116 . -172) T) ((-1290 . -647) 115063) ((-1288 . -647) 115022) ((-1115 . -38) 114992) ((-169 . -640) 114940) ((-1056 . -102) T) ((-1001 . -617) 114830) ((-872 . -25) T) ((-816 . -238) 114809) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114752) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114730) ((-127 . -1218) T) ((-121 . -1218) T) ((-818 . -1053) 114681) ((-818 . -641) 114623) ((-1036 . -131) T) ((-671 . -369) 114607) ((-152 . -647) 114566) ((-1001 . -1051) T) ((-1241 . -640) 114514) ((-1106 . -614) 114496) ((-1005 . -614) 114478) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1102) T) ((-1005 . -615) 114462) ((-1001 . -243) 114441) ((-1001 . -233) 114420) ((-1296 . -727) T) ((-1260 . -145) 114399) ((-834 . -1102) T) ((-1260 . -147) 114378) ((-1253 . -147) 114357) ((-1253 . -145) 114336) ((-1252 . -1222) 114315) ((-1232 . -145) 114222) ((-1232 . -147) 114129) ((-1231 . -1222) 114108) ((-381 . -131) T) ((-567 . -888) 114090) ((0 . -1102) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1102) T) ((-1254 . -649) 113995) ((-1252 . -559) 113946) ((-715 . -1114) T) ((-1231 . -559) 113897) ((-567 . -1040) 113879) ((-597 . -147) 113858) ((-597 . -145) 113837) ((-498 . -1040) 113780) ((-1137 . -1139) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-966 . -647) 113724) ((-715 . -23) T) ((-509 . -614) 113690) ((-505 . -614) 113672) ((-816 . -647) 113422) ((-1292 . -1060) T) ((-381 . -1062) T) ((-1028 . -1102) 113400) ((-55 . -1040) 113382) ((-903 . -34) T) ((-485 . -310) 113320) ((-594 . -102) T) ((-1158 . -615) 113281) ((-1158 . -614) 113213) ((-1180 . -1053) 113096) ((-45 . -102) T) ((-818 . -102) T) ((-1180 . -641) 112993) ((-1241 . -25) T) ((-1241 . -21) T) ((-856 . -25) T) ((-44 . -369) 112977) ((-856 . -21) T) ((-732 . -455) 112928) ((-1291 . -614) 112910) ((-1280 . -1053) 112880) ((-1056 . -310) 112818) ((-672 . -1085) T) ((-607 . -1085) T) ((-393 . -1102) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1085) T) ((-161 . -1085) T) ((-156 . -1085) T) ((-154 . -1085) T) ((-1280 . -641) 112788) ((-622 . -1102) T) ((-700 . -888) 112770) ((-1268 . -1218) T) ((-227 . -310) 112708) ((-144 . -370) T) ((-1048 . -615) 112650) ((-1048 . -614) 112593) ((-314 . -911) NIL) ((-1226 . -845) T) ((-700 . -1040) 112538) ((-712 . -922) T) ((-477 . -1222) 112517) ((-1175 . -455) 112496) ((-1169 . -455) 112475) ((-331 . -102) T) ((-873 . -1114) T) ((-320 . -647) 112357) ((-317 . -649) 112178) ((-314 . -649) 112107) ((-477 . -559) 112058) ((-341 . -517) 112024) ((-553 . -151) 111974) ((-40 . -308) T) ((-844 . -614) 111956) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1082 . -231) 111926) ((-515 . -102) T) ((-410 . -615) 111733) ((-410 . -614) 111715) ((-264 . -614) 111697) ((-116 . -291) T) ((-1254 . -727) T) ((-1252 . -365) 111676) ((-1231 . -365) 111655) ((-1281 . -34) T) ((-1226 . -1102) T) ((-117 . -1218) T) ((-108 . -231) 111637) ((-1180 . -102) T) ((-480 . -1102) T) ((-526 . -492) 111621) ((-738 . -34) T) ((-654 . -1053) 111605) ((-485 . -38) 111575) ((-654 . -641) 111545) ((-141 . -34) T) ((-117 . -886) 111522) ((-117 . -888) NIL) ((-624 . -1040) 111405) ((-645 . -851) 111384) ((-1280 . -102) T) ((-296 . -102) T) ((-713 . -370) 111363) ((-117 . -1040) 111340) ((-393 . -718) 111324) ((-622 . -718) 111308) ((-45 . -310) 111112) ((-817 . -145) 111091) ((-817 . -147) 111070) ((-290 . -647) 111042) ((-1291 . -384) 111021) ((-820 . -851) T) ((-1270 . -1102) T) ((-1161 . -229) 110968) ((-389 . -851) 110947) ((-1260 . -1206) 110913) ((-1260 . -1203) 110879) ((-1253 . -1203) 110845) ((-518 . -131) T) ((-1253 . -1206) 110811) ((-1232 . -1203) 110777) ((-1232 . -1206) 110743) ((-1260 . -35) 110709) ((-1260 . -95) 110675) ((-636 . -614) 110644) ((-608 . -614) 110613) ((-225 . -851) T) ((-1253 . -95) 110579) ((-1253 . -35) 110545) ((-1252 . -1114) T) ((-1122 . -649) 110532) ((-1232 . -95) 110498) ((-1231 . -1114) T) ((-595 . -151) 110480) ((-1082 . -351) 110459) ((-174 . -291) T) ((-117 . -379) 110436) ((-117 . -340) 110413) ((-1232 . -35) 110379) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110228) ((-314 . -727) T) ((-477 . -365) 110207) ((-361 . -351) 110186) ((-355 . -351) 110165) ((-347 . -351) 110144) ((-317 . -476) 110123) ((-1252 . -23) T) ((-1231 . -23) T) ((-719 . -1114) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 110088) ((-45 . -283) 110038) ((-105 . -1102) T) ((-68 . -614) 110020) ((-972 . -102) T) ((-865 . -102) T) ((-624 . -902) 109979) ((-1292 . -1102) T) ((-383 . -1102) T) ((-82 . -1218) T) ((-1217 . -1102) T) ((-1064 . -851) T) ((-117 . -902) NIL) ((-783 . -922) 109958) ((-714 . -851) T) ((-534 . -1102) T) ((-503 . -1102) T) ((-357 . -1222) T) ((-354 . -1222) T) ((-346 . -1222) T) ((-265 . -1222) 109937) ((-247 . -1222) 109916) ((-536 . -861) T) ((-1115 . -231) 109885) ((-1160 . -829) T) ((-1144 . -1058) 109869) ((-393 . -762) T) ((-695 . -1218) T) ((-692 . -1040) 109853) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109784) ((-247 . -559) 109715) ((-528 . -1085) T) ((-1144 . -111) 109694) ((-456 . -745) 109664) ((-867 . -1058) 109634) ((-818 . -38) 109576) ((-695 . -886) 109558) ((-695 . -888) 109540) ((-296 . -310) 109344) ((-912 . -1222) T) ((-1158 . -289) 109321) ((-1082 . -647) 109216) ((-671 . -414) 109200) ((-867 . -111) 109165) ((-1006 . -455) T) ((-695 . -1040) 109110) ((-912 . -559) T) ((-536 . -614) 109092) ((-584 . -922) T) ((-490 . -1053) 109042) ((-477 . -1114) T) ((-521 . -922) T) ((-916 . -455) T) ((-65 . -614) 109024) ((-217 . -1053) 108974) ((-490 . -641) 108924) ((-361 . -647) 108861) ((-355 . -647) 108798) ((-347 . -647) 108735) ((-633 . -229) 108681) ((-217 . -641) 108631) ((-108 . -647) 108581) ((-477 . -23) T) ((-1122 . -795) T) ((-873 . -131) T) ((-1122 . -792) T) ((-1283 . -1285) 108560) ((-1122 . -727) T) ((-655 . -649) 108534) ((-295 . -614) 108275) ((-1144 . -617) 108193) ((-1037 . -34) T) ((-816 . -849) 108172) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1292 . -718) 108142) ((-695 . -379) 108124) ((-695 . -340) 108106) ((-480 . -172) T) ((-383 . -718) 108076) ((-867 . -617) 108011) ((-872 . -851) NIL) ((-567 . -1024) T) ((-498 . -1024) T) ((-1135 . -614) 107993) ((-1115 . -238) 107972) ((-214 . -102) T) ((-1152 . -102) T) ((-71 . -614) 107954) ((-1144 . -1051) T) ((-1180 . -38) 107851) ((-859 . -614) 107833) ((-567 . -548) T) ((-671 . -1060) T) ((-732 . -951) 107786) ((-1144 . -233) 107765) ((-1084 . -1102) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-1005 . -1058) 107710) ((-907 . -102) T) ((-867 . -1051) T) ((-695 . -902) NIL) ((-357 . -330) 107694) ((-357 . -365) T) ((-354 . -330) 107678) ((-354 . -365) T) ((-346 . -330) 107662) ((-346 . -365) T) ((-490 . -102) T) ((-1280 . -38) 107632) ((-549 . -851) T) ((-526 . -688) 107582) ((-217 . -102) T) ((-1026 . -1040) 107462) ((-1005 . -111) 107391) ((-1176 . -975) 107360) ((-523 . -151) 107344) ((-1082 . -372) 107323) ((-353 . -614) 107305) ((-323 . -21) T) ((-356 . -1040) 107282) ((-323 . -25) T) ((-1175 . -975) 107244) ((-1169 . -975) 107213) ((-76 . -614) 107195) ((-1128 . -975) 107162) ((-700 . -308) T) ((-129 . -845) T) ((-912 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-912 . -330) 107149) ((-86 . -614) 107131) ((-700 . -1024) T) ((-678 . -851) T) ((-1252 . -131) T) ((-1231 . -131) T) ((-903 . -1012) 107115) ((-837 . -21) T) ((-48 . -1040) 107058) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1115 . -647) 106808) ((-1290 . -1060) T) ((-552 . -102) T) ((-1288 . -1060) T) ((-655 . -727) T) ((-1106 . -619) 106711) ((-1005 . -617) 106641) ((-1291 . -1058) 106625) ((-816 . -414) 106594) ((-103 . -119) 106578) ((-129 . -1102) T) ((-52 . -1102) T) ((-928 . -614) 106560) ((-872 . -994) 106537) ((-824 . -102) T) ((-1291 . -111) 106516) ((-654 . -38) 106486) ((-574 . -851) T) ((-357 . -1114) T) ((-354 . -1114) T) ((-346 . -1114) T) ((-265 . -1114) T) ((-247 . -1114) T) ((-624 . -308) 106465) ((-1152 . -310) 106269) ((-665 . -23) T) ((-527 . -1085) T) ((-312 . -1102) T) ((-485 . -231) 106238) ((-152 . -1060) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1005 . -1051) T) ((-713 . -911) 106217) ((-1158 . -617) 106194) ((-1005 . -233) 106166) ((-1005 . -243) T) ((-117 . -1024) NIL) ((-912 . -1114) T) ((-1253 . -455) 106145) ((-1232 . -455) 106124) ((-526 . -614) 106056) ((-713 . -649) 105981) ((-410 . -1058) 105933) ((-507 . -614) 105915) ((-912 . -23) T) ((-490 . -310) NIL) ((-1291 . -617) 105871) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105809) ((-816 . -1060) 105739) ((-738 . -1100) 105723) ((-1252 . -496) 105689) ((-1231 . -496) 105655) ((-551 . -845) T) ((-141 . -1100) 105637) ((-480 . -291) T) ((-1291 . -1051) T) ((-1223 . -102) T) ((-1065 . -102) T) ((-844 . -617) 105505) ((-503 . -517) NIL) ((-485 . -238) 105484) ((-410 . -617) 105382) ((-965 . -1053) 105265) ((-736 . -1053) 105235) ((-965 . -641) 105132) ((-1174 . -145) 105111) ((-736 . -641) 105081) ((-456 . -1053) 105051) ((-1174 . -147) 105030) ((-1127 . -147) 105009) ((-1127 . -145) 104988) ((-636 . -1058) 104972) ((-608 . -1058) 104956) ((-456 . -641) 104926) ((-1176 . -1259) 104910) ((-1176 . -1246) 104887) ((-671 . -1102) T) ((-671 . -1055) 104827) ((-1175 . -1251) 104788) ((-551 . -1102) T) ((-490 . -1153) T) ((-1175 . -1246) 104758) ((-1175 . -1249) 104742) ((-1169 . -1230) 104703) ((-217 . -1153) T) ((-345 . -922) T) ((-819 . -267) 104687) ((-636 . -111) 104666) ((-608 . -111) 104645) ((-1169 . -1246) 104622) ((-844 . -1051) 104601) ((-1169 . -1228) 104585) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1053) 104559) ((-410 . -1051) T) ((-320 . -1060) T) ((-695 . -308) T) ((-421 . -641) 104533) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104512) ((-490 . -38) 104462) ((-217 . -38) 104412) ((-477 . -496) 104378) ((-1225 . -370) T) ((-1160 . -1146) T) ((-1103 . -102) T) ((-702 . -614) 104360) ((-702 . -615) 104275) ((-715 . -21) T) ((-715 . -25) T) ((-1137 . -102) T) ((-485 . -647) 104025) ((-134 . -614) 104007) ((-116 . -614) 103989) ((-157 . -25) T) ((-1290 . -1102) T) ((-873 . -640) 103937) ((-1288 . -1102) T) ((-965 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103888) ((-44 . -1102) T) ((-1090 . -851) T) ((-1065 . -310) 103739) ((-665 . -131) T) ((-1056 . -647) 103708) ((-671 . -718) 103692) ((-290 . -1060) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103661) ((-421 . -102) T) ((-152 . -1102) T) ((-45 . -229) 103611) ((-800 . -1053) 103595) ((-960 . -851) 103574) ((-1001 . -649) 103512) ((-800 . -641) 103496) ((-240 . -1275) 103466) ((-1026 . -308) T) ((-295 . -1058) 103387) ((-912 . -131) T) ((-40 . -922) T) ((-490 . -403) 103369) ((-356 . -308) T) ((-217 . -403) 103351) ((-1082 . -414) 103335) ((-295 . -111) 103251) ((-1185 . -851) T) ((-1184 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103233) ((-1254 . -47) 103177) ((-225 . -147) T) ((-174 . -614) 103159) ((-1115 . -849) 103138) ((-775 . -614) 103120) ((-128 . -851) T) ((-609 . -235) 103067) ((-478 . -235) 103017) ((-1290 . -718) 102987) ((-48 . -308) T) ((-1288 . -718) 102957) ((-65 . -617) 102886) ((-966 . -1102) T) ((-816 . -1102) 102676) ((-313 . -102) T) ((-903 . -1218) T) ((-48 . -1024) T) ((-1231 . -640) 102584) ((-690 . -102) 102562) ((-44 . -718) 102546) ((-553 . -102) T) ((-295 . -617) 102477) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102413) ((-671 . -762) T) ((-1215 . -1102) 102391) ((-353 . -1058) 102336) ((-676 . -1102) 102314) ((-1064 . -147) T) ((-954 . -147) 102293) ((-954 . -145) 102272) ((-800 . -102) T) ((-152 . -718) 102256) ((-484 . -147) 102235) ((-484 . -145) 102214) ((-353 . -111) 102143) ((-1082 . -1060) T) ((-323 . -851) 102122) ((-1260 . -975) 102091) ((-628 . -1102) T) ((-1253 . -975) 102053) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 102003) ((-361 . -1060) T) ((-355 . -1060) T) ((-347 . -1060) T) ((-295 . -1051) 101945) ((-1232 . -975) 101914) ((-381 . -851) T) ((-108 . -1060) T) ((-1001 . -727) T) ((-871 . -922) T) ((-844 . -796) 101893) ((-844 . -793) 101872) ((-421 . -310) 101811) ((-471 . -102) T) ((-597 . -975) 101780) ((-320 . -1102) T) ((-410 . -796) 101759) ((-410 . -793) 101738) ((-503 . -492) 101720) ((-1254 . -1040) 101686) ((-1252 . -21) T) ((-1252 . -25) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-816 . -718) 101628) ((-353 . -617) 101558) ((-700 . -407) T) ((-1281 . -1218) T) ((-607 . -102) T) ((-1115 . -414) 101527) ((-1005 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1180 . -647) 101437) ((-738 . -1218) T) ((-732 . -1053) 101280) ((-44 . -762) T) ((-732 . -641) 101129) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 101113) ((-141 . -1218) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1217 . -93) T) ((-353 . -1051) T) ((-70 . -385) T) ((-70 . -398) T) ((-1167 . -102) T) ((-671 . -517) 101046) ((-1280 . -647) 100991) ((-690 . -310) 100929) ((-965 . -38) 100826) ((-1182 . -614) 100808) ((-736 . -38) 100778) ((-553 . -310) 100582) ((-1176 . -1053) 100465) ((-317 . -1218) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1218) T) ((-290 . -1102) T) ((-1175 . -1053) 100300) ((-1169 . -1053) 100090) ((-1128 . -1053) 99973) ((-1176 . -641) 99870) ((-1175 . -641) 99711) ((-712 . -1222) T) ((-1169 . -641) 99507) ((-1158 . -652) 99491) ((-1128 . -641) 99388) ((-1212 . -559) 99367) ((-820 . -388) 99351) ((-712 . -559) T) ((-317 . -886) 99335) ((-317 . -888) 99260) ((-314 . -886) 99221) ((-314 . -888) NIL) ((-800 . -310) 99186) ((-320 . -718) 99027) ((-389 . -388) 99011) ((-325 . -324) 98988) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 98962) ((-317 . -1040) 98625) ((-225 . -1203) T) ((-225 . -1206) T) ((-3 . -614) 98607) ((-314 . -1040) 98537) ((-2 . -1102) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98519) ((-1115 . -1060) 98449) ((-583 . -922) T) ((-567 . -821) T) ((-567 . -922) T) ((-498 . -922) T) ((-136 . -1040) 98433) ((-225 . -95) T) ((-169 . -147) 98412) ((-75 . -444) T) ((0 . -614) 98394) ((-75 . -398) T) ((-169 . -145) 98345) ((-225 . -35) T) ((-49 . -614) 98327) ((-480 . -1060) T) ((-490 . -231) 98309) ((-487 . -970) 98293) ((-485 . -849) 98272) ((-217 . -231) 98254) ((-81 . -444) T) ((-81 . -398) T) ((-1148 . -34) T) ((-816 . -172) 98233) ((-732 . -102) T) ((-654 . -647) 98192) ((-1028 . -614) 98159) ((-503 . -287) 98134) ((-317 . -379) 98103) ((-314 . -379) 98064) ((-314 . -340) 98025) ((-1087 . -614) 98007) ((-817 . -951) 97954) ((-663 . -131) T) ((-1241 . -145) 97933) ((-1241 . -147) 97912) ((-1176 . -102) T) ((-1175 . -102) T) ((-1169 . -102) T) ((-1161 . -1102) T) ((-1128 . -102) T) ((-222 . -34) T) ((-290 . -718) 97899) ((-1161 . -611) 97875) ((-595 . -310) NIL) ((-487 . -1102) 97853) ((-393 . -614) 97835) ((-513 . -851) T) ((-1152 . -229) 97785) ((-1260 . -1259) 97769) ((-1260 . -1246) 97746) ((-1253 . -1251) 97707) ((-1253 . -1246) 97677) ((-1253 . -1249) 97661) ((-1232 . -1230) 97622) ((-1232 . -1246) 97599) ((-622 . -614) 97581) ((-1232 . -1228) 97565) ((-700 . -922) T) ((-1176 . -285) 97531) ((-1175 . -285) 97497) ((-1169 . -285) 97463) ((-1082 . -1102) T) ((-1063 . -1102) T) ((-48 . -303) T) ((-317 . -902) 97429) ((-314 . -902) NIL) ((-1063 . -1070) 97408) ((-1122 . -888) 97390) ((-800 . -38) 97374) ((-265 . -640) 97322) ((-247 . -640) 97270) ((-702 . -1058) 97257) ((-597 . -1246) 97234) ((-1128 . -285) 97200) ((-320 . -172) 97131) ((-361 . -1102) T) ((-355 . -1102) T) ((-347 . -1102) T) ((-503 . -19) 97113) ((-1122 . -1040) 97095) ((-1104 . -151) 97079) ((-108 . -1102) T) ((-116 . -1058) 97066) ((-712 . -365) T) ((-503 . -605) 97041) ((-702 . -111) 97026) ((-439 . -102) T) ((-877 . -1263) T) ((-250 . -102) T) ((-45 . -1151) 96976) ((-116 . -111) 96961) ((-636 . -721) T) ((-608 . -721) T) ((-1270 . -614) 96943) ((-1226 . -614) 96925) ((-1224 . -851) T) ((-816 . -517) 96858) ((-1037 . -1218) T) ((-240 . -1053) 96755) ((-1212 . -1114) T) ((-1212 . -23) T) ((-945 . -151) 96739) ((-1174 . -455) 96670) ((-1169 . -310) 96555) ((-240 . -641) 96497) ((-1168 . -1102) T) ((-1160 . -1102) T) ((-1144 . -649) 96471) ((-528 . -102) T) ((-523 . -102) 96421) ((-1128 . -310) 96408) ((-1127 . -455) 96359) ((-1089 . -1222) 96338) ((-783 . -1222) 96317) ((-781 . -1222) 96296) ((-62 . -1218) T) ((-480 . -614) 96248) ((-480 . -615) 96170) ((-1089 . -559) 96101) ((-996 . -1102) T) ((-783 . -559) 96012) ((-781 . -559) 95943) ((-485 . -414) 95912) ((-624 . -922) 95891) ((-457 . -1222) 95870) ((-732 . -310) 95857) ((-702 . -617) 95829) ((-401 . -614) 95811) ((-676 . -517) 95744) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95675) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -922) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95657) ((-116 . -617) 95629) ((-1082 . -718) 95497) ((-1006 . -1053) 95447) ((-1006 . -641) 95397) ((-945 . -982) 95381) ((-916 . -641) 95333) ((-916 . -1053) 95285) ((-912 . -21) T) ((-912 . -25) T) ((-873 . -851) 95236) ((-867 . -649) 95196) ((-712 . -1114) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1051) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1102) 95174) ((-633 . -611) 95149) ((-633 . -1102) T) ((-584 . -1222) T) ((-584 . -559) T) ((-521 . -1222) T) ((-521 . -559) T) ((-490 . -647) 95099) ((-430 . -1053) 95083) ((-430 . -641) 95067) ((-361 . -718) 95019) ((-355 . -718) 94971) ((-341 . -1058) 94955) ((-347 . -718) 94907) ((-341 . -111) 94886) ((-174 . -1058) 94818) ((-217 . -647) 94768) ((-174 . -111) 94679) ((-108 . -718) 94629) ((-275 . -1102) T) ((-274 . -1102) T) ((-273 . -1102) T) ((-272 . -1102) T) ((-271 . -1102) T) ((-270 . -1102) T) ((-269 . -1102) T) ((-212 . -1102) T) ((-211 . -1102) T) ((-169 . -1206) 94607) ((-169 . -1203) 94585) ((-209 . -1102) T) ((-208 . -1102) T) ((-116 . -1051) T) ((-207 . -1102) T) ((-206 . -1102) T) ((-203 . -1102) T) ((-202 . -1102) T) ((-201 . -1102) T) ((-200 . -1102) T) ((-199 . -1102) T) ((-198 . -1102) T) ((-197 . -1102) T) ((-196 . -1102) T) ((-195 . -1102) T) ((-194 . -1102) T) ((-193 . -1102) T) ((-240 . -102) 94375) ((-169 . -35) 94353) ((-169 . -95) 94331) ((-655 . -1040) 94227) ((-485 . -1060) 94157) ((-1115 . -1102) 93947) ((-1144 . -34) T) ((-671 . -492) 93931) ((-73 . -1218) T) ((-105 . -614) 93913) ((-1292 . -614) 93895) ((-383 . -614) 93877) ((-341 . -617) 93829) ((-174 . -617) 93746) ((-1217 . -493) 93727) ((-732 . -38) 93576) ((-574 . -1206) T) ((-574 . -1203) T) ((-534 . -614) 93558) ((-523 . -310) 93496) ((-503 . -614) 93478) ((-503 . -615) 93460) ((-1217 . -614) 93426) ((-1169 . -1153) NIL) ((-1029 . -1073) 93395) ((-1029 . -1102) T) ((-1006 . -102) T) ((-973 . -102) T) ((-916 . -102) T) ((-895 . -1040) 93372) ((-1144 . -727) T) ((-1005 . -649) 93317) ((-479 . -1102) T) ((-466 . -1102) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1065 . -229) 93263) ((-1176 . -38) 93160) ((-867 . -727) T) ((-695 . -922) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1175 . -38) 93001) ((-341 . -1051) T) ((-1169 . -38) 92797) ((-1082 . -172) T) ((-174 . -1051) T) ((-1128 . -38) 92694) ((-713 . -47) 92671) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92645) ((-500 . -57) 92595) ((-353 . -1287) 92572) ((-225 . -455) T) ((-320 . -291) 92523) ((-347 . -172) T) ((-174 . -243) T) ((-1231 . -851) 92422) ((-108 . -172) T) ((-873 . -994) 92406) ((-659 . -1114) T) ((-584 . -365) T) ((-584 . -330) 92393) ((-521 . -330) 92370) ((-521 . -365) T) ((-317 . -308) 92349) ((-314 . -308) T) ((-603 . -851) 92328) ((-1115 . -718) 92270) ((-523 . -283) 92254) ((-659 . -23) T) ((-421 . -231) 92238) ((-314 . -1024) NIL) ((-338 . -23) T) ((-103 . -1012) 92222) ((-45 . -36) 92201) ((-613 . -1102) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92139) ((-1089 . -1114) T) ((-1291 . -649) 92113) ((-783 . -1114) T) ((-781 . -1114) T) ((-457 . -1114) T) ((-1064 . -455) T) ((-954 . -455) 92064) ((-1117 . -1085) T) ((-110 . -1102) T) ((-1089 . -23) T) ((-818 . -1060) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 92015) ((-1161 . -517) 91798) ((-383 . -384) 91777) ((-1180 . -414) 91761) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1102) T) ((-487 . -517) 91694) ((-1260 . -1053) 91577) ((-1260 . -641) 91474) ((-1253 . -641) 91315) ((-1253 . -1053) 91150) ((-290 . -291) T) ((-1232 . -1053) 90940) ((-1084 . -614) 90922) ((-1084 . -615) 90903) ((-410 . -911) 90882) ((-1232 . -641) 90678) ((-50 . -1114) T) ((-1212 . -131) T) ((-1026 . -922) T) ((-1005 . -727) T) ((-844 . -649) 90651) ((-713 . -888) NIL) ((-598 . -1053) 90611) ((-584 . -1114) T) ((-521 . -1114) T) ((-597 . -1053) 90494) ((-1169 . -403) 90446) ((-1006 . -310) NIL) ((-816 . -492) 90430) ((-598 . -641) 90403) ((-356 . -922) T) ((-597 . -641) 90300) ((-1158 . -34) T) ((-410 . -649) 90252) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1040) 90132) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 90103) ((-1142 . -1102) T) ((-1283 . -1282) 90087) ((-702 . -796) T) ((-702 . -793) T) ((-1122 . -308) T) ((-381 . -147) T) ((-281 . -614) 90069) ((-1231 . -994) 90039) ((-48 . -922) T) ((-676 . -492) 90023) ((-252 . -1275) 89993) ((-251 . -1275) 89963) ((-1178 . -851) T) ((-1115 . -172) 89942) ((-1122 . -1024) T) ((-1048 . -34) T) ((-837 . -147) 89921) ((-837 . -145) 89900) ((-738 . -107) 89884) ((-613 . -132) T) ((-485 . -1102) 89674) ((-1180 . -1060) T) ((-872 . -455) T) ((-85 . -1218) T) ((-240 . -38) 89644) ((-141 . -107) 89626) ((-713 . -379) 89610) ((-834 . -617) 89478) ((-1291 . -727) T) ((-1280 . -1060) T) ((-1122 . -548) T) ((-582 . -102) T) ((-129 . -493) 89460) ((-1260 . -102) T) ((-393 . -1058) 89444) ((-1253 . -102) T) ((-1174 . -951) 89413) ((-129 . -614) 89380) ((-52 . -614) 89362) ((-1127 . -951) 89329) ((-654 . -414) 89313) ((-1232 . -102) T) ((-1160 . -517) NIL) ((-622 . -1058) 89297) ((-663 . -25) T) ((-663 . -21) T) ((-965 . -647) 89207) ((-736 . -647) 89152) ((-716 . -647) 89124) ((-393 . -111) 89103) ((-222 . -255) 89087) ((-1056 . -1055) 89027) ((-1056 . -1102) T) ((-1006 . -1153) T) ((-819 . -1102) T) ((-456 . -647) 88942) ((-345 . -1222) T) ((-636 . -649) 88926) ((-622 . -111) 88905) ((-608 . -649) 88889) ((-598 . -102) T) ((-312 . -493) 88870) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1102) T) ((-387 . -1102) T) ((-312 . -614) 88836) ((-227 . -1102) 88814) ((-648 . -517) 88747) ((-633 . -517) 88591) ((-834 . -1051) 88570) ((-645 . -151) 88554) ((-345 . -559) T) ((-713 . -902) 88497) ((-553 . -229) 88447) ((-1260 . -285) 88413) ((-1253 . -285) 88379) ((-1082 . -291) 88330) ((-490 . -849) T) ((-223 . -1114) T) ((-1232 . -285) 88296) ((-1212 . -496) 88262) ((-1006 . -38) 88212) ((-217 . -849) T) ((-421 . -647) 88171) ((-916 . -38) 88123) ((-844 . -795) 88102) ((-844 . -792) 88081) ((-844 . -727) 88060) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 87991) ((-430 . -38) 87975) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 87954) ((-410 . -792) 87933) ((-410 . -727) T) ((-503 . -289) 87908) ((-480 . -1058) 87873) ((-659 . -131) T) ((-622 . -617) 87842) ((-1115 . -517) 87775) ((-338 . -131) T) ((-169 . -405) 87754) ((-485 . -718) 87696) ((-816 . -287) 87673) ((-480 . -111) 87629) ((-654 . -1060) T) ((-817 . -1053) 87472) ((-1279 . -1085) T) ((-1241 . -455) 87403) ((-817 . -641) 87252) ((-1278 . -1085) T) ((-1089 . -131) T) ((-1056 . -718) 87194) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1029 . -517) 87127) ((-622 . -1051) T) ((-594 . -1102) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1102) T) ((-387 . -718) 87097) ((-818 . -1102) T) ((-479 . -517) 87030) ((-466 . -517) 86963) ((-456 . -369) 86933) ((-45 . -611) 86912) ((-317 . -303) T) ((-480 . -617) 86862) ((-1232 . -310) 86747) ((-671 . -614) 86709) ((-59 . -851) 86688) ((-1006 . -403) 86670) ((-551 . -614) 86652) ((-800 . -647) 86611) ((-816 . -605) 86588) ((-519 . -851) 86567) ((-499 . -851) 86546) ((-40 . -1222) T) ((-1001 . -1040) 86442) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86302) ((-345 . -330) 86279) ((-345 . -365) T) ((-323 . -324) 86256) ((-320 . -287) 86241) ((-40 . -559) T) ((-381 . -1203) T) ((-381 . -1206) T) ((-1037 . -1194) 86216) ((-1191 . -235) 86166) ((-1169 . -231) 86118) ((-331 . -1102) T) ((-381 . -95) T) ((-381 . -35) T) ((-1037 . -107) 86064) ((-480 . -1051) T) ((-1292 . -1058) 86048) ((-482 . -235) 85998) ((-1161 . -492) 85932) ((-1283 . -1053) 85916) ((-383 . -1058) 85900) ((-1283 . -641) 85870) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85849) ((-715 . -145) 85828) ((-487 . -492) 85812) ((-488 . -337) 85781) ((-1292 . -111) 85760) ((-515 . -1102) T) ((-485 . -172) 85739) ((-1001 . -379) 85723) ((-416 . -102) T) ((-383 . -111) 85702) ((-1001 . -340) 85686) ((-280 . -985) 85670) ((-279 . -985) 85654) ((-1290 . -614) 85636) ((-1288 . -614) 85618) ((-110 . -517) NIL) ((-1174 . -1244) 85602) ((-855 . -853) 85586) ((-1180 . -1102) T) ((-103 . -1218) T) ((-954 . -951) 85547) ((-818 . -718) 85489) ((-1232 . -1153) NIL) ((-484 . -951) 85434) ((-1064 . -143) T) ((-60 . -102) 85412) ((-44 . -614) 85394) ((-78 . -614) 85376) ((-353 . -649) 85321) ((-1280 . -1102) T) ((-514 . -851) T) ((-345 . -1114) T) ((-296 . -1102) T) ((-1001 . -902) 85280) ((-296 . -611) 85259) ((-1292 . -617) 85208) ((-1260 . -38) 85105) ((-1253 . -38) 84946) ((-1232 . -38) 84742) ((-490 . -1060) T) ((-383 . -617) 84726) ((-217 . -1060) T) ((-345 . -23) T) ((-152 . -614) 84708) ((-834 . -796) 84687) ((-834 . -793) 84666) ((-1217 . -617) 84647) ((-598 . -38) 84620) ((-597 . -38) 84517) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1004) 84483) ((-79 . -614) 84465) ((-713 . -308) 84444) ((-295 . -727) 84346) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84325) ((-1283 . -102) T) ((-40 . -365) T) ((-873 . -147) 84304) ((-488 . -647) 84286) ((-873 . -145) 84265) ((-1160 . -492) 84247) ((-1292 . -1051) T) ((-485 . -517) 84180) ((-1148 . -1218) T) ((-966 . -614) 84162) ((-648 . -492) 84146) ((-633 . -492) 84077) ((-816 . -614) 83808) ((-48 . -27) T) ((-1180 . -718) 83705) ((-654 . -1102) T) ((-862 . -861) T) ((-439 . -366) 83679) ((-732 . -647) 83589) ((-1104 . -102) T) ((-972 . -1102) T) ((-865 . -1102) T) ((-817 . -310) 83576) ((-536 . -530) T) ((-536 . -579) T) ((-1288 . -384) 83548) ((-1056 . -517) 83481) ((-1161 . -287) 83457) ((-240 . -231) 83426) ((-252 . -1053) 83323) ((-251 . -1053) 83220) ((-1280 . -718) 83190) ((-1168 . -93) T) ((-996 . -93) T) ((-818 . -172) 83169) ((-252 . -641) 83111) ((-251 . -641) 83053) ((-1215 . -493) 83030) ((-227 . -517) 82963) ((-622 . -796) 82942) ((-622 . -793) 82921) ((-1215 . -614) 82833) ((-222 . -1218) T) ((-676 . -614) 82765) ((-1176 . -647) 82675) ((-1158 . -1012) 82659) ((-945 . -102) 82609) ((-353 . -727) T) ((-862 . -614) 82591) ((-1175 . -647) 82473) ((-1169 . -647) 82310) ((-1128 . -647) 82220) ((-1232 . -403) 82172) ((-1115 . -492) 82156) ((-60 . -310) 82094) ((-332 . -102) T) ((-1212 . -21) T) ((-1212 . -25) T) ((-40 . -1114) T) ((-712 . -21) T) ((-628 . -614) 82076) ((-518 . -324) 82055) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-923 . -1114) T) ((-40 . -23) T) ((-772 . -1114) T) ((-567 . -1222) T) ((-498 . -1222) T) ((-320 . -614) 82037) ((-1006 . -231) 82019) ((-169 . -166) 82003) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1252 . -147) 81982) ((-1161 . -605) 81958) ((-1252 . -145) 81937) ((-1029 . -492) 81921) ((-1231 . -145) 81846) ((-1231 . -147) 81771) ((-1283 . -1289) 81750) ((-479 . -492) 81734) ((-466 . -492) 81718) ((-526 . -34) T) ((-654 . -718) 81688) ((-112 . -969) T) ((-663 . -851) 81667) ((-1180 . -172) 81618) ((-367 . -102) T) ((-240 . -238) 81597) ((-252 . -102) T) ((-251 . -102) T) ((-1241 . -951) 81566) ((-245 . -851) 81545) ((-817 . -38) 81394) ((-45 . -517) 81186) ((-1160 . -287) 81161) ((-214 . -1102) T) ((-1152 . -1102) T) ((-1152 . -611) 81140) ((-588 . -25) T) ((-588 . -21) T) ((-1104 . -310) 81078) ((-965 . -414) 81062) ((-700 . -1222) T) ((-633 . -287) 81037) ((-1089 . -640) 80985) ((-783 . -640) 80933) ((-781 . -640) 80881) ((-345 . -131) T) ((-290 . -614) 80863) ((-907 . -1102) T) ((-700 . -559) T) ((-129 . -617) 80845) ((-871 . -1114) T) ((-457 . -640) 80793) ((-907 . -905) 80777) ((-381 . -455) T) ((-490 . -1102) T) ((-945 . -310) 80715) ((-702 . -649) 80702) ((-552 . -845) T) ((-217 . -1102) T) ((-317 . -922) 80681) ((-314 . -922) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80668) ((-477 . -145) 80647) ((-421 . -414) 80631) ((-477 . -147) 80610) ((-110 . -492) 80592) ((-312 . -617) 80573) ((-2 . -614) 80555) ((-186 . -102) T) ((-1160 . -19) 80537) ((-1160 . -605) 80512) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1146) T) ((-1115 . -287) 80489) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80239) ((-498 . -365) T) ((-1283 . -38) 80209) ((-1174 . -1053) 80032) ((-1144 . -1218) T) ((-1127 . -1053) 79875) ((-855 . -1053) 79859) ((-633 . -605) 79834) ((-1174 . -641) 79663) ((-1127 . -641) 79512) ((-855 . -641) 79482) ((-1290 . -1058) 79466) ((-1288 . -1058) 79450) ((-552 . -1102) T) ((-1089 . -25) T) ((-1089 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1222) T) ((-965 . -1060) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1060) T) ((-716 . -1060) T) ((-671 . -1058) 79434) ((-520 . -1085) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1252 . -1203) 79400) ((-1252 . -1206) 79366) ((-1144 . -1040) 79262) ((-818 . -291) 79241) ((-1252 . -95) 79207) ((-824 . -1102) T) ((-1235 . -102) 79185) ((-968 . -969) T) ((-671 . -111) 79164) ((-296 . -517) 78956) ((-1232 . -231) 78908) ((-1231 . -1203) 78874) ((-1231 . -1206) 78840) ((-252 . -310) 78778) ((-251 . -310) 78716) ((-1226 . -370) T) ((-1161 . -615) NIL) ((-1161 . -614) 78698) ((-1223 . -845) T) ((-1144 . -379) 78682) ((-1122 . -821) T) ((-96 . -93) T) ((-1122 . -922) T) ((-1115 . -605) 78659) ((-1082 . -615) 78643) ((-1006 . -647) 78593) ((-916 . -647) 78530) ((-816 . -289) 78507) ((-487 . -614) 78439) ((-609 . -151) 78386) ((-490 . -718) 78336) ((-421 . -1060) T) ((-485 . -492) 78320) ((-430 . -647) 78279) ((-328 . -851) 78258) ((-341 . -649) 78232) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78182) ((-169 . -725) 78153) ((-174 . -649) 78085) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 78035) ((-1082 . -614) 78017) ((-1063 . -614) 77999) ((-995 . -102) T) ((-863 . -102) T) ((-800 . -414) 77962) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -897) T) ((-583 . -1114) T) ((-567 . -1114) T) ((-498 . -1114) T) ((-361 . -614) 77944) ((-355 . -614) 77926) ((-347 . -614) 77908) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77838) ((-108 . -614) 77780) ((-211 . -897) T) ((-960 . -151) 77764) ((-772 . -131) T) ((-671 . -617) 77682) ((-134 . -727) T) ((-116 . -727) T) ((-1252 . -35) 77648) ((-1056 . -492) 77632) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1231 . -95) 77598) ((-1231 . -35) 77564) ((-1174 . -102) T) ((-1127 . -102) T) ((-855 . -102) T) ((-227 . -492) 77548) ((-1290 . -111) 77527) ((-1288 . -111) 77506) ((-44 . -1058) 77490) ((-1290 . -617) 77436) ((-1241 . -1244) 77420) ((-856 . -853) 77404) ((-1290 . -1051) T) ((-1180 . -291) 77383) ((-110 . -287) 77358) ((-1288 . -617) 77287) ((-128 . -151) 77269) ((-1144 . -902) 77228) ((-44 . -111) 77207) ((-1223 . -1102) T) ((-1183 . -1263) T) ((-1168 . -493) 77188) ((-1168 . -614) 77154) ((-671 . -1051) T) ((-1160 . -615) NIL) ((-1160 . -614) 77136) ((-1065 . -611) 77111) ((-1065 . -1102) T) ((-996 . -493) 77092) ((-74 . -444) T) ((-74 . -398) T) ((-996 . -614) 77058) ((-152 . -1058) 77042) ((-671 . -233) 77021) ((-574 . -557) 77005) ((-357 . -147) 76984) ((-357 . -145) 76935) ((-354 . -147) 76914) ((-354 . -145) 76865) ((-346 . -147) 76844) ((-346 . -145) 76795) ((-265 . -145) 76774) ((-265 . -147) 76753) ((-252 . -38) 76723) ((-247 . -147) 76702) ((-117 . -365) T) ((-247 . -145) 76681) ((-251 . -38) 76651) ((-152 . -111) 76630) ((-1005 . -1040) 76518) ((-1169 . -849) NIL) ((-695 . -1222) T) ((-800 . -1060) T) ((-700 . -1114) T) ((-1288 . -1051) T) ((-1158 . -1218) T) ((-1005 . -379) 76495) ((-912 . -145) T) ((-912 . -147) 76477) ((-871 . -131) T) ((-816 . -1058) 76374) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1053) 76339) ((-648 . -614) 76271) ((-648 . -615) 76232) ((-633 . -615) NIL) ((-633 . -614) 76214) ((-490 . -172) T) ((-225 . -641) 76179) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1206) 76145) ((-477 . -1203) 76111) ((-275 . -614) 76093) ((-274 . -614) 76075) ((-273 . -614) 76057) ((-272 . -614) 76039) ((-271 . -614) 76021) ((-503 . -652) 76003) ((-270 . -614) 75985) ((-341 . -727) T) ((-269 . -614) 75967) ((-110 . -19) 75949) ((-174 . -727) T) ((-503 . -375) 75931) ((-212 . -614) 75913) ((-523 . -1151) 75897) ((-503 . -123) T) ((-110 . -605) 75872) ((-211 . -614) 75854) ((-477 . -35) 75820) ((-477 . -95) 75786) ((-209 . -614) 75768) ((-208 . -614) 75750) ((-207 . -614) 75732) ((-206 . -614) 75714) ((-203 . -614) 75696) ((-202 . -614) 75678) ((-201 . -614) 75660) ((-200 . -614) 75642) ((-199 . -614) 75624) ((-198 . -614) 75606) ((-197 . -614) 75588) ((-539 . -1105) 75540) ((-196 . -614) 75522) ((-195 . -614) 75504) ((-45 . -492) 75441) ((-194 . -614) 75423) ((-193 . -614) 75405) ((-152 . -617) 75374) ((-1117 . -102) T) ((-816 . -111) 75264) ((-645 . -102) 75214) ((-485 . -287) 75191) ((-1115 . -614) 74922) ((-1103 . -1102) T) ((-1048 . -1218) T) ((-1291 . -1040) 74906) ((-1064 . -1053) 74893) ((-1174 . -310) 74880) ((-954 . -1053) 74723) ((-1137 . -1102) T) ((-1127 . -310) 74710) ((-624 . -1114) T) ((-1064 . -641) 74697) ((-1098 . -1085) T) ((-954 . -641) 74546) ((-1092 . -1085) T) ((-484 . -1053) 74389) ((-1075 . -1085) T) ((-1068 . -1085) T) ((-1038 . -1085) T) ((-1021 . -1085) T) ((-117 . -1114) T) ((-484 . -641) 74238) ((-820 . -102) T) ((-627 . -1085) T) ((-624 . -23) T) ((-1152 . -517) 74030) ((-486 . -1085) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1085) T) ((-965 . -1102) T) ((-152 . -1051) T) ((-732 . -414) 74014) ((-117 . -23) T) ((-1005 . -902) 73966) ((-736 . -1102) T) ((-716 . -1102) T) ((-456 . -1102) T) ((-410 . -1218) T) ((-317 . -433) 73950) ((-594 . -93) T) ((-1260 . -647) 73860) ((-1029 . -615) 73821) ((-1026 . -1222) T) ((-225 . -102) T) ((-1029 . -614) 73783) ((-1253 . -647) 73665) ((-817 . -231) 73649) ((-816 . -617) 73379) ((-1232 . -647) 73216) ((-1026 . -559) T) ((-834 . -649) 73189) ((-356 . -1222) T) ((-479 . -614) 73151) ((-479 . -615) 73112) ((-466 . -615) 73073) ((-466 . -614) 73035) ((-598 . -647) 72994) ((-410 . -886) 72978) ((-320 . -1058) 72813) ((-410 . -888) 72738) ((-597 . -647) 72648) ((-844 . -1040) 72544) ((-490 . -517) NIL) ((-485 . -605) 72521) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1102) T) ((-410 . -1040) 72385) ((-320 . -111) 72206) ((-695 . -365) T) ((-225 . -285) T) ((-1215 . -617) 72183) ((-48 . -1222) T) ((-816 . -1051) 72113) ((-1174 . -1153) 72091) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1161 . -289) 72067) ((-48 . -559) T) ((-1064 . -102) T) ((-954 . -102) T) ((-872 . -1053) 72012) ((-317 . -27) 71991) ((-816 . -233) 71943) ((-249 . -836) 71925) ((-240 . -849) 71904) ((-187 . -836) 71886) ((-714 . -102) T) ((-296 . -492) 71823) ((-872 . -641) 71768) ((-484 . -102) T) ((-732 . -1060) T) ((-613 . -614) 71750) ((-613 . -615) 71611) ((-410 . -379) 71595) ((-410 . -340) 71579) ((-320 . -617) 71405) ((-1174 . -38) 71234) ((-1127 . -38) 71083) ((-855 . -38) 71053) ((-393 . -649) 71037) ((-645 . -310) 70975) ((-965 . -718) 70872) ((-736 . -718) 70842) ((-222 . -107) 70826) ((-45 . -287) 70751) ((-622 . -649) 70725) ((-313 . -1102) T) ((-290 . -1058) 70712) ((-110 . -614) 70694) ((-110 . -615) 70676) ((-456 . -718) 70646) ((-817 . -254) 70585) ((-690 . -1102) 70563) ((-553 . -1102) T) ((-1176 . -1060) T) ((-1175 . -1060) T) ((-96 . -493) 70544) ((-1169 . -1060) T) ((-290 . -111) 70529) ((-1128 . -1060) T) ((-553 . -611) 70508) ((-96 . -614) 70474) ((-1006 . -849) T) ((-227 . -688) 70432) ((-695 . -1114) T) ((-1212 . -741) 70408) ((-1026 . -365) T) ((-839 . -836) 70390) ((-834 . -795) 70369) ((-410 . -902) 70328) ((-320 . -1051) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1053) 70238) ((-68 . -1218) T) ((-834 . -792) 70217) ((-421 . -718) 70191) ((-800 . -1102) T) ((-713 . -922) 70170) ((-700 . -131) T) ((-169 . -641) 69998) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69977) ((-320 . -233) 69929) ((-320 . -243) 69908) ((-217 . -291) T) ((-129 . -370) T) ((-1252 . -455) 69887) ((-1231 . -455) 69866) ((-356 . -330) 69843) ((-356 . -365) T) ((-1142 . -614) 69825) ((-45 . -1256) 69775) ((-872 . -102) T) ((-645 . -283) 69759) ((-700 . -1062) T) ((-1279 . -102) T) ((-1278 . -102) T) ((-480 . -649) 69724) ((-471 . -1102) T) ((-45 . -605) 69649) ((-1160 . -289) 69624) ((-290 . -617) 69596) ((-40 . -640) 69535) ((-1241 . -1053) 69358) ((-856 . -1053) 69342) ((-48 . -365) T) ((-1108 . -614) 69324) ((-1241 . -641) 69153) ((-856 . -641) 69123) ((-633 . -289) 69098) ((-817 . -647) 69008) ((-574 . -1053) 68995) ((-485 . -614) 68726) ((-240 . -414) 68695) ((-954 . -310) 68682) ((-574 . -641) 68669) ((-65 . -1218) T) ((-1065 . -517) 68513) ((-672 . -1102) T) ((-624 . -131) T) ((-484 . -310) 68500) ((-607 . -1102) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1051) T) ((-180 . -1102) T) ((-161 . -1102) T) ((-156 . -1102) T) ((-154 . -1102) T) ((-456 . -762) T) ((-31 . -1085) T) ((-965 . -172) 68451) ((-972 . -93) T) ((-1082 . -1058) 68361) ((-622 . -795) 68340) ((-595 . -1102) T) ((-622 . -792) 68319) ((-622 . -727) T) ((-296 . -287) 68298) ((-295 . -1218) T) ((-1056 . -614) 68260) ((-1056 . -615) 68221) ((-1026 . -1114) T) ((-169 . -102) T) ((-276 . -851) T) ((-1167 . -1102) T) ((-819 . -614) 68203) ((-1115 . -289) 68180) ((-1104 . -229) 68164) ((-1005 . -308) T) ((-800 . -718) 68148) ((-361 . -1058) 68100) ((-356 . -1114) T) ((-355 . -1058) 68052) ((-417 . -614) 68034) ((-387 . -614) 68016) ((-347 . -1058) 67968) ((-227 . -614) 67900) ((-1082 . -111) 67796) ((-1026 . -23) T) ((-108 . -1058) 67746) ((-900 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67725) ((-421 . -172) T) ((-361 . -111) 67663) ((-355 . -111) 67601) ((-347 . -111) 67539) ((-252 . -231) 67508) ((-251 . -231) 67477) ((-356 . -23) T) ((-71 . -1218) T) ((-225 . -38) 67442) ((-108 . -111) 67376) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67354) ((-48 . -1114) T) ((-923 . -25) T) ((-772 . -25) T) ((-1292 . -649) 67328) ((-1152 . -492) 67265) ((-488 . -1102) T) ((-1283 . -647) 67224) ((-1241 . -102) T) ((-1064 . -1153) T) ((-856 . -102) T) ((-240 . -1060) 67154) ((-966 . -793) 67107) ((-966 . -796) 67060) ((-383 . -649) 67044) ((-48 . -23) T) ((-816 . -796) 66995) ((-816 . -793) 66946) ((-551 . -370) T) ((-296 . -605) 66925) ((-480 . -727) T) ((-574 . -102) T) ((-1082 . -617) 66743) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66700) ((-654 . -287) 66679) ((-112 . -662) T) ((-361 . -617) 66616) ((-355 . -617) 66553) ((-347 . -617) 66490) ((-76 . -1218) T) ((-108 . -617) 66440) ((-1064 . -38) 66427) ((-665 . -376) 66406) ((-954 . -38) 66255) ((-732 . -1102) T) ((-484 . -38) 66104) ((-86 . -1218) T) ((-594 . -493) 66085) ((-574 . -285) T) ((-1232 . -849) NIL) ((-594 . -614) 66051) ((-1176 . -1102) T) ((-1175 . -1102) T) ((-1082 . -1051) T) ((-353 . -1040) 66028) ((-818 . -493) 66012) ((-1006 . -1060) T) ((-45 . -614) 65994) ((-45 . -615) NIL) ((-916 . -1060) T) ((-818 . -614) 65963) ((-1169 . -1102) T) ((-1149 . -102) 65941) ((-1082 . -243) 65892) ((-430 . -1060) T) ((-361 . -1051) T) ((-367 . -366) 65869) ((-355 . -1051) T) ((-347 . -1051) T) ((-252 . -238) 65848) ((-251 . -238) 65827) ((-1082 . -233) 65752) ((-1128 . -1102) T) ((-295 . -902) 65711) ((-108 . -1051) T) ((-695 . -131) T) ((-421 . -517) 65553) ((-361 . -233) 65532) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65511) ((-355 . -243) T) ((-347 . -233) 65490) ((-347 . -243) T) ((-1168 . -617) 65471) ((-169 . -310) 65436) ((-108 . -243) T) ((-108 . -233) T) ((-996 . -617) 65417) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65392) ((-1115 . -1058) 65289) ((-872 . -1153) NIL) ((-331 . -614) 65271) ((-410 . -1024) 65249) ((-1115 . -111) 65139) ((-692 . -1263) T) ((-439 . -1102) T) ((-250 . -1102) T) ((-1292 . -727) T) ((-63 . -614) 65121) ((-872 . -38) 65066) ((-526 . -1218) T) ((-603 . -151) 65050) ((-515 . -614) 65032) ((-1241 . -310) 65019) ((-732 . -718) 64868) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64850) ((-498 . -640) 64810) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64761) ((-528 . -1102) T) ((-523 . -1102) 64711) ((-247 . -455) 64662) ((-1152 . -287) 64641) ((-1180 . -614) 64623) ((-690 . -517) 64556) ((-965 . -291) 64535) ((-553 . -517) 64327) ((-252 . -647) 64147) ((-251 . -647) 63954) ((-1280 . -614) 63923) ((-1174 . -231) 63907) ((-1115 . -617) 63637) ((-169 . -1153) 63616) ((-1280 . -493) 63600) ((-1176 . -718) 63497) ((-1175 . -718) 63338) ((-894 . -102) T) ((-1169 . -718) 63134) ((-1128 . -718) 63031) ((-1158 . -675) 63015) ((-357 . -405) 62966) ((-354 . -405) 62917) ((-346 . -405) 62868) ((-1026 . -131) T) ((-800 . -517) 62780) ((-296 . -615) NIL) ((-296 . -614) 62762) ((-912 . -455) T) ((-966 . -370) 62715) ((-816 . -370) 62694) ((-513 . -512) 62673) ((-511 . -512) 62652) ((-490 . -287) NIL) ((-485 . -289) 62629) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1114) T) ((-169 . -38) 62457) ((-1252 . -975) 62419) ((-1149 . -310) 62357) ((-1231 . -975) 62326) ((-912 . -405) T) ((-1115 . -1051) 62256) ((-1254 . -559) T) ((-1152 . -605) 62235) ((-112 . -851) T) ((-1065 . -492) 62166) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1241 . -1153) 62144) ((-1115 . -233) 62096) ((-48 . -131) T) ((-1199 . -102) T) ((-240 . -1102) 61886) ((-872 . -403) 61863) ((-1090 . -102) T) ((-1078 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1241 . -38) 61692) ((-856 . -38) 61662) ((-1036 . -1053) 61636) ((-732 . -172) 61547) ((-654 . -614) 61529) ((-646 . -1085) T) ((-1036 . -641) 61513) ((-574 . -38) 61500) ((-972 . -493) 61481) ((-972 . -614) 61447) ((-960 . -102) 61397) ((-865 . -614) 61379) ((-865 . -615) 61301) ((-595 . -517) NIL) ((-1260 . -1060) T) ((-1253 . -1060) T) ((-323 . -1053) 61283) ((-1232 . -1060) T) ((-1296 . -1114) T) ((-323 . -641) 61265) ((-1212 . -147) 61244) ((-1212 . -145) 61223) ((-1186 . -102) T) ((-1185 . -102) T) ((-1184 . -102) T) ((-598 . -1060) T) ((-597 . -1060) T) ((-1176 . -172) 61174) ((-1175 . -172) 61105) ((-381 . -1053) 61070) ((-1169 . -172) 61001) ((-1128 . -172) 60952) ((-1006 . -1102) T) ((-973 . -1102) T) ((-916 . -1102) T) ((-381 . -641) 60917) ((-800 . -798) 60901) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60878) ((-702 . -888) 60860) ((-430 . -1102) T) ((-317 . -1222) 60839) ((-314 . -1222) T) ((-169 . -403) 60823) ((-837 . -1053) 60793) ((-477 . -975) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60737) ((-828 . -1053) 60721) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1040) 60703) ((-317 . -559) 60682) ((-314 . -559) T) ((-837 . -641) 60652) ((-828 . -641) 60622) ((-1296 . -23) T) ((-134 . -1040) 60604) ((-96 . -617) 60585) ((-995 . -647) 60567) ((-485 . -1058) 60464) ((-45 . -289) 60389) ((-240 . -718) 60331) ((-520 . -102) T) ((-485 . -111) 60221) ((-1094 . -102) 60191) ((-1036 . -102) T) ((-1174 . -647) 60101) ((-1127 . -647) 60011) ((-855 . -647) 59970) ((-645 . -829) 59949) ((-732 . -517) 59892) ((-1056 . -1058) 59876) ((-1137 . -93) T) ((-1065 . -287) 59851) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1102) T) ((-671 . -649) 59825) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1058) 59809) ((-1056 . -111) 59788) ((-817 . -414) 59772) ((-117 . -25) T) ((-89 . -614) 59754) ((-117 . -21) T) ((-609 . -310) 59549) ((-478 . -310) 59353) ((-1152 . -615) NIL) ((-387 . -111) 59332) ((-381 . -102) T) ((-214 . -614) 59314) ((-1152 . -614) 59296) ((-1169 . -517) 59065) ((-1006 . -718) 59015) ((-1128 . -517) 58985) ((-916 . -718) 58937) ((-485 . -617) 58667) ((-353 . -308) T) ((-1191 . -151) 58617) ((-960 . -310) 58555) ((-837 . -102) T) ((-430 . -718) 58539) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58489) ((-1252 . -1251) 58468) ((-1122 . -1222) T) ((-341 . -1040) 58435) ((-1252 . -1246) 58405) ((-1252 . -1249) 58389) ((-1231 . -1230) 58368) ((-80 . -614) 58350) ((-907 . -614) 58332) ((-1231 . -1246) 58309) ((-1122 . -559) T) ((-923 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58239) ((-490 . -614) 58180) ((-381 . -285) T) ((-1231 . -1228) 58164) ((-1254 . -1114) T) ((-217 . -615) 58094) ((-217 . -614) 58035) ((-1290 . -649) 58009) ((-1065 . -605) 57984) ((-819 . -617) 57968) ((-59 . -151) 57952) ((-519 . -151) 57936) ((-499 . -151) 57920) ((-361 . -1287) 57904) ((-355 . -1287) 57888) ((-347 . -1287) 57872) ((-317 . -365) 57851) ((-314 . -365) T) ((-485 . -1051) 57781) ((-695 . -640) 57763) ((-1288 . -649) 57737) ((-128 . -310) NIL) ((-1254 . -23) T) ((-690 . -492) 57721) ((-64 . -614) 57703) ((-1115 . -796) 57654) ((-1115 . -793) 57605) ((-553 . -492) 57542) ((-671 . -34) T) ((-485 . -233) 57494) ((-296 . -289) 57473) ((-240 . -172) 57452) ((-817 . -1060) T) ((-44 . -649) 57410) ((-1082 . -370) 57361) ((-732 . -291) 57292) ((-523 . -517) 57225) ((-818 . -1058) 57176) ((-1089 . -145) 57155) ((-552 . -614) 57137) ((-361 . -370) 57116) ((-355 . -370) 57095) ((-347 . -370) 57074) ((-1089 . -147) 57053) ((-872 . -231) 57030) ((-818 . -111) 56972) ((-783 . -145) 56951) ((-783 . -147) 56930) ((-265 . -951) 56897) ((-252 . -849) 56876) ((-247 . -951) 56821) ((-251 . -849) 56800) ((-781 . -145) 56779) ((-781 . -147) 56758) ((-152 . -649) 56732) ((-582 . -1102) T) ((-457 . -147) 56711) ((-457 . -145) 56690) ((-671 . -727) T) ((-824 . -614) 56672) ((-1260 . -1102) T) ((-1253 . -1102) T) ((-1232 . -1102) T) ((-1212 . -1206) 56638) ((-1212 . -1203) 56604) ((-1176 . -291) 56583) ((-1175 . -291) 56534) ((-1169 . -291) 56485) ((-1128 . -291) 56464) ((-341 . -902) 56445) ((-1006 . -172) T) ((-916 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56395) ((-598 . -1102) T) ((-597 . -1102) T) ((-477 . -1249) 56379) ((-477 . -1246) 56349) ((-421 . -287) 56277) ((-550 . -851) T) ((-317 . -1114) 56126) ((-314 . -1114) T) ((-1212 . -35) 56092) ((-1212 . -95) 56058) ((-84 . -614) 56040) ((-91 . -102) 56018) ((-1296 . -131) T) ((-715 . -1053) 55988) ((-594 . -617) 55969) ((-584 . -145) T) ((-584 . -147) 55951) ((-521 . -147) 55933) ((-521 . -145) T) ((-715 . -641) 55903) ((-317 . -23) 55755) ((-40 . -344) 55729) ((-314 . -23) T) ((-818 . -617) 55643) ((-1160 . -652) 55625) ((-1283 . -1060) T) ((-1160 . -375) 55607) ((-816 . -649) 55455) ((-1098 . -102) T) ((-1092 . -102) T) ((-1075 . -102) T) ((-169 . -231) 55439) ((-1068 . -102) T) ((-1038 . -102) T) ((-1021 . -102) T) ((-595 . -492) 55421) ((-627 . -102) T) ((-240 . -517) 55354) ((-486 . -102) T) ((-1290 . -727) T) ((-1288 . -727) T) ((-218 . -102) T) ((-1180 . -1058) 55237) ((-1064 . -647) 55209) ((-954 . -647) 55119) ((-1180 . -111) 54988) ((-877 . -1085) T) ((-484 . -647) 54898) ((-862 . -173) T) ((-818 . -1051) T) ((-682 . -1085) T) ((-677 . -1085) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54858) ((-511 . -102) T) ((-481 . -1085) T) ((-1280 . -1058) 54828) ((-138 . -1085) T) ((-137 . -1085) T) ((-133 . -1085) T) ((-1036 . -38) 54812) ((-818 . -233) T) ((-818 . -243) 54791) ((-1280 . -111) 54756) ((-1260 . -718) 54653) ((-1253 . -718) 54494) ((-553 . -287) 54473) ((-1241 . -231) 54457) ((-1223 . -614) 54439) ((-607 . -93) T) ((-1065 . -615) NIL) ((-1065 . -614) 54421) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1232 . -718) 54217) ((-1005 . -922) T) ((-152 . -727) T) ((-1180 . -617) 54070) ((-1115 . -370) 54049) ((-1026 . -25) T) ((-1006 . -517) NIL) ((-252 . -414) 54018) ((-251 . -414) 53987) ((-1026 . -21) T) ((-873 . -1053) 53939) ((-598 . -718) 53912) ((-597 . -718) 53809) ((-800 . -287) 53767) ((-126 . -102) 53745) ((-834 . -1040) 53641) ((-169 . -829) 53620) ((-320 . -649) 53517) ((-816 . -34) T) ((-715 . -102) T) ((-1122 . -1114) T) ((-1028 . -1218) T) ((-873 . -641) 53469) ((-381 . -38) 53434) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1275) 53418) ((-354 . -1275) 53402) ((-346 . -1275) 53386) ((-169 . -351) 53365) ((-567 . -851) T) ((-1122 . -23) T) ((-87 . -614) 53347) ((-702 . -308) T) ((-837 . -38) 53317) ((-828 . -38) 53287) ((-1280 . -617) 53229) ((-1254 . -131) T) ((-1152 . -289) 53208) ((-966 . -727) 53107) ((-966 . -794) 53060) ((-966 . -795) 53013) ((-816 . -792) 52992) ((-116 . -308) T) ((-91 . -310) 52930) ((-676 . -34) T) ((-553 . -605) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52860) ((-816 . -794) 52839) ((-702 . -1024) T) ((-654 . -1058) 52823) ((-872 . -647) 52753) ((-816 . -727) 52663) ((-966 . -476) 52616) ((-485 . -796) 52567) ((-485 . -793) 52518) ((-912 . -1275) 52505) ((-1180 . -1051) T) ((-654 . -111) 52484) ((-1180 . -327) 52461) ((-1204 . -102) 52439) ((-1103 . -614) 52421) ((-702 . -548) T) ((-817 . -1102) T) ((-1280 . -1051) T) ((-1137 . -493) 52402) ((-1224 . -102) T) ((-416 . -1102) T) ((-1137 . -614) 52368) ((-252 . -1060) 52298) ((-251 . -1060) 52228) ((-839 . -102) T) ((-290 . -649) 52215) ((-595 . -287) 52190) ((-690 . -688) 52148) ((-965 . -614) 52130) ((-873 . -102) T) ((-736 . -614) 52112) ((-716 . -614) 52094) ((-1260 . -172) 52045) ((-1253 . -172) 51976) ((-1232 . -172) 51907) ((-700 . -851) T) ((-1006 . -291) T) ((-456 . -614) 51889) ((-628 . -727) T) ((-60 . -1102) 51867) ((-245 . -151) 51851) ((-916 . -291) T) ((-1026 . -1014) T) ((-628 . -476) T) ((-713 . -1222) 51830) ((-654 . -617) 51748) ((-169 . -647) 51643) ((-1268 . -851) 51622) ((-598 . -172) 51601) ((-597 . -172) 51552) ((-1252 . -641) 51393) ((-1252 . -1053) 51228) ((-1231 . -641) 51042) ((-1231 . -1053) 50850) ((-713 . -559) 50761) ((-410 . -922) T) ((-410 . -821) 50740) ((-320 . -795) T) ((-972 . -617) 50721) ((-320 . -727) T) ((-421 . -614) 50703) ((-421 . -615) 50610) ((-645 . -1151) 50594) ((-110 . -652) 50576) ((-174 . -308) T) ((-126 . -310) 50514) ((-110 . -375) 50496) ((-401 . -1218) T) ((-317 . -131) 50367) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50351) ((-655 . -1114) T) ((-595 . -19) 50333) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1102) T) ((-595 . -605) 50308) ((-480 . -1040) 50268) ((-654 . -1051) T) ((-655 . -23) T) ((-1283 . -1102) T) ((-31 . -102) T) ((-1241 . -647) 50178) ((-856 . -647) 50137) ((-817 . -718) 49986) ((-580 . -861) T) ((-574 . -647) 49958) ((-117 . -851) NIL) ((-1174 . -414) 49942) ((-1127 . -414) 49926) ((-855 . -414) 49910) ((-874 . -102) 49861) ((-1252 . -102) T) ((-1232 . -517) 49630) ((-1231 . -102) T) ((-1204 . -310) 49568) ((-1176 . -287) 49553) ((-1175 . -287) 49538) ((-528 . -93) T) ((-1169 . -287) 49386) ((-313 . -614) 49368) ((-1104 . -1102) T) ((-1082 . -649) 49278) ((-712 . -455) T) ((-690 . -614) 49210) ((-290 . -727) T) ((-108 . -911) NIL) ((-690 . -615) 49171) ((-602 . -614) 49153) ((-580 . -614) 49135) ((-553 . -615) NIL) ((-553 . -614) 49117) ((-532 . -614) 49099) ((-514 . -512) 49078) ((-490 . -1058) 49028) ((-477 . -1053) 48863) ((-510 . -512) 48842) ((-477 . -641) 48683) ((-217 . -1058) 48633) ((-361 . -649) 48585) ((-355 . -649) 48537) ((-225 . -849) T) ((-347 . -649) 48489) ((-603 . -102) 48439) ((-485 . -370) 48418) ((-108 . -649) 48368) ((-490 . -111) 48302) ((-240 . -492) 48286) ((-345 . -147) 48268) ((-345 . -145) T) ((-169 . -372) 48239) ((-945 . -1266) 48223) ((-217 . -111) 48157) ((-873 . -310) 48122) ((-945 . -1102) 48072) ((-800 . -615) 48033) ((-800 . -614) 48015) ((-719 . -102) T) ((-332 . -1102) T) ((-214 . -617) 47992) ((-1122 . -131) T) ((-715 . -38) 47962) ((-317 . -496) 47941) ((-503 . -1218) T) ((-1252 . -285) 47907) ((-1231 . -285) 47873) ((-328 . -151) 47857) ((-442 . -1102) T) ((-1065 . -289) 47832) ((-1283 . -718) 47802) ((-1161 . -34) T) ((-1292 . -1040) 47779) ((-471 . -614) 47761) ((-487 . -34) T) ((-383 . -1040) 47745) ((-1174 . -1060) T) ((-1127 . -1060) T) ((-855 . -1060) T) ((-1064 . -849) T) ((-490 . -617) 47695) ((-217 . -617) 47645) ((-817 . -172) 47556) ((-523 . -287) 47533) ((-1260 . -291) 47512) ((-1199 . -366) 47486) ((-1090 . -267) 47470) ((-672 . -493) 47451) ((-672 . -614) 47417) ((-607 . -493) 47398) ((-117 . -994) 47375) ((-607 . -614) 47325) ((-477 . -102) T) ((-180 . -493) 47306) ((-180 . -614) 47272) ((-161 . -493) 47253) ((-156 . -493) 47234) ((-154 . -493) 47215) ((-161 . -614) 47181) ((-156 . -614) 47147) ((-367 . -1102) T) ((-252 . -1102) T) ((-251 . -1102) T) ((-154 . -614) 47113) ((-1253 . -291) 47064) ((-1232 . -291) 47015) ((-873 . -1153) 46993) ((-1176 . -1004) 46959) ((-609 . -366) 46899) ((-1175 . -1004) 46865) ((-609 . -229) 46812) ((-695 . -851) T) ((-595 . -614) 46794) ((-595 . -615) NIL) ((-478 . -229) 46744) ((-490 . -1051) T) ((-1169 . -1004) 46710) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1051) T) ((-1128 . -1004) 46676) ((-1082 . -727) T) ((-713 . -1114) T) ((-598 . -291) 46655) ((-597 . -291) 46634) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1167 . -614) 46616) ((-873 . -38) 46568) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1256) 46552) ((-1296 . -25) T) ((-477 . -285) 46518) ((-1296 . -21) T) ((-1231 . -310) 46457) ((-1178 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-523 . -605) 46378) ((-1115 . -649) 46226) ((-603 . -310) 46164) ((-45 . -652) 46114) ((-45 . -667) 46064) ((-45 . -375) 46014) ((-1160 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45996) ((-240 . -287) 45973) ((-186 . -1102) T) ((-1089 . -455) 45924) ((-817 . -517) 45798) ((-665 . -1053) 45782) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45713) ((-665 . -641) 45697) ((-357 . -1053) 45649) ((-354 . -1053) 45601) ((-346 . -1053) 45553) ((-265 . -1053) 45396) ((-247 . -1053) 45239) ((-781 . -455) 45190) ((-357 . -641) 45142) ((-354 . -641) 45094) ((-346 . -641) 45046) ((-265 . -641) 44895) ((-247 . -641) 44744) ((-457 . -455) 44695) ((-954 . -414) 44679) ((-732 . -614) 44661) ((-252 . -718) 44603) ((-251 . -718) 44545) ((-732 . -615) 44406) ((-484 . -414) 44390) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -922) T) ((-1002 . -102) 44368) ((-912 . -1053) 44333) ((-1026 . -851) T) ((-60 . -517) 44266) ((-912 . -641) 44231) ((-1231 . -1153) 44183) ((-1006 . -287) NIL) ((-225 . -1060) T) ((-381 . -829) T) ((-1115 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1235 . -1095) 44167) ((-1235 . -1102) 44145) ((-240 . -605) 44122) ((-1235 . -1097) 44079) ((-1176 . -614) 44061) ((-1175 . -614) 44043) ((-1169 . -614) 44025) ((-1169 . -615) NIL) ((-1128 . -614) 44007) ((-873 . -403) 43991) ((-539 . -102) T) ((-1252 . -38) 43832) ((-1231 . -38) 43646) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1264 . -102) T) ((-1254 . -21) T) ((-1254 . -25) T) ((-1115 . -792) 43625) ((-1115 . -795) 43576) ((-1115 . -794) 43555) ((-995 . -1102) T) ((-1029 . -34) T) ((-863 . -1102) T) ((-1115 . -727) 43465) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43444) ((-1191 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1064 . -1060) T) ((-954 . -1060) T) ((-317 . -640) 43350) ((-314 . -640) 43311) ((-1174 . -1102) T) ((-484 . -1060) T) ((-482 . -102) T) ((-439 . -614) 43293) ((-1127 . -1102) T) ((-250 . -614) 43275) ((-855 . -1102) T) ((-1143 . -102) T) ((-817 . -291) 43206) ((-965 . -1058) 43089) ((-480 . -1024) T) ((-736 . -1058) 43059) ((-1036 . -647) 43018) ((-456 . -1058) 42988) ((-1149 . -1123) 42972) ((-1104 . -517) 42905) ((-965 . -111) 42774) ((-912 . -102) T) ((-736 . -111) 42739) ((-528 . -493) 42720) ((-528 . -614) 42686) ((-59 . -102) 42636) ((-523 . -615) 42597) ((-523 . -614) 42509) ((-522 . -102) 42487) ((-519 . -102) 42437) ((-500 . -102) 42415) ((-499 . -102) 42365) ((-456 . -111) 42328) ((-252 . -172) 42307) ((-251 . -172) 42286) ((-323 . -647) 42268) ((-421 . -1058) 42242) ((-1212 . -975) 42204) ((-1001 . -1114) T) ((-381 . -647) 42154) ((-1137 . -617) 42135) ((-945 . -517) 42068) ((-490 . -796) T) ((-477 . -38) 41909) ((-421 . -111) 41876) ((-490 . -793) T) ((-1002 . -310) 41814) ((-217 . -796) T) ((-217 . -793) T) ((-1001 . -23) T) ((-713 . -131) T) ((-1231 . -403) 41784) ((-837 . -647) 41729) ((-828 . -647) 41688) ((-317 . -25) 41540) ((-169 . -414) 41524) ((-317 . -21) 41395) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-965 . -617) 41248) ((-110 . -34) T) ((-736 . -617) 41204) ((-716 . -617) 41186) ((-485 . -649) 41034) ((-872 . -1060) T) ((-595 . -289) 41009) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1174 . -718) 40838) ((-1059 . -102) 40816) ((-1127 . -718) 40665) ((-1122 . -640) 40647) ((-855 . -718) 40617) ((-671 . -1218) T) ((-1 . -102) T) ((-421 . -617) 40525) ((-240 . -614) 40256) ((-1117 . -1102) T) ((-1241 . -414) 40240) ((-1191 . -310) 40044) ((-965 . -1051) T) ((-736 . -1051) T) ((-716 . -1051) T) ((-645 . -1102) 39994) ((-1056 . -649) 39978) ((-856 . -414) 39962) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39949) ((-247 . -310) 39936) ((-965 . -327) 39915) ((-387 . -649) 39899) ((-671 . -1040) 39795) ((-482 . -310) 39599) ((-252 . -517) 39532) ((-251 . -517) 39465) ((-1143 . -310) 39391) ((-820 . -1102) T) ((-800 . -1058) 39375) ((-1260 . -287) 39360) ((-1253 . -287) 39345) ((-1232 . -287) 39193) ((-389 . -1102) T) ((-325 . -1102) T) ((-421 . -1051) T) ((-169 . -1060) T) ((-59 . -310) 39131) ((-800 . -111) 39110) ((-597 . -287) 39095) ((-522 . -310) 39033) ((-519 . -310) 38971) ((-500 . -310) 38909) ((-499 . -310) 38847) ((-421 . -233) 38826) ((-485 . -34) T) ((-1006 . -615) 38756) ((-225 . -1102) T) ((-1006 . -614) 38716) ((-973 . -614) 38676) ((-973 . -615) 38651) ((-916 . -614) 38633) ((-700 . -147) T) ((-702 . -922) T) ((-702 . -821) T) ((-430 . -614) 38615) ((-1122 . -21) T) ((-1122 . -25) T) ((-671 . -379) 38599) ((-116 . -922) T) ((-873 . -231) 38583) ((-78 . -1218) T) ((-126 . -125) 38567) ((-1056 . -34) T) ((-1290 . -1040) 38541) ((-1288 . -1040) 38498) ((-1241 . -1060) T) ((-856 . -1060) T) ((-485 . -792) 38477) ((-357 . -1153) 38456) ((-354 . -1153) 38435) ((-346 . -1153) 38414) ((-485 . -795) 38365) ((-485 . -794) 38344) ((-227 . -34) T) ((-485 . -727) 38254) ((-800 . -617) 38100) ((-663 . -1053) 38084) ((-60 . -492) 38068) ((-574 . -1060) T) ((-663 . -641) 38052) ((-1174 . -172) 37943) ((-1127 . -172) 37854) ((-1064 . -1102) T) ((-1089 . -951) 37799) ((-954 . -1102) T) ((-818 . -649) 37750) ((-783 . -951) 37719) ((-714 . -1102) T) ((-781 . -951) 37686) ((-519 . -283) 37670) ((-671 . -902) 37629) ((-484 . -1102) T) ((-457 . -951) 37596) ((-79 . -1218) T) ((-357 . -38) 37561) ((-354 . -38) 37526) ((-346 . -38) 37491) ((-265 . -38) 37340) ((-247 . -38) 37189) ((-912 . -1153) T) ((-527 . -493) 37170) ((-624 . -147) 37149) ((-624 . -145) 37128) ((-527 . -614) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1051) T) ((-345 . -455) T) ((-1260 . -1004) 37060) ((-1253 . -1004) 37026) ((-1232 . -1004) 36992) ((-912 . -38) 36957) ((-225 . -718) 36922) ((-320 . -47) 36892) ((-40 . -412) 36864) ((-140 . -614) 36846) ((-1001 . -131) T) ((-816 . -1218) T) ((-174 . -922) T) ((-552 . -370) T) ((-607 . -617) 36827) ((-345 . -405) T) ((-715 . -647) 36772) ((-672 . -617) 36753) ((-180 . -617) 36734) ((-161 . -617) 36715) ((-156 . -617) 36696) ((-154 . -617) 36677) ((-523 . -289) 36654) ((-1231 . -231) 36624) ((-877 . -102) T) ((-816 . -1040) 36451) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1104 . -492) 36435) ((-676 . -1218) T) ((-481 . -102) T) ((-245 . -102) 36385) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1102) T) ((-1180 . -649) 36310) ((-1064 . -718) 36297) ((-732 . -1058) 36140) ((-1174 . -517) 36087) ((-954 . -718) 35936) ((-1127 . -517) 35888) ((-1279 . -1102) T) ((-1278 . -1102) T) ((-484 . -718) 35737) ((-67 . -614) 35719) ((-732 . -111) 35548) ((-945 . -492) 35532) ((-1280 . -649) 35492) ((-818 . -727) T) ((-1176 . -1058) 35375) ((-1175 . -1058) 35210) ((-1169 . -1058) 35000) ((-1128 . -1058) 34883) ((-1005 . -1222) T) ((-1096 . -102) 34861) ((-816 . -379) 34830) ((-582 . -614) 34812) ((-549 . -1102) T) ((-1005 . -559) T) ((-1176 . -111) 34681) ((-1175 . -111) 34502) ((-1169 . -111) 34271) ((-1128 . -111) 34140) ((-1107 . -1105) 34104) ((-381 . -849) T) ((-1260 . -614) 34086) ((-1253 . -614) 34068) ((-873 . -647) 34005) ((-1232 . -614) 33987) ((-1232 . -615) NIL) ((-240 . -289) 33964) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1102) T) ((-732 . -617) 33749) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33731) ((-597 . -614) 33713) ((-900 . -1102) T) ((-842 . -1102) T) ((-809 . -1102) T) ((-770 . -1102) T) ((-659 . -853) 33697) ((-678 . -1102) T) ((-816 . -902) 33629) ((-1223 . -370) T) ((-40 . -405) NIL) ((-1176 . -617) 33511) ((-1122 . -662) T) ((-872 . -718) 33456) ((-252 . -492) 33440) ((-251 . -492) 33424) ((-1175 . -617) 33167) ((-1169 . -617) 32962) ((-713 . -640) 32910) ((-654 . -649) 32884) ((-1128 . -617) 32766) ((-296 . -34) T) ((-732 . -1051) T) ((-584 . -1275) 32753) ((-521 . -1275) 32730) ((-1241 . -1102) T) ((-1174 . -291) 32641) ((-1127 . -291) 32572) ((-1064 . -172) T) ((-856 . -1102) T) ((-954 . -172) 32483) ((-783 . -1244) 32467) ((-645 . -517) 32400) ((-77 . -614) 32382) ((-732 . -327) 32347) ((-1180 . -727) T) ((-574 . -1102) T) ((-484 . -172) 32258) ((-245 . -310) 32196) ((-1144 . -1114) T) ((-70 . -614) 32178) ((-1280 . -727) T) ((-1176 . -1051) T) ((-1175 . -1051) T) ((-328 . -102) 32128) ((-1169 . -1051) T) ((-1144 . -23) T) ((-1128 . -1051) T) ((-91 . -1123) 32112) ((-867 . -1114) T) ((-1176 . -233) 32071) ((-1175 . -243) 32050) ((-1175 . -233) 32002) ((-1169 . -233) 31889) ((-1169 . -243) 31868) ((-320 . -902) 31774) ((-867 . -23) T) ((-169 . -718) 31602) ((-410 . -1222) T) ((-1103 . -370) T) ((-1005 . -365) T) ((-871 . -455) T) ((-1026 . -147) T) ((-945 . -287) 31579) ((-314 . -851) NIL) ((-1252 . -647) 31461) ((-875 . -102) T) ((-1231 . -647) 31316) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31297) ((-356 . -147) 31279) ((-356 . -145) T) ((-1149 . -1102) 31257) ((-456 . -721) T) ((-75 . -614) 31239) ((-114 . -851) T) ((-245 . -283) 31223) ((-240 . -1058) 31120) ((-81 . -614) 31102) ((-736 . -370) 31055) ((-1178 . -829) T) ((-738 . -235) 31039) ((-1161 . -1218) T) ((-141 . -235) 31021) ((-240 . -111) 30911) ((-1241 . -718) 30740) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30710) ((-487 . -1218) T) ((-954 . -517) 30657) ((-654 . -727) T) ((-574 . -718) 30644) ((-1036 . -1060) T) ((-484 . -517) 30587) ((-945 . -19) 30571) ((-945 . -605) 30548) ((-817 . -615) NIL) ((-817 . -614) 30530) ((-1212 . -1053) 30413) ((-1006 . -1058) 30363) ((-416 . -614) 30345) ((-252 . -287) 30322) ((-251 . -287) 30299) ((-490 . -911) NIL) ((-317 . -29) 30269) ((-108 . -1218) T) ((-1005 . -1114) T) ((-217 . -911) NIL) ((-1212 . -641) 30166) ((-916 . -1058) 30118) ((-1082 . -1040) 30014) ((-1006 . -111) 29948) ((-712 . -1053) 29913) ((-1005 . -23) T) ((-916 . -111) 29851) ((-738 . -696) 29835) ((-712 . -641) 29800) ((-265 . -231) 29784) ((-430 . -1058) 29768) ((-381 . -1060) T) ((-240 . -617) 29498) ((-695 . -1206) NIL) ((-490 . -649) 29448) ((-477 . -647) 29330) ((-108 . -886) 29312) ((-108 . -888) 29294) ((-695 . -1203) NIL) ((-217 . -649) 29244) ((-361 . -1040) 29228) ((-355 . -1040) 29212) ((-328 . -310) 29150) ((-347 . -1040) 29134) ((-225 . -291) T) ((-430 . -111) 29113) ((-60 . -614) 29045) ((-169 . -172) T) ((-1122 . -851) T) ((-108 . -1040) 29005) ((-894 . -1102) T) ((-837 . -1060) T) ((-828 . -1060) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -994) 28966) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1051) 28896) ((-1152 . -34) T) ((-480 . -922) T) ((-1001 . -640) 28844) ((-252 . -605) 28821) ((-251 . -605) 28798) ((-1082 . -379) 28782) ((-872 . -517) 28690) ((-240 . -233) 28642) ((-1160 . -1218) T) ((-1006 . -617) 28592) ((-916 . -617) 28529) ((-825 . -614) 28511) ((-1291 . -1114) T) ((-1283 . -614) 28493) ((-1241 . -172) 28384) ((-430 . -617) 28353) ((-108 . -379) 28335) ((-108 . -340) 28317) ((-1064 . -291) T) ((-954 . -291) 28248) ((-800 . -370) 28227) ((-648 . -1218) T) ((-633 . -1218) T) ((-588 . -1053) 28202) ((-484 . -291) 28133) ((-574 . -172) T) ((-328 . -283) 28117) ((-1291 . -23) T) ((-1212 . -102) T) ((-1199 . -1102) T) ((-1090 . -1102) T) ((-1078 . -1102) T) ((-588 . -641) 28092) ((-83 . -614) 28074) ((-1185 . -845) T) ((-1184 . -845) T) ((-712 . -102) T) ((-357 . -351) 28053) ((-609 . -1102) T) ((-354 . -351) 28032) ((-346 . -351) 28011) ((-478 . -1102) T) ((-1191 . -229) 27961) ((-265 . -254) 27923) ((-1144 . -131) T) ((-609 . -611) 27899) ((-1082 . -902) 27832) ((-1006 . -1051) T) ((-916 . -1051) T) ((-478 . -611) 27811) ((-1169 . -793) NIL) ((-1169 . -796) NIL) ((-1104 . -615) 27772) ((-482 . -229) 27722) ((-1104 . -614) 27704) ((-1006 . -243) T) ((-1006 . -233) T) ((-430 . -1051) T) ((-960 . -1102) 27654) ((-916 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1114) 27633) ((-108 . -902) NIL) ((-1212 . -285) 27599) ((-873 . -849) 27578) ((-1115 . -1218) T) ((-907 . -727) T) ((-169 . -517) 27490) ((-1001 . -25) T) ((-907 . -476) T) ((-410 . -1114) T) ((-490 . -795) T) ((-490 . -792) T) ((-912 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1001 . -21) T) ((-217 . -727) T) ((-844 . -23) 27442) ((-1186 . -1102) T) ((-659 . -1053) 27426) ((-1185 . -1102) T) ((-527 . -617) 27407) ((-1184 . -1102) T) ((-320 . -308) 27386) ((-1037 . -235) 27332) ((-659 . -641) 27302) ((-410 . -23) T) ((-945 . -615) 27263) ((-945 . -614) 27175) ((-645 . -492) 27159) ((-45 . -1012) 27109) ((-618 . -969) T) ((-494 . -102) T) ((-332 . -614) 27091) ((-1115 . -1040) 26918) ((-595 . -652) 26900) ((-130 . -1102) T) ((-128 . -1102) T) ((-595 . -375) 26882) ((-345 . -1275) 26859) ((-442 . -614) 26841) ((-1241 . -517) 26788) ((-1089 . -1053) 26631) ((-1029 . -1218) T) ((-872 . -291) T) ((-1174 . -287) 26558) ((-1089 . -641) 26407) ((-1002 . -997) 26391) ((-783 . -1053) 26214) ((-781 . -1053) 26057) ((-783 . -641) 25886) ((-781 . -641) 25735) ((-479 . -1218) T) ((-466 . -1218) T) ((-588 . -102) T) ((-464 . -1053) 25706) ((-457 . -1053) 25549) ((-665 . -647) 25518) ((-624 . -455) 25497) ((-464 . -641) 25468) ((-457 . -641) 25317) ((-357 . -647) 25254) ((-354 . -647) 25191) ((-346 . -647) 25128) ((-265 . -647) 25038) ((-247 . -647) 24948) ((-1283 . -384) 24920) ((-520 . -1102) T) ((-117 . -455) T) ((-1198 . -102) T) ((-1094 . -1102) 24890) ((-1036 . -1102) T) ((-1117 . -93) T) ((-895 . -851) T) ((-1260 . -111) 24759) ((-353 . -1222) T) ((-1260 . -1058) 24642) ((-1115 . -379) 24611) ((-1253 . -1058) 24446) ((-1232 . -1058) 24236) ((-1253 . -111) 24057) ((-1232 . -111) 23826) ((-1212 . -310) 23813) ((-1005 . -131) T) ((-912 . -647) 23763) ((-367 . -614) 23745) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1058) 23705) ((-597 . -1058) 23588) ((-584 . -1053) 23553) ((-521 . -1053) 23498) ((-363 . -1102) T) ((-323 . -1102) T) ((-252 . -614) 23459) ((-251 . -614) 23420) ((-584 . -641) 23385) ((-521 . -641) 23330) ((-695 . -412) 23297) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23250) ((-597 . -111) 23119) ((-381 . -1102) T) ((-338 . -102) T) ((-169 . -291) 23030) ((-1231 . -849) 22983) ((-715 . -1060) T) ((-1149 . -517) 22916) ((-1115 . -902) 22848) ((-837 . -1102) T) ((-828 . -1102) T) ((-826 . -1102) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -886) 22832) ((-110 . -1218) T) ((-1089 . -102) T) ((-1065 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1260 . -617) 22714) ((-1253 . -617) 22457) ((-464 . -102) T) ((-457 . -102) T) ((-1232 . -617) 22252) ((-240 . -796) 22203) ((-240 . -793) 22154) ((-650 . -102) T) ((-598 . -617) 22112) ((-597 . -617) 21994) ((-1241 . -291) 21905) ((-665 . -635) 21889) ((-186 . -614) 21871) ((-645 . -287) 21848) ((-1036 . -718) 21832) ((-574 . -291) T) ((-965 . -649) 21757) ((-1291 . -131) T) ((-736 . -649) 21717) ((-716 . -649) 21704) ((-276 . -102) T) ((-456 . -649) 21634) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1260 . -1051) T) ((-1253 . -1051) T) ((-1232 . -1051) T) ((-510 . -647) 21616) ((-323 . -718) 21598) ((-1260 . -233) 21557) ((-1253 . -243) 21536) ((-1253 . -233) 21488) ((-1232 . -233) 21375) ((-1232 . -243) 21354) ((-1212 . -38) 21251) ((-598 . -1051) T) ((-597 . -1051) T) ((-1006 . -796) T) ((-1006 . -793) T) ((-973 . -796) T) ((-973 . -793) T) ((-873 . -1060) T) ((-109 . -614) 21233) ((-695 . -455) T) ((-381 . -718) 21198) ((-421 . -649) 21172) ((-871 . -870) 21156) ((-712 . -38) 21121) ((-597 . -233) 21080) ((-40 . -725) 21052) ((-353 . -330) 21029) ((-353 . -365) T) ((-1082 . -308) 20980) ((-295 . -1114) 20861) ((-1108 . -1218) T) ((-171 . -102) T) ((-1235 . -614) 20828) ((-844 . -131) 20780) ((-645 . -1256) 20764) ((-837 . -718) 20734) ((-828 . -718) 20704) ((-485 . -1218) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20681) ((-410 . -131) T) ((-523 . -667) 20665) ((-108 . -308) T) ((-295 . -23) 20548) ((-523 . -652) 20532) ((-695 . -405) NIL) ((-523 . -375) 20516) ((-292 . -614) 20498) ((-91 . -1102) 20476) ((-108 . -1024) T) ((-567 . -143) T) ((-1268 . -151) 20460) ((-485 . -1040) 20287) ((-1254 . -145) 20248) ((-1254 . -147) 20209) ((-1056 . -1218) T) ((-995 . -614) 20191) ((-863 . -614) 20173) ((-817 . -1058) 20016) ((-1279 . -93) T) ((-1278 . -93) T) ((-1174 . -615) NIL) ((-1098 . -1102) T) ((-1092 . -1102) T) ((-1089 . -310) 20003) ((-1075 . -1102) T) ((-227 . -1218) T) ((-1068 . -1102) T) ((-1038 . -1102) T) ((-1021 . -1102) T) ((-783 . -310) 19990) ((-781 . -310) 19977) ((-1174 . -614) 19959) ((-817 . -111) 19788) ((-1127 . -614) 19770) ((-627 . -1102) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19757) ((-486 . -1102) T) ((-1127 . -615) 19505) ((-1036 . -172) T) ((-945 . -289) 19482) ((-218 . -1102) T) ((-855 . -614) 19464) ((-609 . -517) 19247) ((-81 . -617) 19188) ((-819 . -1040) 19172) ((-478 . -517) 18964) ((-965 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1114) T) ((-1181 . -614) 18946) ((-223 . -102) T) ((-485 . -379) 18915) ((-518 . -1102) T) ((-513 . -1102) T) ((-511 . -1102) T) ((-800 . -649) 18889) ((-1026 . -455) T) ((-960 . -517) 18822) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18801) ((-381 . -172) T) ((-1252 . -1060) T) ((-1231 . -1060) T) ((-225 . -1004) T) ((-817 . -617) 18538) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1222) T) ((-1144 . -640) 18486) ((-583 . -870) 18470) ((-1283 . -1058) 18454) ((-1161 . -1194) 18430) ((-702 . -559) T) ((-126 . -1102) 18408) ((-715 . -1102) T) ((-485 . -902) 18340) ((-249 . -1102) T) ((-187 . -1102) T) ((-659 . -38) 18310) ((-356 . -405) T) ((-317 . -147) 18289) ((-317 . -145) 18268) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18224) ((-314 . -145) 18180) ((-48 . -455) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-1161 . -107) 18127) ((-783 . -1153) 18105) ((-690 . -34) T) ((-1283 . -111) 18084) ((-553 . -34) T) ((-487 . -107) 18068) ((-252 . -289) 18045) ((-251 . -289) 18022) ((-872 . -287) 17973) ((-45 . -1218) T) ((-1224 . -845) T) ((-817 . -1051) T) ((-663 . -647) 17942) ((-1180 . -47) 17919) ((-817 . -327) 17881) ((-1089 . -38) 17730) ((-817 . -233) 17709) ((-783 . -38) 17538) ((-781 . -38) 17387) ((-1117 . -493) 17368) ((-457 . -38) 17217) ((-1117 . -614) 17183) ((-1120 . -102) T) ((-645 . -615) 17144) ((-645 . -614) 17056) ((-584 . -1153) T) ((-521 . -1153) T) ((-1149 . -492) 17040) ((-345 . -1053) 16985) ((-1204 . -1102) 16963) ((-1144 . -25) T) ((-1144 . -21) T) ((-345 . -641) 16908) ((-1283 . -617) 16857) ((-477 . -1060) T) ((-1224 . -1102) T) ((-1232 . -793) NIL) ((-1232 . -796) NIL) ((-1001 . -851) 16836) ((-839 . -1102) T) ((-820 . -614) 16818) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1222) T) ((-584 . -38) 16783) ((-521 . -38) 16748) ((-389 . -614) 16730) ((-334 . -102) T) ((-325 . -614) 16712) ((-169 . -287) 16670) ((-63 . -1218) T) ((-112 . -102) T) ((-873 . -1102) T) ((-174 . -559) T) ((-715 . -718) 16640) ((-295 . -131) 16523) ((-225 . -614) 16505) ((-225 . -615) 16435) ((-1005 . -640) 16374) ((-1283 . -1051) T) ((-1122 . -147) T) ((-633 . -1194) 16349) ((-732 . -911) 16328) ((-595 . -34) T) ((-648 . -107) 16312) ((-633 . -107) 16258) ((-1241 . -287) 16185) ((-732 . -649) 16110) ((-296 . -1218) T) ((-1180 . -1040) 16006) ((-945 . -619) 15983) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1169 . -911) NIL) ((-1064 . -615) 15898) ((-1064 . -614) 15880) ((-954 . -614) 15862) ((-714 . -493) 15812) ((-345 . -102) T) ((-252 . -1058) 15709) ((-251 . -1058) 15606) ((-397 . -102) T) ((-31 . -1102) T) ((-954 . -615) 15467) ((-714 . -614) 15402) ((-1281 . -1211) 15371) ((-484 . -614) 15353) ((-484 . -615) 15214) ((-265 . -414) 15198) ((-247 . -414) 15182) ((-252 . -111) 15072) ((-251 . -111) 14962) ((-1176 . -649) 14887) ((-1175 . -649) 14784) ((-1169 . -649) 14636) ((-1128 . -649) 14561) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-874 . -1102) 14512) ((-40 . -1053) 14457) ((-873 . -718) 14409) ((-40 . -641) 14354) ((-381 . -291) T) ((-169 . -1004) 14305) ((-695 . -390) T) ((-1001 . -999) 14289) ((-702 . -1114) T) ((-695 . -166) 14271) ((-1252 . -1102) T) ((-1231 . -1102) T) ((-317 . -1203) 14250) ((-317 . -1206) 14229) ((-1166 . -102) T) ((-317 . -961) 14208) ((-134 . -1114) T) ((-116 . -1114) T) ((-603 . -1266) 14192) ((-702 . -23) T) ((-603 . -1102) 14142) ((-317 . -95) 14121) ((-91 . -517) 14054) ((-174 . -365) T) ((-252 . -617) 13784) ((-251 . -617) 13514) ((-317 . -35) 13493) ((-609 . -492) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-968 . -102) T) ((-719 . -1102) T) ((-478 . -492) 13364) ((-410 . -640) 13312) ((-654 . -1040) 13208) ((-960 . -492) 13192) ((-357 . -1060) T) ((-354 . -1060) T) ((-346 . -1060) T) ((-265 . -1060) T) ((-247 . -1060) T) ((-872 . -615) NIL) ((-872 . -614) 13174) ((-1279 . -493) 13155) ((-1278 . -493) 13136) ((-1291 . -21) T) ((-1279 . -614) 13102) ((-1278 . -614) 13068) ((-574 . -1004) T) ((-732 . -727) T) ((-1291 . -25) T) ((-252 . -1051) 12998) ((-251 . -1051) 12928) ((-72 . -1218) T) ((-252 . -233) 12880) ((-251 . -233) 12832) ((-40 . -102) T) ((-912 . -1060) T) ((-1183 . -102) T) ((-128 . -492) 12814) ((-1176 . -727) T) ((-1175 . -727) T) ((-1169 . -727) T) ((-1169 . -792) NIL) ((-1169 . -795) NIL) ((-956 . -102) T) ((-923 . -102) T) ((-871 . -1053) 12801) ((-1128 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12788) ((-549 . -614) 12770) ((-477 . -1102) T) ((-341 . -1114) T) ((-174 . -1114) T) ((-320 . -922) 12749) ((-1252 . -718) 12590) ((-873 . -172) T) ((-1231 . -718) 12404) ((-844 . -21) 12356) ((-844 . -25) 12308) ((-245 . -1151) 12292) ((-126 . -517) 12225) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11991) ((-169 . -614) 11973) ((-174 . -23) T) ((-645 . -289) 11950) ((-523 . -34) T) ((-900 . -614) 11932) ((-89 . -1218) T) ((-842 . -614) 11914) ((-809 . -614) 11896) ((-770 . -614) 11878) ((-678 . -614) 11860) ((-240 . -649) 11708) ((-1178 . -1102) T) ((-1174 . -1058) 11531) ((-1152 . -1218) T) ((-1127 . -1058) 11374) ((-855 . -1058) 11358) ((-1235 . -619) 11342) ((-1174 . -111) 11151) ((-1127 . -111) 10980) ((-855 . -111) 10959) ((-1225 . -851) T) ((-1241 . -615) NIL) ((-1241 . -614) 10941) ((-345 . -1153) T) ((-856 . -614) 10923) ((-1078 . -287) 10902) ((-80 . -1218) T) ((-1006 . -911) NIL) ((-609 . -287) 10878) ((-1204 . -517) 10811) ((-490 . -1218) T) ((-574 . -614) 10793) ((-478 . -287) 10772) ((-1212 . -647) 10682) ((-520 . -93) T) ((-1089 . -231) 10666) ((-217 . -1218) T) ((-1006 . -649) 10616) ((-960 . -287) 10593) ((-290 . -922) T) ((-818 . -308) 10572) ((-871 . -102) T) ((-783 . -231) 10556) ((-916 . -649) 10508) ((-712 . -647) 10458) ((-695 . -725) 10425) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10390) ((-490 . -886) 10372) ((-490 . -888) 10354) ((-477 . -718) 10195) ((-217 . -886) 10177) ((-64 . -1218) T) ((-217 . -888) 10159) ((-608 . -25) T) ((-430 . -649) 10133) ((-1174 . -617) 9902) ((-490 . -1040) 9862) ((-873 . -517) 9774) ((-1127 . -617) 9566) ((-855 . -617) 9484) ((-217 . -1040) 9444) ((-240 . -34) T) ((-1002 . -1102) 9422) ((-583 . -1053) 9409) ((-567 . -1053) 9396) ((-498 . -1053) 9361) ((-1252 . -172) 9292) ((-1231 . -172) 9223) ((-583 . -641) 9210) ((-567 . -641) 9197) ((-498 . -641) 9162) ((-713 . -145) 9141) ((-713 . -147) 9120) ((-702 . -131) T) ((-136 . -468) 9097) ((-1149 . -614) 9029) ((-659 . -657) 9013) ((-128 . -287) 8988) ((-116 . -131) T) ((-480 . -1222) T) ((-609 . -605) 8964) ((-478 . -605) 8943) ((-338 . -337) 8912) ((-539 . -1102) T) ((-480 . -559) T) ((-1174 . -1051) T) ((-1127 . -1051) T) ((-855 . -1051) T) ((-240 . -792) 8891) ((-240 . -795) 8842) ((-240 . -794) 8821) ((-1174 . -327) 8798) ((-240 . -727) 8708) ((-960 . -19) 8692) ((-490 . -379) 8674) ((-490 . -340) 8656) ((-1127 . -327) 8628) ((-356 . -1275) 8605) ((-217 . -379) 8587) ((-217 . -340) 8569) ((-960 . -605) 8546) ((-1174 . -233) T) ((-1264 . -1102) T) ((-665 . -1102) T) ((-646 . -1102) T) ((-1191 . -1102) T) ((-1089 . -254) 8483) ((-588 . -647) 8443) ((-357 . -1102) T) ((-354 . -1102) T) ((-346 . -1102) T) ((-265 . -1102) T) ((-247 . -1102) T) ((-84 . -1218) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1191 . -611) 8378) ((-1231 . -517) 8238) ((-1143 . -1102) T) ((-1117 . -617) 8219) ((-482 . -1102) T) ((-1082 . -922) 8170) ((-1006 . -795) T) ((-482 . -611) 8149) ((-252 . -796) 8100) ((-252 . -793) 8051) ((-251 . -796) 8002) ((-40 . -1153) NIL) ((-251 . -793) 7953) ((-1006 . -792) T) ((-128 . -19) 7935) ((-1006 . -727) T) ((-700 . -1053) 7900) ((-973 . -795) T) ((-916 . -727) T) ((-912 . -1102) T) ((-128 . -605) 7875) ((-700 . -641) 7840) ((-91 . -492) 7824) ((-490 . -902) NIL) ((-894 . -614) 7806) ((-225 . -1058) 7771) ((-873 . -291) T) ((-217 . -902) NIL) ((-834 . -1114) 7750) ((-59 . -1102) 7700) ((-522 . -1102) 7678) ((-519 . -1102) 7628) ((-500 . -1102) 7606) ((-499 . -1102) 7556) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7487) ((-361 . -922) T) ((-355 . -922) T) ((-347 . -922) T) ((-225 . -111) 7443) ((-834 . -23) 7395) ((-430 . -727) T) ((-108 . -922) T) ((-40 . -38) 7340) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7319) ((-317 . -455) 7298) ((-314 . -455) T) ((-659 . -647) 7257) ((-603 . -517) 7190) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7054) ((-295 . -21) 6937) ((-45 . -1194) 6916) ((-66 . -614) 6898) ((-55 . -102) T) ((-338 . -647) 6880) ((-45 . -107) 6830) ((-820 . -617) 6814) ((-1269 . -102) T) ((-1268 . -102) 6764) ((-1260 . -649) 6689) ((-1253 . -649) 6586) ((-1232 . -649) 6438) ((-1104 . -428) 6422) ((-1104 . -370) 6401) ((-389 . -617) 6385) ((-325 . -617) 6369) ((-1232 . -911) NIL) ((-1199 . -614) 6351) ((-1065 . -1218) T) ((-1089 . -647) 6261) ((-1064 . -1058) 6248) ((-1064 . -111) 6233) ((-954 . -1058) 6076) ((-954 . -111) 5905) ((-783 . -647) 5815) ((-781 . -647) 5725) ((-624 . -1053) 5712) ((-665 . -718) 5696) ((-624 . -641) 5683) ((-484 . -1058) 5526) ((-480 . -365) T) ((-464 . -647) 5482) ((-457 . -647) 5392) ((-225 . -617) 5342) ((-357 . -718) 5294) ((-354 . -718) 5246) ((-117 . -1053) 5191) ((-346 . -718) 5143) ((-265 . -718) 4992) ((-247 . -718) 4841) ((-1098 . -93) T) ((-1092 . -93) T) ((-117 . -641) 4786) ((-1075 . -93) T) ((-945 . -652) 4770) ((-1068 . -93) T) ((-484 . -111) 4599) ((-1059 . -1102) 4577) ((-1038 . -93) T) ((-945 . -375) 4561) ((-248 . -102) T) ((-1021 . -93) T) ((-74 . -614) 4543) ((-965 . -47) 4522) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1102) T) ((-622 . -1114) T) ((-1090 . -614) 4504) ((-627 . -93) T) ((-1078 . -614) 4486) ((-912 . -718) 4451) ((-126 . -492) 4435) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1218) T) ((-218 . -93) T) ((-609 . -614) 4417) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4399) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4358) ((-514 . -1102) T) ((-510 . -1102) T) ((-127 . -310) 4296) ((-121 . -310) 4234) ((-598 . -649) 4208) ((-597 . -649) 4133) ((-584 . -647) 4083) ((-225 . -1051) T) ((-521 . -647) 4013) ((-381 . -1004) T) ((-225 . -243) T) ((-225 . -233) T) ((-1064 . -617) 3985) ((-1064 . -619) 3966) ((-960 . -615) 3927) ((-960 . -614) 3839) ((-954 . -617) 3628) ((-871 . -38) 3615) ((-714 . -617) 3565) ((-1252 . -291) 3516) ((-1231 . -291) 3467) ((-484 . -617) 3252) ((-1122 . -455) T) ((-505 . -851) T) ((-317 . -1141) 3231) ((-1001 . -147) 3210) ((-1001 . -145) 3189) ((-498 . -310) 3176) ((-296 . -1194) 3155) ((-1186 . -614) 3137) ((-1185 . -614) 3119) ((-1184 . -614) 3101) ((-872 . -1058) 3046) ((-480 . -1114) T) ((-139 . -836) 3028) ((-114 . -836) 3009) ((-624 . -102) T) ((-1204 . -492) 2993) ((-252 . -370) 2972) ((-251 . -370) 2951) ((-1064 . -1051) T) ((-296 . -107) 2901) ((-130 . -614) 2883) ((-128 . -615) NIL) ((-128 . -614) 2827) ((-117 . -102) T) ((-954 . -1051) T) ((-872 . -111) 2756) ((-480 . -23) T) ((-484 . -1051) T) ((-1064 . -233) T) ((-954 . -327) 2725) ((-484 . -327) 2682) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2593) ((-247 . -172) 2504) ((-965 . -1040) 2400) ((-520 . -493) 2381) ((-736 . -1040) 2352) ((-520 . -614) 2318) ((-1107 . -102) T) ((-1094 . -614) 2277) ((-1036 . -614) 2259) ((-695 . -1053) 2209) ((-1281 . -151) 2193) ((-1279 . -617) 2174) ((-1278 . -617) 2155) ((-1273 . -614) 2137) ((-1260 . -727) T) ((-695 . -641) 2087) ((-1253 . -727) T) ((-1232 . -792) NIL) ((-1232 . -795) NIL) ((-169 . -1058) 1997) ((-912 . -172) T) ((-872 . -617) 1927) ((-1232 . -727) T) ((-1005 . -344) 1901) ((-223 . -647) 1853) ((-1002 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1153) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1040) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1268 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1012) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1024) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1024) T) ((-872 . -1051) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -911) 987) ((-1292 . -1114) T) ((-1241 . -1058) 810) ((-856 . -1058) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1218) T) ((-1292 . -23) T) ((-817 . -649) 719) ((-553 . -1218) T) ((-421 . -340) 703) ((-574 . -1058) 690) ((-1241 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1191 . -517) 30) ((-877 . -1102) T) ((-682 . -1102) T) ((-677 . -1102) T) ((-663 . -1102) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 018c1c11..5bf50190 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3465761897) -(4420 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3466723533) +(4421 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -318,13 +318,13 @@ |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Pair| - |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| - |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| - |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| - |ParametricSurface| |PartitionsAndPermutations| |Patternable| - |PatternMatchListResult| |PatternMatchable| |PatternMatch| - |PatternMatchResultFunctions2| |PatternMatchResult| - |PatternFunctions1| |PatternFunctions2| |Pattern| + |Palette| |PolynomialAN2Expression| |ParameterAst| + |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| + |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| + |ParametricSurfaceFunctions2| |ParametricSurface| + |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| + |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| + |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| @@ -480,663 +480,661 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |changeName| |bombieriNorm| |sumOfSquares| - |clipPointsDefault| |Aleph| |useEisensteinCriterion| |shallowExpand| - |pseudoQuotient| |c06ekf| |OMsupportsCD?| |leftExtendedGcd| - |parabolicCylindrical| |unitCanonical| |reset| |zero| |double?| - |hconcat| |makeSUP| |coercePreimagesImages| |dioSolve| |seed| |prime| - |viewport3D| |bfKeys| |cTanh| |setRealSteps| |selectfirst| |s18acf| - |stoseInvertible?reg| |semiDegreeSubResultantEuclidean| |insert!| - |box| |sort| |outputFloating| |pmintegrate| |att2Result| |e01bgf| - |write| |And| |sequence| |imagJ| |pointColorDefault| |stFuncN| - |moduleSum| |logpart| |bandedJacobian| |infiniteProduct| |save| - |taylorQuoByVar| |pointSizeDefault| |Or| |figureUnits| |f07adf| - |f02fjf| |clearTheIFTable| |setMaxPoints| |printStats!| |iiasinh| - |linGenPos| |midpoints| |mathieu23| |f01rdf| |Not| |OMgetSymbol| - |aspFilename| |oneDimensionalArray| |jacobi| |clipParametric| - |taylorRep| |chvar| |complementaryBasis| |mainPrimitivePart| - |primextintfrac| |normFactors| |s17def| |fortranCompilerName| - |OMgetEndBind| |hspace| |random| |inHallBasis?| |indicialEquations| - |duplicates?| |var2StepsDefault| |s18aff| |viewport2D| - |rightRemainder| |OMgetVariable| |constantKernel| - |selectOptimizationRoutines| |prolateSpheroidal| |clipBoolean| - |readUInt8!| |ref| |closedCurve?| |generator| |bat| - |radicalEigenvectors| |laurentRep| |sqfrFactor| |drawToScale| - |tracePowMod| |isOp| |primes| |lo| |shiftRight| |positiveSolve| - |resultantEuclidean| |ParCond| |quasiRegular| |algebraicOf| - |parametersOf| |positiveRemainder| |getExplanations| |droot| - |extendedEuclidean| |paraboloidal| |semiDiscriminantEuclidean| - |unravel| |stoseInvertible?sqfreg| |push| |vertConcat| |sumSquares| - |keys| |quotientByP| |invertibleSet| |incr| |rational?| |nthCoef| - |drawStyle| |evenlambert| |makeViewport3D| |squareFreePolynomial| - |symbolTable| |reducedForm| |df2fi| |hi| |yCoord| |stoseInvertible?| - |flatten| |d02bhf| |isMult| |numer| ** |realElementary| |singRicDE| - |genus| |conjugates| |tanintegrate| |argumentListOf| |diagonalMatrix| - |outlineRender| |weierstrass| |pushFortranOutputStack| - |restorePrecision| |column| |denom| |complexEigenvalues| - |setAdaptive3D| |infix?| |normal01| |firstSubsetGray| |f01qcf| - |sizeMultiplication| |Lazard| |newTypeLists| |popFortranOutputStack| - |mask| |charthRoot| |s19aaf| |padicallyExpand| |mainMonomial| - |headReduce| |OMputEndError| |removeRoughlyRedundantFactorsInPols| - |true| |makeEq| |modifyPointData| |subspace| |eigenvalues| - |discriminantEuclidean| |pi| |ocf2ocdf| |component| |untab| - |outputAsFortran| |yCoordinates| |UnVectorise| |multiset| - |countRealRootsMultiple| |getlo| |finiteBound| |infinity| |iibinom| - |minPoints3D| |modularFactor| |polygon| |e02bbf| |deepCopy| - |probablyZeroDim?| |smith| |zeroDim?| |lastSubResultantEuclidean| - |palgRDE0| |mathieu24| |inf| |f02bbf| |setFieldInfo| |composites| - |f02agf| |oddintegers| |f02ajf| |spherical| |OMgetEndError| |quoted?| - |cCsc| |partialFraction| |differentialVariables| |screenResolution3D| - |makeVariable| |stoseInternalLastSubResultant| |factorial| - |alphanumeric| |systemSizeIF| |iiasin| |selectsecond| |chiSquare| - |conditionsForIdempotents| |leftRankPolynomial| |key?| |lyndon| - |external?| |logical?| |useEisensteinCriterion?| |showArrayValues| - |balancedFactorisation| |repeatUntilLoop| |categories| |bothWays| - |leftFactor| |numberOfFactors| |getOperands| |f01bsf| |outerProduct| - |prevPrime| |relationsIdeal| |cCos| |complete| |iteratedInitials| - |f01ref| |radicalEigenvector| |nilFactor| |ranges| |transcendent?| - |trueEqual| |makeprod| |rootDirectory| |distdfact| |complexNormalize| - |delete| |bottom!| |internal?| |critB| |compose| |hexDigit?| - |mapUnivariate| |acscIfCan| |extractClosed| |internalIntegrate0| - |ListOfTerms| |build| F2FG |asechIfCan| |splitDenominator| - |meshPar1Var| |pointColor| |direction| |integrate| |basisOfCenter| - |possiblyInfinite?| |rightOne| |pseudoRemainder| |subMatrix| |is?| - |nthRootIfCan| |var1StepsDefault| |varselect| |elem?| |kovacic| - |Hausdorff| |rationalPoint?| |isOr| |unvectorise| |hostByteOrder| - |integralBasis| |pow| |f04axf| |less?| |generalPosition| |quotient| - |rootsOf| |graphState| |noKaratsuba| |split!| |hMonic| |minGbasis| - |e01sef| |lflimitedint| |ScanFloatIgnoreSpaces| |remainder| |vector| - |ignore?| |LiePoly| |distribute| |perfectSquare?| |comment| - |zeroDimPrime?| |divisor| |outputAsTex| |createMultiplicationMatrix| - |crushedSet| |overlabel| |differentiate| |mainKernel| |OMreadStr| - |maxint| |epilogue| |initiallyReduce| |halfExtendedResultant1| - |OMbindTCP| |create3Space| |noLinearFactor?| |flexibleArray| |s19abf| - |listOfLists| |leftLcm| |dimension| |harmonic| |upperCase?| |lepol| - |modularGcd| |startTableGcd!| |null| |pToDmp| |OMReadError?| - |scalarMatrix| |exists?| |normalizedAssociate| |OMputEndObject| |just| - |vspace| |transpose| |createGenericMatrix| |mainContent| |not| - |innerint| |nonQsign| |patternVariable| |interReduce| - |ellipticCylindrical| |choosemon| |e02zaf| |subResultantChain| - |unrankImproperPartitions0| |const| |and| |alphanumeric?| |e02daf| - |setLegalFortranSourceExtensions| |rightRegularRepresentation| - |tanIfCan| |OMgetEndObject| |setprevious!| |conjug| |iiasec| - |outputFixed| |f04adf| |or| |relerror| |inverseLaplace| |s18dcf| - |characteristicSerie| |arity| |makeYoungTableau| |tableau| |makeop| - |endOfFile?| |numberOfCycles| |ceiling| |xor| |normDeriv2| |c05pbf| - |multiEuclidean| |branchIfCan| |monicDecomposeIfCan| |inRadical?| - |removeSquaresIfCan| |getCurve| |lexico| |rCoord| |case| |log10| - |property| |testDim| |isOpen?| |commonDenominator| |diagonals| |copy!| - |f04maf| |resultantnaif| |nthRoot| |Zero| |lazyPquo| |subCase?| - |bitand| |ksec| |c02aff| |iicsc| |mindeg| |exteriorDifferential| - |graphImage| |s14abf| |inputOutputBinaryFile| |One| |fractRagits| - |signatureAst| |bitior| |rombergo| |OMputFloat| |exponential| |monic?| - |jacobian| |showTheFTable| |getCode| |getVariableOrder| |lintgcd| - |conditionP| |var1Steps| |units| |BasicMethod| |difference| |cLog| - |script| |reverseLex| |graeffe| |OMgetError| |rdregime| |leftOne| - |numerator| |shrinkable| |invertIfCan| |rk4a| |leftDivide| |janko2| - |nullary?| |solve| |hermite| |mapSolve| |dflist| - |mainDefiningPolynomial| |rootPower| |algebraicVariables| |f01mcf| - |tan2cot| |clipWithRanges| |fillPascalTriangle| |cycleTail| - |primaryDecomp| |point?| |extensionDegree| |chiSquare1| |log2| - |nthFactor| |characteristic| |interpretString| |tex| |OMlistSymbols| - |cylindrical| |declare| |singular?| |argscript| |ode| - |wordInStrongGenerators| |wholeRadix| |elt| |unaryFunction| |pr2dmp| - |nullary| |denomRicDE| |factorByRecursion| |integral?| - |jacobiIdentity?| |key| |pack!| |moduloP| |computePowers| |dark| - |code| |nor| |irreducible?| |atanhIfCan| |split| - |lastSubResultantElseSplit| |cn| |primintfldpoly| - |primPartElseUnitCanonical| |numberOfImproperPartitions| - |userOrdered?| |seriesToOutputForm| |outputForm| |rightDiscriminant| - |chebyshevU| |outputMeasure| |merge!| |degree| |setColumn!| |filename| - |inGroundField?| |parseString| |dequeue!| |bumprow| |cot2tan| |ideal| - |randomR| |s18aef| |setPrologue!| |numberOfIrreduciblePoly| - |exprHasAlgebraicWeight| |factorGroebnerBasis| |showAllElements| - |unexpand| |d02ejf| |setrest!| |adaptive| |meshFun2Var| |ricDsolve| - |infRittWu?| |newReduc| |leftCharacteristicPolynomial| |splitConstant| - |parse| |totalGroebner| |acschIfCan| |floor| |cscIfCan| |s20adf| - |middle| |quadratic?| |changeBase| |printTypes| |linearDependence| - |OMsupportsSymbol?| |whitePoint| |setTex!| |horizConcat| - |removeRedundantFactorsInPols| |mightHaveRoots| |complexElementary| - |zeroSquareMatrix| |generic?| |divideExponents| |equality| |e01bef| - |dn| |upperCase| |OMgetString| |upDateBranches| |edf2df| |pol| - |reducedSystem| |semicolonSeparate| |constantRight| |df2mf| - |fortranTypeOf| |truncate| |e02dcf| |associator| |ddFact| |intersect| - |parent| |addPoint2| |coth2trigh| |inspect| |listYoungTableaus| - |subNode?| |simpsono| |solveLinearPolynomialEquation| |OMgetEndBVar| - |pleskenSplit| |iiasech| |checkForZero| |e04ycf| |digit?| - |OMgetEndApp| |f02abf| Y |basisOfMiddleNucleus| |increase| - |intermediateResultsIF| |li| |rightGcd| |nativeModuleExtension| - |principalAncestors| |mainVariable| |deleteProperty!| |more?| - |interpolate| |refine| |exprToGenUPS| |solve1| |cExp| |primlimintfrac| - |sqfree| |rootSimp| |integralRepresents| |quartic| |plot| - |lowerPolynomial| |prinpolINFO| |phiCoord| |deriv| |fintegrate| - |numberOfComponents| |generic| |generateIrredPoly| |removeSinSq| - |viewDefaults| |constantOpIfCan| |showSummary| |aromberg| - |OMputSymbol| |setPoly| |root| |kmax| |low| |viewDeltaYDefault| - |imagk| GF2FG |regularRepresentation| |row| |pushup| |setStatus!| |e| - |f04asf| |point| |addmod| |sechIfCan| |leftUnit| |tensorProduct| - |showAttributes| |writeBytes!| |pseudoDivide| |power| - |doubleResultant| |d02bbf| |heapSort| |froot| |addPointLast| - |medialSet| |maxIndex| |viewpoint| |typeLists| |fortranLinkerArgs| - |printingInfo?| |generators| |real?| |measure2Result| |quadraticForm| - |alternating| |isEquiv| |returns| |series| |moreAlgebraic?| - |clearDenominator| |semiLastSubResultantEuclidean| |identity| |basis| - |mainCoefficients| |linSolve| |changeVar| |rank| |arbitrary| |nothing| - |llprop| |karatsubaDivide| |identityMatrix| |countRealRoots| |trigs| - |BumInSepFFE| |name| |stripCommentsAndBlanks| |explicitlyEmpty?| - |startTable!| |karatsuba| |bumptab1| |innerSolve1| |karatsubaOnce| - |readInt32!| |diagonalProduct| |body| |discriminant| |curveColor| - |goto| |zeroOf| |contours| |e04naf| |dihedralGroup| |front| - |toseLastSubResultant| |mathieu11| |expenseOfEvaluationIF| |min| - |e01sbf| |recoverAfterFail| |leftRegularRepresentation| |monomial?| - |bezoutResultant| |ratDsolve| |exprToUPS| |computeInt| |setEpilogue!| - |expenseOfEvaluation| |clearCache| |acoshIfCan| |changeThreshhold| - |central?| |zoom| |legendre| |rotate| |coerceP| |extractTop!| - |quickSort| |polar| |mapdiv| |retract| |quoByVar| |symmetricPower| - |width| |generalizedContinuumHypothesisAssumed?| |square?| - |nextPrimitiveNormalPoly| |solveLinear| |meatAxe| |biRank| |minus!| - |e02def| |internalSubQuasiComponent?| |semiResultantEuclideannaif| - |zeroSetSplitIntoTriangularSystems| |lists| |invertible?| |condition| - |simpson| |gcdPolynomial| |error| |nextsubResultant2| |groebner?| - |primlimitedint| |permutation| |back| |binaryFunction| |port| - |numberOfFractionalTerms| |mathieu12| |monomialIntegrate| |multiple| - |insertRoot!| |cartesian| |cyclePartition| |assert| - |selectODEIVPRoutines| |lagrange| |OMputObject| |overset?| |conjugate| - |overlap| |applyQuote| |makeUnit| |listOfMonoms| |geometric| - |binomThmExpt| |drawCurves| |stop| |t| |createThreeSpace| - |rationalPoints| |genericLeftTrace| |connectTo| |minimize| |rightMult| - |closeComponent| |e02dff| |purelyTranscendental?| |binomial| EQ - |hexDigit| |expintfldpoly| |chainSubResultants| |OMsetEncoding| - |divideIfCan!| |isNot| |weights| |whatInfinity| |negative?| - |iflist2Result| |matrixDimensions| |ruleset| |evenInfiniteProduct| - |c06ecf| |minset| |matrix| |optional| |enterPointData| |size?| - |localReal?| |basisOfLeftAnnihilator| |delete!| |currentScope| |iisin| - |setValue!| |drawComplex| |rightExtendedGcd| |se2rfi| - |stoseSquareFreePart| |leviCivitaSymbol| |getProperties| |setlast!| - |bitLength| |complexExpand| |powerAssociative?| |palgintegrate| - |leftMult| |OMreceive| |gbasis| |eigenvector| |belong?| |suchThat| - |besselJ| |viewZoomDefault| |solid?| |diophantineSystem| |s20acf| - |graphCurves| |basisOfLeftNucleus| |permutations| |increment| - |mantissa| |prepareDecompose| |groebner| |virtualDegree| |d01apf| - |integerIfCan| |laplace| |leftDiscriminant| |randnum| |findBinding| - |collectUnder| |diagonal| |linearAssociatedExp| |intPatternMatch| - |elementary| |pushNewContour| |squareFreePrim| |bitCoef| |enumerate| - |generalizedInverse| |leadingTerm| |factors| |diff| |upperCase!| - |mapBivariate| |fortran| |integerBound| |predicate| |elements| SEGMENT - |extractProperty| |rspace| |relativeApprox| |OMgetAttr| - |OMencodingBinary| |removeRedundantFactors| |chineseRemainder| - |findCycle| |omError| |printInfo!| |setTopPredicate| |OMputEndBind| - |decrease| |dimensionOfIrreducibleRepresentation| |connect| |resetNew| - |returnTypeOf| |comp| |univariate?| |compile| |f01brf| |red| - |reduced?| |writeByte!| |plus| |initials| |OMclose| |cross| - |generalizedEigenvectors| |f04qaf| |resetBadValues| |shuffle| RF2UTS - |rename!| |read!| |findConstructor| |primitivePart!| |hermiteH| - |cothIfCan| |lazyGintegrate| |e02bef| |moebiusMu| |polygamma| - |lazyVariations| |s17agf| |stirling1| |range| |exprex| - |lazyPseudoRemainder| |printHeader| |denomLODE| |ridHack1| - |cyclicCopy| |palgLODE| |iicsch| |cCot| |c06gcf| |getGoodPrime| - |maxColIndex| |trapezoidal| |aQuartic| |basisOfRightNucloid| |times| - |uniform| |principalIdeal| |rationalIfCan| |rightQuotient| |rational| - |optimize| |getOrder| |sample| |cfirst| |identitySquareMatrix| |char| - |style| |curveColorPalette| |updateStatus!| |problemPoints| - |coefficient| |top| |presuper| |factorsOfDegree| |uniform01| - |selectPolynomials| |bracket| |concat| |setProperty!| |legendreP| - |nextsousResultant2| |removeSinhSq| |parameters| |companionBlocks| - |applyRules| |createIrreduciblePoly| |setAttributeButtonStep| |makeFR| - |printStatement| |graphStates| |round| |open?| |intChoose| |list| - |iiatan| |s14baf| |LazardQuotient| |sylvesterMatrix| |inc| |monom| - |octon| |leastAffineMultiple| |laurentIfCan| |OMencodingXML| - |ReduceOrder| |car| |subHeight| |critMTonD1| |eigenvectors| |graphs| - |imaginary| |associatedEquations| |wronskianMatrix| |sinh2csch| - |HenselLift| |listBranches| |cdr| |removeDuplicates!| - |infieldIntegrate| |removeConstantTerm| |dec| |lifting| - |tryFunctionalDecomposition| |reducedDiscriminant| |lazyResidueClass| - |setProperties| |numFunEvals3D| |setDifference| |plusInfinity| - |topPredicate| |ip4Address| |maxrow| |writeUInt8!| |common| |cond| - |unit?| |float| |specialTrigs| |toseSquareFreePart| |sncndn| - |HermiteIntegrate| |setIntersection| |inverseIntegralMatrix| - |minusInfinity| |rangePascalTriangle| |basisOfCommutingElements| - |d03edf| |coordinate| |cAcos| |curry| |f04faf| |length| - |oblateSpheroidal| |externalList| |setUnion| |intcompBasis| |initial| - |s17adf| |factorSquareFreeByRecursion| |defineProperty| |var2Steps| - |rem| |kroneckerDelta| |safeFloor| |totalLex| |scripts| |predicates| - |totalDegree| |apply| |space| |functorData| |completeHensel| |quo| - |rur| |quasiMonicPolynomials| |bezoutDiscriminant| |toseInvertibleSet| - |subscriptedVariables| |setImagSteps| |OMgetAtp| - |cyclotomicFactorization| |addMatchRestricted| |prem| |s21bdf| - |complexIntegrate| |monicCompleteDecompose| - |functionIsFracPolynomial?| |mainValue| |size| |solveInField| - |sizeLess?| |mindegTerm| |maximumExponent| |div| |dmp2rfi| - |linearMatrix| |cSech| |unknownEndian| |elseBranch| |type| |e02bcf| - |readUInt16!| |rightRecip| |secIfCan| |exquo| |collectUpper| |output| - |tree| |numberOfPrimitivePoly| |rst| |reorder| |usingTable?| |module| - |repSq| |eyeDistance| |iFTable| ~= |clipSurface| |cCsch| |zeroMatrix| - |has?| |conical| |first| |leftFactorIfCan| |nullSpace| |LiePolyIfCan| - |overbar| |#| GE |monicLeftDivide| |stoseLastSubResultant| - |algebraicDecompose| |weight| |child| |rest| |createZechTable| - |scanOneDimSubspaces| |selectFiniteRoutines| ~ |orbit| GT |bsolve| - |hcrf| |palgextint0| |lieAlgebra?| |evaluate| |substitute| |exprToXXP| - |identification| |isPlus| |iilog| |limit| LE |rightDivide| |setOfMinN| - |critBonD| |ptFunc| |removeDuplicates| |implies| |rightTrace| - |factorSquareFree| |showAll?| LT |coordinates| |setLength!| |vconcat| - |symmetric?| |supRittWu?| |mesh| |compiledFunction| |atanIfCan| - |radPoly| |/\\| |singularAtInfinity?| |setButtonValue| |OMgetEndAttr| - |getIdentifier| |orbits| |any?| |cyclic| |transcendenceDegree| - |leftMinimalPolynomial| |\\/| |extendedResultant| |KrullNumber| - |shallowCopy| |escape| |enterInCache| |compound?| |df2ef| |lllp| - |unitNormal| |reciprocalPolynomial| |unmakeSUP| |mkIntegral| - |symmetricRemainder| |index?| |eq?| |normalDeriv| |paren| - |makeGraphImage| |measure| |rewriteIdealWithQuasiMonicGenerators| - |interval| |makeSeries| |lift| |realEigenvalues| |skewSFunction| - |degreeSubResultant| |prindINFO| |sylvesterSequence| |cAsec| - |rowEchelonLocal| |subNodeOf?| |e02gaf| |addMatch| |reduce| - |firstNumer| |polCase| |multiple?| |youngGroup| |localAbs| |iifact| - |leftTrace| |f04mcf| |integral| |gramschmidt| |makeSin| |e01daf| - |getDatabase| |members| |innerEigenvectors| |xCoord| |normalizeIfCan| - |loopPoints| |genericLeftTraceForm| |autoCoerce| |hasoln| |cot2trig| - |derivative| |brillhartIrreducible?| |ipow| |showRegion| |exponents| - |genericRightTrace| |datalist| |Frobenius| |definingPolynomial| - |sech2cosh| |doubleComplex?| |separant| |equation| |d02gbf| - |writeLine!| |gcdPrimitive| |powers| |leftRecip| |monomRDE| - |LazardQuotient2| |modulus| |pomopo!| |rk4qc| |stronglyReduced?| - |continue| |properties| |factorset| |cyclotomicDecomposition| |tube| - |c05nbf| |bandedHessian| |imports| |doubleFloatFormat| |cup| - |getStream| |tubePointsDefault| |d02kef| |translate| |infieldint| - |c06gqf| |iiacosh| |triangSolve| |tower| |scan| |sturmSequence| - |position| |idealiser| |radicalEigenvalues| |minordet| - |rationalFunction| |sortConstraints| |divide| - |exprHasLogarithmicWeights| |indicialEquationAtInfinity| |match?| - |f07fef| |univariatePolynomialsGcds| |leadingIdeal| |f01maf| |edf2fi| - |bigEndian| |palgint| |leftZero| |inverseColeman| |putGraph| - |factorAndSplit| |child?| |stoseInvertibleSetsqfreg| - |outputBinaryFile| |padecf| |bright| |d01bbf| |pToHdmp| |rdHack1| - |euclideanGroebner| |fortranInteger| |times!| |partialNumerators| - |simplifyPower| |solveRetract| |lazyPrem| |cubic| |monomials| - |purelyAlgebraicLeadingMonomial?| |integralAtInfinity?| |OMputAttr| - |separateFactors| |dim| |function| |stFunc2| |minimalPolynomial| - |shade| |constantIfCan| |e02ddf| |functionIsOscillatory| - |iterationVar| |padicFraction| |complexNumeric| |hdmpToDmp| |mapCoef| - |airyAi| |byte| |clearTable!| |debug| |setFormula!| |e04ucf| |iitan| - |getMultiplicationTable| |fibonacci| |eval| |asinIfCan| |binaryTree| - |inverse| |UpTriBddDenomInv| D |perfectNthRoot| |setsubMatrix!| - |ScanRoman| |kernels| |isPower| |tanQ| |numericalOptimization| - |symmetricProduct| |inR?| |interpret| |viewWriteAvailable| - |complexNumericIfCan| |insertMatch| |lexGroebner| |leftUnits| - |operator| |lfunc| |postfix| |over| |viewThetaDefault| |f01rcf| - |solveLinearPolynomialEquationByFractions| |qqq| |wholePart| - |flagFactor| |isTimes| |critT| |c06eaf| |OMconnInDevice| |rootSplit| - |s21baf| |cyclicEqual?| |transform| |univariate| |zag| - |linearDependenceOverZ| |OMread| |rroot| |rightNorm| |factorList| - |bivariateSLPEBR| |monomRDEsys| |level| |double| |insertionSort!| - |linkToFortran| |inputBinaryFile| |getProperty| |generalLambert| - |cTan| |mainMonomials| |superscript| |univcase| |leftAlternative?| - |OMencodingSGML| |null?| |mr| |showFortranOutputStack| |traverse| - |rotatex| |int| |copies| |revert| |supDimElseRittWu?| |init| - |internalAugment| |factor| |explimitedint| |axesColorDefault| - |readable?| |lastSubResultant| |singularitiesOf| |capacity| |subSet| - |insertBottom!| |setPosition| BY |sqrt| |hitherPlane| - |tubeRadiusDefault| |interactiveEnv| |compdegd| |hclf| |unit| - |fractionPart| |bit?| |root?| |real| |primeFactor| |cosSinInfo| - |categoryFrame| |numberOfDivisors| |atoms| |print| - |irreducibleRepresentation| |indices| |sh| |simpleBounds?| |lcm| - |imag| |distFact| |triangulate| |Nul| |setelt!| |palginfieldint| - |resolve| |OMgetInteger| |nlde| |reflect| |directProduct| |rightUnits| - |forLoop| |anfactor| |algint| |stFunc1| |minimumDegree| |mapExpon| - |resultantReduit| |edf2ef| |declare!| |append| |mappingAst| - |constantLeft| |An| |OMserve| |roughSubIdeal?| |solveid| - |OMconnectTCP| |maxdeg| |isConnected?| |boundOfCauchy| |brace| - |mainExpression| |SturmHabichtSequence| |gcd| |linearAssociatedLog| - |simplifyLog| |remove!| |strongGenerators| |invmultisect| - |monicDivide| |nonLinearPart| |d02raf| |destruct| |nthr| |false| - |listexp| |quote| |schema| NOT |uncouplingMatrices| |exp1| - |useSingleFactorBound?| |setProperty| |lazyEvaluate| |rangeIsFinite| - |center| |normalElement| |vark| |selectPDERoutines| OR |s17aff| - |even?| |adaptive?| |screenResolution| |goodnessOfFit| |retractable?| - |f04jgf| |inconsistent?| |d01alf| AND |approxSqrt| |patternMatchTimes| - |Is| |copyInto!| |principal?| |gcdprim| - |removeIrreducibleRedundantFactors| |initiallyReduced?| |setOrder| - |iiacot| |explogs2trigs| |coth2tanh| |gradient| |monomial| - |zeroDimPrimary?| |OMconnOutDevice| |f2df| |sup| |stack| - |normalizedDivide| |iiexp| |s17acf| |light| |table| |multivariate| - |squareFree| |computeBasis| |opeval| |multiEuclideanTree| |OMgetType| - |rowEchelon| |rationalApproximation| |zero?| |ratDenom| |insert| - |one?| |new| |variables| |nextSubsetGray| |normalized?| |swap!| - |moebius| |numericIfCan| |functionIsContinuousAtEndPoints| - |rightRankPolynomial| |s15aef| |s21bbf| - |createLowComplexityNormalBasis| |getRef| |surface| |polyred| |cache| - |lllip| |branchPoint?| |autoReduced?| |reduceLODE| - |unprotectedRemoveRedundantFactors| |OMputError| - |initializeGroupForWordProblem| |f02adf| |composite| |f01qdf| - |trace2PowMod| |sorted?| |rootKerSimp| |totalfract| |optAttributes| - |isAnd| |lSpaceBasis| |linearlyDependentOverZ?| |iidsum| - |integralBasisAtInfinity| |determinant| |character?| |firstDenom| - |leftRank| |rootNormalize| |f02bjf| |minPoints| |separate| |reopen!| - |besselI| |polyRicDE| |option?| |taylor| |idealiserMatrix| |contains?| - |hex| |norm| |f02akf| * |messagePrint| |expIfCan| |exactQuotient!| - |isAbsolutelyIrreducible?| |laurent| |odd?| |aLinear| |symFunc| - |generalSqFr| |movedPoints| |setnext!| |localIntegralBasis| - |approxNthRoot| |processTemplate| |puiseux| |getBadValues| |leaf?| - |approximants| |primextendedint| |certainlySubVariety?| |littleEndian| - |plus!| |rischDE| |groebgen| |showTheRoutinesTable| |headReduced?| - |associatorDependence| |s17dgf| |d01aqf| |variationOfParameters| = - |completeEchelonBasis| |shanksDiscLogAlgorithm| |PollardSmallFactor| - |inv| |minimumExponent| |f07aef| |maxrank| |order| |status| - |SturmHabicht| |infinityNorm| |leftPower| |rightTraceMatrix| |ground?| - |left| |acotIfCan| |decimal| |Beta| |badNum| |complexForm| - |alternative?| |physicalLength!| < |perspective| |updatD| |ground| - |right| |tab1| |factorials| |reducedQPowers| |UP2ifCan| - |collectQuasiMonic| |iroot| |reduceBasisAtInfinity| > - |halfExtendedSubResultantGcd2| |physicalLength| |erf| |rightPower| - |leadingMonomial| |minColIndex| |minRowIndex| |jordanAlgebra?| - |setref| |rootPoly| |nextNormalPrimitivePoly| - |tryFunctionalDecomposition?| <= |nullity| |imagK| - |leadingCoefficient| |traceMatrix| |supersub| - |createLowComplexityTable| |definingInequation| |fullDisplay| - |checkRur| |f04mbf| >= |subst| |close!| |entry?| |primitiveMonomials| - |rule| |iExquo| |quadratic| |fortranLiteralLine| |deref| |max| |clip| - |expextendedint| |swap| |dilog| |nil| |normalize| |primitiveElement| - |reductum| |universe| |triangular?| |push!| |controlPanel| |argument| - |rowEchLocal| |rationalPower| |selectIntegrationRoutines| |sin| - |brillhartTrials| |trailingCoefficient| |subresultantVector| - |topFortranOutputStack| |c06gbf| |eulerE| |nthFractionalTerm| - |OMputEndAttr| + |c06fuf| |cos| |power!| |iiGamma| |dmpToP| - |integralCoordinates| |B1solve| |next| |iiacoth| |loadNativeModule| - |singleFactorBound| |internalDecompose| - |squareFreeFactors| |tan| - |approximate| |tablePow| |semiSubResultantGcdEuclidean2| - |toseInvertible?| |anticoord| |list?| |complex| |internalIntegrate| - |setPredicates| |coshIfCan| / |definingEquations| |cot| |log| - |groebnerIdeal| |basisOfCentroid| |setRow!| |createPrimitiveElement| - |wordInGenerators| |dom| |extract!| |integers| |ramifiedAtInfinity?| - |frobenius| |objects| |sec| |totolex| |explicitEntries?| |plotPolar| - |numericalIntegration| |rootOf| |numerators| |quasiAlgebraicSet| - |randomLC| |base| |coleman| |csc| |symbol| |OMgetFloat| |iiacsc| - |unitNormalize| |squareFreePart| |solveLinearlyOverQ| |signAround| - |cAcoth| |rightFactorIfCan| |cotIfCan| |asin| |validExponential| - |expression| |rightMinimalPolynomial| |roman| |segment| |tanh2coth| - |top!| |iprint| |withPredicates| |SFunction| |acos| |integer| - |backOldPos| |prefixRagits| |euclideanNormalForm| |swapRows!| |say| - |atom?| |lyndonIfCan| |rightLcm| |critpOrder| |atan| |s17dcf| - |fixedDivisor| |high| |algebraic?| |fglmIfCan| |title| - |characteristicPolynomial| |splitNodeOf!| - |semiSubResultantGcdEuclidean1| |acot| |delta| |headRemainder| - |selectOrPolynomials| |linears| LODO2FUN |lookupFunction| - |symmetricSquare| |modTree| |asec| |parents| |csubst| - |showTheSymbolTable| |squareTop| |pade| |tanAn| |torsion?| |member?| - |acsc| |listLoops| |outputList| |e02ahf| |asecIfCan| |bubbleSort!| - |readLine!| |iCompose| |exportedOperators| |head| |changeNameToObjf| - |sinh| |leastPower| |readInt16!| |lieAdmissible?| |initTable!| |recip| - |reindex| |f02axf| |corrPoly| |cosh| |OMmakeConn| |presub| |label| - |sort!| |roughUnitIdeal?| |quasiComponent| |atrapezoidal| |tanh| - |constantOperator| |fortranReal| |denominator| - |generalInfiniteProduct| |e01bhf| |genericRightDiscriminant| - |aQuadratic| |iicos| |coth| |augment| |clearTheSymbolTable| |solid| - |nonSingularModel| |OMputApp| |doubleRank| |startPolynomial| - |gcdcofactprim| |previous| |sech| |lambda| |integralMatrix| |saturate| - |tubeRadius| |nextPrime| |symmetricTensors| |hasSolution?| |csch| - |f04atf| |doubleDisc| |cAcot| |getMeasure| |cAtanh| |cosIfCan| - |algebraicSort| |irreducibleFactor| |asinh| |recolor| - |LyndonWordsList1| |squareFreeLexTriangular| - |indiceSubResultantEuclidean| |monicRightDivide| |rightZero| |rarrow| - |s17dhf| |acosh| |freeOf?| |pureLex| |e01sff| |digamma| |dihedral| - |super| |whileLoop| |standardBasisOfCyclicSubmodule| |charClass| - |atanh| |constructor| |absolutelyIrreducible?| |fortranLogical| - |reverse!| |Vectorise| |permutationRepresentation| |numFunEvals| - |acoth| |shiftLeft| |remove| |elRow2!| |roughEqualIdeals?| - |encodingDirectory| |redmat| |option| |ldf2lst| |elliptic| |closed?| - |asinhIfCan| |empty?| |asech| |gensym| |OMputVariable| - |LowTriBddDenomInv| |simplify| |dot| |iisinh| |c06fpf| - |univariateSolve| |last| |OMunhandledSymbol| |removeCosSq| - |dictionary| |mainVariables| |alphabetic?| |every?| |limitedint| - |assoc| |varList| |s19adf| |htrigs| |submod| |sturmVariationsOf| - |printInfo| |cSin| |cAsin| |mergeDifference| |exponential1| - |reduction| |generate| |isList| |rightTrim| |addBadValue| - |internalSubPolSet?| |multiplyExponents| |groebSolve| |rotatey| - |bivariate?| |allRootsOf| |constant| |leadingIndex| - |semiIndiceSubResultantEuclidean| |subQuasiComponent?| |leftTrim| - |pointColorPalette| |fortranDoubleComplex| |rootProduct| |readByte!| - |setMaxPoints3D| |lazyIrreducibleFactors| |numberOfComposites| - |neglist| |deepExpand| |genericLeftNorm| |trivialIdeal?| |incrementBy| - |infix| |depth| |subTriSet?| |OMputBVar| |prod| |realRoots| - |perfectNthPower?| |expand| |subResultantGcdEuclidean| - |orthonormalBasis| |stoseIntegralLastSubResultant| |leftRemainder| - |pastel| |points| |rowEch| |move| |repeating| |iicoth| - |createNormalPrimitivePoly| |structuralConstants| |s18adf| - |filterWhile| |ratPoly| |cosh2sech| |mapUnivariateIfCan| |bounds| - |rquo| |deleteRoutine!| |computeCycleEntry| |complexSolve| |f07fdf| - |f02wef| |filterUntil| |getZechTable| |regime| |rightRank| - |lineColorDefault| |curve| |factorOfDegree| |palgextint| - |derivationCoordinates| |select| |unrankImproperPartitions1| |cyclic?| - |color| |d01anf| |intensity| |ode2| |mapExponents| |safetyMargin| - |empty| |axes| |decompose| |element?| |wholeRagits| - |SturmHabichtMultiple| |getMultiplicationMatrix| |prepareSubResAlgo| - |henselFact| |leftTraceMatrix| |zeroDimensional?| |tanhIfCan| - |exprHasWeightCosWXorSinWX| |c06fqf| |mapmult| |acothIfCan| |d02cjf| - |cschIfCan| |radicalSimplify| |dimensions| |position!| |pattern| - |OMgetEndAtp| |dfRange| |mapGen| |lprop| |primintegrate| - |expandTrigProducts| |qfactor| |trunc| |mainVariable?| |complex?| - |d03faf| |e04fdf| |nextColeman| |invmod| |mulmod| |signature| |cAtan| - |symbolTableOf| |commutator| |subResultantsChain| |showScalarValues| - |blue| |lex| |meshPar2Var| |ParCondList| |possiblyNewVariety?| - |makeRecord| |hasHi| |parts| |lazyPseudoQuotient| |number?| - |weakBiRank| |permutationGroup| |areEquivalent?| |node| |iisec| - |pdf2df| |adjoint| |expressIdealMember| |assign| |message| |pdct| - |antiCommutator| |subResultantGcd| |buildSyntax| |operation| - |permanent| |radix| |genericLeftMinimalPolynomial| |lyndon?| |trim| - |resultantEuclideannaif| |lowerCase?| |ran| |subscript| |find| - |lookup| |degreeSubResultantEuclidean| |ptree| |Lazard2| - |rischNormalize| |hash| |d01amf| |numberOfComputedEntries| - |torsionIfCan| |e04jaf| |digits| |tanSum| |degreePartition| |addPoint| - |count| |cyclicGroup| |hypergeometric0F1| |twist| |bat1| |concat!| - |sumOfKthPowerDivisors| |monomialIntPoly| |curryLeft| |OMopenFile| - |sign| |OMputEndApp| |palglimint| |listRepresentation| - |getPickedPoints| |extendIfCan| |vectorise| |getConstant| |unitVector| - |pushdterm| |hdmpToP| |subtractIfCan| |pdf2ef| |d01ajf| |cons| - |OMgetObject| |selectMultiDimensionalRoutines| |sayLength| |nthFlag| - |coefficients| |currentSubProgram| |laplacian| - |internalLastSubResultant| |ode1| |tan2trig| |viewSizeDefault| - |factorSquareFreePolynomial| |bivariatePolynomials| |variable?| - |completeEval| |stiffnessAndStabilityFactor| |OMputBind| - |incrementKthElement| |drawComplexVectorField| |e02aef| - |lazyIntegrate| |magnitude| |reducedContinuedFraction| - |normalizeAtInfinity| |packageCall| |patternMatch| |newSubProgram| - |denominators| |lifting1| |nextIrreduciblePoly| |numberOfVariables| - |ramified?| |mkcomm| |lfinfieldint| |setEmpty!| |yellow| - |generalizedEigenvector| |createMultiplicationTable| |select!| - |realZeros| |fortranLiteral| |checkPrecision| |recur| - |increasePrecision| |errorKind| |trigs2explogs| |iiatanh| |scripted?| - |wrregime| |polyRDE| |c06frf| |reseed| |polygon?| |setClosed| - |typeList| |source| |d01asf| |removeSuperfluousQuasiComponents| - |iitanh| |merge| |OMputInteger| |exponentialOrder| |multinomial| - |finite?| |getSyntaxFormsFromFile| |basisOfNucleus| |LyndonWordsList| - |s01eaf| |s14aaf| |dmpToHdmp| |hue| |makeTerm| |invertibleElseSplit?| - |addiag| |powerSum| |polarCoordinates| |leftScalarTimes!| - |fortranCharacter| |nil?| |sub| |roughBase?| |idealSimplify| - |completeHermite| |partialQuotients| |LagrangeInterpolation| |e01saf| - |createNormalPoly| |blankSeparate| |stopTableGcd!| |e01bff| - |repeating?| |viewPhiDefault| |bezoutMatrix| |laguerre| |mdeg| - |cycleElt| |contract| |nextPartition| |polynomialZeros| |fractRadix| - |entries| |extractIndex| |limitPlus| |Ci| |target| |shellSort| - |d01gaf| |antiAssociative?| |extractPoint| |expintegrate| |newLine| - |rename| |linear?| |mapUp!| |scalarTypeOf| |roughBasicSet| - |explicitlyFinite?| |tableForDiscreteLogarithm| |hessian| |reverse| - |SturmHabichtCoefficients| |lowerCase| |mapMatrixIfCan| - |completeSmith| |bringDown| |bytes| |toroidal| |fortranComplex| - |myDegree| |sum| |removeCoshSq| |gethi| |algSplitSimple| |Ei| - |FormatArabic| |expr| |outputSpacing| |normal?| |children| - |nextLatticePermutation| |rightScalarTimes!| |monicModulo| - |convergents| |fTable| |mkPrim| |homogeneous?| |setCondition!| - |f04arf| |makeSketch| |ravel| |leadingCoefficientRicDE| - |hyperelliptic| |optional?| |in?| |options| |mathieu22| - |algebraicCoefficients?| |resultant| |reshape| |realEigenvectors| - |debug3D| |divideIfCan| |lquo| |kernel| |bindings| |doublyTransitive?| - |flexible?| |coerceS| |draw| |host| |divisors| |factorSFBRlcUnit| - |triangularSystems| |lp| |variable| |extension| |s15adf| |nextItem| - |coerceImages| |splitSquarefree| |outputAsScript| |zeroSetSplit| - |multisect| |iterators| |iiperm| |optpair| |rightUnit| |string| - |rightFactorCandidate| |currentEnv| |sin?| |cCoth| - |stiffnessAndStabilityOfODEIF| |jordanAdmissible?| - |radicalOfLeftTraceForm| |cycle| |leftNorm| |failed| |duplicates| - |complexZeros| |substring?| |dominantTerm| |exptMod| |npcoef| - |argumentList!| |localUnquote| |reduceByQuasiMonic| |removeZeroes| - |df2st| |write!| |update| |attributeData| |decreasePrecision| - |makeObject| |mapDown!| |logGamma| |laguerreL| |d01gbf| |algDsolve| - |suffix?| |showIntensityFunctions| |delay| |coef| |calcRanges| |nand| - |zerosOf| |generalTwoFactor| |iidprod| |weighted| |lazyPseudoDivide| - |normInvertible?| |wordsForStrongGenerators| |returnType!| - |zeroVector| |quadraticNorm| |modularGcdPrimitive| |rk4| |s19acf| - |qelt| |prefix?| |birth| |evaluateInverse| |replace| - |genericRightNorm| |LyndonCoordinates| |plenaryPower| |btwFact| - |qsetelt| |collect| |baseRDE| |leader| |rotate!| |redPo| |prinb| - |linear| |scale| |iipow| |linearPart| |binaryTournament| |ScanArabic| - |xRange| |cardinality| |basisOfRightAnnihilator| |symmetricGroup| - |wreath| |fprindINFO| |stoseInvertibleSet| |sumOfDivisors| |yRange| - |hasPredicate?| |linearlyDependent?| |precision| |polynomial| - |cyclicEntries| |changeWeightLevel| |latex| |c06gsf| |f02aaf| |redPol| - |zRange| |endSubProgram| |removeRoughlyRedundantFactorsInPol| - |seriesSolve| |retractIfCan| |leadingSupport| |besselK| - |branchPointAtInfinity?| |map!| |resultantReduitEuclidean| |setfirst!| - |coerceL| |stopTable!| |stirling2| |clearTheFTable| |OMputEndBVar| - |qsetelt!| |readInt8!| |lfintegrate| |factorsOfCyclicGroupSize| - |index| |integralMatrixAtInfinity| |s17ahf| |OMsend| |e04mbf| - |partition| |ScanFloatIgnoreSpacesIfCan| - |halfExtendedSubResultantGcd1| |bernoulliB| - |removeRedundantFactorsInContents| |decomposeFunc| - |removeSuperfluousCases| |ef2edf| |badValues| |antisymmetric?| - |bfEntry| |mainCharacterization| |sec2cos| |leaves| |genericPosition| - |semiResultantReduitEuclidean| |cCosh| |setvalue!| |pair| - |monicRightFactorIfCan| |Si| |taylorIfCan| |chebyshevT| |test| - |combineFeatureCompatibility| |iicosh| |value| |d01akf| |routines| - |sn| |rightCharacteristicPolynomial| |complexLimit| |imagE| - |fortranCarriageReturn| |rules| |f01qef| |setMinPoints3D| - |numberOfOperations| |algintegrate| |acsch| |startTableInvSet!| - |noncommutativeJordanAlgebra?| |mkAnswer| |knownInfBasis| |dAndcExp| - |bitTruth| |sinhcosh| |open| |powmod| |iisqrt3| |mirror| - |leftQuotient| |cyclicParents| |OMencodingUnknown| |map| - |computeCycleLength| |OMgetApp| |extractIfCan| |mpsode| |eq| - |rewriteIdealWithHeadRemainder| |stopMusserTrials| |check| - |OMputString| |redpps| |OMUnknownCD?| |part?| |fi2df| |showClipRegion| - |iicot| |iter| |directory| |slash| |c06ebf| |prefix| |innerSolve| - |mainForm| |ffactor| |shiftRoots| |createPrimitiveNormalPoly| |updatF| - |unknown| |setchildren!| |ord| |complexEigenvectors| |prologue| - |csch2sinh| |setErrorBound| |setAdaptive| |iomode| |f02aef| - |complexRoots| |any| |operations| |semiResultantEuclidean1| |expint| - |alternatingGroup| |pointLists| |nthExpon| F |elliptic?| |tanh2trigh| - |testModulus| |factorPolynomial| |palglimint0| |quasiRegular?| - |f02aff| |basisOfRightNucleus| |cyclicSubmodule| |iiabs| - |swapColumns!| |mergeFactors| |convert| |leadingExponent| |s13aaf| - |indicialEquation| |subPolSet?| |po| |constantCoefficientRicDE| - |digit| |useSingleFactorBound| |headAst| |infinite?| |outputArgs| - |linearPolynomials| |qroot| |rectangularMatrix| |hasTopPredicate?| - |resize| |resetVariableOrder| |tRange| |resetAttributeButtons| - |numeric| |coerceListOfPairs| |subresultantSequence| |aCubic| - |removeRoughlyRedundantFactorsInContents| |zCoord| - |balancedBinaryTree| |cap| |divergence| |charpol| |PDESolve| |bag| - |sincos| |ldf2vmf| |createNormalElement| |radical| |nodeOf?| |csc2sin| - |FormatRoman| |pointData| |getButtonValue| |operators| |infLex?| - |raisePolynomial| |bernoulli| |isTerm| |abelianGroup| |exp| |lazy?| - |fixPredicate| |e02bdf| |satisfy?| UP2UTS |curve?| |splitLinear| - |pile| |trapezoidalo| |viewDeltaXDefault| |inrootof| |d01fcf| - |basisOfLeftNucloid| |binarySearchTree| |discreteLog| |musserTrials| - |cSinh| |deepestTail| |iisech| |associative?| |s13adf| |s21bcf| - |e04gcf| |acosIfCan| |reify| |colorFunction| FG2F |s13acf| - |lfextendedint| |preprocess| |numberOfNormalPoly| |numberOfChildren| - |compactFraction| |firstUncouplingMatrix| |setLabelValue| |product| - |pascalTriangle| |fractionFreeGauss!| |s18def| - |primPartElseUnitCanonical!| |qinterval| |sequences| |id| - |maxPoints3D| |float?| |rk4f| |readIfCan!| |besselY| |constant?| - |second| |morphism| |gderiv| |components| |extend| |e02akf| - |RemainderList| |sparsityIF| |s17aef| |symbol?| - |extendedSubResultantGcd| |close| |goodPoint| - |genericLeftDiscriminant| |third| |bipolarCylindrical| |minIndex| - |diag| |OMreadFile| |maxPoints| |exactQuotient| |OMgetBind| |lighting| - |e04dgf| |twoFactor| |cAsinh| |quatern| |binding| |bumptab| - |limitedIntegrate| |minrank| |representationType| |bits| |makeCrit| - |readUInt32!| |ratpart| |search| |OMParseError?| |display| - |highCommonTerms| |f02xef| |obj| |cAcosh| |symmetricDifference| |cSec| - |OMputAtp| |cyclotomic| |failed?| |represents| |isExpt| |countable?| - |alphabetic| |eisensteinIrreducible?| |enqueue!| |byteBuffer| UTS2UP - |numberOfHues| |cRationalPower| |antisymmetricTensors| - |internalZeroSetSplit| |rightAlternative?| |e02baf| |schwerpunkt| - |univariatePolynomial| |compBound| |removeZero| |setright!| |fracPart| - |rotatez| |integralLastSubResultant| |finiteBasis| - |fullPartialFraction| |minPol| |setVariableOrder| |critM| |pquo| - |frst| |transcendentalDecompose| |f2st| |makingStats?| - |groebnerFactorize| |extendedIntegrate| |coord| |queue| |isQuotient| - |nextPrimitivePoly| |OMopenString| |sizePascalTriangle| - |componentUpperBound| |logIfCan| |midpoint| |iiacos| - |listConjugateBases| |OMputEndAtp| |powern| |selectNonFiniteRoutines| - |normalForm| |GospersMethod| |input| |setScreenResolution| - |unitsColorDefault| |stosePrepareSubResAlgo| |airyBi| |nextSublist| - |eigenMatrix| |heap| |factor1| |lhs| |f02awf| |pushdown| |cycles| - |green| |associatedSystem| |category| |linearAssociatedOrder| - |complement| |pair?| |library| |currentCategoryFrame| |notelem| - |leftExactQuotient| |extractBottom!| |qPot| |rhs| |quasiMonic?| - |simplifyExp| |sinhIfCan| |before?| |domain| |nary?| - |constantToUnaryFunction| |nextNormalPoly| |palgLODE0| - |rootOfIrreduciblePoly| |tValues| |primeFrobenius| |create| - |gcdcofact| |eulerPhi| |diagonal?| |getOperator| |package| |sPol| - |slex| |cPower| |imagj| |printCode| |stronglyReduce| |shift| - |distance| |coerce| |makeCos| |crest| |makeMulti| |normalise| - |systemCommand| |height| |internalInfRittWu?| |realSolve| - |purelyAlgebraic?| |abs| |mat| |changeMeasure| |cAcsch| |arg1| - |construct| |palgRDE| |oddlambert| |continuedFraction| |mvar| |cAcsc| - |Gamma| |equiv| |set| |region| |useNagFunctions| |readLineIfCan!| - |integralDerivationMatrix| |arg2| |sinIfCan| |radicalRoots| - |makeFloatFunction| |rewriteSetWithReduction| |comparison| |kind| - |isobaric?| |tab| |startStats!| |getGraph| |euler| - |stoseInvertibleSetreg| |shufflein| |createPrimitivePoly| - |putColorInfo| |readBytes!| |pushuconst| |genericRightTraceForm| |op| - |asimpson| |normal| |halfExtendedResultant2| |setScreenResolution3D| - |tubePoints| |tubePlot| |scaleRoots| |conditions| |numberOfMonomials| - |pole?| |critMonD1| |getMatch| |arguments| |leftGcd| |clikeUniv| - |symbolIfCan| |coHeight| |pmComplexintegrate| |psolve| |match| - |c05adf| |fmecg| |euclideanSize| |pointPlot| |callForm?| |unparse| - |LyndonBasis| |subset?| |leastMonomial| |accuracyIF| |insertTop!| - |nthExponent| |exQuo| |s17ajf| |matrixConcat3D| |curryRight| |e02agf| - |romberg| |expandLog| |pop!| |dimensionsOf| |largest| |imagI| |node?| - |partialDenominators| |stopTableInvSet!| |socf2socdf| |e01baf| |block| - |OMwrite| |separateDegrees| |consnewpol| |thenBranch| |sts2stst| - |edf2efi| |safeCeiling| |makeResult| |entry| |e02ajf| |sin2csc| - |OMlistCDs| |bipolar| |antiCommutative?| |s17dlf| |OMUnknownSymbol?| - |union| |iiacsch| |cycleRagits| |d03eef| |selectSumOfSquaresRoutines| - |fixedPoints| |iisqrt2| |expPot| |modifyPoint| |multMonom| |exponent| - |appendPoint| |tanNa| |elColumn2!| |mainSquareFreePart| - |contractSolve| |closedCurve| |palgint0| |characteristicSet| - |divisorCascade| |c02agf| |rootRadius| |matrixGcd| |cycleEntry| - |poisson| |show| |formula| |rewriteIdealWithRemainder| |terms| |mix| - |quotedOperators| |fill!| |mesh?| |factorFraction| |replaceKthElement| - |minPoly| |e02adf| |squareMatrix| |call| |nsqfree| |tail| |setelt| - |polyPart| |deepestInitial| |primitive?| |writeInt8!| |toScale| - |vedf2vef| |credPol| |maxRowIndex| |trace| |basicSet| |cos2sec| - |expandPower| |colorDef| |prinshINFO| |string?| |OMcloseConn| - |hostPlatform| |clearFortranOutputStack| |xn| |extractSplittingLeaf| - |errorInfo| |copy| |dequeue| |setClipValue| |rootBound| |lowerCase!| - |someBasis| |setStatus| |fortranDouble| |OMgetBVar| |scopes| |nrows| - |viewWriteDefault| |particularSolution| |makeViewport2D| - |outputGeneral| |solveLinearPolynomialEquationByRecursion| |void| - |perfectSqrt| |irreducibleFactors| |partitions| |radicalSolve| |imagi| - |ncols| |commutativeEquality| |parabolic| |leadingBasisTerm| - |setleft!| |RittWuCompare| |lexTriangular| |qualifier| |ODESolve| - |primitivePart| |constDsolve| |normalDenom| |coefChoose| |cAsech| - |parametric?| |semiResultantEuclidean2| |prime?| |rightExactQuotient| - |nodes| |multiplyCoefficients| |eof?| |pushucoef| - |createRandomElement| |commutative?| |thetaCoord| |dualSignature| - |indiceSubResultant| |unary?| |integer?| |lazyPremWithDefault| - |directSum| |binary| |positive?| |fixedPoint| |elRow1!| - |rewriteSetByReducingWithParticularGenerators| |oddInfiniteProduct| - |domainTemplate| |setMinPoints| |fixedPointExquo| |s17akf| - |inverseIntegralMatrixAtInfinity| |cycleSplit!| |arrayStack| - |summation| |sdf2lst| |d02gaf| |totalDifferential| |rischDEsys| - |lfextlimint| |commaSeparate| |superHeight| |viewPosDefault| - |isImplies| |expt| |associates?| |rubiksGroup| |setProperties!| - |generalizedContinuumHypothesisAssumed| |adaptive3D?| |content| - |showTheIFTable| |cycleLength| |result| |setleaves!| |lambert| - |univariatePolynomials| |baseRDEsys| |writable?| - |genericRightMinimalPolynomial| |beauzamyBound| |extendedint| - |selectAndPolynomials| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |setchildren!| |hasHi| |cylindrical| |result| + |solve1| |series| |expPot| |plot| |semiLastSubResultantEuclidean| + |connect| |OMlistSymbols| |movedPoints| |c06gbf| |finite?| |reset| + |zero| |df2fi| |dmpToP| |constantIfCan| |ratDenom| |ideal| + |numberOfCycles| |multinomial| |getExplanations| |nullSpace| + |stronglyReduced?| |complexForm| |mkAnswer| |e02def| + |changeWeightLevel| |singularAtInfinity?| FG2F |sumOfKthPowerDivisors| + |box| |plotPolar| |leftFactorIfCan| |iroot| |makeFloatFunction| + |dominantTerm| |write| |And| |OMputApp| |generalLambert| |fixedPoint| + |fullDisplay| |reducedDiscriminant| |limitPlus| |random| |sechIfCan| + |radicalRoots| |save| |colorDef| |modifyPointData| |min| |Or| + |nilFactor| |addPoint2| |sizePascalTriangle| |leastMonomial| |makeEq| + |evaluateInverse| |rootKerSimp| |push| |genericLeftTrace| |variable?| + |Not| |subHeight| |normalizeIfCan| |makeVariable| |clearTheFTable| + |whileLoop| |inverseColeman| |minGbasis| + |standardBasisOfCyclicSubmodule| |perfectNthPower?| |predicates| + |Lazard2| |coerceS| |powerAssociative?| |linears| |rationalPoints| + |logpart| |categoryFrame| |c06fqf| |qPot| |pushNewContour| + |fullPartialFraction| |matrixGcd| |mergeDifference| |karatsuba| |keys| + |s17agf| |complexEigenvectors| |sort!| |copyInto!| |LyndonWordsList1| + |SturmHabicht| |generator| |possiblyInfinite?| |hasTopPredicate?| + |inverse| |viewDeltaYDefault| |symbolTable| |singular?| |double?| + |lazy?| |lo| |legendre| |e02ddf| |resetNew| |lfextlimint| + |strongGenerators| |normInvertible?| |selectODEIVPRoutines| + |getSyntaxFormsFromFile| |RemainderList| |iicosh| |horizConcat| + |latex| |insertBottom!| |lineColorDefault| |randomR| |ceiling| + |pushFortranOutputStack| |indicialEquationAtInfinity| |normal?| |cExp| + |LiePolyIfCan| |transform| |incr| |setButtonValue| |fi2df| |one?| + |outputFloating| |monomialIntPoly| |popFortranOutputStack| |infix?| + |clipWithRanges| |completeEval| |eulerE| |rewriteSetWithReduction| + |realEigenvalues| |hi| |rightAlternative?| |flatten| |mask| |s13acf| + |numer| ** |Ci| |lazyResidueClass| |partitions| |outputAsFortran| + |exptMod| |subspace| |rombergo| |OMlistCDs| |validExponential| + |checkRur| |denom| |accuracyIF| |componentUpperBound| |makeCrit| + |reorder| |charClass| |factorset| |vertConcat| |totalDegree| + |printingInfo?| |coth2trigh| |stoseInternalLastSubResultant| + |bumptab1| |c06frf| |s19abf| |prinshINFO| |connectTo| |true| + |squareFreePrim| |quasiMonic?| |cardinality| |host| |pi| + |palgintegrate| LODO2FUN |commutator| |oddlambert| |stirling1| + |numberOfDivisors| |subResultantGcdEuclidean| |roughUnitIdeal?| + |lazyPrem| |loopPoints| |infinity| |OMputEndBVar| |exponential1| + |f01qcf| |cfirst| |sparsityIF| |prologue| |principal?| |rotate| + |commutative?| |cycleEntry| |UpTriBddDenomInv| |invmultisect| + |squareFreeLexTriangular| |messagePrint| |basisOfNucleus| |mapmult| + |d01akf| |fixPredicate| |choosemon| |rightOne| |commaSeparate| + |resize| |shiftRight| |lagrange| |totalfract| |argscript| + |skewSFunction| |zag| |genericLeftMinimalPolynomial| |nextSubsetGray| + |normDeriv2| |radicalEigenvectors| |setPosition| + |createPrimitiveElement| |overbar| |hconcat| |OMputFloat| |children| + |intChoose| |curve| |setProperties| |s18aef| |imagk| |showClipRegion| + |categories| |comparison| |primlimintfrac| |bipolar| + |stiffnessAndStabilityFactor| |e02baf| |outerProduct| |returnTypeOf| + |shellSort| |curryLeft| |fillPascalTriangle| |f07fef| |eigenvalues| + |nthFractionalTerm| |space| |sumSquares| |s17dgf| |lfextendedint| + |OMgetEndAttr| |logIfCan| |wordsForStrongGenerators| |reseed| |delete| + |cyclotomicDecomposition| |absolutelyIrreducible?| |bitCoef| + |simplifyExp| |basisOfRightAnnihilator| |inspect| |insertTop!| + |lookupFunction| |pmintegrate| |usingTable?| |minimize| |npcoef| + |coerceP| |orthonormalBasis| |rightMinimalPolynomial| |factorial| + |f04mbf| |readInt8!| |continuedFraction| |radicalSolve| |vector| + |atoms| |string?| |gcdprim| |quasiComponent| |comment| |generators| + |identitySquareMatrix| |genericLeftTraceForm| |innerSolve1| + |reduction| |sizeMultiplication| |differentiate| |getlo| |csch2sinh| + |e02bdf| |routines| |cubic| |divisors| |perfectNthRoot| |leftMult| + |OMputObject| |listOfLists| |range| |LyndonWordsList| |getCode| + |linearDependenceOverZ| |thetaCoord| |poisson| |superHeight| + |resetVariableOrder| |readUInt32!| |indiceSubResultantEuclidean| + |optAttributes| |ode| |degreeSubResultant| |exponential| |e02zaf| + |factorOfDegree| |c05pbf| |monicDivide| |iicot| |subResultantsChain| + |monicLeftDivide| |acothIfCan| |functorData| |nextLatticePermutation| + |iiatan| |pseudoRemainder| |OMopenFile| |setPrologue!| |expIfCan| + |hitherPlane| |isobaric?| |s17aef| |antiCommutative?| |OMputBind| + |lyndon?| |reduceBasisAtInfinity| |getIdentifier| |univariate?| |null| + |numFunEvals3D| |cycleTail| |positiveSolve| |discriminantEuclidean| + |makeSUP| |quotientByP| |sinhIfCan| |schwerpunkt| |addMatch| |module| + |preprocess| |d01gaf| |midpoint| GF2FG |not| |fortranLogical| + |OMputEndAttr| |extractTop!| |enumerate| |d01aqf| |nthExponent| + |normalized?| |lfintegrate| |wordInGenerators| |and| |polygon?| + |rightMult| |sqfree| |atrapezoidal| |stoseIntegralLastSubResultant| + |roman| |alphanumeric| |close!| |symmetricSquare| |or| + |univariatePolynomialsGcds| |mvar| |setErrorBound| |argumentList!| + |rightCharacteristicPolynomial| |satisfy?| |real?| |OMreceive| + |listYoungTableaus| |karatsubaOnce| |Lazard| |xor| |returnType!| + |irreducibleRepresentation| |tube| |OMread| + |removeIrreducibleRedundantFactors| |symmetricGroup| |att2Result| + |setsubMatrix!| |factorSFBRlcUnit| |length| |isList| + |monicRightDivide| |case| |log10| |property| |OMcloseConn| + |wordInStrongGenerators| |completeHensel| |getVariableOrder| + |monomials| |nonLinearPart| |scripts| |hasoln| |viewPosDefault| + |imagi| |overset?| |Zero| |bitand| |finiteBound| |s01eaf| |prindINFO| + |monic?| |dualSignature| |style| |rewriteIdealWithRemainder| + |multiEuclidean| |tRange| |slash| |One| |bitior| |exprex| + |stoseLastSubResultant| |rightScalarTimes!| |incrementKthElement| + |subResultantChain| |rightTraceMatrix| |subMatrix| + |numberOfIrreduciblePoly| |topPredicate| |leftLcm| |tubeRadiusDefault| + |units| |d02cjf| |tab| |s17dlf| |before?| |s14baf| |critM| + |palgextint| |antiAssociative?| |sign| |primaryDecomp| |ratpart| + |ocf2ocdf| |isAnd| |constantOperator| |invertibleSet| |trim| |iiacos| + |f01brf| |redPol| |orbits| |repSq| |showScalarValues| |reverse!| + |symbol?| |quickSort| |generalizedInverse| |variationOfParameters| + |modTree| |numberOfNormalPoly| |exQuo| |exactQuotient!| |setClosed| + |padicFraction| |coercePreimagesImages| |closeComponent| + |complexLimit| |leftRemainder| |univariatePolynomial| |systemSizeIF| + |delta| |domainTemplate| |swap!| |readInt32!| |cAcsc| + |resultantEuclidean| |elt| |rootSimp| |indices| |rroot| + |initiallyReduced?| |wreath| |extract!| |entry?| |key| + |factorsOfCyclicGroupSize| |gbasis| |newTypeLists| |makeprod| |code| + |c06fuf| |setAdaptive| |drawComplexVectorField| UP2UTS + |measure2Result| |cn| |rightZero| |subNode?| |ScanRoman| |addBadValue| + |regularRepresentation| |acotIfCan| |localUnquote| |wholeRadix| + |lintgcd| |jacobian| |tanh2coth| |resetAttributeButtons| |filename| + |triangularSystems| |zeroVector| |isImplies| |conjugate| |pquo| + |c05nbf| |s14aaf| |s17def| |sylvesterSequence| + |purelyAlgebraicLeadingMonomial?| |factorials| |cot2trig| |d02raf| + |branchIfCan| |interactiveEnv| |leadingIdeal| |algebraicDecompose| + |hostPlatform| |monicModulo| |rur| |indiceSubResultant| + |exprHasAlgebraicWeight| |parse| |terms| |zeroSquareMatrix| + |ip4Address| |commutativeEquality| |c06ebf| |iibinom| |startStats!| + |nary?| |OMUnknownSymbol?| |unrankImproperPartitions0| |any?| |is?| + |e01bgf| |OMputEndApp| |point?| |hdmpToDmp| |component| + |lazyPseudoRemainder| |polar| |rational?| |digit?| + |resultantEuclideannaif| |curveColorPalette| |derivationCoordinates| + |listConjugateBases| |extractPoint| |typeList| |endSubProgram| + |Vectorise| |cschIfCan| |fortranReal| |curve?| |LazardQuotient| + |s17ajf| |diagonalProduct| |eyeDistance| |dimension| |setMinPoints| + |lSpaceBasis| |e02dff| |rightNorm| |setOrder| |compBound| |asechIfCan| + |iiasin| |csubst| |OMParseError?| |Gamma| |rootDirectory| |iomode| + |extendedSubResultantGcd| |imagE| |conditionP| |completeEchelonBasis| + |computeCycleEntry| Y |eigenvector| |integralMatrixAtInfinity| + |leadingTerm| |li| |charthRoot| |blue| |datalist| |bandedHessian| |sh| + |convergents| |showTheFTable| |top!| |omError| |isPower| + |internalSubPolSet?| |overlap| |isAbsolutelyIrreducible?| |cAsec| + |e02aef| |substring?| |quadraticForm| |s13adf| |coerceListOfPairs| + |expt| |rarrow| |ParCond| |initializeGroupForWordProblem| |iiacsch| + |fortranCompilerName| |integralAtInfinity?| |opeval| |showSummary| + |nthr| |monicDecomposeIfCan| |quadraticNorm| |innerSolve| |constant?| + |nthCoef| |quasiMonicPolynomials| |suffix?| |fprindINFO| |nullity| + |factorGroebnerBasis| |palglimint| |compdegd| |row| |e| + |pseudoQuotient| |constantToUnaryFunction| |square?| |unary?| + |truncate| |showAttributes| |integers| |extensionDegree| |rank| + |deleteProperty!| |fortranCarriageReturn| |aQuadratic| |prefix?| + |const| |makeSin| |setColumn!| |s18dcf| |d01asf| |f01maf| + |selectIntegrationRoutines| |splitLinear| |denominator| + |sylvesterMatrix| |debug3D| |degreePartition| |contract| |parabolic| + |iFTable| |homogeneous?| |radicalOfLeftTraceForm| |iiacot| |mapdiv| + |lowerCase?| |closedCurve| |HenselLift| |symmetric?| |sequence| + |equiv| |pastel| |e01bef| |nothing| |monomRDE| + |shanksDiscLogAlgorithm| |splitDenominator| |euclideanSize| + |symbolIfCan| |decimal| |highCommonTerms| |s19aaf| |credPol| |name| + |thenBranch| |laplacian| |removeZero| |complexSolve| |identityMatrix| + |s19adf| |harmonic| |makeUnit| |rootsOf| |body| |relationsIdeal| + |s17adf| |alternating| |printInfo!| |OMgetEndError| |algebraic?| + |s17dhf| |updateStatus!| |morphism| |linearAssociatedOrder| + |trivialIdeal?| |iprint| |multiEuclideanTree| |setFormula!| + |stoseSquareFreePart| |lists| |computeInt| |lazyGintegrate| + |findBinding| |clearCache| |OMputAttr| |s21bcf| |headAst| |besselK| + |minordet| |realSolve| |henselFact| |operators| |initTable!| |e02dcf| + |stoseInvertibleSet| |retract| |width| |boundOfCauchy| + |characteristicSerie| |selectfirst| |weierstrass| |c06ekf| |cCosh| + |f04jgf| |integer?| |imagK| |listBranches| |repeating| + |inGroundField?| |numberOfFractionalTerms| |makeViewport2D| |f02adf| + |condition| |isTimes| |changeBase| |error| |alternative?| |e01daf| + |supRittWu?| |addPoint| |idealiserMatrix| |getMeasure| |stop| + |brillhartTrials| |port| |paren| |mindeg| |prinb| |divideIfCan| + |nextPartition| |coHeight| |assert| |stopMusserTrials| + |halfExtendedResultant1| |more?| |factorSquareFreeByRecursion| + |removeCoshSq| |rightExactQuotient| |ruleset| |palgint0| |fglmIfCan| + |pointPlot| |rationalIfCan| |axesColorDefault| |t| |cycle| + |internalLastSubResultant| |sts2stst| |mainContent| |meshPar1Var| + |quoted?| |countRealRoots| |dflist| |nextColeman| |LazardQuotient2| EQ + |complement| |cCos| |setAttributeButtonStep| |f07fdf| + |leviCivitaSymbol| |branchPointAtInfinity?| |readUInt16!| |bumptab| + |maxRowIndex| |infix| |recip| |pdct| |suchThat| |e04ucf| + |setTopPredicate| |matrix| |optional| |htrigs| |outputGeneral| + |errorKind| |leftTraceMatrix| |collectUnder| |setEpilogue!| |plus!| + |e04gcf| |arity| |infinite?| |setPoly| |purelyAlgebraic?| |graphState| + |critT| |inconsistent?| UTS2UP |OMgetType| |removeDuplicates!| + |mainExpression| |cAtanh| |coshIfCan| |e02bef| |setvalue!| |infLex?| + |medialSet| |traceMatrix| |parseString| |restorePrecision| + |cyclicGroup| |generalTwoFactor| |fortran| |exteriorDifferential| + |mantissa| |gderiv| |printTypes| |move| |solveLinearlyOverQ| + |associator| |polynomialZeros| |characteristicPolynomial| |mathieu12| + |rationalFunction| |gethi| |composite| |defineProperty| |makingStats?| + |fortranInteger| |getDatabase| |mesh| |trigs| |center| |readable?| + |readUInt8!| |OMsupportsCD?| |makeGraphImage| |ode1| |scale| |lquo| + |iitan| |callForm?| |s18acf| |check| |trailingCoefficient| SEGMENT + |edf2efi| |pair?| |nodes| |operation| |characteristicSet| |cCsc| + |resultantReduitEuclidean| |OMbindTCP| |mainDefiningPolynomial| + |structuralConstants| |interpolate| |reindex| |complete| |innerint| + |pointColor| |getProperties| |invmod| |makeYoungTableau| + |trigs2explogs| |comp| |leftNorm| |compile| |expenseOfEvaluation| + |subTriSet?| |makeFR| |plus| |f02wef| |hypergeometric0F1| |submod| + |rightRecip| |rightQuotient| |modulus| |c06eaf| |diagonal| + |antiCommutator| |OMputEndBind| |infieldIntegrate| |outputArgs| + |contains?| |abs| |basicSet| |raisePolynomial| |monicRightFactorIfCan| + |numberOfHues| |acosIfCan| |coord| |SturmHabichtSequence| + |limitedIntegrate| |monomialIntegrate| |moebiusMu| |graphImage| + |d01alf| |rischDE| |rowEchelon| |dequeue!| |splitNodeOf!| |root| + |column| |parameters| |noKaratsuba| |var2Steps| |linearDependence| + |iipow| |times| |ddFact| |compiledFunction| |BumInSepFFE| |cosIfCan| + |definingEquations| |frst| |algSplitSimple| |zeroDimensional?| + |optimize| |tan2trig| |signAround| |char| |supersub| + |getMultiplicationTable| |fractRadix| |iidprod| |OMputString| + |iiasinh| |top| |f01qdf| |measure| |currentCategoryFrame| |maxIndex| + |bindings| |sortConstraints| |concat| |unparse| |setfirst!| + |lastSubResultant| |script| |components| |safeCeiling| |f02axf| |dec| + |times!| |members| |linearAssociatedLog| |tableau| |rootPower| + |stoseInvertible?reg| |list| |leftExtendedGcd| |linearAssociatedExp| + |acoshIfCan| |multiplyCoefficients| |inc| |monom| |divisorCascade| + |removeConstantTerm| |partialFraction| |iiatanh| + |solveLinearPolynomialEquationByRecursion| |car| |basisOfLeftNucloid| + |refine| |Si| |iteratedInitials| |nonQsign| |direction| |twist| + |sturmVariationsOf| |secIfCan| |create3Space| |cdr| |sdf2lst| + |subresultantVector| |approxSqrt| |OMconnInDevice| |printStatement| + |decrease| |queue| |setlast!| |mat| |mulmod| |setDifference| + |plusInfinity| |pomopo!| |kroneckerDelta| |OMputBVar| + |subResultantGcd| |common| |cond| |getZechTable| |float| |fibonacci| + |linearPolynomials| |complexEigenvalues| |rational| |setIntersection| + |minusInfinity| |duplicates| |s14abf| |rightRemainder| + |cRationalPower| |reify| |entries| |semiSubResultantGcdEuclidean1| + |insertRoot!| |hex| |setUnion| |initial| |cos2sec| |bernoulli| + |viewSizeDefault| |groebgen| |rem| |rationalApproximation| |bumprow| + |stripCommentsAndBlanks| |minrank| |algebraicSort| |apply| + |parabolicCylindrical| |notelem| |OMsupportsSymbol?| |cAcoth| |quo| + |createLowComplexityTable| |coerceL| |atanIfCan| |singularitiesOf| + |groebnerIdeal| |split!| |Ei| |corrPoly| |viewpoint| |intersect| + |makeop| |setMaxPoints| |kmax| |redpps| |size| |tanhIfCan| + |rewriteIdealWithQuasiMonicGenerators| |changeThreshhold| + |partialNumerators| |div| |doublyTransitive?| |LyndonBasis| |lifting| + |divide| |algebraicVariables| |type| |polygamma| |rootSplit| + |makeResult| |linearPart| |exquo| |innerEigenvectors| |output| |tree| + |differentialVariables| |bat1| |collectUpper| |weighted| + |trace2PowMod| |intPatternMatch| |taylorIfCan| |eof?| ~= |c02agf| + |nextPrimitivePoly| |bitLength| |perfectSqrt| |scripted?| |first| + |extend| |inputOutputBinaryFile| |OMgetVariable| |patternVariable| |#| + GE |integrate| |cSin| |explicitlyEmpty?| + |semiDegreeSubResultantEuclidean| |changeMeasure| |rest| + |topFortranOutputStack| |safeFloor| |prod| ~ |buildSyntax| + |dimensionOfIrreducibleRepresentation| GT |qroot| |headRemainder| + |noLinearFactor?| |setAdaptive3D| |substitute| |exprToGenUPS| + |factorSquareFreePolynomial| |patternMatchTimes| |graphStates| LE + |regime| |asinIfCan| |simplifyLog| |cartesian| |representationType| + |removeDuplicates| |complexZeros| |leftExactQuotient| |isTerm| + |antisymmetricTensors| |colorFunction| LT |radPoly| |stopTable!| + |irreducibleFactor| |cAtan| |rk4qc| |central?| |whitePoint| |/\\| + |showTheRoutinesTable| |zero?| |endOfFile?| |cot2tan| |capacity| + |getOrder| |lift| |expandPower| |interval| |OMmakeConn| + |binaryTournament| |\\/| |tryFunctionalDecomposition| + |definingInequation| |OMUnknownCD?| |extractIndex| |norm| |compose| + |reduce| |exprHasWeightCosWXorSinWX| |s21baf| |FormatArabic| + |typeLists| |createNormalPrimitivePoly| |printStats!| |concat!| + |f01mcf| |isOp| |hMonic| |e02ajf| |chebyshevT| |rightFactorIfCan| + |discreteLog| |OMopenString| |subset?| |basisOfCentroid| + |numberOfPrimitivePoly| |sorted?| |fractRagits| + |stoseInvertible?sqfreg| |simplifyPower| |normalizedDivide| + |binaryTree| |complexExpand| |wrregime| |low| |lazyVariations| + |elementary| |totalLex| |pushucoef| |localAbs| |screenResolution3D| + |selectOrPolynomials| |exprHasLogarithmicWeights| |cAcsch| |realRoots| + |bivariatePolynomials| |interReduce| |pol| |cAsin| |startTable!| + |normal01| |lazyPseudoDivide| |rename!| |autoCoerce| |extractBottom!| + |Is| |permanent| |minRowIndex| |stirling2| |rectangularMatrix| + |recolor| |insert!| |decompose| |presub| |abelianGroup| |round| + |optional?| |equation| |rischDEsys| |remove!| |cyclePartition| + |irreducibleFactors| |branchPoint?| |setTex!| |zoom| + |internalZeroSetSplit| |iiexp| |bits| |part?| |continue| |properties| + |maxPoints3D| |combineFeatureCompatibility| |outputSpacing| + |headReduced?| |extractClosed| |f02aff| |s13aaf| |flexibleArray| + |elements| |subSet| |extractProperty| |intermediateResultsIF| + |translate| |makeSeries| |cyclicEqual?| |tower| |fortranLinkerArgs| + |OMgetAttr| |position| |outputForm| |stFunc1| |physicalLength| + |symbolTableOf| |tan2cot| |f2df| |push!| |signatureAst| |sin2csc| + |cotIfCan| |match?| |cosh2sech| |setprevious!| |rightTrace| |rst| + |sample| |rightPower| |d02gbf| |ScanArabic| |musserTrials| + |partialQuotients| |repeating?| |f02akf| |polyRDE| |byte| + |upDateBranches| |rightFactorCandidate| |bright| |exportedOperators| + |reciprocalPolynomial| |solveRetract| |iifact| |iilog| + |viewWriteDefault| |palgRDE| |primes| |deepestInitial| + |mapMatrixIfCan| |recoverAfterFail| |jordanAlgebra?| + |createRandomElement| |scaleRoots| |dim| |setFieldInfo| |function| + |setRow!| |firstSubsetGray| |bombieriNorm| |socf2socdf| + |antisymmetric?| |ellipticCylindrical| |internalIntegrate0| + |complexNumeric| |basis| |jacobi| |pow| |debug| |bothWays| + |viewThetaDefault| |radix| |reducedSystem| |eval| |currentScope| + |atom?| |generalizedEigenvector| |qfactor| |read!| D |writable?| + |virtualDegree| |open?| |kernels| |in?| |basisOfRightNucleus| + |removeCosSq| |maximumExponent| |maxColIndex| |setCondition!| + |element?| |interpret| |setMaxPoints3D| |nthRoot| + |associatorDependence| |appendPoint| |operator| |indicialEquation| + |minimumDegree| |generateIrredPoly| |distance| |arrayStack| |float?| + |createNormalElement| |curry| |mapUnivariateIfCan| |OMserve| |conjug| + |genus| |semiSubResultantGcdEuclidean2| |autoReduced?| |int| |s17aff| + |selectMultiDimensionalRoutines| |init| |power| |cSinh| |univariate| + |rightDiscriminant| |limit| |algDsolve| |nextPrime| |rightGcd| + |f02awf| |acschIfCan| |btwFact| |level| |double| |OMencodingBinary| + |LagrangeInterpolation| |factorSquareFree| |nextsubResultant2| + |triangSolve| |controlPanel| |bfEntry| |completeSmith| + |outputBinaryFile| |numberOfMonomials| |s17acf| |viewPhiDefault| |mr| + |rotatex| |mainKernel| |sin?| |leftRegularRepresentation| |unmakeSUP| + |figureUnits| |semicolonSeparate| |factor| |clipParametric| + |lyndonIfCan| |trapezoidal| |OMencodingUnknown| |writeLine!| + |genericRightMinimalPolynomial| |e01baf| |coefChoose| BY |sqrt| + |setref| |dictionary| |mainCoefficients| |leftDivide| |trunc| + |primitive?| |leftFactor| |head| |OMputEndObject| |leftTrace| |real| + |mapExpon| |composites| |createMultiplicationTable| |e04dgf| |Aleph| + |print| |d01apf| |f01rcf| |iisec| |iisin| |mathieu22| |imag| |lcm| + |cyclicSubmodule| |dmp2rfi| |separate| |resolve| |f04axf| |f01rdf| + |lazyIrreducibleFactors| |nextsousResultant2| |directProduct| |tanNa| + |iiasec| |roughSubIdeal?| |makeCos| |toseInvertible?| + |findConstructor| |inHallBasis?| |even?| |countable?| |declare!| + |append| |ListOfTerms| |pole?| |subPolSet?| |conjugates| |removeSinSq| + |wholeRagits| |lazyPquo| |nodeOf?| |leaf?| |linSolve| + |removeRedundantFactors| |brace| |chebyshevU| |gcd| |groebner?| + |showIntensityFunctions| |parts| |rk4f| |sayLength| |floor| + |doubleResultant| |bezoutMatrix| |bounds| |destruct| |rightLcm| + |false| |symmetricTensors| |scan| |reduceLODE| NOT |mkIntegral| + |f04faf| |coleman| |light| |iiabs| |showAll?| |computeCycleLength| + |OMreadStr| |argument| OR |bringDown| |pushdown| |padecf| + |deepestTail| |pmComplexintegrate| |resultantReduit| |copies| + |mainVariable?| AND |nativeModuleExtension| |changeNameToObjf| |block| + |collect| |rootPoly| |outputFixed| |f02agf| |janko2| |aQuartic| + |cCoth| |numberOfFactors| |taylorRep| |cAsech| |constantRight| + |monomial| |imaginary| |mainVariables| |linearMatrix| |reopen!| + |stack| |gcdPrimitive| |integerIfCan| + |solveLinearPolynomialEquationByFractions| |f07adf| |f04mcf| |table| + |multivariate| |torsionIfCan| |setValue!| |select!| |twoFactor| + |writeInt8!| |numberOfComposites| |monomial?| |just| |insert| |new| + |variables| |algebraicCoefficients?| |critMonD1| |solveid| |anticoord| + |crest| |useEisensteinCriterion| |OMgetSymbol| |adaptive?| |pdf2df| + |elColumn2!| |s18aff| |po| |tanintegrate| |viewDefaults| |cache| + |less?| |mainCharacterization| |csc2sin| |removeSinhSq| |build| + |outputMeasure| |critpOrder| |primlimitedint| |sturmSequence| + |primitivePart!| |beauzamyBound| |cscIfCan| |alphabetic| + |chineseRemainder| |changeVar| |laguerre| |hasSolution?| |delay| + |SturmHabichtMultiple| |symmetricRemainder| |indicialEquations| + |approximants| |rquo| |edf2ef| |coordinates| |bfKeys| |OMgetApp| + |unprotectedRemoveRedundantFactors| |bytes| |subCase?| |d01bbf| + |basisOfRightNucloid| |iisech| |taylor| |swapColumns!| |psolve| |tab1| + |revert| |readIfCan!| * |oblateSpheroidal| |OMwrite| |d02bbf| + |nullary?| |laurent| |squareFree| |f04adf| |oddintegers| |maxint| + |complexElementary| |status| |principalAncestors| |nthFlag| + |getOperands| |OMgetFloat| |df2mf| |puiseux| |associatedEquations| + |alphabetic?| |complex?| |cSech| |rowEchLocal| |neglist| |cycles| + |baseRDE| |nextNormalPrimitivePoly| |drawComplex| |e04jaf| |cAsinh| + |realZeros| |chvar| |stiffnessAndStabilityOfODEIF| |laplace| = |erf| + |f02fjf| |inv| |integral| |constantCoefficientRicDE| |getMatch| + |makeMulti| |besselI| |powers| |bezoutResultant| |FormatRoman| + |parametric?| |ground?| |left| |resultant| |OMconnectTCP| |viewport2D| + |constantOpIfCan| |argumentListOf| |toScale| |leastPower| < + |screenResolution| |subst| |vspace| |ground| |right| + |mainSquareFreePart| |arbitrary| |merge!| |permutation| |list?| + |getMultiplicationMatrix| |s20adf| > |sec2cos| |dilog| |adjoint| F2FG + |leadingMonomial| |setLength!| |s17dcf| |idealiser| |f04atf| |max| + |toroidal| |shallowExpand| <= |qqq| |companionBlocks| |sin| + |deleteRoutine!| |leadingCoefficient| |mergeFactors| |mdeg| + |calcRanges| |supDimElseRittWu?| |generalPosition| |extendedint| + |index?| >= |eisensteinIrreducible?| |cos| |primitiveMonomials| |rule| + |findCycle| |mappingAst| |c05adf| |prolateSpheroidal| |extractIfCan| + |separateDegrees| |hermiteH| |ksec| |primextendedint| |nil| |tan| + |associative?| |reductum| |relerror| |f02ajf| |cTanh| |solve| + |OMputError| |f01bsf| |externalList| |iiacsc| |cot| |computeBasis| + |every?| |wronskianMatrix| |unknownEndian| |epilogue| |heapSort| + |deepExpand| |besselY| |coefficients| + |objects| |sec| + |tryFunctionalDecomposition?| |rightExtendedGcd| |digits| + |fortranLiteral| |d03faf| |next| |leftDiscriminant| |green| + |loadNativeModule| - |mainVariable| |base| |pToHdmp| |csc| + |approximate| |fortranTypeOf| |digit| |leftGcd| |normalise| |uniform| + |complex| |readInt16!| |rationalPower| |goodnessOfFit| / |rotate!| + |asin| |log| |realEigenvectors| |fixedDivisor| |maxdeg| |polyRicDE| + |diagonalMatrix| |dom| |jordanAdmissible?| |ratDsolve| |pointData| + |semiResultantEuclidean2| |acos| |gramschmidt| |llprop| |degree| + |doubleDisc| |quatern| |leftRecip| |genericPosition| |middle| + |clearTheIFTable| |atan| |symbol| |contractSolve| |cycleElt| + |inverseLaplace| |internalIntegrate| |back| |vedf2vef| |eq?| + |wholePart| |transpose| |acot| |vconcat| |expression| |tanSum| + |segment| |aromberg| |internalAugment| |quotient| |fortranComplex| + |selectAndPolynomials| |applyRules| |asec| |nand| |integer| + |sinh2csch| |fmecg| |parents| |mpsode| |say| |cothIfCan| |consnewpol| + |c02aff| |expressIdealMember| |acsc| |spherical| |clikeUniv| + |radicalEigenvalues| |hermite| |prepareSubResAlgo| |title| + |intcompBasis| |prevPrime| |certainlySubVariety?| |sinh| |outputList| + |limitedint| |high| |setRealSteps| |elseBranch| |genericLeftNorm| + |currentSubProgram| |enqueue!| |cosh| |se2rfi| |karatsubaDivide| + |recur| |particularSolution| |expextendedint| |associatedSystem| + |randnum| |unitNormalize| |tanh| |useSingleFactorBound| + |leadingSupport| |binding| |internalInfRittWu?| |leader| + |genericRightTrace| |getButtonValue| |lieAdmissible?| |froot| |coth| + |isConnected?| |clearTable!| |initiallyReduce| |outlineRender| + |outputAsScript| |previous| |exprToUPS| |retractable?| |redPo| |sech| + |lambda| |cAcot| |e04fdf| |label| |replaceKthElement| |quadratic?| + |flagFactor| |rdHack1| |csch| |readBytes!| |c06ecf| |binaryFunction| + |principalIdeal| |generalizedEigenvectors| |normalDeriv| + |semiResultantReduitEuclidean| |asinh| |prime?| |divideIfCan!| + |LowTriBddDenomInv| |option?| |explimitedint| |Hausdorff| |iicsc| + |myDegree| |createGenericMatrix| |acosh| |leftRank| |redmat| + |clipBoolean| |rewriteIdealWithHeadRemainder| + |createLowComplexityNormalBasis| |createIrreduciblePoly| |atanh| + |dioSolve| |nthExpon| |OMputSymbol| |mapSolve| |ode2| |super| + |meshFun2Var| |dihedralGroup| |assign| |firstNumer| |acoth| + |OMgetInteger| |maxPoints| |increasePrecision| |setPredicates| + |fractionFreeGauss!| |escape| |listLoops| |byteBuffer| |summation| + |asech| |pack!| |mathieu23| |zerosOf| |e02bcf| |swap| |bernoulliB| + |roughBasicSet| |littleEndian| |constructor| |hcrf| + |lastSubResultantElseSplit| |e04ycf| |dimensionsOf| |insertMatch| + |multiple| |addPointLast| |remove| |leftScalarTimes!| |lowerCase!| + |distribute| |OMgetError| |option| |zeroSetSplit| |external?| + |showTheIFTable| |applyQuote| |squareFreePart| |zeroDim?| |pushuconst| + |eulerPhi| |numberOfVariables| |Frobenius| |isOpen?| + |semiIndiceSubResultantEuclidean| |euclideanGroebner| |last| |ldf2lst| + |minset| |lowerPolynomial| |monicCompleteDecompose| |printInfo| + |minPoly| |inverseIntegralMatrix| |graphCurves| |assoc| |varList| + |isNot| |simplify| |integralCoordinates| |modifyPoint| |depth| + |mapExponents| |setProperty| |pushdterm| |qualifier| |elliptic?| + |rootNormalize| |rightTrim| |knownInfBasis| |doubleRank| + |rationalPoint?| |divergence| |stosePrepareSubResAlgo| |droot| + |constant| |cTan| |exactQuotient| |leftTrim| |nlde| |generate| + |yCoord| |getRef| |e02ahf| |closedCurve?| |pToDmp| |moduloP| |seed| + |aspFilename| |internalSubQuasiComponent?| |f04qaf| |ricDsolve| + |front| |lazyPseudoQuotient| |fortranCharacter| |incrementBy| + |primintfldpoly| |perfectSquare?| |univcase| |elRow1!| |s18def| + |lexGroebner| |enterInCache| |uniform01| |palgextint0| |e01saf| + |expand| |OMgetEndAtp| |sinhcosh| |ranges| |normalize| + |removeRedundantFactorsInContents| |explicitlyFinite?| |setnext!| + |genericRightTraceForm| |filterWhile| |rightDivide| |rdregime| + |cyclicCopy| |rischNormalize| |OMgetEndApp| |OMgetEndBind| |largest| + |OMputAtp| |weights| |functionIsFracPolynomial?| |someBasis| + |filterUntil| |diagonal?| |critMTonD1| |definingPolynomial| + |predicate| |logical?| |cycleLength| |leftUnit| |elliptic| |ramified?| + |lastSubResultantEuclidean| |prinpolINFO| |select| |infinityNorm| + |multisect| |basisOfLeftNucleus| |commonDenominator| + |numericalIntegration| |reflect| |enterPointData| |multMonom| + |B1solve| |minPol| |e02adf| |rangePascalTriangle| |subQuasiComponent?| + |replace| |tanh2trigh| |dot| |oneDimensionalArray| |stoseInvertible?| + |removeRedundantFactorsInPols| |pattern| |safetyMargin| |charpol| + |hdmpToP| |putGraph| |lieAlgebra?| |f02bjf| |startPolynomial| + |dAndcExp| |perspective| |isOr| |lazyEvaluate| |airyBi| + |bandedJacobian| |OMgetBind| |nil?| |signature| + |semiResultantEuclideannaif| |mainMonomials| |functionIsOscillatory| + |resetBadValues| |asecIfCan| |infRittWu?| |ODESolve| |asimpson| + |primPartElseUnitCanonical| |leftAlternative?| |zeroDimPrime?| + |c06gsf| |surface| |tableForDiscreteLogarithm| |toseLastSubResultant| + |extendedEuclidean| |node| |dfRange| |createNormalPoly| |whatInfinity| + |powmod| |makeRecord| |rewriteSetByReducingWithParticularGenerators| + |message| |primPartElseUnitCanonical!| |leftUnits| |compound?| + |OMReadError?| |setOfMinN| |closed?| |palgLODE| |primextintfrac| + |transcendent?| |f02abf| |imagI| |decomposeFunc| |number?| |mkcomm| + |rightUnits| |setStatus| |ptree| |getOperator| |eigenvectors| |hash| + |primitiveElement| |setleaves!| |useEisensteinCriterion?| + |selectPolynomials| |testModulus| |palgRDE0| |iiacoth| |leftOne| + |count| |d01amf| |iiperm| |pointColorPalette| |hspace| |cyclotomic| + |size?| |setLegalFortranSourceExtensions| |phiCoord| |mainValue| + |iicoth| |leftPower| |sech2cosh| |permutations| |diagonals| + |localIntegralBasis| |iisinh| |evaluate| |bitTruth| |exponent| + |physicalLength!| |setVariableOrder| |squareMatrix| + |basisOfCommutingElements| |rangeIsFinite| |factorAndSplit| |cons| + |sub| |minPoints| |d02bhf| |superscript| |updatD| |qinterval| + |subtractIfCan| |PDESolve| |tensorProduct| |halfExtendedResultant2| + |lighting| |divisor| |gcdcofactprim| |mightHaveRoots| |unvectorise| + |newReduc| |nextSublist| |rootOf| |asinhIfCan| + |numberOfImproperPartitions| |iicsch| + |zeroSetSplitIntoTriangularSystems| |iterationVar| |shuffle| |df2ef| + |mathieu11| |genericRightNorm| |critBonD| |negative?| |iisqrt3| + |mapGen| |f02aaf| |empty| |hessian| |bubbleSort!| |primitivePart| + |forLoop| |sPol| |extendedIntegrate| |blankSeparate| |e02gaf| + |OMencodingSGML| |checkPrecision| |oddInfiniteProduct| |polyred| + |lfunc| |node?| |infiniteProduct| |fortranDouble| |groebnerFactorize| + |singleFactorBound| |factorPolynomial| |normFactors| |cycleSplit!| + |trueEqual| |halfExtendedSubResultantGcd2| |basisOfMiddleNucleus| + |showArrayValues| |removeSuperfluousCases| |weakBiRank| |dn| |source| + |rightRegularRepresentation| |mathieu24| |numerator| |deriv| + |numberOfComputedEntries| |universe| |fortranDoubleComplex| |lambert| + |scalarMatrix| |localReal?| |exprToXXP| |lfinfieldint| |outputAsTex| + |graphs| |doubleComplex?| |increment| |copy!| |paraboloidal| |c06fpf| + |roughBase?| |cCot| |solveInField| |optpair| |bag| |pdf2ef| |bracket| + |ptFunc| |setScreenResolution3D| |isMult| |lprop| |nsqfree| + |normalElement| |d03edf| |approxNthRoot| |iflist2Result| + |userOrdered?| |integralMatrix| |slex| RF2UTS + |leftCharacteristicPolynomial| |eigenMatrix| |failed?| |target| + |stopTableGcd!| |empty?| |invertible?| |internalDecompose| + |hostByteOrder| |expenseOfEvaluationIF| |SturmHabichtCoefficients| + |numerators| |sum| |anfactor| |OMgetBVar| |null?| |fintegrate| + |reverse| |axes| |lllp| |readLine!| |LyndonCoordinates| |inf| + |palglimint0| |logGamma| |mirror| |formula| |sequences| + |partialDenominators| |ef2edf| |writeBytes!| |basisOfLeftAnnihilator| + |tanIfCan| |shrinkable| |infieldint| |expr| |lllip| + |balancedFactorisation| |postfix| |child?| |identification| + |univariateSolve| |sizeLess?| |createMultiplicationMatrix| |lp| + |increase| |rootProduct| |univariatePolynomials| |taylorQuoByVar| + |ravel| |leadingExponent| |idealSimplify| |primintegrate| |setEmpty!| + |declare| |f04maf| |triangular?| |options| |prepareDecompose| + |constDsolve| |tubePoints| |constantLeft| |reshape| |printCode| + |c06gcf| |kernel| |nrows| |separant| |vark| |d01ajf| |setProperty!| + |draw| |algint| |seriesToOutputForm| |realElementary| |cPower| |ncols| + |variable| |rightUnit| |coordinate| |sincos| |exists?| |e01bff| + |quasiRegular?| |saturate| |squareFreeFactors| |iterators| |polyPart| + |heap| |splitConstant| |string| |represents| |currentEnv| + |OMgetEndObject| |implies| |simpson| |numberOfComponents| |changeName| + |critB| |unitNormal| |iCompose| |failed| |permutationGroup| |delete!| + |isPlus| |showFortranOutputStack| |c06gqf| |integerBound| + |integralBasis| |e01sbf| |lowerCase| |processTemplate| |scopes| |qelt| + |completeHermite| |update| |leftQuotient| |laguerreL| |makeObject| + |over| |stopTableInvSet!| |semiDiscriminantEuclidean| |qsetelt| + |tubePlot| |f02bbf| |invertIfCan| |crushedSet| |coef| |red| + |repeatUntilLoop| |linear| |badValues| |quasiAlgebraicSet| |yellow| + |identity| |OMunhandledSymbol| |xRange| |getGoodPrime| |moebius| + |readByte!| |baseRDEsys| |pseudoDivide| |swapRows!| |An| |yRange| + |expandTrigProducts| |mindegTerm| |upperCase| |numberOfChildren| + |groebner| |polynomial| |resultantnaif| |plenaryPower| |zRange| + |imagj| |stronglyReduce| |f04arf| |iExquo| |precision| |ldf2vmf| + |cAcos| |stoseInvertibleSetsqfreg| |weight| |reduceByQuasiMonic| + |map!| |singRicDE| |bat| |simpsono| |OMgetObject| |selectPDERoutines| + |normalDenom| |clearFortranOutputStack| |unaryFunction| |tubeRadius| + |qsetelt!| |generic| |derivative| |factor1| |totalGroebner| + |pointSizeDefault| |minPoints3D| |dmpToHdmp| |tablePow| + |gcdPolynomial| |extension| |unravel| |retractIfCan| |radicalSimplify| + |getGraph| |iiacosh| |traverse| |internal?| |mix| |cyclic| |maxrow| + |normalizedAssociate| |printHeader| |untab| |mapBivariate| |d01gbf| + |cyclicParents| |index| |nthRootIfCan| |expintegrate| |OMputEndAtp| + |legendreP| |leaves| |goodPoint| |permutationRepresentation| |sn| + |rk4a| |overlabel| |unrankImproperPartitions1| |matrixConcat3D| + |showTheSymbolTable| |areEquivalent?| |purelyTranscendental?| + |linearlyDependentOverZ?| |acsch| |reduced?| |selectsecond| + |discriminant| |getBadValues| |simpleBounds?| |computePowers| + |factorList| |constantKernel| |numericIfCan| |pair| |tanQ| |belong?| + |isExpt| |test| |imports| |f02aef| |value| |bezoutDiscriminant| + |laurentRep| |compactFraction| |s17ahf| |multiplyExponents| + |hexDigit?| |randomLC| |rules| |hue| |removeZeroes| |var1Steps| + |lazyIntegrate| |solveLinearPolynomialEquation| |associates?| + |listexp| |directory| |xn| |child| |nextNormalPoly| |fTable| |open| + |quadratic| |inRadical?| |subresultantSequence| |hclf| |lex| |map| + |modularFactor| |pr2dmp| |rowEchelonLocal| |generalInfiniteProduct| + |brillhartIrreducible?| |writeUInt8!| |showAllElements| |odd?| + |mainForm| |denomLODE| |euler| |iicos| |quoByVar| |reducedQPowers| + |any| |eq| |newLine| |s15adf| |prefix| |listRepresentation| + |chiSquare1| |quasiRegular| |yCoordinates| |dimensions| |f01qef| + |cycleRagits| |OMgetString| |generic?| |unknown| |iter| + |quotedOperators| |powern| |transcendenceDegree| |ramifiedAtInfinity?| + |removeSuperfluousQuasiComponents| |iidsum| |numFunEvals| + |bivariateSLPEBR| |drawStyle| |alphanumeric?| |mapCoef| |operations| + |curveColor| |var1StepsDefault| |curryRight| |numeric| |pushup| + |clipSurface| |makeSketch| F |genericLeftDiscriminant| |binomial| + |nextPrimitiveNormalPoly| |e01sef| |ran| + |removeRoughlyRedundantFactorsInPol| |edf2fi| |writeByte!| |squareTop| + |chiSquare| |radical| |region| |complexRoots| |convert| + |explogs2trigs| |dark| |polCase| |toseInvertibleSet| |fixedPointExquo| + |octon| |cyclic?| |groebSolve| |OMsend| |sumOfSquares| + |modularGcdPrimitive| |df2st| |distFact| |pile| |magnitude| + |setright!| |distdfact| |functionIsContinuousAtEndPoints| + |numericalOptimization| |besselJ| |leadingBasisTerm| |padicallyExpand| + |createZechTable| |doubleFloatFormat| |palgLODE0| + |selectOptimizationRoutines| |factors| |PollardSmallFactor| |freeOf?| + |firstUncouplingMatrix| |quote| |rubiksGroup| |imagJ| + |leadingCoefficientRicDE| |nullary| |extractSplittingLeaf| + |sqfrFactor| |symmetricPower| |points| |withPredicates| |upperCase?| + |fortranLiteralLine| |removeSquaresIfCan| |aCubic| |listOfMonoms| + |multiple?| |makeTerm| |polygon| |BasicMethod| |e01bhf| |Beta| + |isEquiv| |exp| |problemPoints| |OMgetEndBVar| |unit?| |prime| |unit| + |d02gaf| |position!| |stoseInvertibleSetreg| |mkPrim| |setMinPoints3D| + |sumOfDivisors| |transcendentalDecompose| |ipow| + |leftMinimalPolynomial| |ffactor| |getPickedPoints| |mapUnivariate| + |meshPar2Var| |UnVectorise| |ridHack1| |monomRDEsys| |subNodeOf?| + |UP2ifCan| |separateFactors| |log2| |nextItem| + |selectNonFiniteRoutines| |unexpand| |f02xef| |s18adf| |hexDigit| + |bipolarCylindrical| |id| |lflimitedint| |d03eef| |linGenPos| + |lazyPremWithDefault| |second| |iitanh| |fill!| |goto| |rename| + |aLinear| |rspace| |reducedContinuedFraction| + |integralBasisAtInfinity| |shiftLeft| |evenlambert| |close| |e02daf| + |divideExponents| |third| |binarySearchTree| |complementaryBasis| + |e02agf| |pade| |cCsch| |algebraicOf| |nor| |triangulate| + |subscriptedVariables| |solveLinear| |seriesSolve| + |leastAffineMultiple| |bigEndian| |setLabelValue| + |conditionsForIdempotents| |symmetricProduct| |useNagFunctions| |sup| + |cup| |rootOfIrreduciblePoly| |search| |semiResultantEuclidean1| + |augment| |display| |airyAi| |subscript| |obj| |rotatey| |varselect| + |edf2df| |e04mbf| |shiftRoots| |frobenius| |write!| |denomRicDE| + |generalizedContinuumHypothesisAssumed?| |trapezoidalo| |fracPart| + |s17akf| |setProperties!| |color| |mainMonomial| |viewZoomDefault| + |setStatus!| |minColIndex| |errorInfo| |scanOneDimSubspaces| + |numberOfOperations| |coth2tanh| |minimumExponent| |complexNormalize| + |hyperelliptic| |initials| |schema| |getCurve| |rk4| |pureLex| + |e02bbf| |invertibleElseSplit?| |genericRightDiscriminant| + |drawToScale| |SFunction| |rowEch| |setleft!| |rightRankPolynomial| + |specialTrigs| |removeRoughlyRedundantFactorsInContents| |geometric| + |youngGroup| |isQuotient| |minIndex| |shufflein| |difference| + |insertionSort!| |returns| |diff| |pleskenSplit| |totalDifferential| + |extendIfCan| |viewport3D| |clipPointsDefault| |pointColorDefault| + |input| |multiset| |determinant| |duplicates?| + |selectSumOfSquaresRoutines| |f2st| |hasPredicate?| |ratPoly| |lhs| + |deref| |d02ejf| |normalForm| |lepol| |fractionPart| |category| + |irreducible?| |expintfldpoly| |library| |ScanFloatIgnoreSpaces| + |makeViewport3D| |stFunc2| |badNum| |zeroOf| |rhs| |coerceImages| + |cAcosh| |extendedResultant| |nthFactor| |acscIfCan| |domain| + |attributeData| |elRow2!| |setImagSteps| |meatAxe| |equality| + |directSum| |zeroMatrix| |showRegion| |linear?| |tanAn| |ParCondList| + |relativeApprox| |package| |Nul| |getStream| |normalizeAtInfinity| + |clearTheSymbolTable| |find| |collectQuasiMonic| |shift| |mesh?| + |coerce| |romberg| |inR?| |merge| |coefficient| |dequeue| |height| + |systemCommand| |expint| |gradient| |tValues| + |inverseIntegralMatrixAtInfinity| |laurentIfCan| |arg1| + |mainPrimitivePart| |construct| |uncouplingMatrices| |partition| + |symFunc| |readLineIfCan!| |linkToFortran| |factorByRecursion| + |deepCopy| |set| |viewDeltaXDefault| |rotatez| |bottom!| |elem?| + |arg2| |generalizedContinuumHypothesisAssumed| |leftRankPolynomial| + |parametersOf| |headReduce| |arguments| |kind| |gensym| + |selectFiniteRoutines| |tracePowMod| |algintegrate| |f07aef| + |upperCase!| |d01anf| |solid?| |lexico| |binomThmExpt| |totolex| + |matrixDimensions| |op| |normal| |addiag| |cLog| |var2StepsDefault| + |backOldPos| |s15aef| |conditions| |bivariate?| |toseSquareFreePart| + |e01sff| |f04asf| |createPrimitivePoly| |character?| |denominators| + |remainder| |moreAlgebraic?| |OMclose| |match| |zCoord| |vectorise| + |createPrimitiveNormalPoly| |palgint| |diag| |countRealRootsMultiple| + |packageCall| |prem| |minimalPolynomial| |product| |GospersMethod| + |setrest!| |bit?| |s19acf| |chainSubResultants| |atanhIfCan| |tex| + |OMgetAtp| |fixedPoints| |linearlyDependent?| |clip| |mapUp!| + |torsion?| |characteristic| |RittWuCompare| |decreasePrecision| + |roughEqualIdeals?| |primeFrobenius| |squareFreePolynomial| |binary| + |iiasech| |contours| |KrullNumber| |has?| |stFuncN| |biRank| |setelt!| + |tubePointsDefault| |integralRepresents| |entry| |f01ref| |exponents| + |ScanFloatIgnoreSpacesIfCan| |expandLog| |modularGcd| |OMputInteger| + |union| |setClipValue| |alternatingGroup| |solid| |power!| |lookup| + |splitSquarefree| |key?| |viewWriteAvailable| + |integralDerivationMatrix| |positiveRemainder| |integral?| + |probablyZeroDim?| |inrootof| |inputBinaryFile| |OMencodingXML| + |factorFraction| |adaptive3D?| |allRootsOf| |OMputEndError| |presuper| + |powerSum| |zeroDimPrimary?| |OMputVariable| |startTableInvSet!| + |show| |maxrank| |pascalTriangle| |rCoord| |diophantineSystem| + |possiblyNewVariety?| |digamma| |orbit| |evenInfiniteProduct| + |ignore?| |reverseLex| |integralLastSubResultant| |call| |kovacic| + |tail| |setelt| |balancedBinaryTree| |getConstant| + |symmetricDifference| |drawCurves| |cyclotomicFactorization| + |putColorInfo| |OMreadFile| |lifting1| |trace| |prefixRagits| |cross| + |sncndn| |exp1| |updatF| |generalSqFr| |encodingDirectory| + |firstDenom| |s21bdf| |patternMatch| |clearDenominator| |copy| + |intensity| |adaptive| |setScreenResolution| |addmod| |root?| + |pointLists| |midpoints| |reducedForm| |create| |shade| |s21bbf| + |scalarTypeOf| |e04naf| |conical| |explicitEntries?| |void| + |OMsetEncoding| |split| |iisqrt2| |iiGamma| |cyclicEntries| + |checkForZero| |complexNumericIfCan| |shallowCopy| |leftZero| + |interpretString| |mapDown!| |palginfieldint| |nonSingularModel| + |quartic| |positive?| |member?| |pop!| |exponentialOrder| |birth| + |jacobiIdentity?| |d02kef| |getProperty| |minus!| |radicalEigenvector| + |parent| |lyndon| |halfExtendedSubResultantGcd1| |moduleSum| + |sinIfCan| |polarCoordinates| |rootBound| + |noncommutativeJordanAlgebra?| |d01fcf| |degreeSubResultantEuclidean| + |flexible?| |leadingIndex| |content| |lexTriangular| + |removeRoughlyRedundantFactorsInPols| |bsolve| |smith| |LiePoly| + |OMconnOutDevice| |ReduceOrder| |xCoord| |testDim| |s20acf| |dihedral| + |factorsOfDegree| |point| |graeffe| |addMatchRestricted| |finiteBasis| + |rootRadius| |cap| |HermiteIntegrate| |startTableGcd!| + |createThreeSpace| |ord| |unitCanonical| |nextIrreduciblePoly| + |newSubProgram| |order| |basisOfCenter| |useSingleFactorBound?| + |unitVector| |primeFactor| |cSec| |e02akf| |cosSinInfo| |gcdcofact| + |complexIntegrate| |euclideanNormalForm| |rightRank| |sort| |ref| + |unitsColorDefault| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index f9bd9e52..787d1458 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5345 +1,5349 @@ -(3221272 . 3465761921) -((-2871 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3161 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4281 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1234 (-567)) |#2|) 44)) (-3224 (($ $) 81)) (-2499 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2567 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-3397 (((-645 |#2|) $) 13)) (-3523 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3751 (($ (-1 |#2| |#2|) $) 37)) (-3822 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2842 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-3424 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3256 (((-112) (-1 (-112) |#2|) $) 23)) (-1783 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1234 (-567))) 66)) (-1558 (($ $ (-567)) 76) (($ $ (-1234 (-567))) 75)) (-3439 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-2811 (($ $ $ (-567)) 69)) (-4303 (($ $) 68)) (-4142 (($ (-645 |#2|)) 73)) (-2260 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-4127 (((-863) $) 93)) (-2461 (((-112) (-1 (-112) |#2|) $) 22)) (-2929 (((-112) $ $) 96)) (-2952 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3224 (|#1| |#1|)) (-15 -2811 (|#1| |#1| |#1| (-567))) (-15 -2871 ((-112) |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4281 (|#2| |#1| (-1234 (-567)) |#2|)) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -4281 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3397 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4303 (|#1| |#1|))) (-19 |#2|) (-1217)) (T -18)) +(3222214 . 3466723552) +((-2496 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1394 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4284 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1235 (-567)) |#2|) 44)) (-1764 (($ $) 81)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2569 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-2777 (((-645 |#2|) $) 13)) (-4135 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3731 (($ (-1 |#2| |#2|) $) 37)) (-3829 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2845 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3025 (((-112) (-1 (-112) |#2|) $) 23)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1235 (-567))) 66)) (-1560 (($ $ (-567)) 76) (($ $ (-1235 (-567))) 75)) (-3439 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-1395 (($ $ $ (-567)) 69)) (-4305 (($ $) 68)) (-4147 (($ (-645 |#2|)) 73)) (-2269 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-4132 (((-863) $) 93)) (-1853 (((-112) (-1 (-112) |#2|) $) 22)) (-2936 (((-112) $ $) 96)) (-2958 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1764 (|#1| |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -2496 ((-112) |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) (-19 |#2|) (-1218)) (T -18)) NIL -(-10 -8 (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3224 (|#1| |#1|)) (-15 -2811 (|#1| |#1| |#1| (-567))) (-15 -2871 ((-112) |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4281 (|#2| |#1| (-1234 (-567)) |#2|)) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -4281 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3397 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4303 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-2567 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 71)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-19 |#1|) (-140) (-1217)) (T -19)) +(-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1764 (|#1| |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -2496 ((-112) |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-19 |#1|) (-140) (-1218)) (T -19)) NIL -(-13 (-375 |t#1|) (-10 -7 (-6 -4418))) -(((-34) . T) ((-102) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1101) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-1217) . T)) -((-3460 (((-3 $ "failed") $ $) 12)) (-3037 (($ $) NIL) (($ $ $) 9)) (* (($ (-922) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-21)) (T -20)) +(-13 (-375 |t#1|) (-10 -7 (-6 -4419))) +(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T)) +((-3472 (((-3 $ "failed") $ $) 12)) (-3045 (($ $) NIL) (($ $ $) 9)) (* (($ (-923) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) +(-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) (((-21) (-140)) (T -21)) -((-3037 (*1 *1 *1) (-4 *1 (-21))) (-3037 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3037 ($ $)) (-15 -3037 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1101) . T)) -((-2840 (((-112) $) 10)) (-2245 (($) 15)) (* (($ (-922) $) 14) (($ (-772) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 -2245 (|#1|)) (-15 * (|#1| (-922) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 -2245 (|#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16))) +((-3045 (*1 *1 *1) (-4 *1 (-21))) (-3045 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3045 ($ $)) (-15 -3045 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T)) +((-2460 (((-112) $) 10)) (-2585 (($) 15)) (* (($ (-923) $) 14) (($ (-772) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 * (|#1| (-923) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) (((-23) (-140)) (T -23)) -((-1710 (*1 *1) (-4 *1 (-23))) (-2245 (*1 *1) (-4 *1 (-23))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772))))) -(-13 (-25) (-10 -8 (-15 (-1710) ($) -3280) (-15 -2245 ($) -3280) (-15 -2840 ((-112) $)) (-15 * ($ (-772) $)))) -(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((* (($ (-922) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-922) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14))) +((-1716 (*1 *1) (-4 *1 (-23))) (-2585 (*1 *1) (-4 *1 (-23))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772))))) +(-13 (-25) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2585 ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ (-772) $)))) +(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((* (($ (-923) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-923) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14))) (((-25) (-140)) (T -25)) -((-3024 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922))))) -(-13 (-1101) (-10 -8 (-15 -3024 ($ $ $)) (-15 * ($ (-922) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-3689 (((-645 $) (-953 $)) 32) (((-645 $) (-1173 $)) 16) (((-645 $) (-1173 $) (-1177)) 20)) (-2002 (($ (-953 $)) 30) (($ (-1173 $)) 11) (($ (-1173 $) (-1177)) 60)) (-1599 (((-645 $) (-953 $)) 33) (((-645 $) (-1173 $)) 18) (((-645 $) (-1173 $) (-1177)) 19)) (-3070 (($ (-953 $)) 31) (($ (-1173 $)) 13) (($ (-1173 $) (-1177)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3689 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -3689 ((-645 |#1|) (-1173 |#1|))) (-15 -3689 ((-645 |#1|) (-953 |#1|))) (-15 -2002 (|#1| (-1173 |#1|) (-1177))) (-15 -2002 (|#1| (-1173 |#1|))) (-15 -2002 (|#1| (-953 |#1|))) (-15 -1599 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -1599 ((-645 |#1|) (-1173 |#1|))) (-15 -1599 ((-645 |#1|) (-953 |#1|))) (-15 -3070 (|#1| (-1173 |#1|) (-1177))) (-15 -3070 (|#1| (-1173 |#1|))) (-15 -3070 (|#1| (-953 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3689 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -3689 ((-645 |#1|) (-1173 |#1|))) (-15 -3689 ((-645 |#1|) (-953 |#1|))) (-15 -2002 (|#1| (-1173 |#1|) (-1177))) (-15 -2002 (|#1| (-1173 |#1|))) (-15 -2002 (|#1| (-953 |#1|))) (-15 -1599 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -1599 ((-645 |#1|) (-1173 |#1|))) (-15 -1599 ((-645 |#1|) (-953 |#1|))) (-15 -3070 (|#1| (-1173 |#1|) (-1177))) (-15 -3070 (|#1| (-1173 |#1|))) (-15 -3070 (|#1| (-953 |#1|)))) -((-2399 (((-112) $ $) 7)) (-3689 (((-645 $) (-953 $)) 88) (((-645 $) (-1173 $)) 87) (((-645 $) (-1173 $) (-1177)) 86)) (-2002 (($ (-953 $)) 91) (($ (-1173 $)) 90) (($ (-1173 $) (-1177)) 89)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2714 (($ $) 100)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-1599 (((-645 $) (-953 $)) 94) (((-645 $) (-1173 $)) 93) (((-645 $) (-1173 $) (-1177)) 92)) (-3070 (($ (-953 $)) 97) (($ (-1173 $)) 96) (($ (-1173 $) (-1177)) 95)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 99)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-3033 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923))))) +(-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ (-923) $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-3224 (((-645 $) (-954 $)) 32) (((-645 $) (-1174 $)) 16) (((-645 $) (-1174 $) (-1178)) 20)) (-4103 (($ (-954 $)) 30) (($ (-1174 $)) 11) (($ (-1174 $) (-1178)) 60)) (-2005 (((-645 $) (-954 $)) 33) (((-645 $) (-1174 $)) 18) (((-645 $) (-1174 $) (-1178)) 19)) (-3483 (($ (-954 $)) 31) (($ (-1174 $)) 13) (($ (-1174 $) (-1178)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) +((-2403 (((-112) $ $) 7)) (-3224 (((-645 $) (-954 $)) 88) (((-645 $) (-1174 $)) 87) (((-645 $) (-1174 $) (-1178)) 86)) (-4103 (($ (-954 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1178)) 89)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 100)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2005 (((-645 $) (-954 $)) 94) (((-645 $) (-1174 $)) 93) (((-645 $) (-1174 $) (-1178)) 92)) (-3483 (($ (-954 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1178)) 95)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) (((-27) (-140)) (T -27)) -((-3070 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-27)))) (-3070 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *1)) (-5 *3 (-1177)) (-4 *1 (-27)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1177)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-27)))) (-2002 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *1)) (-5 *3 (-1177)) (-4 *1 (-27)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1177)) (-4 *1 (-27)) (-5 *2 (-645 *1))))) -(-13 (-365) (-1003) (-10 -8 (-15 -3070 ($ (-953 $))) (-15 -3070 ($ (-1173 $))) (-15 -3070 ($ (-1173 $) (-1177))) (-15 -1599 ((-645 $) (-953 $))) (-15 -1599 ((-645 $) (-1173 $))) (-15 -1599 ((-645 $) (-1173 $) (-1177))) (-15 -2002 ($ (-953 $))) (-15 -2002 ($ (-1173 $))) (-15 -2002 ($ (-1173 $) (-1177))) (-15 -3689 ((-645 $) (-953 $))) (-15 -3689 ((-645 $) (-1173 $))) (-15 -3689 ((-645 $) (-1173 $) (-1177))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1003) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-3689 (((-645 $) (-953 $)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-1173 $) (-1177)) 55) (((-645 $) $) 22) (((-645 $) $ (-1177)) 46)) (-2002 (($ (-953 $)) NIL) (($ (-1173 $)) NIL) (($ (-1173 $) (-1177)) 57) (($ $) 20) (($ $ (-1177)) 40)) (-1599 (((-645 $) (-953 $)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-1173 $) (-1177)) 53) (((-645 $) $) 18) (((-645 $) $ (-1177)) 48)) (-3070 (($ (-953 $)) NIL) (($ (-1173 $)) NIL) (($ (-1173 $) (-1177)) NIL) (($ $) 15) (($ $ (-1177)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3689 ((-645 |#1|) |#1| (-1177))) (-15 -2002 (|#1| |#1| (-1177))) (-15 -3689 ((-645 |#1|) |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1599 ((-645 |#1|) |#1| (-1177))) (-15 -3070 (|#1| |#1| (-1177))) (-15 -1599 ((-645 |#1|) |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -3689 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -3689 ((-645 |#1|) (-1173 |#1|))) (-15 -3689 ((-645 |#1|) (-953 |#1|))) (-15 -2002 (|#1| (-1173 |#1|) (-1177))) (-15 -2002 (|#1| (-1173 |#1|))) (-15 -2002 (|#1| (-953 |#1|))) (-15 -1599 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -1599 ((-645 |#1|) (-1173 |#1|))) (-15 -1599 ((-645 |#1|) (-953 |#1|))) (-15 -3070 (|#1| (-1173 |#1|) (-1177))) (-15 -3070 (|#1| (-1173 |#1|))) (-15 -3070 (|#1| (-953 |#1|)))) (-29 |#2|) (-559)) (T -28)) -NIL -(-10 -8 (-15 -3689 ((-645 |#1|) |#1| (-1177))) (-15 -2002 (|#1| |#1| (-1177))) (-15 -3689 ((-645 |#1|) |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1599 ((-645 |#1|) |#1| (-1177))) (-15 -3070 (|#1| |#1| (-1177))) (-15 -1599 ((-645 |#1|) |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -3689 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -3689 ((-645 |#1|) (-1173 |#1|))) (-15 -3689 ((-645 |#1|) (-953 |#1|))) (-15 -2002 (|#1| (-1173 |#1|) (-1177))) (-15 -2002 (|#1| (-1173 |#1|))) (-15 -2002 (|#1| (-953 |#1|))) (-15 -1599 ((-645 |#1|) (-1173 |#1|) (-1177))) (-15 -1599 ((-645 |#1|) (-1173 |#1|))) (-15 -1599 ((-645 |#1|) (-953 |#1|))) (-15 -3070 (|#1| (-1173 |#1|) (-1177))) (-15 -3070 (|#1| (-1173 |#1|))) (-15 -3070 (|#1| (-953 |#1|)))) -((-2399 (((-112) $ $) 7)) (-3689 (((-645 $) (-953 $)) 88) (((-645 $) (-1173 $)) 87) (((-645 $) (-1173 $) (-1177)) 86) (((-645 $) $) 134) (((-645 $) $ (-1177)) 132)) (-2002 (($ (-953 $)) 91) (($ (-1173 $)) 90) (($ (-1173 $) (-1177)) 89) (($ $) 135) (($ $ (-1177)) 133)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1177)) $) 203)) (-2670 (((-410 (-1173 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-2564 (((-645 (-613 $)) $) 166)) (-3460 (((-3 $ "failed") $ $) 20)) (-2989 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2714 (($ $) 100)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-1599 (((-645 $) (-953 $)) 94) (((-645 $) (-1173 $)) 93) (((-645 $) (-1173 $) (-1177)) 92) (((-645 $) $) 138) (((-645 $) $ (-1177)) 136)) (-3070 (($ (-953 $)) 97) (($ (-1173 $)) 96) (($ (-1173 $) (-1177)) 95) (($ $) 139) (($ $ (-1177)) 137)) (-3747 (((-3 (-953 |#1|) "failed") $) 253 (|has| |#1| (-1050))) (((-3 (-410 (-953 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1039 (-567)))) (((-3 (-1177) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2797 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2033 (((-953 |#1|) $) 252 (|has| |#1| (-1050))) (((-410 (-953 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1039 (-567)))) (((-1177) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2797 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2344 (($ $ $) 61)) (-1868 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1050))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 242 (|has| |#1| (-1050))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 129 (-2797 (-1664 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-1664 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (((-690 (-567)) (-690 $)) 128 (-2797 (-1664 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-1664 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 195 (|has| |#1| (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 194 (|has| |#1| (-887 (-567))))) (-2482 (($ (-645 $)) 160) (($ $) 159)) (-3921 (((-645 (-114)) $) 167)) (-2652 (((-114) (-114)) 168)) (-2843 (((-112) $) 35)) (-2904 (((-112) $) 188 (|has| $ (-1039 (-567))))) (-1747 (($ $) 220 (|has| |#1| (-1050)))) (-1441 (((-1126 |#1| (-613 $)) $) 219 (|has| |#1| (-1050)))) (-1709 (($ $ (-567)) 99)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4275 (((-1173 $) (-613 $)) 185 (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) 174)) (-1622 (((-3 (-613 $) "failed") $) 164)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2640 (((-645 (-613 $)) $) 165)) (-3627 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-2662 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1113)))) (-2641 (((-3 (-2 (|:| |val| $) (|:| -4250 (-567))) "failed") $) 223 (|has| |#1| (-1050)))) (-2432 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-1440 (((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-4026 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-1177)) 222 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $) 215 (|has| |#1| (-1113)))) (-1582 (((-112) $ (-1177)) 171) (((-112) $ (-114)) 170)) (-2933 (($ $) 78)) (-4133 (((-772) $) 163)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 201)) (-2955 ((|#1| $) 202)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-3211 (((-112) $ (-1177)) 176) (((-112) $ $) 175)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2799 (((-112) $) 187 (|has| $ (-1039 (-567))))) (-2631 (($ $ (-1177) (-772) (-1 $ $)) 227 (|has| |#1| (-1050))) (($ $ (-1177) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1050))) (($ $ (-645 (-114)) (-645 $) (-1177)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1177)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1177))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1177)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1177) (-1 $ $)) 180) (($ $ (-1177) (-1 $ (-645 $))) 179) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1177)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-4197 (((-772) $) 64)) (-1783 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-1612 (($ $ $) 162) (($ $) 161)) (-1621 (($ $ (-1177)) 251 (|has| |#1| (-1050))) (($ $ (-645 (-1177))) 250 (|has| |#1| (-1050))) (($ $ (-1177) (-772)) 249 (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) 248 (|has| |#1| (-1050)))) (-3168 (($ $) 230 (|has| |#1| (-559)))) (-1455 (((-1126 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-2530 (($ $) 186 (|has| $ (-1050)))) (-3880 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-893 (-381)) $) 193 (|has| |#1| (-615 (-893 (-381))))) (((-893 (-567)) $) 192 (|has| |#1| (-615 (-893 (-567)))))) (-2073 (($ $ $) 256 (|has| |#1| (-476)))) (-3387 (($ $ $) 255 (|has| |#1| (-476)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-953 |#1|)) 254 (|has| |#1| (-1050))) (($ (-410 (-953 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1126 |#1| (-613 $))) 218 (|has| |#1| (-1050))) (($ |#1|) 200) (($ (-1177)) 191) (($ (-613 $)) 142)) (-1467 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-1331 (($ (-645 $)) 158) (($ $) 157)) (-2134 (((-112) (-114)) 169)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-2075 (($ (-1177) (-645 $)) 208) (($ (-1177) $ $ $ $) 207) (($ (-1177) $ $ $) 206) (($ (-1177) $ $) 205) (($ (-1177) $) 204)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1177)) 247 (|has| |#1| (-1050))) (($ $ (-645 (-1177))) 246 (|has| |#1| (-1050))) (($ $ (-1177) (-772)) 245 (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) 244 (|has| |#1| (-1050)))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73) (($ (-1126 |#1| (-613 $)) (-1126 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) +((-3483 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-4103 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) (-5 *2 (-645 *1))))) +(-13 (-365) (-1004) (-10 -8 (-15 -3483 ($ (-954 $))) (-15 -3483 ($ (-1174 $))) (-15 -3483 ($ (-1174 $) (-1178))) (-15 -2005 ((-645 $) (-954 $))) (-15 -2005 ((-645 $) (-1174 $))) (-15 -2005 ((-645 $) (-1174 $) (-1178))) (-15 -4103 ($ (-954 $))) (-15 -4103 ($ (-1174 $))) (-15 -4103 ($ (-1174 $) (-1178))) (-15 -3224 ((-645 $) (-954 $))) (-15 -3224 ((-645 $) (-1174 $))) (-15 -3224 ((-645 $) (-1174 $) (-1178))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1004) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-3224 (((-645 $) (-954 $)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 $) (-1178)) 55) (((-645 $) $) 22) (((-645 $) $ (-1178)) 46)) (-4103 (($ (-954 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1178)) 57) (($ $) 20) (($ $ (-1178)) 40)) (-2005 (((-645 $) (-954 $)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 $) (-1178)) 53) (((-645 $) $) 18) (((-645 $) $ (-1178)) 48)) (-3483 (($ (-954 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1178)) NIL) (($ $) 15) (($ $ (-1178)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3224 ((-645 |#1|) |#1| (-1178))) (-15 -4103 (|#1| |#1| (-1178))) (-15 -3224 ((-645 |#1|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -2005 ((-645 |#1|) |#1| (-1178))) (-15 -3483 (|#1| |#1| (-1178))) (-15 -2005 ((-645 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) (-29 |#2|) (-559)) (T -28)) +NIL +(-10 -8 (-15 -3224 ((-645 |#1|) |#1| (-1178))) (-15 -4103 (|#1| |#1| (-1178))) (-15 -3224 ((-645 |#1|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -2005 ((-645 |#1|) |#1| (-1178))) (-15 -3483 (|#1| |#1| (-1178))) (-15 -2005 ((-645 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) +((-2403 (((-112) $ $) 7)) (-3224 (((-645 $) (-954 $)) 88) (((-645 $) (-1174 $)) 87) (((-645 $) (-1174 $) (-1178)) 86) (((-645 $) $) 134) (((-645 $) $ (-1178)) 132)) (-4103 (($ (-954 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1178)) 89) (($ $) 135) (($ $ (-1178)) 133)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1178)) $) 203)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-2566 (((-645 (-613 $)) $) 166)) (-3472 (((-3 $ "failed") $ $) 20)) (-2960 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 100)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2005 (((-645 $) (-954 $)) 94) (((-645 $) (-1174 $)) 93) (((-645 $) (-1174 $) (-1178)) 92) (((-645 $) $) 138) (((-645 $) $ (-1178)) 136)) (-3483 (($ (-954 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1178)) 95) (($ $) 139) (($ $ (-1178)) 137)) (-3753 (((-3 (-954 |#1|) "failed") $) 253 (|has| |#1| (-1051))) (((-3 (-410 (-954 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1040 (-567)))) (((-3 (-1178) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-954 |#1|) $) 252 (|has| |#1| (-1051))) (((-410 (-954 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1040 (-567)))) (((-1178) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) 61)) (-2630 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 242 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 129 (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (((-690 (-567)) (-690 $)) 128 (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 195 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 194 (|has| |#1| (-888 (-567))))) (-2068 (($ (-645 $)) 160) (($ $) 159)) (-2034 (((-645 (-114)) $) 167)) (-2654 (((-114) (-114)) 168)) (-1433 (((-112) $) 35)) (-3837 (((-112) $) 188 (|has| $ (-1040 (-567))))) (-3530 (($ $) 220 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 219 (|has| |#1| (-1051)))) (-2651 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3263 (((-1174 $) (-613 $)) 185 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 174)) (-2700 (((-3 (-613 $) "failed") $) 164)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 165)) (-3632 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-2056 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 223 (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 222 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 215 (|has| |#1| (-1114)))) (-1854 (((-112) $ (-1178)) 171) (((-112) $ (-114)) 170)) (-2939 (($ $) 78)) (-4138 (((-772) $) 163)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 201)) (-2962 ((|#1| $) 202)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3922 (((-112) $ (-1178)) 176) (((-112) $ $) 175)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2757 (((-112) $) 187 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-1178) (-772) (-1 $ $)) 227 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1051))) (($ $ (-645 (-114)) (-645 $) (-1178)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1178)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1178) (-1 $ $)) 180) (($ $ (-1178) (-1 $ (-645 $))) 179) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-1990 (((-772) $) 64)) (-1787 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3241 (($ $ $) 162) (($ $) 161)) (-1593 (($ $ (-1178)) 251 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 250 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 249 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) 248 (|has| |#1| (-1051)))) (-1967 (($ $) 230 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-3341 (($ $) 186 (|has| $ (-1051)))) (-3893 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-894 (-381)) $) 193 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 192 (|has| |#1| (-615 (-894 (-567)))))) (-1823 (($ $ $) 256 (|has| |#1| (-476)))) (-1485 (($ $ $) 255 (|has| |#1| (-476)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-954 |#1|)) 254 (|has| |#1| (-1051))) (($ (-410 (-954 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1127 |#1| (-613 $))) 218 (|has| |#1| (-1051))) (($ |#1|) 200) (($ (-1178)) 191) (($ (-613 $)) 142)) (-1903 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1334 (($ (-645 $)) 158) (($ $) 157)) (-3797 (((-112) (-114)) 169)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-3247 (($ (-1178) (-645 $)) 208) (($ (-1178) $ $ $ $) 207) (($ (-1178) $ $ $) 206) (($ (-1178) $ $) 205) (($ (-1178) $) 204)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1178)) 247 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 246 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 245 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) 244 (|has| |#1| (-1051)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) (((-29 |#1|) (-140) (-559)) (T -29)) -((-3070 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-1599 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-1599 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3689 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-2002 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3070 ($ $)) (-15 -1599 ((-645 $) $)) (-15 -3070 ($ $ (-1177))) (-15 -1599 ((-645 $) $ (-1177))) (-15 -2002 ($ $)) (-15 -3689 ((-645 $) $)) (-15 -2002 ($ $ (-1177))) (-15 -3689 ((-645 $) $ (-1177))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-953 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-953 |#1|)) |has| |#1| (-1050)) ((-617 #4=(-1177)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1050)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) ((-640 |#1|) |has| |#1| (-1050)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-901 (-1177)) |has| |#1| (-1050)) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-921) . T) ((-1003) . T) ((-1039 (-410 (-567))) -2797 (|has| |#1| (-1039 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) ((-1039 #1#) |has| |#1| (-559)) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 #3#) |has| |#1| (-1050)) ((-1039 #4#) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) |has| |#1| (-172)) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1217) . T) ((-1221) . T)) -((-3732 (((-1095 (-225)) $) NIL)) (-3724 (((-1095 (-225)) $) NIL)) (-1906 (($ $ (-225)) 166)) (-3612 (($ (-953 (-567)) (-1177) (-1177) (-1095 (-410 (-567))) (-1095 (-410 (-567)))) 104)) (-2298 (((-645 (-645 (-944 (-225)))) $) 182)) (-4127 (((-863) $) 196))) -(((-30) (-13 (-956) (-10 -8 (-15 -3612 ($ (-953 (-567)) (-1177) (-1177) (-1095 (-410 (-567))) (-1095 (-410 (-567))))) (-15 -1906 ($ $ (-225)))))) (T -30)) -((-3612 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-953 (-567))) (-5 *3 (-1177)) (-5 *4 (-1095 (-410 (-567)))) (-5 *1 (-30)))) (-1906 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-956) (-10 -8 (-15 -3612 ($ (-953 (-567)) (-1177) (-1177) (-1095 (-410 (-567))) (-1095 (-410 (-567))))) (-15 -1906 ($ $ (-225))))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 11)) (-4104 (((-112) $ $) NIL)) (-3074 (((-1136) $) 9)) (-2929 (((-112) $ $) NIL))) -(((-31) (-13 (-1084) (-10 -8 (-15 -3074 ((-1136) $)) (-15 -1998 ((-1136) $))))) (T -31)) -((-3074 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-31)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-31))))) -(-13 (-1084) (-10 -8 (-15 -3074 ((-1136) $)) (-15 -1998 ((-1136) $)))) -((-3070 ((|#2| (-1173 |#2|) (-1177)) 41)) (-2652 (((-114) (-114)) 55)) (-4275 (((-1173 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1039 (-567))))) (-2962 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1039 (-567))))) (-3938 ((|#2| (-1173 |#2|) |#2|) 29)) (-1413 (((-863) (-645 |#2|)) 86)) (-2530 ((|#2| |#2|) 144 (|has| |#1| (-1039 (-567))))) (-2134 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1039 (-567)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3070 (|#2| (-1173 |#2|) (-1177))) (-15 -2652 ((-114) (-114))) (-15 -2134 ((-112) (-114))) (-15 -3938 (|#2| (-1173 |#2|) |#2|)) (-15 -1413 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1039 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -4275 ((-1173 |#2|) (-613 |#2|))) (-15 -2530 (|#2| |#2|)) (-15 -2962 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32)) -((-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1039 *4)) (-4 *3 (-559)))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-1039 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1039 (-567))) (-4 *4 (-559)) (-5 *2 (-1173 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1039 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-3938 (*1 *2 *3 *2) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *2)) (-5 *4 (-1177)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))) -(-10 -7 (-15 -3070 (|#2| (-1173 |#2|) (-1177))) (-15 -2652 ((-114) (-114))) (-15 -2134 ((-112) (-114))) (-15 -3938 (|#2| (-1173 |#2|) |#2|)) (-15 -1413 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1039 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -4275 ((-1173 |#2|) (-613 |#2|))) (-15 -2530 (|#2| |#2|)) (-15 -2962 (|#2| |#1| (-567)))) |%noBranch|)) -((-2112 (((-112) $ (-772)) 20)) (-2245 (($) 10)) (-1904 (((-112) $ (-772)) 19)) (-1596 (((-112) $ (-772)) 17)) (-2480 (((-112) $ $) 8)) (-3240 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -2245 (|#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772))) (-15 -3240 ((-112) |#1|)) (-15 -2480 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2245 (|#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772))) (-15 -3240 ((-112) |#1|)) (-15 -2480 ((-112) |#1| |#1|))) -((-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-1904 (((-112) $ (-772)) 9)) (-1596 (((-112) $ (-772)) 10)) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-4303 (($ $) 13)) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) +((-3483 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-3483 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3483 ($ $)) (-15 -2005 ((-645 $) $)) (-15 -3483 ($ $ (-1178))) (-15 -2005 ((-645 $) $ (-1178))) (-15 -4103 ($ $)) (-15 -3224 ((-645 $) $)) (-15 -4103 ($ $ (-1178))) (-15 -3224 ((-645 $) $ (-1178))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1178)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) -2800 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1218) . T) ((-1222) . T)) +((-3711 (((-1096 (-225)) $) NIL)) (-3703 (((-1096 (-225)) $) NIL)) (-2298 (($ $ (-225)) 166)) (-3878 (($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567)))) 104)) (-2049 (((-645 (-645 (-945 (-225)))) $) 182)) (-4132 (((-863) $) 196))) +(((-30) (-13 (-957) (-10 -8 (-15 -3878 ($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2298 ($ $ (-225)))))) (T -30)) +((-3878 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1178)) (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-957) (-10 -8 (-15 -3878 ($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2298 ($ $ (-225))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 11)) (-1745 (((-112) $ $) NIL)) (-3047 (((-1137) $) 9)) (-2936 (((-112) $ $) NIL))) +(((-31) (-13 (-1085) (-10 -8 (-15 -3047 ((-1137) $)) (-15 -2006 ((-1137) $))))) (T -31)) +((-3047 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31))))) +(-13 (-1085) (-10 -8 (-15 -3047 ((-1137) $)) (-15 -2006 ((-1137) $)))) +((-3483 ((|#2| (-1174 |#2|) (-1178)) 41)) (-2654 (((-114) (-114)) 55)) (-3263 (((-1174 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1040 (-567))))) (-1337 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1040 (-567))))) (-4257 ((|#2| (-1174 |#2|) |#2|) 29)) (-3285 (((-863) (-645 |#2|)) 86)) (-3341 ((|#2| |#2|) 144 (|has| |#1| (-1040 (-567))))) (-3797 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1040 (-567)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3483 (|#2| (-1174 |#2|) (-1178))) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -4257 (|#2| (-1174 |#2|) |#2|)) (-15 -3285 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3263 ((-1174 |#2|) (-613 |#2|))) (-15 -3341 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32)) +((-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1040 *4)) (-4 *3 (-559)))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-4257 (*1 *2 *3 *2) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1178)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))) +(-10 -7 (-15 -3483 (|#2| (-1174 |#2|) (-1178))) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -4257 (|#2| (-1174 |#2|) |#2|)) (-15 -3285 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3263 ((-1174 |#2|) (-613 |#2|))) (-15 -3341 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-567)))) |%noBranch|)) +((-3445 (((-112) $ (-772)) 20)) (-2585 (($) 10)) (-2077 (((-112) $ (-772)) 19)) (-2863 (((-112) $ (-772)) 17)) (-3092 (((-112) $ $) 8)) (-3572 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -2585 (|#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -3572 ((-112) |#1|)) (-15 -3092 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2585 (|#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -3572 ((-112) |#1|)) (-15 -3092 ((-112) |#1| |#1|))) +((-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2077 (((-112) $ (-772)) 9)) (-2863 (((-112) $ (-772)) 10)) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-4305 (($ $) 13)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) (((-34) (-140)) (T -34)) -((-2480 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4303 (*1 *1 *1) (-4 *1 (-34))) (-3347 (*1 *1) (-4 *1 (-34))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-1904 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2245 (*1 *1) (-4 *1 (-34))) (-2410 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-34)) (-5 *2 (-772))))) -(-13 (-1217) (-10 -8 (-15 -2480 ((-112) $ $)) (-15 -4303 ($ $)) (-15 -3347 ($)) (-15 -3240 ((-112) $)) (-15 -1596 ((-112) $ (-772))) (-15 -1904 ((-112) $ (-772))) (-15 -2112 ((-112) $ (-772))) (-15 -2245 ($) -3280) (IF (|has| $ (-6 -4417)) (-15 -2410 ((-772) $)) |%noBranch|))) -(((-1217) . T)) -((-3220 (($ $) 11)) (-3201 (($ $) 10)) (-3241 (($ $) 9)) (-3807 (($ $) 8)) (-3228 (($ $) 7)) (-3210 (($ $) 6))) +((-3092 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4305 (*1 *1 *1) (-4 *1 (-34))) (-3498 (*1 *1) (-4 *1 (-34))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2863 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2077 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-3445 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2585 (*1 *1) (-4 *1 (-34))) (-2414 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-34)) (-5 *2 (-772))))) +(-13 (-1218) (-10 -8 (-15 -3092 ((-112) $ $)) (-15 -4305 ($ $)) (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -2863 ((-112) $ (-772))) (-15 -2077 ((-112) $ (-772))) (-15 -3445 ((-112) $ (-772))) (-15 -2585 ($) -3286) (IF (|has| $ (-6 -4418)) (-15 -2414 ((-772) $)) |%noBranch|))) +(((-1218) . T)) +((-3200 (($ $) 11)) (-3183 (($ $) 10)) (-3221 (($ $) 9)) (-3785 (($ $) 8)) (-3211 (($ $) 7)) (-3193 (($ $) 6))) (((-35) (-140)) (T -35)) -((-3220 (*1 *1 *1) (-4 *1 (-35))) (-3201 (*1 *1 *1) (-4 *1 (-35))) (-3241 (*1 *1 *1) (-4 *1 (-35))) (-3807 (*1 *1 *1) (-4 *1 (-35))) (-3228 (*1 *1 *1) (-4 *1 (-35))) (-3210 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3210 ($ $)) (-15 -3228 ($ $)) (-15 -3807 ($ $)) (-15 -3241 ($ $)) (-15 -3201 ($ $)) (-15 -3220 ($ $)))) -((-2399 (((-112) $ $) 19 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3794 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 126)) (-3991 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 149)) (-4280 (($ $) 147)) (-2831 (($) 73) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 72)) (-2848 (((-1272) $ |#1| |#1|) 100 (|has| $ (-6 -4418))) (((-1272) $ (-567) (-567)) 179 (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 160 (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3161 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 201 (|has| $ (-6 -4418))) (($ $) 200 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2112 (((-112) $ (-772)) 8)) (-3785 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 135 (|has| $ (-6 -4418)))) (-1831 (($ $ $) 156 (|has| $ (-6 -4418)))) (-2125 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 158 (|has| $ (-6 -4418)))) (-3753 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 154 (|has| $ (-6 -4418)))) (-4281 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 190 (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-1234 (-567)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 161 (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "last" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 159 (|has| $ (-6 -4418))) (($ $ "rest" $) 157 (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "first" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 155 (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "value" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 134 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 133 (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 46 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 217)) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 56 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 176 (|has| $ (-6 -4417)))) (-3977 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 148)) (-4013 (((-3 |#2| "failed") |#1| $) 62)) (-2245 (($) 7 T CONST)) (-3224 (($ $) 202 (|has| $ (-6 -4418)))) (-3583 (($ $) 212)) (-2417 (($ $ (-772)) 143) (($ $) 141)) (-2300 (($ $) 215 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2440 (($ $) 59 (-2797 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))) (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 221) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 216 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 55 (|has| $ (-6 -4417))) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 175 (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 57 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 53 (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 177 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 174 (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 173 (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 191 (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) 89) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) 189)) (-1578 (((-112) $) 193)) (-2567 (((-567) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 209) (((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 208 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) (((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 31 (|has| $ (-6 -4417))) (((-645 |#2|) $) 80 (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 115 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 124)) (-4218 (((-112) $ $) 132 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2844 (($ (-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 170)) (-1904 (((-112) $ (-772)) 9)) (-3993 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-2010 (($ $ $) 199 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-1812 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3523 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 30 (|has| $ (-6 -4417))) (((-645 |#2|) $) 81 (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 116 (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417)))) (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))))) (-1958 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-2998 (($ $ $) 198 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 35 (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 111 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 110)) (-2276 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 226)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 129)) (-2915 (((-112) $) 125)) (-3739 (((-1159) $) 22 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3250 (($ $ (-772)) 146) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 144)) (-1422 (((-645 |#1|) $) 64)) (-1528 (((-112) |#1| $) 65)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 40)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 41) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-2842 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-2732 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-2479 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3430 (((-1121) $) 21 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2405 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 138)) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 52) (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 172)) (-4271 (($ $ |#2|) 99 (|has| $ (-6 -4418))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 180 (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 42)) (-3580 (((-112) $) 192)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 33 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 113 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) 27 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 26 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 25 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 24 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 122 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 121 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 120 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) 119 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 183 (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3564 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 186)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 188) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) 187) (($ $ (-1234 (-567))) 166) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "first") 139) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "value") 127)) (-4126 (((-567) $ $) 130)) (-3253 (($) 50) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 49)) (-2115 (($ $ (-567)) 223) (($ $ (-1234 (-567))) 222)) (-1558 (($ $ (-567)) 165) (($ $ (-1234 (-567))) 164)) (-3340 (((-112) $) 128)) (-1765 (($ $) 152)) (-4367 (($ $) 153 (|has| $ (-6 -4418)))) (-4387 (((-772) $) 151)) (-4263 (($ $) 150)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 114 (|has| $ (-6 -4417)))) (-2811 (($ $ $ (-567)) 203 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539)))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 51) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 171)) (-3444 (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 225) (($ $ $) 224)) (-2260 (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 137) (($ $ $) 136)) (-4127 (((-863) $) 18 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863)))))) (-3602 (((-645 $) $) 123)) (-2588 (((-112) $ $) 131 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-4104 (((-112) $ $) 23 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 43)) (-3258 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") |#1| $) 109)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 34 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 112 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 196 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2964 (((-112) $ $) 195 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2929 (((-112) $ $) 20 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2977 (((-112) $ $) 197 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2952 (((-112) $ $) 194 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-36 |#1| |#2|) (-140) (-1101) (-1101)) (T -36)) -((-3258 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-5 *2 (-2 (|:| -1791 *3) (|:| -4232 *4)))))) -(-13 (-1193 |t#1| |t#2|) (-667 (-2 (|:| -1791 |t#1|) (|:| -4232 |t#2|))) (-10 -8 (-15 -3258 ((-3 (-2 (|:| -1791 |t#1|) (|:| -4232 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((-102) -2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851))) ((-614 (-863)) -2797 (|has| |#2| (-1101)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)) ((-1011 #1#) . T) ((-1101) -2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851))) ((-1150 #1#) . T) ((-1193 |#1| |#2|) . T) ((-1217) . T) ((-1255 #1#) . T)) -((-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3200 (*1 *1 *1) (-4 *1 (-35))) (-3183 (*1 *1 *1) (-4 *1 (-35))) (-3221 (*1 *1 *1) (-4 *1 (-35))) (-3785 (*1 *1 *1) (-4 *1 (-35))) (-3211 (*1 *1 *1) (-4 *1 (-35))) (-3193 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3193 ($ $)) (-15 -3211 ($ $)) (-15 -3785 ($ $)) (-15 -3221 ($ $)) (-15 -3183 ($ $)) (-15 -3200 ($ $)))) +((-2403 (((-112) $ $) 19 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3802 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 126)) (-3998 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 149)) (-4283 (($ $) 147)) (-2835 (($) 73) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 72)) (-1783 (((-1273) $ |#1| |#1|) 100 (|has| $ (-6 -4419))) (((-1273) $ (-567) (-567)) 179 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 160 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-1394 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 201 (|has| $ (-6 -4419))) (($ $) 200 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-2138 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 135 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 156 (|has| $ (-6 -4419)))) (-2315 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 158 (|has| $ (-6 -4419)))) (-2271 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 154 (|has| $ (-6 -4419)))) (-4284 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 190 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-1235 (-567)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 161 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 159 (|has| $ (-6 -4419))) (($ $ "rest" $) 157 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 155 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 134 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 133 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 217)) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 176 (|has| $ (-6 -4418)))) (-3984 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 148)) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-1764 (($ $) 202 (|has| $ (-6 -4419)))) (-3584 (($ $) 212)) (-2421 (($ $ (-772)) 143) (($ $) 141)) (-2133 (($ $) 215 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2444 (($ $) 59 (-2800 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))) (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 221) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 216 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 175 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 177 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 174 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 173 (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 191 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 89) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 189)) (-1399 (((-112) $) 193)) (-2569 (((-567) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 209) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 208 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418))) (((-645 |#2|) $) 80 (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 115 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 124)) (-3512 (((-112) $ $) 132 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2846 (($ (-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 170)) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-1354 (($ $ $) 199 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2966 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-4135 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418))) (((-645 |#2|) $) 81 (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 116 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-2981 (($ $ $) 198 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 111 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 110)) (-2284 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 226)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 129)) (-2769 (((-112) $) 125)) (-1419 (((-1160) $) 22 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3257 (($ $ (-772)) 146) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 144)) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-2845 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-1789 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-2996 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3430 (((-1122) $) 21 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2409 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 138)) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52) (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 172)) (-3986 (($ $ |#2|) 99 (|has| $ (-6 -4419))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 180 (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3323 (((-112) $) 192)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 113 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 122 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 121 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 120 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 119 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 183 (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2339 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 186)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 188) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 187) (($ $ (-1235 (-567))) 166) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first") 139) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value") 127)) (-2658 (((-567) $ $) 130)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3670 (($ $ (-567)) 223) (($ $ (-1235 (-567))) 222)) (-1560 (($ $ (-567)) 165) (($ $ (-1235 (-567))) 164)) (-3900 (((-112) $) 128)) (-1644 (($ $) 152)) (-3519 (($ $) 153 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 151)) (-1503 (($ $) 150)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 114 (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) 203 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539)))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 171)) (-2484 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 225) (($ $ $) 224)) (-2269 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 137) (($ $ $) 136)) (-4132 (((-863) $) 18 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))))) (-1531 (((-645 $) $) 123)) (-3606 (((-112) $ $) 131 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1745 (((-112) $ $) 23 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-3266 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") |#1| $) 109)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 112 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 196 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2971 (((-112) $ $) 195 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2936 (((-112) $ $) 20 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2984 (((-112) $ $) 197 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2958 (((-112) $ $) 194 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-36 |#1| |#2|) (-140) (-1102) (-1102)) (T -36)) +((-3266 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| -1795 *3) (|:| -4237 *4)))))) +(-13 (-1194 |t#1| |t#2|) (-667 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))) (-10 -8 (-15 -3266 ((-3 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) ((-1012 #1#) . T) ((-1102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))) ((-1151 #1#) . T) ((-1194 |#1| |#2|) . T) ((-1218) . T) ((-1256 #1#) . T)) +((-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL -(-13 (-1050) (-718 |t#1|) (-617 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-1800 (((-421 |#1|) |#1|) 41)) (-2703 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-3629 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -2703 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -1800 ((-421 |#1|) |#1|)) (-15 -3629 ((-112) |#1|))) (-1243 (-48))) (T -39)) -((-3629 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48))))) (-1800 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48))))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48))))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48)))))) -(-10 -7 (-15 -2703 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -1800 ((-421 |#1|) |#1|)) (-15 -3629 ((-112) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-1485 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-1312 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2318 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2981 (((-690 (-410 |#2|)) (-1267 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4290 (((-410 |#2|) $) NIL)) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2833 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2373 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2371 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-2456 (((-112)) NIL)) (-1778 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-4025 (($ (-1267 (-410 |#2|)) (-1267 $)) NIL) (($ (-1267 (-410 |#2|))) 61) (($ (-1267 |#2|) |#2|) 136)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2344 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1937 (((-690 (-410 |#2|)) $ (-1267 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-410 |#2|))) (|:| |vec| (-1267 (-410 |#2|)))) (-690 $) (-1267 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-2963 (((-1267 $) (-1267 $)) NIL)) (-2499 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3153 (((-3 $ "failed") $) NIL)) (-2084 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-1589 (((-112) |#1| |#1|) NIL)) (-1979 (((-922)) NIL)) (-1378 (($) NIL (|has| (-410 |#2|) (-370)))) (-3062 (((-112)) NIL)) (-3495 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2355 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-4334 (($ $) NIL)) (-3005 (($) NIL (|has| (-410 |#2|) (-351)))) (-4284 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4112 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-4341 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2937 (((-922) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-351)))) (-2843 (((-112) $) NIL)) (-1921 (((-772)) NIL)) (-3487 (((-1267 $) (-1267 $)) 111)) (-2896 (((-410 |#2|) $) NIL)) (-3178 (((-645 (-953 |#1|)) (-1177)) NIL (|has| |#1| (-365)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2612 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3425 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-2488 ((|#3| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3739 (((-1159) $) NIL)) (-3811 (((-1272) (-772)) 88)) (-4366 (((-690 (-410 |#2|))) 56)) (-2325 (((-690 (-410 |#2|))) 49)) (-2933 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1913 (($ (-1267 |#2|) |#2|) 137)) (-3764 (((-690 (-410 |#2|))) 50)) (-3186 (((-690 (-410 |#2|))) 48)) (-4154 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-3030 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) 68)) (-2879 (((-1267 $)) 47)) (-1593 (((-1267 $)) 46)) (-2606 (((-112) $) NIL)) (-1789 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2701 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3763 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-3615 (((-3 |#2| "failed")) NIL)) (-3430 (((-1121) $) NIL)) (-1445 (((-772)) NIL)) (-1394 (($) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| (-410 |#2|) (-365)))) (-2771 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2703 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2387 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4197 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1783 ((|#1| $ |#1| |#1|) NIL)) (-3237 (((-3 |#2| "failed")) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1999 (((-410 |#2|) (-1267 $)) NIL) (((-410 |#2|)) 44)) (-3942 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1621 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3337 (((-690 (-410 |#2|)) (-1267 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2530 ((|#3|) 55)) (-3057 (($) NIL (|has| (-410 |#2|) (-351)))) (-2446 (((-1267 (-410 |#2|)) $ (-1267 $)) NIL) (((-690 (-410 |#2|)) (-1267 $) (-1267 $)) NIL) (((-1267 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1267 $)) 112)) (-3880 (((-1267 (-410 |#2|)) $) NIL) (($ (-1267 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-1370 (((-1267 $) (-1267 $)) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2797 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1467 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-3116 ((|#3| $) NIL)) (-1772 (((-772)) NIL T CONST)) (-3750 (((-112)) 42)) (-2861 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 102)) (-4380 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3596 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3222 (((-112)) NIL)) (-1710 (($) 17 T CONST)) (-1722 (($) 27 T CONST)) (-2636 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3811 ((-1272) (-772))))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) |#3|) (T -40)) -((-3811 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1243 *4)) (-5 *2 (-1272)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1243 (-410 *5))) (-14 *7 *6)))) -(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3811 ((-1272) (-772))))) -((-2666 ((|#2| |#2|) 47)) (-1912 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-3287 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-1759 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-2872 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-3319 (((-1173 |#2|) |#2|) 44)) (-2841 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2666 (|#2| |#2|)) (-15 -2841 (|#2| |#2|)) (-15 -2841 (|#2| |#2| |#2|)) (-15 -2841 (|#2| |#2| (-645 |#2|))) (-15 -2841 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -3319 ((-1173 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1039 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1759 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2872 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 |#1| (-613 $)) $)) (-15 -1455 ((-1126 |#1| (-613 $)) $)) (-15 -4127 ($ (-1126 |#1| (-613 $))))))) (T -41)) -((-2872 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *5 (-613 $)) $)) (-15 -1455 ((-1126 *5 (-613 $)) $)) (-15 -4127 ($ (-1126 *5 (-613 $))))))))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $))))))))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $))))))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $))))))))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1173 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) (-15 -1455 ((-1126 *4 (-613 $)) $)) (-15 -4127 ($ (-1126 *4 (-613 $))))))))) (-2841 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) (-15 -1455 ((-1126 *4 (-613 $)) $)) (-15 -4127 ($ (-1126 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) (-15 -1455 ((-1126 *4 (-613 $)) $)) (-15 -4127 ($ (-1126 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-2841 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $))))))))) (-2841 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $))))))))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) (-15 -1455 ((-1126 *3 (-613 $)) $)) (-15 -4127 ($ (-1126 *3 (-613 $)))))))))) -(-10 -7 (-15 -2666 (|#2| |#2|)) (-15 -2841 (|#2| |#2|)) (-15 -2841 (|#2| |#2| |#2|)) (-15 -2841 (|#2| |#2| (-645 |#2|))) (-15 -2841 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -3319 ((-1173 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1039 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1759 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2872 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) -((-2703 (((-421 (-1173 |#3|)) (-1173 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2703 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2703 ((-421 (-1173 |#3|)) (-1173 |#3|) (-645 (-48))))) (-851) (-794) (-950 (-48) |#2| |#1|)) (T -42)) -((-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-950 (-48) *6 *5)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-950 (-48) *6 *5))))) -(-10 -7 (-15 -2703 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2703 ((-421 (-1173 |#3|)) (-1173 |#3|) (-645 (-48))))) -((-3400 (((-772) |#2|) 72)) (-3332 (((-772) |#2|) 76)) (-3658 (((-645 |#2|)) 39)) (-2883 (((-772) |#2|) 75)) (-3180 (((-772) |#2|) 71)) (-2042 (((-772) |#2|) 74)) (-2236 (((-645 (-690 |#1|))) 67)) (-3875 (((-645 |#2|)) 62)) (-3726 (((-645 |#2|) |#2|) 50)) (-3529 (((-645 |#2|)) 64)) (-1895 (((-645 |#2|)) 63)) (-3940 (((-645 (-690 |#1|))) 55)) (-2142 (((-645 |#2|)) 61)) (-2114 (((-645 |#2|) |#2|) 49)) (-2328 (((-645 |#2|)) 57)) (-3055 (((-645 (-690 |#1|))) 68)) (-1577 (((-645 |#2|)) 66)) (-1975 (((-1267 |#2|) (-1267 |#2|)) 101 (|has| |#1| (-308))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2883 ((-772) |#2|)) (-15 -3332 ((-772) |#2|)) (-15 -3180 ((-772) |#2|)) (-15 -3400 ((-772) |#2|)) (-15 -2042 ((-772) |#2|)) (-15 -2328 ((-645 |#2|))) (-15 -2114 ((-645 |#2|) |#2|)) (-15 -3726 ((-645 |#2|) |#2|)) (-15 -2142 ((-645 |#2|))) (-15 -3875 ((-645 |#2|))) (-15 -1895 ((-645 |#2|))) (-15 -3529 ((-645 |#2|))) (-15 -1577 ((-645 |#2|))) (-15 -3940 ((-645 (-690 |#1|)))) (-15 -2236 ((-645 (-690 |#1|)))) (-15 -3055 ((-645 (-690 |#1|)))) (-15 -3658 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -1975 ((-1267 |#2|) (-1267 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43)) -((-1975 (*1 *2 *2) (-12 (-5 *2 (-1267 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-3658 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3055 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2236 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3940 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1577 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3529 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1895 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3875 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2142 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2114 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2328 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2042 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3180 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4))))) -(-10 -7 (-15 -2883 ((-772) |#2|)) (-15 -3332 ((-772) |#2|)) (-15 -3180 ((-772) |#2|)) (-15 -3400 ((-772) |#2|)) (-15 -2042 ((-772) |#2|)) (-15 -2328 ((-645 |#2|))) (-15 -2114 ((-645 |#2|) |#2|)) (-15 -3726 ((-645 |#2|) |#2|)) (-15 -2142 ((-645 |#2|))) (-15 -3875 ((-645 |#2|))) (-15 -1895 ((-645 |#2|))) (-15 -3529 ((-645 |#2|))) (-15 -1577 ((-645 |#2|))) (-15 -3940 ((-645 (-690 |#1|)))) (-15 -2236 ((-645 (-690 |#1|)))) (-15 -3055 ((-645 (-690 |#1|)))) (-15 -3658 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -1975 ((-1267 |#2|) (-1267 |#2|))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2720 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3316 (((-1267 (-690 |#1|)) (-1267 $)) NIL) (((-1267 (-690 |#1|))) 24)) (-4308 (((-1267 $)) 55)) (-2245 (($) NIL T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3650 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2942 (((-690 |#1|) (-1267 $)) NIL) (((-690 |#1|)) NIL)) (-2442 ((|#1| $) NIL)) (-1668 (((-690 |#1|) $ (-1267 $)) NIL) (((-690 |#1|) $) NIL)) (-2385 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-2852 (((-1173 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-2968 (($ $ (-922)) NIL)) (-2675 ((|#1| $) NIL)) (-3090 (((-1173 |#1|) $) NIL (|has| |#1| (-559)))) (-1809 ((|#1| (-1267 $)) NIL) ((|#1|) NIL)) (-3798 (((-1173 |#1|) $) NIL)) (-4037 (((-112)) 102)) (-4025 (($ (-1267 |#1|) (-1267 $)) NIL) (($ (-1267 |#1|)) NIL)) (-3153 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-1979 (((-922)) 56)) (-2128 (((-112)) NIL)) (-3709 (($ $ (-922)) NIL)) (-3809 (((-112)) NIL)) (-2427 (((-112)) NIL)) (-3151 (((-112)) 104)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-1946 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-3356 (((-690 |#1|) (-1267 $)) NIL) (((-690 |#1|)) NIL)) (-2506 ((|#1| $) NIL)) (-2013 (((-690 |#1|) $ (-1267 $)) NIL) (((-690 |#1|) $) NIL)) (-2539 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-1527 (((-1173 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-2941 (($ $ (-922)) NIL)) (-3660 ((|#1| $) NIL)) (-2464 (((-1173 |#1|) $) NIL (|has| |#1| (-559)))) (-2152 ((|#1| (-1267 $)) NIL) ((|#1|) NIL)) (-1837 (((-1173 |#1|) $) NIL)) (-2690 (((-112)) 101)) (-3739 (((-1159) $) NIL)) (-2972 (((-112)) 109)) (-3657 (((-112)) 108)) (-1790 (((-112)) 110)) (-3430 (((-1121) $) NIL)) (-3630 (((-112)) 103)) (-1783 ((|#1| $ (-567)) 58)) (-2446 (((-1267 |#1|) $ (-1267 $)) 53) (((-690 |#1|) (-1267 $) (-1267 $)) NIL) (((-1267 |#1|) $) 28) (((-690 |#1|) (-1267 $)) NIL)) (-3880 (((-1267 |#1|) $) NIL) (($ (-1267 |#1|)) NIL)) (-1526 (((-645 (-953 |#1|)) (-1267 $)) NIL) (((-645 (-953 |#1|))) NIL)) (-3387 (($ $ $) NIL)) (-4348 (((-112)) 98)) (-4127 (((-863) $) 75) (($ (-1267 |#1|)) 22)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 49)) (-2925 (((-645 (-1267 |#1|))) NIL (|has| |#1| (-559)))) (-1875 (($ $ $ $) NIL)) (-3947 (((-112)) 94)) (-2351 (($ (-690 |#1|) $) 18)) (-3411 (($ $ $) NIL)) (-4237 (((-112)) 100)) (-3571 (((-112)) 95)) (-2950 (((-112)) 93)) (-1710 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1143 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1143 |#2| |#1|)) (-10 -8 (-15 -4127 ($ (-1267 |#1|))))) (-365) (-922) (-645 (-1177)) (-1267 (-690 |#1|))) (T -44)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-365)) (-14 *6 (-1267 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1177)))))) -(-13 (-420 |#1|) (-649 (-1143 |#2| |#1|)) (-10 -8 (-15 -4127 ($ (-1267 |#1|))))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3794 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3991 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-4280 (($ $) NIL)) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418))) (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3161 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851))))) (-1332 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-3785 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418)))) (-1831 (($ $ $) 33 (|has| $ (-6 -4418)))) (-2125 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418)))) (-3753 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 35 (|has| $ (-6 -4418)))) (-4281 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-1234 (-567)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "last" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "first" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "value" (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3977 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-4013 (((-3 |#2| "failed") |#1| $) 43)) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2417 (($ $ (-772)) NIL) (($ $) 29)) (-2300 (($ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) NIL)) (-1578 (((-112) $) NIL)) (-2567 (((-567) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) (((-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 20 (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 20 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2844 (($ (-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-1812 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3523 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-2276 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) 49 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3250 (($ $ (-772)) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1422 (((-645 |#1|) $) 22)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2842 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-2479 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 27)) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3580 (((-112) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3564 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 19)) (-3240 (((-112) $) 18)) (-3347 (($) 14)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ (-567)) NIL) (($ $ (-1234 (-567))) NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "first") NIL) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $ "value") NIL)) (-4126 (((-567) $ $) NIL)) (-3253 (($) 13) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2115 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3340 (((-112) $) NIL)) (-1765 (($ $) NIL)) (-4367 (($ $) NIL (|has| $ (-6 -4418)))) (-4387 (((-772) $) NIL)) (-4263 (($ $) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3444 (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL) (($ $ $) NIL)) (-2260 (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 31) (($ $ $) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3258 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") |#1| $) 51)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2977 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-851)))) (-2410 (((-772) $) 25 (|has| $ (-6 -4417))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1101) (-1101)) (T -45)) +(-13 (-1051) (-718 |t#1|) (-617 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-4323 (((-421 |#1|) |#1|) 41)) (-2706 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-2381 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4323 ((-421 |#1|) |#1|)) (-15 -2381 ((-112) |#1|))) (-1244 (-48))) (T -39)) +((-2381 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-4323 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48)))))) +(-10 -7 (-15 -2706 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4323 ((-421 |#1|) |#1|)) (-15 -2381 ((-112) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4381 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) NIL)) (-1404 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) NIL) (($ (-1268 (-410 |#2|))) 61) (($ (-1268 |#2|) |#2|) 136)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-1639 (((-1268 $) (-1268 $)) NIL)) (-2477 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1381 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) NIL)) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) NIL)) (-3347 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2360 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-3501 (($ $) NIL)) (-3431 (($) NIL (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) NIL)) (-3663 (((-772)) NIL)) (-4126 (((-1268 $) (-1268 $)) 111)) (-2475 (((-410 |#2|) $) NIL)) (-4334 (((-645 (-954 |#1|)) (-1178)) NIL (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) NIL)) (-3280 (((-1273) (-772)) 88)) (-4143 (((-690 (-410 |#2|))) 56)) (-3264 (((-690 (-410 |#2|))) 49)) (-2939 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 137)) (-1900 (((-690 (-410 |#2|))) 50)) (-3564 (((-690 (-410 |#2|))) 48)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 68)) (-3992 (((-1268 $)) 47)) (-3675 (((-1268 $)) 46)) (-1928 (((-112) $) NIL)) (-4255 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2672 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) NIL)) (-3430 (((-1122) $) NIL)) (-2666 (((-772)) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) NIL)) (-3346 (((-3 |#2| "failed")) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) NIL) (((-410 |#2|)) 44)) (-2491 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 55)) (-1527 (($) NIL (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1268 $)) 112)) (-3893 (((-1268 (-410 |#2|)) $) NIL) (($ (-1268 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1903 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-2104 (((-112)) 42)) (-2542 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 102)) (-3816 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1562 (((-112)) NIL)) (-1716 (($) 17 T CONST)) (-1728 (($) 27 T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3280 ((-1273) (-772))))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) |#3|) (T -40)) +((-3280 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *2 (-1273)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1244 (-410 *5))) (-14 *7 *6)))) +(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3280 ((-1273) (-772))))) +((-2388 ((|#2| |#2|) 47)) (-1788 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-3613 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-2282 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-1362 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-4088 (((-1174 |#2|) |#2|) 44)) (-1320 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1320 (|#2| |#2| |#2|)) (-15 -1320 (|#2| |#2| (-645 |#2|))) (-15 -1320 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -4088 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2282 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1362 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 |#1| (-613 $)) $)) (-15 -1460 ((-1127 |#1| (-613 $)) $)) (-15 -4132 ($ (-1127 |#1| (-613 $))))))) (T -41)) +((-1362 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *5 (-613 $)) $)) (-15 -1460 ((-1127 *5 (-613 $)) $)) (-15 -4132 ($ (-1127 *5 (-613 $))))))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))))) (-1320 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1320 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1320 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $)))))))))) +(-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1320 (|#2| |#2| |#2|)) (-15 -1320 (|#2| |#2| (-645 |#2|))) (-15 -1320 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -4088 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2282 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1362 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) +((-2706 (((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2706 ((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48))))) (-851) (-794) (-951 (-48) |#2| |#1|)) (T -42)) +((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5))))) +(-10 -7 (-15 -2706 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2706 ((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48))))) +((-3525 (((-772) |#2|) 72)) (-4395 (((-772) |#2|) 76)) (-1975 (((-645 |#2|)) 39)) (-3194 (((-772) |#2|) 75)) (-3281 (((-772) |#2|) 71)) (-4233 (((-772) |#2|) 74)) (-2894 (((-645 (-690 |#1|))) 67)) (-2643 (((-645 |#2|)) 62)) (-1565 (((-645 |#2|) |#2|) 50)) (-1508 (((-645 |#2|)) 64)) (-3522 (((-645 |#2|)) 63)) (-2297 (((-645 (-690 |#1|))) 55)) (-3353 (((-645 |#2|)) 61)) (-3598 (((-645 |#2|) |#2|) 49)) (-3462 (((-645 |#2|)) 57)) (-2494 (((-645 (-690 |#1|))) 68)) (-4385 (((-645 |#2|)) 66)) (-2623 (((-1268 |#2|) (-1268 |#2|)) 101 (|has| |#1| (-308))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3194 ((-772) |#2|)) (-15 -4395 ((-772) |#2|)) (-15 -3281 ((-772) |#2|)) (-15 -3525 ((-772) |#2|)) (-15 -4233 ((-772) |#2|)) (-15 -3462 ((-645 |#2|))) (-15 -3598 ((-645 |#2|) |#2|)) (-15 -1565 ((-645 |#2|) |#2|)) (-15 -3353 ((-645 |#2|))) (-15 -2643 ((-645 |#2|))) (-15 -3522 ((-645 |#2|))) (-15 -1508 ((-645 |#2|))) (-15 -4385 ((-645 |#2|))) (-15 -2297 ((-645 (-690 |#1|)))) (-15 -2894 ((-645 (-690 |#1|)))) (-15 -2494 ((-645 (-690 |#1|)))) (-15 -1975 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2623 ((-1268 |#2|) (-1268 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43)) +((-2623 (*1 *2 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-1975 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2494 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2894 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2297 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4385 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1508 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3522 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2643 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3353 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3462 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3281 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-4395 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4))))) +(-10 -7 (-15 -3194 ((-772) |#2|)) (-15 -4395 ((-772) |#2|)) (-15 -3281 ((-772) |#2|)) (-15 -3525 ((-772) |#2|)) (-15 -4233 ((-772) |#2|)) (-15 -3462 ((-645 |#2|))) (-15 -3598 ((-645 |#2|) |#2|)) (-15 -1565 ((-645 |#2|) |#2|)) (-15 -3353 ((-645 |#2|))) (-15 -2643 ((-645 |#2|))) (-15 -3522 ((-645 |#2|))) (-15 -1508 ((-645 |#2|))) (-15 -4385 ((-645 |#2|))) (-15 -2297 ((-645 (-690 |#1|)))) (-15 -2894 ((-645 (-690 |#1|)))) (-15 -2494 ((-645 (-690 |#1|)))) (-15 -1975 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2623 ((-1268 |#2|) (-1268 |#2|))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) NIL) (((-1268 (-690 |#1|))) 24)) (-3337 (((-1268 $)) 55)) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-2583 ((|#1| $) NIL)) (-3528 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-4063 (((-1174 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL)) (-1575 (((-1174 |#1|) $) NIL (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-1682 (((-1174 |#1|) $) NIL)) (-1444 (((-112)) 102)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) NIL)) (-2109 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-1954 (((-923)) 56)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) 104)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-2726 ((|#1| $) NIL)) (-2702 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-4162 (((-1174 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL)) (-3960 (((-1174 |#1|) $) NIL (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-3567 (((-1174 |#1|) $) NIL)) (-3396 (((-112)) 101)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) 109)) (-3070 (((-112)) 108)) (-4341 (((-112)) 110)) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) 103)) (-1787 ((|#1| $ (-567)) 58)) (-2887 (((-1268 |#1|) $ (-1268 $)) 53) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) 28) (((-690 |#1|) (-1268 $)) NIL)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) NIL) (((-645 (-954 |#1|))) NIL)) (-1485 (($ $ $) NIL)) (-1502 (((-112)) 98)) (-4132 (((-863) $) 75) (($ (-1268 |#1|)) 22)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 49)) (-2652 (((-645 (-1268 |#1|))) NIL (|has| |#1| (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) 94)) (-2355 (($ (-690 |#1|) $) 18)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) 100)) (-1749 (((-112)) 95)) (-2059 (((-112)) 93)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1144 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4132 ($ (-1268 |#1|))))) (-365) (-923) (-645 (-1178)) (-1268 (-690 |#1|))) (T -44)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-14 *6 (-1268 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178)))))) +(-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4132 ($ (-1268 |#1|))))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3802 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3998 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-4283 (($ $) NIL)) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419))) (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-1394 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))))) (-4396 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-2138 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 33 (|has| $ (-6 -4419)))) (-2315 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-2271 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 35 (|has| $ (-6 -4419)))) (-4284 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-1235 (-567)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3984 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-4019 (((-3 |#2| "failed") |#1| $) 43)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $ (-772)) NIL) (($ $) 29)) (-2133 (($ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 20 (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 20 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2846 (($ (-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2966 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-4135 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-2284 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) 49 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3257 (($ $ (-772)) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1391 (((-645 |#1|) $) 22)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2845 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-2996 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 27)) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2339 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 19)) (-3572 (((-112) $) 18)) (-3498 (($) 14)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first") NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value") NIL)) (-2658 (((-567) $ $) NIL)) (-2718 (($) 13) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3670 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-2484 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (($ $ $) NIL)) (-2269 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 31) (($ $ $) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3266 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") |#1| $) 51)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2984 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2414 (((-772) $) 25 (|has| $ (-6 -4418))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1102) (-1102)) (T -45)) NIL (-36 |#1| |#2|) -((-2014 (((-112) $) 12)) (-3822 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2014 ((-112) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-47 |#2| |#3|) (-1050) (-793)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2014 ((-112) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-2014 (((-112) $) 74)) (-2821 (($ |#1| |#2|) 73)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-1813 ((|#2| $) 76)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2253 ((|#1| $ |#2|) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-47 |#1| |#2|) (-140) (-1050) (-793)) (T -47)) -((-2980 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2821 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-2253 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-365))))) -(-13 (-1050) (-111 |t#1| |t#1|) (-10 -8 (-15 -2980 (|t#1| $)) (-15 -2969 ($ $)) (-15 -1813 (|t#2| $)) (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (-15 -2014 ((-112) $)) (-15 -2821 ($ |t#1| |t#2|)) (-15 -3006 ($ $)) (-15 -2253 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3050 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3689 (((-645 $) (-1173 $) (-1177)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-953 $)) NIL)) (-2002 (($ (-1173 $) (-1177)) NIL) (($ (-1173 $)) NIL) (($ (-953 $)) NIL)) (-2840 (((-112) $) 11)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-2564 (((-645 (-613 $)) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2989 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-1599 (((-645 $) (-1173 $) (-1177)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-953 $)) NIL)) (-3070 (($ (-1173 $) (-1177)) NIL) (($ (-1173 $)) NIL) (($ (-953 $)) NIL)) (-3747 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2033 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2344 (($ $ $) NIL)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-410 (-567)))) (|:| |vec| (-1267 (-410 (-567))))) (-690 $) (-1267 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2499 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-2482 (($ $) NIL) (($ (-645 $)) NIL)) (-3921 (((-645 (-114)) $) NIL)) (-2652 (((-114) (-114)) NIL)) (-2843 (((-112) $) 14)) (-2904 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-1441 (((-1126 (-567) (-613 $)) $) NIL)) (-1709 (($ $ (-567)) NIL)) (-2896 (((-1173 $) (-1173 $) (-613 $)) NIL) (((-1173 $) (-1173 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4275 (((-1173 $) (-613 $)) NIL (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) NIL)) (-1622 (((-3 (-613 $) "failed") $) NIL)) (-2735 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-2640 (((-645 (-613 $)) $) NIL)) (-3627 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1582 (((-112) $ (-114)) NIL) (((-112) $ (-1177)) NIL)) (-2933 (($ $) NIL)) (-4133 (((-772) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3211 (((-112) $ $) NIL) (((-112) $ (-1177)) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1177) (-1 $ (-645 $))) NIL) (($ $ (-1177) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4197 (((-772) $) NIL)) (-1783 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-1455 (((-1126 (-567) (-613 $)) $) NIL)) (-2530 (($ $) NIL (|has| $ (-1050)))) (-3880 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-4127 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1126 (-567) (-613 $))) NIL)) (-1772 (((-772)) NIL T CONST)) (-1331 (($ $) NIL) (($ (-645 $)) NIL)) (-2134 (((-112) (-114)) NIL)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 7 T CONST)) (-1722 (($) 12 T CONST)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2929 (((-112) $ $) 16)) (-3050 (($ $ $) NIL)) (-3037 (($ $ $) 15) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL))) -(((-48) (-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4127 ($ (-1126 (-567) (-613 $)))) (-15 -1441 ((-1126 (-567) (-613 $)) $)) (-15 -1455 ((-1126 (-567) (-613 $)) $)) (-15 -2499 ($ $)) (-15 -2896 ((-1173 $) (-1173 $) (-613 $))) (-15 -2896 ((-1173 $) (-1173 $) (-645 (-613 $)))) (-15 -2896 ($ $ (-613 $))) (-15 -2896 ($ $ (-645 (-613 $))))))) (T -48)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-2499 (*1 *1 *1) (-5 *1 (-48))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))) -(-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4127 ($ (-1126 (-567) (-613 $)))) (-15 -1441 ((-1126 (-567) (-613 $)) $)) (-15 -1455 ((-1126 (-567) (-613 $)) $)) (-15 -2499 ($ $)) (-15 -2896 ((-1173 $) (-1173 $) (-613 $))) (-15 -2896 ((-1173 $) (-1173 $) (-645 (-613 $)))) (-15 -2896 ($ $ (-613 $))) (-15 -2896 ($ $ (-645 (-613 $)))))) -((-2399 (((-112) $ $) NIL)) (-2265 (((-645 (-509)) $) 17)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 7)) (-1998 (((-1182) $) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-49) (-13 (-1101) (-10 -8 (-15 -2265 ((-645 (-509)) $)) (-15 -1998 ((-1182) $))))) (T -49)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-49))))) -(-13 (-1101) (-10 -8 (-15 -2265 ((-645 (-509)) $)) (-15 -1998 ((-1182) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 87)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2803 (((-112) $) 30)) (-3747 (((-3 |#1| "failed") $) 33)) (-2033 ((|#1| $) 34)) (-3006 (($ $) 40)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2980 ((|#1| $) 31)) (-4328 (($ $) 76)) (-3739 (((-1159) $) NIL)) (-3609 (((-112) $) 43)) (-3430 (((-1121) $) NIL)) (-1394 (($ (-772)) 74)) (-3927 (($ (-645 (-567))) 75)) (-1813 (((-772) $) 44)) (-4127 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-2253 ((|#1| $ $) 28)) (-1772 (((-772)) 73 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 45 T CONST)) (-1722 (($) 17 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1039 |#1|) (-10 -8 (-15 -2980 (|#1| $)) (-15 -4328 ($ $)) (-15 -3006 ($ $)) (-15 -2253 (|#1| $ $)) (-15 -1394 ($ (-772))) (-15 -3927 ($ (-645 (-567)))) (-15 -3609 ((-112) $)) (-15 -2803 ((-112) $)) (-15 -1813 ((-772) $)) (-15 -3822 ($ (-1 |#1| |#1|) $)))) (-1050) (-645 (-1177))) (T -50)) -((-2980 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1177))))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1177))))) (-3006 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1177))))) (-2253 (*1 *2 *1 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1177))))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1177))))) (-3927 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1177))))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1177))))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1177))))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1177))))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1177)))))) -(-13 (-621 |#1|) (-1039 |#1|) (-10 -8 (-15 -2980 (|#1| $)) (-15 -4328 ($ $)) (-15 -3006 ($ $)) (-15 -2253 (|#1| $ $)) (-15 -1394 ($ (-772))) (-15 -3927 ($ (-645 (-567)))) (-15 -3609 ((-112) $)) (-15 -2803 ((-112) $)) (-15 -1813 ((-772) $)) (-15 -3822 ($ (-1 |#1| |#1|) $)))) -((-2803 (((-112) (-52)) 18)) (-3747 (((-3 |#1| "failed") (-52)) 20)) (-2033 ((|#1| (-52)) 21)) (-4127 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -4127 ((-52) |#1|)) (-15 -3747 ((-3 |#1| "failed") (-52))) (-15 -2803 ((-112) (-52))) (-15 -2033 (|#1| (-52)))) (-1217)) (T -51)) -((-2033 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1217)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1217)))) (-3747 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1217)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1217))))) -(-10 -7 (-15 -4127 ((-52) |#1|)) (-15 -3747 ((-3 |#1| "failed") (-52))) (-15 -2803 ((-112) (-52))) (-15 -2033 (|#1| (-52)))) -((-2399 (((-112) $ $) NIL)) (-4018 (((-775) $) 8)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3059 (((-1105) $) 10)) (-4127 (((-863) $) 15)) (-4104 (((-112) $ $) NIL)) (-3860 (($ (-1105) (-775)) 16)) (-2929 (((-112) $ $) 12))) -(((-52) (-13 (-1101) (-10 -8 (-15 -3860 ($ (-1105) (-775))) (-15 -3059 ((-1105) $)) (-15 -4018 ((-775) $))))) (T -52)) -((-3860 (*1 *1 *2 *3) (-12 (-5 *2 (-1105)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-52)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52))))) -(-13 (-1101) (-10 -8 (-15 -3860 ($ (-1105) (-775))) (-15 -3059 ((-1105) $)) (-15 -4018 ((-775) $)))) -((-2351 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2351 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1050) (-649 |#1|) (-853 |#1|)) (T -53)) -((-2351 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1050)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5))))) -(-10 -7 (-15 -2351 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3669 ((|#3| |#3| (-645 (-1177))) 46)) (-2267 ((|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3| (-922)) 32) ((|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2267 (|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3|)) (-15 -2267 (|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3| (-922))) (-15 -3669 (|#3| |#3| (-645 (-1177))))) (-1101) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -54)) -((-3669 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1077 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1101)) (-4 *6 (-13 (-1050) (-887 *5) (-615 (-893 *5)))) (-4 *2 (-13 (-433 *6) (-887 *5) (-615 (-893 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1077 *4 *5 *2))) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2267 (|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3|)) (-15 -2267 (|#3| (-645 (-1077 |#1| |#2| |#3|)) |#3| (-922))) (-15 -3669 (|#3| |#3| (-645 (-1177))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 14)) (-3747 (((-3 (-772) "failed") $) 34)) (-2033 (((-772) $) NIL)) (-2843 (((-112) $) 16)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) 18)) (-4127 (((-863) $) 23) (($ (-772)) 29)) (-4104 (((-112) $ $) NIL)) (-1980 (($) 11 T CONST)) (-2929 (((-112) $ $) 20))) -(((-55) (-13 (-1101) (-1039 (-772)) (-10 -8 (-15 -1980 ($) -3280) (-15 -2840 ((-112) $)) (-15 -2843 ((-112) $))))) (T -55)) -((-1980 (*1 *1) (-5 *1 (-55))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1101) (-1039 (-772)) (-10 -8 (-15 -1980 ($) -3280) (-15 -2840 ((-112) $)) (-15 -2843 ((-112) $)))) -((-2112 (((-112) $ (-772)) 27)) (-3056 (($ $ (-567) |#3|) 66)) (-1814 (($ $ (-567) |#4|) 70)) (-1938 ((|#3| $ (-567)) 79)) (-3397 (((-645 |#2|) $) 47)) (-1904 (((-112) $ (-772)) 31)) (-3136 (((-112) |#2| $) 74)) (-3751 (($ (-1 |#2| |#2|) $) 55)) (-3822 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1596 (((-112) $ (-772)) 29)) (-4271 (($ $ |#2|) 52)) (-3256 (((-112) (-1 (-112) |#2|) $) 21)) (-1783 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3439 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-4303 (($ $) 51)) (-1454 ((|#4| $ (-567)) 82)) (-4127 (((-863) $) 88)) (-2461 (((-112) (-1 (-112) |#2|) $) 20)) (-2929 (((-112) $ $) 73)) (-2410 (((-772) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1814 (|#1| |#1| (-567) |#4|)) (-15 -3056 (|#1| |#1| (-567) |#3|)) (-15 -3397 ((-645 |#2|) |#1|)) (-15 -1454 (|#4| |#1| (-567))) (-15 -1938 (|#3| |#1| (-567))) (-15 -1783 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567))) (-15 -4271 (|#1| |#1| |#2|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3136 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772))) (-15 -4303 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1217) (-375 |#2|) (-375 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1814 (|#1| |#1| (-567) |#4|)) (-15 -3056 (|#1| |#1| (-567) |#3|)) (-15 -3397 ((-645 |#2|) |#1|)) (-15 -1454 (|#4| |#1| (-567))) (-15 -1938 (|#3| |#1| (-567))) (-15 -1783 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567))) (-15 -4271 (|#1| |#1| |#2|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3136 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772))) (-15 -4303 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) (-567) |#1|) 45)) (-3056 (($ $ (-567) |#2|) 43)) (-1814 (($ $ (-567) |#3|) 42)) (-2245 (($) 7 T CONST)) (-1938 ((|#2| $ (-567)) 47)) (-3759 ((|#1| $ (-567) (-567) |#1|) 44)) (-3702 ((|#1| $ (-567) (-567)) 49)) (-3397 (((-645 |#1|) $) 31)) (-4313 (((-772) $) 52)) (-2844 (($ (-772) (-772) |#1|) 58)) (-4325 (((-772) $) 51)) (-1904 (((-112) $ (-772)) 9)) (-2971 (((-567) $) 56)) (-2970 (((-567) $) 54)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4289 (((-567) $) 55)) (-2233 (((-567) $) 53)) (-3751 (($ (-1 |#1| |#1|) $) 35)) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) 57)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-1454 ((|#3| $ (-567)) 46)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-57 |#1| |#2| |#3|) (-140) (-1217) (-375 |t#1|) (-375 |t#1|)) (T -57)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2844 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1217)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4271 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1217)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1217)))) (-3702 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1217)))) (-1783 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1938 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1217)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1217)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-4281 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3759 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3056 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1217)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-1814 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1217)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3822 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3822 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -2844 ($ (-772) (-772) |t#1|)) (-15 -4271 ($ $ |t#1|)) (-15 -2971 ((-567) $)) (-15 -4289 ((-567) $)) (-15 -2970 ((-567) $)) (-15 -2233 ((-567) $)) (-15 -4313 ((-772) $)) (-15 -4325 ((-772) $)) (-15 -1783 (|t#1| $ (-567) (-567))) (-15 -3702 (|t#1| $ (-567) (-567))) (-15 -1783 (|t#1| $ (-567) (-567) |t#1|)) (-15 -1938 (|t#2| $ (-567))) (-15 -1454 (|t#3| $ (-567))) (-15 -3397 ((-645 |t#1|) $)) (-15 -4281 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3759 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3056 ($ $ (-567) |t#2|)) (-15 -1814 ($ $ (-567) |t#3|)) (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (-15 -3751 ($ (-1 |t#1| |t#1|) $)) (-15 -3822 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3822 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2565 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2499 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3822 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -2565 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3822 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1217) (-1217)) (T -58)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-58 *5 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1217)) (-4 *5 (-1217)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -2565 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3822 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1365 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-2844 (($ (-772) |#1|) 13)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 10)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1365 ($ (-645 |#1|))) (-15 -1365 ($ (-772) |#1|)))) (-1217)) (T -59)) -((-1365 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-59 *3)))) (-1365 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1217))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1365 ($ (-645 |#1|))) (-15 -1365 ($ (-772) |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3056 (($ $ (-567) (-59 |#1|)) NIL)) (-1814 (($ $ (-567) (-59 |#1|)) NIL)) (-2245 (($) NIL T CONST)) (-1938 (((-59 |#1|) $ (-567)) NIL)) (-3759 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3702 ((|#1| $ (-567) (-567)) NIL)) (-3397 (((-645 |#1|) $) NIL)) (-4313 (((-772) $) NIL)) (-2844 (($ (-772) (-772) |#1|) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-1454 (((-59 |#1|) $ (-567)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4418))) (-1217)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4418))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 74) (((-3 $ "failed") (-1267 (-317 (-567)))) 63) (((-3 $ "failed") (-1267 (-953 (-381)))) 94) (((-3 $ "failed") (-1267 (-953 (-567)))) 84) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 52) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 39)) (-2033 (($ (-1267 (-317 (-381)))) 70) (($ (-1267 (-317 (-567)))) 59) (($ (-1267 (-953 (-381)))) 90) (($ (-1267 (-953 (-567)))) 80) (($ (-1267 (-410 (-953 (-381))))) 48) (($ (-1267 (-410 (-953 (-567))))) 32)) (-1484 (((-1272) $) 127)) (-4127 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 101) (($ (-1267 (-341 (-4142 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4142) (-700)))) 31))) -(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4142) (-700))))))) (-1177)) (T -61)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4142) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4142) (-700))))))) -((-1484 (((-1272) $) 54) (((-1272)) 55)) (-4127 (((-863) $) 51))) -(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) (-1177)) (T -62)) -((-1484 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-62 *3)) (-14 *3 (-1177))))) -(-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 154) (((-3 $ "failed") (-1267 (-317 (-567)))) 144) (((-3 $ "failed") (-1267 (-953 (-381)))) 174) (((-3 $ "failed") (-1267 (-953 (-567)))) 164) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 133) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 121)) (-2033 (($ (-1267 (-317 (-381)))) 150) (($ (-1267 (-317 (-567)))) 140) (($ (-1267 (-953 (-381)))) 170) (($ (-1267 (-953 (-567)))) 160) (($ (-1267 (-410 (-953 (-381))))) 129) (($ (-1267 (-410 (-953 (-567))))) 114)) (-1484 (((-1272) $) 107)) (-4127 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 33) (($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700)))) 99))) -(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700))))))) (-1177)) (T -63)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700))))))) -((-3747 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-953 (-381))) 50) (((-3 $ "failed") (-953 (-567))) 54) (((-3 $ "failed") (-410 (-953 (-381)))) 36) (((-3 $ "failed") (-410 (-953 (-567)))) 29)) (-2033 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-953 (-381))) 48) (($ (-953 (-567))) 52) (($ (-410 (-953 (-381)))) 34) (($ (-410 (-953 (-567)))) 26)) (-1484 (((-1272) $) 76)) (-4127 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 64) (($ (-341 (-4142 (QUOTE X)) (-4142) (-700))) 25))) -(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142 (QUOTE X)) (-4142) (-700)))))) (-1177)) (T -64)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-341 (-4142 (QUOTE X)) (-4142) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1177))))) -(-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142 (QUOTE X)) (-4142) (-700)))))) -((-3747 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-953 (-381)))) 136) (((-3 $ "failed") (-690 (-953 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 76)) (-2033 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-953 (-381)))) 132) (($ (-690 (-953 (-567)))) 121) (($ (-690 (-410 (-953 (-381))))) 86) (($ (-690 (-410 (-953 (-567))))) 69)) (-1484 (((-1272) $) 144)) (-4127 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 32) (($ (-690 (-341 (-4142) (-4142 (QUOTE X) (QUOTE HESS)) (-700)))) 59))) -(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-4142) (-4142 (QUOTE X) (QUOTE HESS)) (-700))))) (-1177)) (T -65)) -NIL -(-13 (-386) (-617 (-690 (-341 (-4142) (-4142 (QUOTE X) (QUOTE HESS)) (-700))))) -((-3747 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-953 (-381))) 69) (((-3 $ "failed") (-953 (-567))) 73) (((-3 $ "failed") (-410 (-953 (-381)))) 55) (((-3 $ "failed") (-410 (-953 (-567)))) 48)) (-2033 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-953 (-381))) 67) (($ (-953 (-567))) 71) (($ (-410 (-953 (-381)))) 53) (($ (-410 (-953 (-567)))) 45)) (-1484 (((-1272) $) 82)) (-4127 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 32) (($ (-341 (-4142) (-4142 (QUOTE XC)) (-700))) 40))) -(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE XC)) (-700)))))) (-1177)) (T -66)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-341 (-4142) (-4142 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1177))))) -(-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE XC)) (-700)))))) -((-1484 (((-1272) $) 68)) (-4127 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 58))) -(((-67 |#1|) (-385) (-1177)) (T -67)) +((-2843 (((-112) $) 12)) (-3829 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2843 ((-112) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-47 |#2| |#3|) (-1051) (-793)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2843 ((-112) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-47 |#1| |#2|) (-140) (-1051) (-793)) (T -47)) +((-2989 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2824 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-365))))) +(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (-15 -2989 (|t#1| $)) (-15 -2976 ($ $)) (-15 -3077 (|t#2| $)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2843 ((-112) $)) (-15 -2824 ($ |t#1| |t#2|)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-4103 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-2460 (((-112) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2566 (((-645 (-613 $)) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2005 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3483 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-410 (-567)))) (|:| |vec| (-1268 (-410 (-567))))) (-690 $) (-1268 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2477 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) 14)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1448 (((-1127 (-567) (-613 $)) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-2475 (((-1174 $) (-1174 $) (-613 $)) NIL) (((-1174 $) (-1174 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3263 (((-1174 $) (-613 $)) NIL (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-2939 (($ $) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1990 (((-772) $) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-1460 (((-1127 (-567) (-613 $)) $) NIL)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) NIL)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) NIL)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 7 T CONST)) (-1728 (($) 12 T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) 16)) (-3060 (($ $ $) NIL)) (-3045 (($ $ $) 15) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) +(((-48) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))) (T -48)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-2477 (*1 *1 *1) (-5 *1 (-48))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))) +(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $)))))) +((-2403 (((-112) $ $) NIL)) (-2238 (((-645 (-509)) $) 17)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-2006 (((-1183) $) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-49) (-13 (-1102) (-10 -8 (-15 -2238 ((-645 (-509)) $)) (-15 -2006 ((-1183) $))))) (T -49)) +((-2238 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-49))))) +(-13 (-1102) (-10 -8 (-15 -2238 ((-645 (-509)) $)) (-15 -2006 ((-1183) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 87)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3164 (((-112) $) 30)) (-3753 (((-3 |#1| "failed") $) 33)) (-2038 ((|#1| $) 34)) (-3014 (($ $) 40)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2989 ((|#1| $) 31)) (-3914 (($ $) 76)) (-1419 (((-1160) $) NIL)) (-1974 (((-112) $) 43)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) 74)) (-3946 (($ (-645 (-567))) 75)) (-3077 (((-772) $) 44)) (-4132 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-4136 ((|#1| $ $) 28)) (-4221 (((-772)) 73 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 45 T CONST)) (-1728 (($) 17 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2989 (|#1| $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 (|#1| $ $)) (-15 -1398 ($ (-772))) (-15 -3946 ($ (-645 (-567)))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-772) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)))) (-1051) (-645 (-1178))) (T -50)) +((-2989 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) (-4136 (*1 *2 *1 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1178)))))) +(-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2989 (|#1| $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 (|#1| $ $)) (-15 -1398 ($ (-772))) (-15 -3946 ($ (-645 (-567)))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-772) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)))) +((-3164 (((-112) (-52)) 18)) (-3753 (((-3 |#1| "failed") (-52)) 20)) (-2038 ((|#1| (-52)) 21)) (-4132 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -4132 ((-52) |#1|)) (-15 -3753 ((-3 |#1| "failed") (-52))) (-15 -3164 ((-112) (-52))) (-15 -2038 (|#1| (-52)))) (-1218)) (T -51)) +((-2038 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1218)))) (-3753 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1218))))) +(-10 -7 (-15 -4132 ((-52) |#1|)) (-15 -3753 ((-3 |#1| "failed") (-52))) (-15 -3164 ((-112) (-52))) (-15 -2038 (|#1| (-52)))) +((-2403 (((-112) $ $) NIL)) (-4025 (((-775) $) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3069 (((-1106) $) 10)) (-4132 (((-863) $) 15)) (-1745 (((-112) $ $) NIL)) (-3844 (($ (-1106) (-775)) 16)) (-2936 (((-112) $ $) 12))) +(((-52) (-13 (-1102) (-10 -8 (-15 -3844 ($ (-1106) (-775))) (-15 -3069 ((-1106) $)) (-15 -4025 ((-775) $))))) (T -52)) +((-3844 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52))))) +(-13 (-1102) (-10 -8 (-15 -3844 ($ (-1106) (-775))) (-15 -3069 ((-1106) $)) (-15 -4025 ((-775) $)))) +((-2355 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2355 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1051) (-649 |#1|) (-853 |#1|)) (T -53)) +((-2355 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5))))) +(-10 -7 (-15 -2355 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1813 ((|#3| |#3| (-645 (-1178))) 46)) (-3105 ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923)) 32) ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1813 (|#3| |#3| (-645 (-1178))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -54)) +((-1813 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-3105 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3105 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1813 (|#3| |#3| (-645 (-1178))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 14)) (-3753 (((-3 (-772) "failed") $) 34)) (-2038 (((-772) $) NIL)) (-1433 (((-112) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) 18)) (-4132 (((-863) $) 23) (($ (-772)) 29)) (-1745 (((-112) $ $) NIL)) (-2965 (($) 11 T CONST)) (-2936 (((-112) $ $) 20))) +(((-55) (-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -2965 ($) -3286) (-15 -2460 ((-112) $)) (-15 -1433 ((-112) $))))) (T -55)) +((-2965 (*1 *1) (-5 *1 (-55))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -2965 ($) -3286) (-15 -2460 ((-112) $)) (-15 -1433 ((-112) $)))) +((-3445 (((-112) $ (-772)) 27)) (-2615 (($ $ (-567) |#3|) 66)) (-1961 (($ $ (-567) |#4|) 70)) (-1944 ((|#3| $ (-567)) 79)) (-2777 (((-645 |#2|) $) 47)) (-2077 (((-112) $ (-772)) 31)) (-4337 (((-112) |#2| $) 74)) (-3731 (($ (-1 |#2| |#2|) $) 55)) (-3829 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2863 (((-112) $ (-772)) 29)) (-3986 (($ $ |#2|) 52)) (-3025 (((-112) (-1 (-112) |#2|) $) 21)) (-1787 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3439 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-4305 (($ $) 51)) (-2237 ((|#4| $ (-567)) 82)) (-4132 (((-863) $) 88)) (-1853 (((-112) (-1 (-112) |#2|) $) 20)) (-2936 (((-112) $ $) 73)) (-2414 (((-772) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1961 (|#1| |#1| (-567) |#4|)) (-15 -2615 (|#1| |#1| (-567) |#3|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -2237 (|#4| |#1| (-567))) (-15 -1944 (|#3| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -4305 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1218) (-375 |#2|) (-375 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1961 (|#1| |#1| (-567) |#4|)) (-15 -2615 (|#1| |#1| (-567) |#3|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -2237 (|#4| |#1| (-567))) (-15 -1944 (|#3| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -4305 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) (-567) |#1|) 45)) (-2615 (($ $ (-567) |#2|) 43)) (-1961 (($ $ (-567) |#3|) 42)) (-2585 (($) 7 T CONST)) (-1944 ((|#2| $ (-567)) 47)) (-3741 ((|#1| $ (-567) (-567) |#1|) 44)) (-3680 ((|#1| $ (-567) (-567)) 49)) (-2777 (((-645 |#1|) $) 31)) (-3633 (((-772) $) 52)) (-2846 (($ (-772) (-772) |#1|) 58)) (-3643 (((-772) $) 51)) (-2077 (((-112) $ (-772)) 9)) (-2527 (((-567) $) 56)) (-4043 (((-567) $) 54)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 55)) (-2646 (((-567) $) 53)) (-3731 (($ (-1 |#1| |#1|) $) 35)) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) 57)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2237 ((|#3| $ (-567)) 46)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-57 |#1| |#2| |#3|) (-140) (-1218) (-375 |t#1|) (-375 |t#1|)) (T -57)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2846 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1218)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3986 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1218)))) (-3680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-4284 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3741 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-2615 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-1961 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3829 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(-13 (-492 |t#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -2846 ($ (-772) (-772) |t#1|)) (-15 -3986 ($ $ |t#1|)) (-15 -2527 ((-567) $)) (-15 -2107 ((-567) $)) (-15 -4043 ((-567) $)) (-15 -2646 ((-567) $)) (-15 -3633 ((-772) $)) (-15 -3643 ((-772) $)) (-15 -1787 (|t#1| $ (-567) (-567))) (-15 -3680 (|t#1| $ (-567) (-567))) (-15 -1787 (|t#1| $ (-567) (-567) |t#1|)) (-15 -1944 (|t#2| $ (-567))) (-15 -2237 (|t#3| $ (-567))) (-15 -2777 ((-645 |t#1|) $)) (-15 -4284 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3741 (|t#1| $ (-567) (-567) |t#1|)) (-15 -2615 ($ $ (-567) |t#2|)) (-15 -1961 ($ $ (-567) |t#3|)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -3731 ($ (-1 |t#1| |t#1|) $)) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2788 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3829 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2788 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3829 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1218) (-1218)) (T -58)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-58 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2788 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3829 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-3367 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-2846 (($ (-772) |#1|) 13)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 10)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3367 ($ (-645 |#1|))) (-15 -3367 ($ (-772) |#1|)))) (-1218)) (T -59)) +((-3367 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-59 *3)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1218))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3367 ($ (-645 |#1|))) (-15 -3367 ($ (-772) |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2615 (($ $ (-567) (-59 |#1|)) NIL)) (-1961 (($ $ (-567) (-59 |#1|)) NIL)) (-2585 (($) NIL T CONST)) (-1944 (((-59 |#1|) $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-59 |#1|) $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4419))) (-1218)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4419))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 74) (((-3 $ "failed") (-1268 (-317 (-567)))) 63) (((-3 $ "failed") (-1268 (-954 (-381)))) 94) (((-3 $ "failed") (-1268 (-954 (-567)))) 84) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 52) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 39)) (-2038 (($ (-1268 (-317 (-381)))) 70) (($ (-1268 (-317 (-567)))) 59) (($ (-1268 (-954 (-381)))) 90) (($ (-1268 (-954 (-567)))) 80) (($ (-1268 (-410 (-954 (-381))))) 48) (($ (-1268 (-410 (-954 (-567))))) 32)) (-1453 (((-1273) $) 127)) (-4132 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 101) (($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700)))) 31))) +(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700))))))) (-1178)) (T -61)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700))))))) +((-1453 (((-1273) $) 54) (((-1273)) 55)) (-4132 (((-863) $) 51))) +(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -62)) +((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-62 *3)) (-14 *3 (-1178))))) +(-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 154) (((-3 $ "failed") (-1268 (-317 (-567)))) 144) (((-3 $ "failed") (-1268 (-954 (-381)))) 174) (((-3 $ "failed") (-1268 (-954 (-567)))) 164) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 133) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 121)) (-2038 (($ (-1268 (-317 (-381)))) 150) (($ (-1268 (-317 (-567)))) 140) (($ (-1268 (-954 (-381)))) 170) (($ (-1268 (-954 (-567)))) 160) (($ (-1268 (-410 (-954 (-381))))) 129) (($ (-1268 (-410 (-954 (-567))))) 114)) (-1453 (((-1273) $) 107)) (-4132 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 33) (($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) 99))) +(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) (-1178)) (T -63)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) +((-3753 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-954 (-381))) 50) (((-3 $ "failed") (-954 (-567))) 54) (((-3 $ "failed") (-410 (-954 (-381)))) 36) (((-3 $ "failed") (-410 (-954 (-567)))) 29)) (-2038 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-954 (-381))) 48) (($ (-954 (-567))) 52) (($ (-410 (-954 (-381)))) 34) (($ (-410 (-954 (-567)))) 26)) (-1453 (((-1273) $) 76)) (-4132 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 64) (($ (-341 (-4147 (QUOTE X)) (-4147) (-700))) 25))) +(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147) (-700)))))) (-1178)) (T -64)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147 (QUOTE X)) (-4147) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1178))))) +(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147) (-700)))))) +((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-954 (-381)))) 136) (((-3 $ "failed") (-690 (-954 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 76)) (-2038 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-954 (-381)))) 132) (($ (-690 (-954 (-567)))) 121) (($ (-690 (-410 (-954 (-381))))) 86) (($ (-690 (-410 (-954 (-567))))) 69)) (-1453 (((-1273) $) 144)) (-4132 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 32) (($ (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700)))) 59))) +(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700))))) (-1178)) (T -65)) +NIL +(-13 (-386) (-617 (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700))))) +((-3753 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-954 (-381))) 69) (((-3 $ "failed") (-954 (-567))) 73) (((-3 $ "failed") (-410 (-954 (-381)))) 55) (((-3 $ "failed") (-410 (-954 (-567)))) 48)) (-2038 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-954 (-381))) 67) (($ (-954 (-567))) 71) (($ (-410 (-954 (-381)))) 53) (($ (-410 (-954 (-567)))) 45)) (-1453 (((-1273) $) 82)) (-4132 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 32) (($ (-341 (-4147) (-4147 (QUOTE XC)) (-700))) 40))) +(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE XC)) (-700)))))) (-1178)) (T -66)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1178))))) +(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE XC)) (-700)))))) +((-1453 (((-1273) $) 68)) (-4132 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 58))) +(((-67 |#1|) (-385) (-1178)) (T -67)) NIL (-385) -((-1484 (((-1272) $) 69)) (-4127 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 60))) -(((-68 |#1|) (-385) (-1177)) (T -68)) +((-1453 (((-1273) $) 69)) (-4132 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 60))) +(((-68 |#1|) (-385) (-1178)) (T -68)) NIL (-385) -((-1484 (((-1272) $) NIL) (((-1272)) 33)) (-4127 (((-863) $) NIL))) -(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) (-1177)) (T -69)) -((-1484 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-69 *3)) (-14 *3 (-1177))))) -(-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) -((-1484 (((-1272) $) 75)) (-4127 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 60))) -(((-70 |#1|) (-385) (-1177)) (T -70)) +((-1453 (((-1273) $) NIL) (((-1273)) 33)) (-4132 (((-863) $) NIL))) +(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -69)) +((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-69 *3)) (-14 *3 (-1178))))) +(-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) +((-1453 (((-1273) $) 75)) (-4132 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 60))) +(((-70 |#1|) (-385) (-1178)) (T -70)) NIL (-385) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 111) (((-3 $ "failed") (-1267 (-317 (-567)))) 100) (((-3 $ "failed") (-1267 (-953 (-381)))) 131) (((-3 $ "failed") (-1267 (-953 (-567)))) 121) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 89) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 76)) (-2033 (($ (-1267 (-317 (-381)))) 107) (($ (-1267 (-317 (-567)))) 96) (($ (-1267 (-953 (-381)))) 127) (($ (-1267 (-953 (-567)))) 117) (($ (-1267 (-410 (-953 (-381))))) 85) (($ (-1267 (-410 (-953 (-567))))) 69)) (-1484 (((-1272) $) 144)) (-4127 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 61) (($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))) 62))) -(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))))))) (-1177)) (T -71)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))))))) -((-1484 (((-1272) $) 33) (((-1272)) 32)) (-4127 (((-863) $) 36))) -(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) (-1177)) (T -72)) -((-1484 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-72 *3)) (-14 *3 (-1177))))) -(-13 (-398) (-10 -7 (-15 -1484 ((-1272))))) -((-1484 (((-1272) $) 65)) (-4127 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 50))) -(((-73 |#1|) (-385) (-1177)) (T -73)) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 111) (((-3 $ "failed") (-1268 (-317 (-567)))) 100) (((-3 $ "failed") (-1268 (-954 (-381)))) 131) (((-3 $ "failed") (-1268 (-954 (-567)))) 121) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 76)) (-2038 (($ (-1268 (-317 (-381)))) 107) (($ (-1268 (-317 (-567)))) 96) (($ (-1268 (-954 (-381)))) 127) (($ (-1268 (-954 (-567)))) 117) (($ (-1268 (-410 (-954 (-381))))) 85) (($ (-1268 (-410 (-954 (-567))))) 69)) (-1453 (((-1273) $) 144)) (-4132 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 61) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) 62))) +(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) (-1178)) (T -71)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) +((-1453 (((-1273) $) 33) (((-1273)) 32)) (-4132 (((-863) $) 36))) +(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -72)) +((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-72 *3)) (-14 *3 (-1178))))) +(-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) +((-1453 (((-1273) $) 65)) (-4132 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 50))) +(((-73 |#1|) (-385) (-1178)) (T -73)) NIL (-385) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 130) (((-3 $ "failed") (-1267 (-317 (-567)))) 120) (((-3 $ "failed") (-1267 (-953 (-381)))) 150) (((-3 $ "failed") (-1267 (-953 (-567)))) 140) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 110) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 98)) (-2033 (($ (-1267 (-317 (-381)))) 126) (($ (-1267 (-317 (-567)))) 116) (($ (-1267 (-953 (-381)))) 146) (($ (-1267 (-953 (-567)))) 136) (($ (-1267 (-410 (-953 (-381))))) 106) (($ (-1267 (-410 (-953 (-567))))) 91)) (-1484 (((-1272) $) 83)) (-4127 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 76) (($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) 70))) -(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))))) (-1177)) (T -74)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 135) (((-3 $ "failed") (-1267 (-317 (-567)))) 124) (((-3 $ "failed") (-1267 (-953 (-381)))) 155) (((-3 $ "failed") (-1267 (-953 (-567)))) 145) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 113) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 100)) (-2033 (($ (-1267 (-317 (-381)))) 131) (($ (-1267 (-317 (-567)))) 120) (($ (-1267 (-953 (-381)))) 151) (($ (-1267 (-953 (-567)))) 141) (($ (-1267 (-410 (-953 (-381))))) 109) (($ (-1267 (-410 (-953 (-567))))) 93)) (-1484 (((-1272) $) 85)) (-4127 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) NIL) (($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE EPS)) (-4142 (QUOTE -1894)) (-700)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE EPS)) (-4142 (QUOTE -1894)) (-700))))))) (-1177) (-1177) (-1177)) (T -75)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE X) (QUOTE EPS)) (-4142 (QUOTE -1894)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1177)) (-14 *4 (-1177)) (-14 *5 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE EPS)) (-4142 (QUOTE -1894)) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 141) (((-3 $ "failed") (-1267 (-317 (-567)))) 130) (((-3 $ "failed") (-1267 (-953 (-381)))) 161) (((-3 $ "failed") (-1267 (-953 (-567)))) 151) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 119) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 106)) (-2033 (($ (-1267 (-317 (-381)))) 137) (($ (-1267 (-317 (-567)))) 126) (($ (-1267 (-953 (-381)))) 157) (($ (-1267 (-953 (-567)))) 147) (($ (-1267 (-410 (-953 (-381))))) 115) (($ (-1267 (-410 (-953 (-567))))) 99)) (-1484 (((-1272) $) 91)) (-4127 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) NIL) (($ (-1267 (-341 (-4142 (QUOTE EPS)) (-4142 (QUOTE YA) (QUOTE YB)) (-700)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE EPS)) (-4142 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1177) (-1177) (-1177)) (T -76)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE EPS)) (-4142 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1177)) (-14 *4 (-1177)) (-14 *5 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE EPS)) (-4142 (QUOTE YA) (QUOTE YB)) (-700))))))) -((-3747 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-953 (-381))) 92) (((-3 $ "failed") (-953 (-567))) 96) (((-3 $ "failed") (-410 (-953 (-381)))) 78) (((-3 $ "failed") (-410 (-953 (-567)))) 71)) (-2033 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-953 (-381))) 90) (($ (-953 (-567))) 94) (($ (-410 (-953 (-381)))) 76) (($ (-410 (-953 (-567)))) 68)) (-1484 (((-1272) $) 63)) (-4127 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 55) (($ (-341 (-4142) (-4142 (QUOTE X)) (-700))) 48))) -(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE X)) (-700)))))) (-1177)) (T -77)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-341 (-4142) (-4142 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1177))))) -(-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE X)) (-700)))))) -((-3747 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-953 (-381))) 56) (((-3 $ "failed") (-953 (-567))) 60) (((-3 $ "failed") (-410 (-953 (-381)))) 42) (((-3 $ "failed") (-410 (-953 (-567)))) 35)) (-2033 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-953 (-381))) 54) (($ (-953 (-567))) 58) (($ (-410 (-953 (-381)))) 40) (($ (-410 (-953 (-567)))) 32)) (-1484 (((-1272) $) 81)) (-4127 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 70) (($ (-341 (-4142) (-4142 (QUOTE X)) (-700))) 31))) -(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE X)) (-700)))))) (-1177)) (T -78)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-341 (-4142) (-4142 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1177))))) -(-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142) (-4142 (QUOTE X)) (-700)))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 90) (((-3 $ "failed") (-1267 (-317 (-567)))) 79) (((-3 $ "failed") (-1267 (-953 (-381)))) 110) (((-3 $ "failed") (-1267 (-953 (-567)))) 100) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 68) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 55)) (-2033 (($ (-1267 (-317 (-381)))) 86) (($ (-1267 (-317 (-567)))) 75) (($ (-1267 (-953 (-381)))) 106) (($ (-1267 (-953 (-567)))) 96) (($ (-1267 (-410 (-953 (-381))))) 64) (($ (-1267 (-410 (-953 (-567))))) 48)) (-1484 (((-1272) $) 126)) (-4127 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 116) (($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700)))) 39))) -(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700))))))) (-1177)) (T -79)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE XC)) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 158) (((-3 $ "failed") (-1267 (-317 (-567)))) 148) (((-3 $ "failed") (-1267 (-953 (-381)))) 178) (((-3 $ "failed") (-1267 (-953 (-567)))) 168) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 138) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 126)) (-2033 (($ (-1267 (-317 (-381)))) 154) (($ (-1267 (-317 (-567)))) 144) (($ (-1267 (-953 (-381)))) 174) (($ (-1267 (-953 (-567)))) 164) (($ (-1267 (-410 (-953 (-381))))) 134) (($ (-1267 (-410 (-953 (-567))))) 119)) (-1484 (((-1272) $) 112)) (-4127 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 102) (($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) 98))) -(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))))) (-1177)) (T -80)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 79) (((-3 $ "failed") (-1267 (-317 (-567)))) 68) (((-3 $ "failed") (-1267 (-953 (-381)))) 99) (((-3 $ "failed") (-1267 (-953 (-567)))) 89) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 57) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 44)) (-2033 (($ (-1267 (-317 (-381)))) 75) (($ (-1267 (-317 (-567)))) 64) (($ (-1267 (-953 (-381)))) 95) (($ (-1267 (-953 (-567)))) 85) (($ (-1267 (-410 (-953 (-381))))) 53) (($ (-1267 (-410 (-953 (-567))))) 37)) (-1484 (((-1272) $) 125)) (-4127 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 114) (($ (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700)))) 36))) -(((-81 |#1|) (-13 (-444) (-617 (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))) (-1177)) (T -81)) -NIL -(-13 (-444) (-617 (-1267 (-341 (-4142) (-4142 (QUOTE X)) (-700))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 98) (((-3 $ "failed") (-1267 (-317 (-567)))) 87) (((-3 $ "failed") (-1267 (-953 (-381)))) 118) (((-3 $ "failed") (-1267 (-953 (-567)))) 108) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 76) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 63)) (-2033 (($ (-1267 (-317 (-381)))) 94) (($ (-1267 (-317 (-567)))) 83) (($ (-1267 (-953 (-381)))) 114) (($ (-1267 (-953 (-567)))) 104) (($ (-1267 (-410 (-953 (-381))))) 72) (($ (-1267 (-410 (-953 (-567))))) 56)) (-1484 (((-1272) $) 48)) (-4127 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 38) (($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700)))) 33))) -(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700))))))) (-1177)) (T -82)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700))))))) -((-3747 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-953 (-381)))) 140) (((-3 $ "failed") (-690 (-953 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 83)) (-2033 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-953 (-381)))) 136) (($ (-690 (-953 (-567)))) 125) (($ (-690 (-410 (-953 (-381))))) 92) (($ (-690 (-410 (-953 (-567))))) 76)) (-1484 (((-1272) $) 66)) (-4127 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 58) (($ (-690 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700)))) 50))) -(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700))))))) (-1177)) (T -83)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1177))))) -(-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE X) (QUOTE -1894)) (-4142) (-700))))))) -((-3747 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-953 (-381)))) 135) (((-3 $ "failed") (-690 (-953 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 75)) (-2033 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-953 (-381)))) 131) (($ (-690 (-953 (-567)))) 120) (($ (-690 (-410 (-953 (-381))))) 85) (($ (-690 (-410 (-953 (-567))))) 68)) (-1484 (((-1272) $) 60)) (-4127 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 45) (($ (-690 (-341 (-4142 (QUOTE X)) (-4142) (-700)))) 46))) -(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE X)) (-4142) (-700))))))) (-1177)) (T -84)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4142 (QUOTE X)) (-4142) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1177))))) -(-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE X)) (-4142) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 105) (((-3 $ "failed") (-1267 (-317 (-567)))) 94) (((-3 $ "failed") (-1267 (-953 (-381)))) 125) (((-3 $ "failed") (-1267 (-953 (-567)))) 115) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 83) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 70)) (-2033 (($ (-1267 (-317 (-381)))) 101) (($ (-1267 (-317 (-567)))) 90) (($ (-1267 (-953 (-381)))) 121) (($ (-1267 (-953 (-567)))) 111) (($ (-1267 (-410 (-953 (-381))))) 79) (($ (-1267 (-410 (-953 (-567))))) 63)) (-1484 (((-1272) $) 47)) (-4127 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 53) (($ (-1267 (-341 (-4142 (QUOTE X)) (-4142) (-700)))) 38))) -(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142) (-700))))))) (-1177)) (T -85)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE X)) (-4142) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142) (-700))))))) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 80) (((-3 $ "failed") (-1267 (-317 (-567)))) 69) (((-3 $ "failed") (-1267 (-953 (-381)))) 100) (((-3 $ "failed") (-1267 (-953 (-567)))) 90) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 58) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 45)) (-2033 (($ (-1267 (-317 (-381)))) 76) (($ (-1267 (-317 (-567)))) 65) (($ (-1267 (-953 (-381)))) 96) (($ (-1267 (-953 (-567)))) 86) (($ (-1267 (-410 (-953 (-381))))) 54) (($ (-1267 (-410 (-953 (-567))))) 38)) (-1484 (((-1272) $) 126)) (-4127 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 115) (($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))) 37))) -(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))))))) (-1177)) (T -86)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1177))))) -(-13 (-444) (-10 -8 (-15 -4127 ($ (-1267 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))))))) -((-3747 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-953 (-381)))) 139) (((-3 $ "failed") (-690 (-953 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 79)) (-2033 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-953 (-381)))) 135) (($ (-690 (-953 (-567)))) 124) (($ (-690 (-410 (-953 (-381))))) 89) (($ (-690 (-410 (-953 (-567))))) 72)) (-1484 (((-1272) $) 63)) (-4127 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 52) (($ (-690 (-341 (-4142 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4142) (-700)))) 48))) -(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4142) (-700))))))) (-1177)) (T -87)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4142 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4142) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1177))))) -(-13 (-386) (-10 -8 (-15 -4127 ($ (-690 (-341 (-4142 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4142) (-700))))))) -((-1484 (((-1272) $) 45)) (-4127 (((-863) $) 39) (($ (-1267 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 34))) -(((-88 |#1|) (-443) (-1177)) (T -88)) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 130) (((-3 $ "failed") (-1268 (-317 (-567)))) 120) (((-3 $ "failed") (-1268 (-954 (-381)))) 150) (((-3 $ "failed") (-1268 (-954 (-567)))) 140) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 110) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 98)) (-2038 (($ (-1268 (-317 (-381)))) 126) (($ (-1268 (-317 (-567)))) 116) (($ (-1268 (-954 (-381)))) 146) (($ (-1268 (-954 (-567)))) 136) (($ (-1268 (-410 (-954 (-381))))) 106) (($ (-1268 (-410 (-954 (-567))))) 91)) (-1453 (((-1273) $) 83)) (-4132 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 76) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 70))) +(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) (-1178)) (T -74)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 135) (((-3 $ "failed") (-1268 (-317 (-567)))) 124) (((-3 $ "failed") (-1268 (-954 (-381)))) 155) (((-3 $ "failed") (-1268 (-954 (-567)))) 145) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 113) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 100)) (-2038 (($ (-1268 (-317 (-381)))) 131) (($ (-1268 (-317 (-567)))) 120) (($ (-1268 (-954 (-381)))) 151) (($ (-1268 (-954 (-567)))) 141) (($ (-1268 (-410 (-954 (-381))))) 109) (($ (-1268 (-410 (-954 (-567))))) 93)) (-1453 (((-1273) $) 85)) (-4132 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) NIL) (($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700))))))) (-1178) (-1178) (-1178)) (T -75)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) (-14 *5 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 141) (((-3 $ "failed") (-1268 (-317 (-567)))) 130) (((-3 $ "failed") (-1268 (-954 (-381)))) 161) (((-3 $ "failed") (-1268 (-954 (-567)))) 151) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 119) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 106)) (-2038 (($ (-1268 (-317 (-381)))) 137) (($ (-1268 (-317 (-567)))) 126) (($ (-1268 (-954 (-381)))) 157) (($ (-1268 (-954 (-567)))) 147) (($ (-1268 (-410 (-954 (-381))))) 115) (($ (-1268 (-410 (-954 (-567))))) 99)) (-1453 (((-1273) $) 91)) (-4132 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) NIL) (($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1178) (-1178) (-1178)) (T -76)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) (-14 *5 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700))))))) +((-3753 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-954 (-381))) 92) (((-3 $ "failed") (-954 (-567))) 96) (((-3 $ "failed") (-410 (-954 (-381)))) 78) (((-3 $ "failed") (-410 (-954 (-567)))) 71)) (-2038 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-954 (-381))) 90) (($ (-954 (-567))) 94) (($ (-410 (-954 (-381)))) 76) (($ (-410 (-954 (-567)))) 68)) (-1453 (((-1273) $) 63)) (-4132 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 55) (($ (-341 (-4147) (-4147 (QUOTE X)) (-700))) 48))) +(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) (-1178)) (T -77)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1178))))) +(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) +((-3753 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-954 (-381))) 56) (((-3 $ "failed") (-954 (-567))) 60) (((-3 $ "failed") (-410 (-954 (-381)))) 42) (((-3 $ "failed") (-410 (-954 (-567)))) 35)) (-2038 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-954 (-381))) 54) (($ (-954 (-567))) 58) (($ (-410 (-954 (-381)))) 40) (($ (-410 (-954 (-567)))) 32)) (-1453 (((-1273) $) 81)) (-4132 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 70) (($ (-341 (-4147) (-4147 (QUOTE X)) (-700))) 31))) +(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) (-1178)) (T -78)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1178))))) +(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 90) (((-3 $ "failed") (-1268 (-317 (-567)))) 79) (((-3 $ "failed") (-1268 (-954 (-381)))) 110) (((-3 $ "failed") (-1268 (-954 (-567)))) 100) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 68) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 55)) (-2038 (($ (-1268 (-317 (-381)))) 86) (($ (-1268 (-317 (-567)))) 75) (($ (-1268 (-954 (-381)))) 106) (($ (-1268 (-954 (-567)))) 96) (($ (-1268 (-410 (-954 (-381))))) 64) (($ (-1268 (-410 (-954 (-567))))) 48)) (-1453 (((-1273) $) 126)) (-4132 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 116) (($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) 39))) +(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) (-1178)) (T -79)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 158) (((-3 $ "failed") (-1268 (-317 (-567)))) 148) (((-3 $ "failed") (-1268 (-954 (-381)))) 178) (((-3 $ "failed") (-1268 (-954 (-567)))) 168) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 138) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 126)) (-2038 (($ (-1268 (-317 (-381)))) 154) (($ (-1268 (-317 (-567)))) 144) (($ (-1268 (-954 (-381)))) 174) (($ (-1268 (-954 (-567)))) 164) (($ (-1268 (-410 (-954 (-381))))) 134) (($ (-1268 (-410 (-954 (-567))))) 119)) (-1453 (((-1273) $) 112)) (-4132 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 102) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 98))) +(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) (-1178)) (T -80)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 79) (((-3 $ "failed") (-1268 (-317 (-567)))) 68) (((-3 $ "failed") (-1268 (-954 (-381)))) 99) (((-3 $ "failed") (-1268 (-954 (-567)))) 89) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 57) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 44)) (-2038 (($ (-1268 (-317 (-381)))) 75) (($ (-1268 (-317 (-567)))) 64) (($ (-1268 (-954 (-381)))) 95) (($ (-1268 (-954 (-567)))) 85) (($ (-1268 (-410 (-954 (-381))))) 53) (($ (-1268 (-410 (-954 (-567))))) 37)) (-1453 (((-1273) $) 125)) (-4132 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 114) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 36))) +(((-81 |#1|) (-13 (-444) (-617 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))) (-1178)) (T -81)) +NIL +(-13 (-444) (-617 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 98) (((-3 $ "failed") (-1268 (-317 (-567)))) 87) (((-3 $ "failed") (-1268 (-954 (-381)))) 118) (((-3 $ "failed") (-1268 (-954 (-567)))) 108) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 76) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 63)) (-2038 (($ (-1268 (-317 (-381)))) 94) (($ (-1268 (-317 (-567)))) 83) (($ (-1268 (-954 (-381)))) 114) (($ (-1268 (-954 (-567)))) 104) (($ (-1268 (-410 (-954 (-381))))) 72) (($ (-1268 (-410 (-954 (-567))))) 56)) (-1453 (((-1273) $) 48)) (-4132 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 38) (($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) 33))) +(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) (-1178)) (T -82)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) +((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-954 (-381)))) 140) (((-3 $ "failed") (-690 (-954 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 83)) (-2038 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-954 (-381)))) 136) (($ (-690 (-954 (-567)))) 125) (($ (-690 (-410 (-954 (-381))))) 92) (($ (-690 (-410 (-954 (-567))))) 76)) (-1453 (((-1273) $) 66)) (-4132 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 58) (($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) 50))) +(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) (-1178)) (T -83)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1178))))) +(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) +((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-954 (-381)))) 135) (((-3 $ "failed") (-690 (-954 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 75)) (-2038 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-954 (-381)))) 131) (($ (-690 (-954 (-567)))) 120) (($ (-690 (-410 (-954 (-381))))) 85) (($ (-690 (-410 (-954 (-567))))) 68)) (-1453 (((-1273) $) 60)) (-4132 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 45) (($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) 46))) +(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) (-1178)) (T -84)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1178))))) +(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 105) (((-3 $ "failed") (-1268 (-317 (-567)))) 94) (((-3 $ "failed") (-1268 (-954 (-381)))) 125) (((-3 $ "failed") (-1268 (-954 (-567)))) 115) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 83) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 70)) (-2038 (($ (-1268 (-317 (-381)))) 101) (($ (-1268 (-317 (-567)))) 90) (($ (-1268 (-954 (-381)))) 121) (($ (-1268 (-954 (-567)))) 111) (($ (-1268 (-410 (-954 (-381))))) 79) (($ (-1268 (-410 (-954 (-567))))) 63)) (-1453 (((-1273) $) 47)) (-4132 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 53) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) 38))) +(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) (-1178)) (T -85)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 80) (((-3 $ "failed") (-1268 (-317 (-567)))) 69) (((-3 $ "failed") (-1268 (-954 (-381)))) 100) (((-3 $ "failed") (-1268 (-954 (-567)))) 90) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 58) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 45)) (-2038 (($ (-1268 (-317 (-381)))) 76) (($ (-1268 (-317 (-567)))) 65) (($ (-1268 (-954 (-381)))) 96) (($ (-1268 (-954 (-567)))) 86) (($ (-1268 (-410 (-954 (-381))))) 54) (($ (-1268 (-410 (-954 (-567))))) 38)) (-1453 (((-1273) $) 126)) (-4132 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 115) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) 37))) +(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) (-1178)) (T -86)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1178))))) +(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) +((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-954 (-381)))) 139) (((-3 $ "failed") (-690 (-954 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 79)) (-2038 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-954 (-381)))) 135) (($ (-690 (-954 (-567)))) 124) (($ (-690 (-410 (-954 (-381))))) 89) (($ (-690 (-410 (-954 (-567))))) 72)) (-1453 (((-1273) $) 63)) (-4132 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 52) (($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700)))) 48))) +(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700))))))) (-1178)) (T -87)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1178))))) +(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700))))))) +((-1453 (((-1273) $) 45)) (-4132 (((-863) $) 39) (($ (-1268 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 34))) +(((-88 |#1|) (-443) (-1178)) (T -88)) NIL (-443) -((-3747 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-953 (-381))) 57) (((-3 $ "failed") (-953 (-567))) 61) (((-3 $ "failed") (-410 (-953 (-381)))) 43) (((-3 $ "failed") (-410 (-953 (-567)))) 36)) (-2033 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-953 (-381))) 55) (($ (-953 (-567))) 59) (($ (-410 (-953 (-381)))) 41) (($ (-410 (-953 (-567)))) 33)) (-1484 (((-1272) $) 91)) (-4127 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 77) (($ (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))) 32))) -(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))))) (-1177)) (T -89)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1177))))) -(-13 (-399) (-10 -8 (-15 -4127 ($ (-341 (-4142 (QUOTE X)) (-4142 (QUOTE -1894)) (-700)))))) -((-2787 (((-1267 (-690 |#1|)) (-690 |#1|)) 65)) (-4089 (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 (-645 (-922))))) |#2| (-922)) 54)) (-2294 (((-2 (|:| |minor| (-645 (-922))) (|:| -3827 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922)) 76 (|has| |#1| (-365))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -4089 ((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 (-645 (-922))))) |#2| (-922))) (-15 -2787 ((-1267 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2294 ((-2 (|:| |minor| (-645 (-922))) (|:| -3827 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922))) |%noBranch|)) (-559) (-657 |#1|)) (T -90)) -((-2294 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-922))) (|:| -3827 *3) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5)))) (-2787 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1267 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-4089 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -4138 (-690 *5)) (|:| |vec| (-1267 (-645 (-922)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5))))) -(-10 -7 (-15 -4089 ((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 (-645 (-922))))) |#2| (-922))) (-15 -2787 ((-1267 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2294 ((-2 (|:| |minor| (-645 (-922))) (|:| -3827 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922))) |%noBranch|)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2254 ((|#1| $) 42)) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-3009 ((|#1| |#1| $) 37)) (-4214 ((|#1| $) 35)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) NIL)) (-1330 (($ |#1| $) 38)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3060 ((|#1| $) 36)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 18)) (-3347 (($) 46)) (-3298 (((-772) $) 33)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 17)) (-4127 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) NIL)) (-4368 (($ (-645 |#1|)) 44)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 15 (|has| |#1| (-1101)))) (-2410 (((-772) $) 12 (|has| $ (-6 -4417))))) -(((-91 |#1|) (-13 (-1122 |#1|) (-10 -8 (-15 -4368 ($ (-645 |#1|))))) (-1101)) (T -91)) -((-4368 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-91 *3))))) -(-13 (-1122 |#1|) (-10 -8 (-15 -4368 ($ (-645 |#1|))))) -((-4127 (((-863) $) 13) (($ (-1182)) 9) (((-1182) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4127 ((-1182) |#1|)) (-15 -4127 (|#1| (-1182))) (-15 -4127 ((-863) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4127 ((-1182) |#1|)) (-15 -4127 (|#1| (-1182))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-1182)) 17) (((-1182) $) 16)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-3753 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-954 (-381))) 57) (((-3 $ "failed") (-954 (-567))) 61) (((-3 $ "failed") (-410 (-954 (-381)))) 43) (((-3 $ "failed") (-410 (-954 (-567)))) 36)) (-2038 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-954 (-381))) 55) (($ (-954 (-567))) 59) (($ (-410 (-954 (-381)))) 41) (($ (-410 (-954 (-567)))) 33)) (-1453 (((-1273) $) 91)) (-4132 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 77) (($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))) 32))) +(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))))) (-1178)) (T -89)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1178))))) +(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))))) +((-4148 (((-1268 (-690 |#1|)) (-690 |#1|)) 65)) (-3143 (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923)) 54)) (-2920 (((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923)) 76 (|has| |#1| (-365))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3143 ((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923))) (-15 -4148 ((-1268 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2920 ((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) (-559) (-657 |#1|)) (T -90)) +((-2920 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-923))) (|:| -3845 *3) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-3143 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 (-645 (-923)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) +(-10 -7 (-15 -3143 ((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923))) (-15 -4148 ((-1268 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2920 ((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2262 ((|#1| $) 42)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2576 ((|#1| |#1| $) 37)) (-4338 ((|#1| $) 35)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) NIL)) (-2531 (($ |#1| $) 38)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 36)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 18)) (-3498 (($) 46)) (-3272 (((-772) $) 33)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 17)) (-4132 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-2659 (($ (-645 |#1|)) 44)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 15 (|has| |#1| (-1102)))) (-2414 (((-772) $) 12 (|has| $ (-6 -4418))))) +(((-91 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2659 ($ (-645 |#1|))))) (-1102)) (T -91)) +((-2659 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3))))) +(-13 (-1123 |#1|) (-10 -8 (-15 -2659 ($ (-645 |#1|))))) +((-4132 (((-863) $) 13) (($ (-1183)) 9) (((-1183) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -4132 ((-1183) |#1|)) (-15 -4132 (|#1| (-1183))) (-15 -4132 ((-863) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -4132 ((-1183) |#1|)) (-15 -4132 (|#1| (-1183))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL -(-13 (-1101) (-493 (-1182))) -(((-102) . T) ((-617 #0=(-1182)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1101) . T)) -((-3128 (($ $) 10)) (-3137 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1102) (-493 (-1183))) +(((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) +((-3106 (($ $) 10)) (-3118 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|))) -((-3109 (($ $) 11)) (-3087 (($ $) 10)) (-3128 (($ $) 9)) (-3137 (($ $) 8)) (-3119 (($ $) 7)) (-3098 (($ $) 6))) +(-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|))) +((-3084 (($ $) 11)) (-3062 (($ $) 10)) (-3106 (($ $) 9)) (-3118 (($ $) 8)) (-3095 (($ $) 7)) (-3074 (($ $) 6))) (((-95) (-140)) (T -95)) -((-3109 (*1 *1 *1) (-4 *1 (-95))) (-3087 (*1 *1 *1) (-4 *1 (-95))) (-3128 (*1 *1 *1) (-4 *1 (-95))) (-3137 (*1 *1 *1) (-4 *1 (-95))) (-3119 (*1 *1 *1) (-4 *1 (-95))) (-3098 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3098 ($ $)) (-15 -3119 ($ $)) (-15 -3137 ($ $)) (-15 -3128 ($ $)) (-15 -3087 ($ $)) (-15 -3109 ($ $)))) -((-2399 (((-112) $ $) NIL)) (-1988 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 15) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-96) (-13 (-1084) (-10 -8 (-15 -1988 ((-1136) $))))) (T -96)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-96))))) -(-13 (-1084) (-10 -8 (-15 -1988 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-2457 (((-381) (-1159) (-381)) 47) (((-381) (-1159) (-1159) (-381)) 45)) (-2269 (((-381) (-381)) 35)) (-3899 (((-1272)) 38)) (-3739 (((-1159) $) NIL)) (-1896 (((-381) (-1159) (-1159)) 51) (((-381) (-1159)) 53)) (-3430 (((-1121) $) NIL)) (-3920 (((-381) (-1159) (-1159)) 52)) (-2187 (((-381) (-1159) (-1159)) 54) (((-381) (-1159)) 55)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-97) (-13 (-1101) (-10 -7 (-15 -1896 ((-381) (-1159) (-1159))) (-15 -1896 ((-381) (-1159))) (-15 -2187 ((-381) (-1159) (-1159))) (-15 -2187 ((-381) (-1159))) (-15 -3920 ((-381) (-1159) (-1159))) (-15 -3899 ((-1272))) (-15 -2269 ((-381) (-381))) (-15 -2457 ((-381) (-1159) (-381))) (-15 -2457 ((-381) (-1159) (-1159) (-381))) (-6 -4417)))) (T -97)) -((-1896 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2187 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3920 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3899 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-97)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-2457 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1159)) (-5 *1 (-97)))) (-2457 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1159)) (-5 *1 (-97))))) -(-13 (-1101) (-10 -7 (-15 -1896 ((-381) (-1159) (-1159))) (-15 -1896 ((-381) (-1159))) (-15 -2187 ((-381) (-1159) (-1159))) (-15 -2187 ((-381) (-1159))) (-15 -3920 ((-381) (-1159) (-1159))) (-15 -3899 ((-1272))) (-15 -2269 ((-381) (-381))) (-15 -2457 ((-381) (-1159) (-381))) (-15 -2457 ((-381) (-1159) (-1159) (-381))) (-6 -4417))) +((-3084 (*1 *1 *1) (-4 *1 (-95))) (-3062 (*1 *1 *1) (-4 *1 (-95))) (-3106 (*1 *1 *1) (-4 *1 (-95))) (-3118 (*1 *1 *1) (-4 *1 (-95))) (-3095 (*1 *1 *1) (-4 *1 (-95))) (-3074 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3074 ($ $)) (-15 -3095 ($ $)) (-15 -3118 ($ $)) (-15 -3106 ($ $)) (-15 -3062 ($ $)) (-15 -3084 ($ $)))) +((-2403 (((-112) $ $) NIL)) (-1996 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-96) (-13 (-1085) (-10 -8 (-15 -1996 ((-1137) $))))) (T -96)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96))))) +(-13 (-1085) (-10 -8 (-15 -1996 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-1431 (((-381) (-1160) (-381)) 47) (((-381) (-1160) (-1160) (-381)) 45)) (-2101 (((-381) (-381)) 35)) (-1818 (((-1273)) 38)) (-1419 (((-1160) $) NIL)) (-3612 (((-381) (-1160) (-1160)) 51) (((-381) (-1160)) 53)) (-3430 (((-1122) $) NIL)) (-3153 (((-381) (-1160) (-1160)) 52)) (-2313 (((-381) (-1160) (-1160)) 54) (((-381) (-1160)) 55)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-97) (-13 (-1102) (-10 -7 (-15 -3612 ((-381) (-1160) (-1160))) (-15 -3612 ((-381) (-1160))) (-15 -2313 ((-381) (-1160) (-1160))) (-15 -2313 ((-381) (-1160))) (-15 -3153 ((-381) (-1160) (-1160))) (-15 -1818 ((-1273))) (-15 -2101 ((-381) (-381))) (-15 -1431 ((-381) (-1160) (-381))) (-15 -1431 ((-381) (-1160) (-1160) (-381))) (-6 -4418)))) (T -97)) +((-3612 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2313 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3153 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1818 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-97)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-1431 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97)))) (-1431 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97))))) +(-13 (-1102) (-10 -7 (-15 -3612 ((-381) (-1160) (-1160))) (-15 -3612 ((-381) (-1160))) (-15 -2313 ((-381) (-1160) (-1160))) (-15 -2313 ((-381) (-1160))) (-15 -3153 ((-381) (-1160) (-1160))) (-15 -1818 ((-1273))) (-15 -2101 ((-381) (-381))) (-15 -1431 ((-381) (-1160) (-381))) (-15 -1431 ((-381) (-1160) (-1160) (-381))) (-6 -4418))) NIL (((-98) (-140)) (T -98)) NIL -(-13 (-10 -7 (-6 -4417) (-6 (-4419 "*")) (-6 -4418) (-6 -4414) (-6 -4412) (-6 -4411) (-6 -4410) (-6 -4415) (-6 -4409) (-6 -4408) (-6 -4407) (-6 -4406) (-6 -4405) (-6 -4413) (-6 -4416) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4404))) -((-2399 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3978 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 16)) (-3430 (((-1121) $) NIL)) (-1783 ((|#1| $ |#1|) 13)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) 22)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 8 T CONST)) (-2929 (((-112) $ $) 10)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -3978 ($ (-1 |#1| |#1|))) (-15 -3978 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3978 ($ (-1 |#1| |#1| (-567)))))) (-1050)) (T -99)) -((-3978 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) (-3978 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-99 *3))))) -(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -3978 ($ (-1 |#1| |#1|))) (-15 -3978 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3978 ($ (-1 |#1| |#1| (-567)))))) -((-1534 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1534 ((-421 |#2|) |#2| |#2|)) (-15 -1534 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1243 |#1|)) (T -100)) -((-1534 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-1534 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -1534 ((-421 |#2|) |#2| |#2|)) (-15 -1534 ((-421 |#2|) |#2| (-645 |#2|)))) -((-2399 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2399 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2399 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2929 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4418) (-6 (-4420 "*")) (-6 -4419) (-6 -4415) (-6 -4413) (-6 -4412) (-6 -4411) (-6 -4416) (-6 -4410) (-6 -4409) (-6 -4408) (-6 -4407) (-6 -4406) (-6 -4414) (-6 -4417) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4405))) +((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2015 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 16)) (-3430 (((-1122) $) NIL)) (-1787 ((|#1| $ |#1|) 13)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 22)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 8 T CONST)) (-2936 (((-112) $ $) 10)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2015 ($ (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1| (-567)))))) (-1051)) (T -99)) +((-2015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2015 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3))))) +(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2015 ($ (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1| (-567)))))) +((-3604 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3604 ((-421 |#2|) |#2| |#2|)) (-15 -3604 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1244 |#1|)) (T -100)) +((-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -3604 ((-421 |#2|) |#2| |#2|)) (-15 -3604 ((-421 |#2|) |#2| (-645 |#2|)))) +((-2403 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2403 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2403 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2936 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-2399 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2929 ((-112) $ $)) (-15 -2399 ((-112) $ $)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) 24 (|has| $ (-6 -4418)))) (-4043 (($ $ $) NIL (|has| $ (-6 -4418)))) (-4329 (($ $ $) NIL (|has| $ (-6 -4418)))) (-4389 (($ $ (-645 |#1|)) 34)) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-2956 (($ $) 12)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3403 (($ $ |#1| $) 36)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3577 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3678 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2944 (($ $) 11)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) 13)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 9)) (-3347 (($) 35)) (-1783 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3906 (($ (-772) |#1|) 37)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -3906 ($ (-772) |#1|)) (-15 -4389 ($ $ (-645 |#1|))) (-15 -3577 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3577 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3678 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3678 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1101)) (T -103)) -((-3906 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1101)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-103 *3)))) (-3577 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1101)))) (-3577 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-103 *3)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1101)) (-5 *1 (-103 *2)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1101)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -3906 ($ (-772) |#1|)) (-15 -4389 ($ $ (-645 |#1|))) (-15 -3577 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3577 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3678 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3678 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) -((-2280 ((|#3| |#2| |#2|) 36)) (-2015 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4419 "*"))))) (-3556 ((|#3| |#2| |#2|) 38)) (-2358 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4419 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2280 (|#3| |#2| |#2|)) (-15 -3556 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4419 "*"))) (PROGN (-15 -2015 (|#1| |#2| |#2|)) (-15 -2358 (|#1| |#2|))) |%noBranch|)) (-1050) (-1243 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) -((-2358 (*1 *2 *3) (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1243 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2015 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1243 *2)) (-4 *4 (-688 *2 *5 *6)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1243 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-2280 (*1 *2 *3 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1243 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) -(-10 -7 (-15 -2280 (|#3| |#2| |#2|)) (-15 -3556 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4419 "*"))) (PROGN (-15 -2015 (|#1| |#2| |#2|)) (-15 -2358 (|#1| |#2|))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1323 (((-645 (-1177))) 37)) (-3778 (((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1177)) 39)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-105) (-13 (-1101) (-10 -7 (-15 -1323 ((-645 (-1177)))) (-15 -3778 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1177))) (-6 -4417)))) (T -105)) -((-1323 (*1 *2) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-105)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225))))) (-5 *1 (-105))))) -(-13 (-1101) (-10 -7 (-15 -1323 ((-645 (-1177)))) (-15 -3778 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1177))) (-6 -4417))) -((-3911 (($ (-645 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3911 (|#1| (-645 |#2|)))) (-107 |#2|) (-1217)) (T -106)) -NIL -(-10 -8 (-15 -3911 (|#1| (-645 |#2|)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-107 |#1|) (-140) (-1217)) (T -107)) -((-3911 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-107 *3)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217)))) (-1330 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4418) (-15 -3911 ($ (-645 |t#1|))) (-15 -3060 (|t#1| $)) (-15 -1330 ($ |t#1| $)) (-15 -1881 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-567) $) NIL (|has| (-567) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-567) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-567) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-2033 (((-567) $) NIL) (((-1177) $) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-567) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-567) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-567) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-567) (-1152)))) (-2102 (((-112) $) NIL (|has| (-567) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-567) (-851)))) (-3822 (($ (-1 (-567) (-567)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-567) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1842 (((-567) $) NIL (|has| (-567) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1177)) (-645 (-567))) NIL (|has| (-567) (-517 (-1177) (-567)))) (($ $ (-1177) (-567)) NIL (|has| (-567) (-517 (-1177) (-567))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-567) $) NIL)) (-3880 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1177)) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL) (((-1005 2) $) 10)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-567) $) NIL (|has| (-567) (-548)))) (-4356 (($ (-410 (-567))) 9)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| (-567) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3050 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-108) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 2)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -4356 ($ (-410 (-567))))))) (T -108)) -((-2721 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-4356 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))) -(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 2)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -4356 ($ (-410 (-567)))))) -((-2547 (((-645 (-966)) $) 13)) (-1988 (((-509) $) 9)) (-4127 (((-863) $) 20)) (-4004 (($ (-509) (-645 (-966))) 15))) -(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -1988 ((-509) $)) (-15 -2547 ((-645 (-966)) $)) (-15 -4004 ($ (-509) (-645 (-966))))))) (T -109)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-645 (-966))) (-5 *1 (-109)))) (-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-109))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1988 ((-509) $)) (-15 -2547 ((-645 (-966)) $)) (-15 -4004 ($ (-509) (-645 (-966)))))) -((-2399 (((-112) $ $) NIL)) (-2421 (($ $) NIL)) (-1688 (($ $ $) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3161 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1332 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-112) $ (-1234 (-567)) (-112)) NIL (|has| $ (-6 -4418))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3230 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-2499 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3759 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4418)))) (-3702 (((-112) $ (-567)) NIL)) (-2567 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1101))) (((-567) (-112) $) NIL (|has| (-112) (-1101))) (((-567) (-1 (-112) (-112)) $) NIL)) (-3397 (((-645 (-112)) $) NIL (|has| $ (-6 -4417)))) (-1676 (($ $ $) NIL)) (-1653 (($ $) NIL)) (-1797 (($ $ $) NIL)) (-2844 (($ (-772) (-112)) 10)) (-3688 (($ $ $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL)) (-3523 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2513 (((-645 (-112)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL)) (-3751 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-112) $) NIL (|has| (-567) (-851)))) (-3424 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4271 (($ $ (-112)) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3564 (((-645 (-112)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 (($ $ (-1234 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4142 (($ (-645 (-112))) NIL)) (-2260 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4127 (((-863) $) NIL)) (-4009 (($ (-772) (-112)) 11)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1664 (($ $ $) NIL)) (-2465 (($ $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-2455 (($ $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-110) (-13 (-123) (-10 -8 (-15 -4009 ($ (-772) (-112)))))) (T -110)) -((-4009 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -4009 ($ (-772) (-112))))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-140) (-1050) (-1050)) (T -111)) -NIL -(-13 (-649 |t#1|) (-1057 |t#2|) (-10 -7 (-6 -4412) (-6 -4411))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2421 (($ $) 13)) (-1688 (($ $ $) 18)) (-1474 (($) 7 T CONST)) (-3791 (($ $) 6)) (-2371 (((-772)) 26)) (-1378 (($) 34)) (-1676 (($ $ $) 16)) (-1653 (($ $) 9)) (-1797 (($ $ $) 19)) (-3688 (($ $ $) 20)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) 32)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) 30)) (-2441 (($ $ $) 22)) (-3430 (((-1121) $) NIL)) (-2782 (($) 8 T CONST)) (-4149 (($ $ $) 23)) (-3880 (((-539) $) 36)) (-4127 (((-863) $) 38)) (-4104 (((-112) $ $) NIL)) (-1664 (($ $ $) 14)) (-2465 (($ $ $) 17)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 21)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 24)) (-2455 (($ $ $) 15))) -(((-112) (-13 (-845) (-662) (-968) (-615 (-539)) (-10 -8 (-15 -1688 ($ $ $)) (-15 -3688 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -3791 ($ $))))) (T -112)) -((-1688 (*1 *1 *1 *1) (-5 *1 (-112))) (-3688 (*1 *1 *1 *1) (-5 *1 (-112))) (-1797 (*1 *1 *1 *1) (-5 *1 (-112))) (-3791 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-845) (-662) (-968) (-615 (-539)) (-10 -8 (-15 -1688 ($ $ $)) (-15 -3688 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -3791 ($ $)))) -((-2428 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-2522 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-3166 (((-114) |#1|) 63)) (-1926 (((-3 |#1| "failed") (-114)) 58))) -(((-113 |#1|) (-10 -7 (-15 -2428 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -2428 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -2428 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2428 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2522 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2522 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2522 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3166 ((-114) |#1|)) (-15 -1926 ((-3 |#1| "failed") (-114)))) (-1101)) (T -113)) -((-1926 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1101)))) (-3166 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1101)))) (-2522 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1101)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1101)) (-5 *1 (-113 *4)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1101)) (-5 *1 (-113 *4)))) (-2428 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1101)))) (-2428 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1101)) (-5 *1 (-113 *4)))) (-2428 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1101)) (-5 *1 (-113 *4)))) (-2428 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1101))))) -(-10 -7 (-15 -2428 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -2428 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -2428 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2428 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2522 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2522 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2522 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3166 ((-114) |#1|)) (-15 -1926 ((-3 |#1| "failed") (-114)))) -((-2399 (((-112) $ $) NIL)) (-2415 (((-772) $) 91) (($ $ (-772)) 37)) (-4352 (((-112) $) 41)) (-2790 (($ $ (-1159) (-775)) 58) (($ $ (-509) (-775)) 33)) (-2308 (($ $ (-45 (-1159) (-775))) 16)) (-1701 (((-3 (-775) "failed") $ (-1159)) 27) (((-692 (-775)) $ (-509)) 32)) (-2547 (((-45 (-1159) (-775)) $) 15)) (-2652 (($ (-1177)) 20) (($ (-1177) (-772)) 23) (($ (-1177) (-55)) 24)) (-1753 (((-112) $) 39)) (-4106 (((-112) $) 43)) (-1988 (((-1177) $) 8)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-1582 (((-112) $ (-1177)) 11)) (-4075 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3430 (((-1121) $) NIL)) (-2403 (((-112) $ (-509)) 36)) (-1860 (($ $ (-1 (-112) $ $)) 45)) (-4015 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-1903 (($ $ (-1159)) 55) (($ $ (-509)) 56)) (-4303 (($ $) 77)) (-4160 (($ $ (-1 (-112) $ $)) 46)) (-4127 (((-863) $) 60)) (-4104 (((-112) $ $) NIL)) (-2068 (($ $ (-509)) 34)) (-1681 (((-55) $) 72)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 89)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 103))) -(((-114) (-13 (-851) (-836 (-1177)) (-10 -8 (-15 -2547 ((-45 (-1159) (-775)) $)) (-15 -4303 ($ $)) (-15 -2652 ($ (-1177))) (-15 -2652 ($ (-1177) (-772))) (-15 -2652 ($ (-1177) (-55))) (-15 -1753 ((-112) $)) (-15 -4352 ((-112) $)) (-15 -4106 ((-112) $)) (-15 -2415 ((-772) $)) (-15 -2415 ($ $ (-772))) (-15 -1860 ($ $ (-1 (-112) $ $))) (-15 -4160 ($ $ (-1 (-112) $ $))) (-15 -4015 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4015 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4015 ($ $ (-1 (-863) (-863)))) (-15 -4075 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4075 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -2403 ((-112) $ (-509))) (-15 -2068 ($ $ (-509))) (-15 -1903 ($ $ (-1159))) (-15 -1903 ($ $ (-509))) (-15 -1701 ((-3 (-775) "failed") $ (-1159))) (-15 -1701 ((-692 (-775)) $ (-509))) (-15 -2790 ($ $ (-1159) (-775))) (-15 -2790 ($ $ (-509) (-775))) (-15 -2308 ($ $ (-45 (-1159) (-775))))))) (T -114)) -((-2547 (*1 *2 *1) (-12 (-5 *2 (-45 (-1159) (-775))) (-5 *1 (-114)))) (-4303 (*1 *1 *1) (-5 *1 (-114))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-114)))) (-2652 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *1 (-114)))) (-2652 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-2415 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4015 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4075 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-2403 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2068 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1903 (*1 *1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-114)))) (-1903 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1701 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1159)) (-5 *2 (-775)) (-5 *1 (-114)))) (-1701 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-775)) (-5 *1 (-114)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1159) (-775))) (-5 *1 (-114))))) -(-13 (-851) (-836 (-1177)) (-10 -8 (-15 -2547 ((-45 (-1159) (-775)) $)) (-15 -4303 ($ $)) (-15 -2652 ($ (-1177))) (-15 -2652 ($ (-1177) (-772))) (-15 -2652 ($ (-1177) (-55))) (-15 -1753 ((-112) $)) (-15 -4352 ((-112) $)) (-15 -4106 ((-112) $)) (-15 -2415 ((-772) $)) (-15 -2415 ($ $ (-772))) (-15 -1860 ($ $ (-1 (-112) $ $))) (-15 -4160 ($ $ (-1 (-112) $ $))) (-15 -4015 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4015 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4015 ($ $ (-1 (-863) (-863)))) (-15 -4075 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4075 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -2403 ((-112) $ (-509))) (-15 -2068 ($ $ (-509))) (-15 -1903 ($ $ (-1159))) (-15 -1903 ($ $ (-509))) (-15 -1701 ((-3 (-775) "failed") $ (-1159))) (-15 -1701 ((-692 (-775)) $ (-509))) (-15 -2790 ($ $ (-1159) (-775))) (-15 -2790 ($ $ (-509) (-775))) (-15 -2308 ($ $ (-45 (-1159) (-775)))))) -((-2171 (((-567) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -2171 ((-567) |#2|))) (-13 (-365) (-1039 (-410 (-567)))) (-1243 |#1|)) (T -115)) -((-2171 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1039 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -2171 ((-567) |#2|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $ (-567)) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-1931 (($ (-1173 (-567)) (-567)) NIL)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1423 (($ $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-2937 (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2542 (((-567)) NIL)) (-1793 (((-567) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3981 (($ $ (-567)) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3435 (((-1157 (-567)) $) NIL)) (-1546 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-567) $ (-567)) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) +((-2403 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2936 ((-112) $ $)) (-15 -2403 ((-112) $ $)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 24 (|has| $ (-6 -4419)))) (-3909 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4062 (($ $ $) NIL (|has| $ (-6 -4419)))) (-3432 (($ $ (-645 |#1|)) 34)) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 12)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 36)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4219 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-4332 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 11)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 9)) (-3498 (($) 35)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4285 (($ (-772) |#1|) 37)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4285 ($ (-772) |#1|)) (-15 -3432 ($ $ (-645 |#1|))) (-15 -4219 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4219 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1102)) (T -103)) +((-4285 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))) (-4219 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-4332 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))) (-4332 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4285 ($ (-772) |#1|)) (-15 -3432 ($ $ (-645 |#1|))) (-15 -4219 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4219 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) +((-1968 ((|#3| |#2| |#2|) 36)) (-2946 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4420 "*"))))) (-2782 ((|#3| |#2| |#2|) 38)) (-3803 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4420 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1968 (|#3| |#2| |#2|)) (-15 -2782 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4420 "*"))) (PROGN (-15 -2946 (|#1| |#2| |#2|)) (-15 -3803 (|#1| |#2|))) |%noBranch|)) (-1051) (-1244 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) +((-3803 (*1 *2 *3) (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2946 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2782 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1968 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(-10 -7 (-15 -1968 (|#3| |#2| |#2|)) (-15 -2782 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4420 "*"))) (PROGN (-15 -2946 (|#1| |#2| |#2|)) (-15 -3803 (|#1| |#2|))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-2888 (((-645 (-1178))) 37)) (-2692 (((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178)) 39)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-105) (-13 (-1102) (-10 -7 (-15 -2888 ((-645 (-1178)))) (-15 -2692 ((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178))) (-6 -4418)))) (T -105)) +((-2888 (*1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-105)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225))))) (-5 *1 (-105))))) +(-13 (-1102) (-10 -7 (-15 -2888 ((-645 (-1178)))) (-15 -2692 ((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178))) (-6 -4418))) +((-3551 (($ (-645 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3551 (|#1| (-645 |#2|)))) (-107 |#2|) (-1218)) (T -106)) +NIL +(-10 -8 (-15 -3551 (|#1| (-645 |#2|)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-107 |#1|) (-140) (-1218)) (T -107)) +((-3551 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-107 *3)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))) (-2531 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218))))) +(-13 (-492 |t#1|) (-10 -8 (-6 -4419) (-15 -3551 ($ (-645 |t#1|))) (-15 -1793 (|t#1| $)) (-15 -2531 ($ |t#1| $)) (-15 -1566 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 2) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-4227 (($ (-410 (-567))) 9)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) +(((-108) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -4227 ($ (-410 (-567))))))) (T -108)) +((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-4227 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))) +(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -4227 ($ (-410 (-567)))))) +((-2550 (((-645 (-967)) $) 13)) (-1996 (((-509) $) 9)) (-4132 (((-863) $) 20)) (-3149 (($ (-509) (-645 (-967))) 15))) +(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2550 ((-645 (-967)) $)) (-15 -3149 ($ (-509) (-645 (-967))))))) (T -109)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) (-3149 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109))))) +(-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2550 ((-645 (-967)) $)) (-15 -3149 ($ (-509) (-645 (-967)))))) +((-2403 (((-112) $ $) NIL)) (-2425 (($ $) NIL)) (-1689 (($ $ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-112) $ (-1235 (-567)) (-112)) NIL (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3238 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3741 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) NIL)) (-2569 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2777 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-1677 (($ $ $) NIL)) (-1657 (($ $) NIL)) (-4005 (($ $ $) NIL)) (-2846 (($ (-772) (-112)) 10)) (-3107 (($ $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL)) (-4135 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2279 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL)) (-3731 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-112) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3986 (($ $ (-112)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (($ $ (-1235 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) NIL)) (-2269 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4132 (((-863) $) NIL)) (-2547 (($ (-772) (-112)) 11)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1667 (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-2458 (($ $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-110) (-13 (-123) (-10 -8 (-15 -2547 ($ (-772) (-112)))))) (T -110)) +((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -2547 ($ (-772) (-112))))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-140) (-1051) (-1051)) (T -111)) +NIL +(-13 (-649 |t#1|) (-1058 |t#2|) (-10 -7 (-6 -4413) (-6 -4412))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2425 (($ $) 13)) (-1689 (($ $ $) 18)) (-1477 (($) 7 T CONST)) (-3799 (($ $) 6)) (-2375 (((-772)) 26)) (-1348 (($) 34)) (-1677 (($ $ $) 16)) (-1657 (($ $) 9)) (-4005 (($ $ $) 19)) (-3107 (($ $ $) 20)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) 32)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 30)) (-3661 (($ $ $) 22)) (-3430 (((-1122) $) NIL)) (-2786 (($) 8 T CONST)) (-1983 (($ $ $) 23)) (-3893 (((-539) $) 36)) (-4132 (((-863) $) 38)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 14)) (-2470 (($ $ $) 17)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 24)) (-2458 (($ $ $) 15))) +(((-112) (-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1689 ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3799 ($ $))))) (T -112)) +((-1689 (*1 *1 *1 *1) (-5 *1 (-112))) (-3107 (*1 *1 *1 *1) (-5 *1 (-112))) (-4005 (*1 *1 *1 *1) (-5 *1 (-112))) (-3799 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1689 ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3799 ($ $)))) +((-3456 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-3743 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-1755 (((-114) |#1|) 63)) (-2954 (((-3 |#1| "failed") (-114)) 58))) +(((-113 |#1|) (-10 -7 (-15 -3456 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3456 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3456 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3456 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -3743 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3743 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3743 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -1755 ((-114) |#1|)) (-15 -2954 ((-3 |#1| "failed") (-114)))) (-1102)) (T -113)) +((-2954 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))) (-1755 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))) (-3743 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-3456 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1102))))) +(-10 -7 (-15 -3456 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3456 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3456 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3456 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -3743 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3743 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3743 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -1755 ((-114) |#1|)) (-15 -2954 ((-3 |#1| "failed") (-114)))) +((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) 91) (($ $ (-772)) 37)) (-1949 (((-112) $) 41)) (-3274 (($ $ (-1160) (-775)) 58) (($ $ (-509) (-775)) 33)) (-1534 (($ $ (-45 (-1160) (-775))) 16)) (-1704 (((-3 (-775) "failed") $ (-1160)) 27) (((-692 (-775)) $ (-509)) 32)) (-2550 (((-45 (-1160) (-775)) $) 15)) (-2654 (($ (-1178)) 20) (($ (-1178) (-772)) 23) (($ (-1178) (-55)) 24)) (-2906 (((-112) $) 39)) (-1850 (((-112) $) 43)) (-1996 (((-1178) $) 8)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-1854 (((-112) $ (-1178)) 11)) (-4081 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3430 (((-1122) $) NIL)) (-4231 (((-112) $ (-509)) 36)) (-4115 (($ $ (-1 (-112) $ $)) 45)) (-4022 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-1955 (($ $ (-1160)) 55) (($ $ (-509)) 56)) (-4305 (($ $) 77)) (-1539 (($ $ (-1 (-112) $ $)) 46)) (-4132 (((-863) $) 60)) (-1745 (((-112) $ $) NIL)) (-2074 (($ $ (-509)) 34)) (-2124 (((-55) $) 72)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 89)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 103))) +(((-114) (-13 (-851) (-836 (-1178)) (-10 -8 (-15 -2550 ((-45 (-1160) (-775)) $)) (-15 -4305 ($ $)) (-15 -2654 ($ (-1178))) (-15 -2654 ($ (-1178) (-772))) (-15 -2654 ($ (-1178) (-55))) (-15 -2906 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3729 ((-772) $)) (-15 -3729 ($ $ (-772))) (-15 -4115 ($ $ (-1 (-112) $ $))) (-15 -1539 ($ $ (-1 (-112) $ $))) (-15 -4022 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4022 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4022 ($ $ (-1 (-863) (-863)))) (-15 -4081 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4081 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -4231 ((-112) $ (-509))) (-15 -2074 ($ $ (-509))) (-15 -1955 ($ $ (-1160))) (-15 -1955 ($ $ (-509))) (-15 -1704 ((-3 (-775) "failed") $ (-1160))) (-15 -1704 ((-692 (-775)) $ (-509))) (-15 -3274 ($ $ (-1160) (-775))) (-15 -3274 ($ $ (-509) (-775))) (-15 -1534 ($ $ (-45 (-1160) (-775))))))) (T -114)) +((-2550 (*1 *2 *1) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114)))) (-4305 (*1 *1 *1) (-5 *1 (-114))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-114)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *1 (-114)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-55)) (-5 *1 (-114)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-3729 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4022 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4081 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2074 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-114)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1704 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-775)) (-5 *1 (-114)))) (-1704 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-3274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-775)) (-5 *1 (-114)))) (-3274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-1534 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114))))) +(-13 (-851) (-836 (-1178)) (-10 -8 (-15 -2550 ((-45 (-1160) (-775)) $)) (-15 -4305 ($ $)) (-15 -2654 ($ (-1178))) (-15 -2654 ($ (-1178) (-772))) (-15 -2654 ($ (-1178) (-55))) (-15 -2906 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3729 ((-772) $)) (-15 -3729 ($ $ (-772))) (-15 -4115 ($ $ (-1 (-112) $ $))) (-15 -1539 ($ $ (-1 (-112) $ $))) (-15 -4022 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4022 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4022 ($ $ (-1 (-863) (-863)))) (-15 -4081 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4081 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -4231 ((-112) $ (-509))) (-15 -2074 ($ $ (-509))) (-15 -1955 ($ $ (-1160))) (-15 -1955 ($ $ (-509))) (-15 -1704 ((-3 (-775) "failed") $ (-1160))) (-15 -1704 ((-692 (-775)) $ (-509))) (-15 -3274 ($ $ (-1160) (-775))) (-15 -3274 ($ $ (-509) (-775))) (-15 -1534 ($ $ (-45 (-1160) (-775)))))) +((-3674 (((-567) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -3674 ((-567) |#2|))) (-13 (-365) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -115)) +((-3674 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -3674 ((-567) |#2|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1648 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) NIL)) (-3297 (((-567) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-1158 (-567)) $) NIL)) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) (((-116 |#1|) (-870 |#1|) (-567)) (T -116)) NIL (-870 |#1|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-116 |#1|) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-116 |#1|) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-567))))) (-2033 (((-116 |#1|) $) NIL) (((-1177) $) NIL (|has| (-116 |#1|) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1039 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1039 (-567))))) (-3671 (($ $) NIL) (($ (-567) $) NIL)) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-116 |#1|))) (|:| |vec| (-1267 (-116 |#1|)))) (-690 $) (-1267 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-116 |#1|) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-116 |#1|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-116 |#1|) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-116 |#1|) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1152)))) (-2102 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-2998 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3822 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-116 |#1|) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-1842 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-116 |#1|) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-116 |#1|) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1177)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1177) (-116 |#1|)))) (($ $ (-1177) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1177) (-116 |#1|))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1177)) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-116 |#1|) $) NIL)) (-3880 (((-893 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1023))) (((-225) $) NIL (|has| (-116 |#1|) (-1023)))) (-4145 (((-174 (-410 (-567))) $) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1177)) NIL (|has| (-116 |#1|) (-1039 (-1177))))) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-910))) (|has| (-116 |#1|) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-410 (-567)) $ (-567)) NIL)) (-4137 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1177)) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-116 |#1|) (-901 (-1177)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3050 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-993 (-116 |#1|)) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) (-567)) (T -117)) -((-3040 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-3671 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-993 (-116 |#1|)) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) -((-4281 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4343 (((-645 $) $) 31)) (-4218 (((-112) $ $) 36)) (-3136 (((-112) |#2| $) 40)) (-3781 (((-645 |#2|) $) 25)) (-2915 (((-112) $) 18)) (-1783 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3340 (((-112) $) 57)) (-4127 (((-863) $) 47)) (-3602 (((-645 $) $) 32)) (-2929 (((-112) $ $) 38)) (-2410 (((-772) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -4281 (|#1| |#1| "right" |#1|)) (-15 -4281 (|#1| |#1| "left" |#1|)) (-15 -1783 (|#1| |#1| "right")) (-15 -1783 (|#1| |#1| "left")) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -4218 ((-112) |#1| |#1|)) (-15 -3781 ((-645 |#2|) |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3136 ((-112) |#2| |#1|)) (-15 -2410 ((-772) |#1|))) (-119 |#2|) (-1217)) (T -118)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -4281 (|#1| |#1| "right" |#1|)) (-15 -4281 (|#1| |#1| "left" |#1|)) (-15 -1783 (|#1| |#1| "right")) (-15 -1783 (|#1| |#1| "left")) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -4218 ((-112) |#1| |#1|)) (-15 -3781 ((-645 |#2|) |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3136 ((-112) |#2| |#1|)) (-15 -2410 ((-772) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-4043 (($ $ $) 53 (|has| $ (-6 -4418)))) (-4329 (($ $ $) 55 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) (($ $ "left" $) 56 (|has| $ (-6 -4418))) (($ $ "right" $) 54 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-2956 (($ $) 58)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-2944 (($ $) 60)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4126 (((-567) $ $) 45)) (-3340 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-119 |#1|) (-140) (-1217)) (T -119)) -((-2944 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1217)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1217)))) (-2956 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1217)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1217)))) (-4281 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) (-4 *3 (-1217)))) (-4329 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1217)))) (-4281 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) (-4 *3 (-1217)))) (-4043 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1217))))) -(-13 (-1011 |t#1|) (-10 -8 (-15 -2944 ($ $)) (-15 -1783 ($ $ "left")) (-15 -2956 ($ $)) (-15 -1783 ($ $ "right")) (IF (|has| $ (-6 -4418)) (PROGN (-15 -4281 ($ $ "left" $)) (-15 -4329 ($ $ $)) (-15 -4281 ($ $ "right" $)) (-15 -4043 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-1630 (((-112) |#1|) 29)) (-3016 (((-772) (-772)) 28) (((-772)) 27)) (-2523 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -2523 ((-112) |#1|)) (-15 -2523 ((-112) |#1| (-112))) (-15 -3016 ((-772))) (-15 -3016 ((-772) (-772))) (-15 -1630 ((-112) |#1|))) (-1243 (-567))) (T -120)) -((-1630 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) (-3016 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) (-2523 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) (-2523 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567)))))) -(-10 -7 (-15 -2523 ((-112) |#1|)) (-15 -2523 ((-112) |#1| (-112))) (-15 -3016 ((-772))) (-15 -3016 ((-772) (-772))) (-15 -1630 ((-112) |#1|))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) 18)) (-1800 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-4043 (($ $ $) 21 (|has| $ (-6 -4418)))) (-4329 (($ $ $) 23 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-2956 (($ $) 20)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3403 (($ $ |#1| $) 27)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2944 (($ $) 22)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2065 (($ |#1| $) 28)) (-1330 (($ |#1| $) 15)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 11)) (-1783 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3941 (($ (-645 |#1|)) 16)) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3941 ($ (-645 |#1|))) (-15 -1330 ($ |#1| $)) (-15 -2065 ($ |#1| $)) (-15 -1800 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121)) -((-3941 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-1330 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-1800 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3941 ($ (-645 |#1|))) (-15 -1330 ($ |#1| $)) (-15 -2065 ($ |#1| $)) (-15 -1800 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2421 (($ $) 13)) (-1653 (($ $) 11)) (-1797 (($ $ $) 23)) (-3688 (($ $ $) 21)) (-2465 (($ $ $) 19)) (-2455 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -1797 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -1653 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2465 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1797 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -1653 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2465 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2421 (($ $) 104)) (-1688 (($ $ $) 26)) (-2848 (((-1272) $ (-567) (-567)) 67 (|has| $ (-6 -4418)))) (-2871 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3161 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4418)))) (-1332 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2112 (((-112) $ (-772)) 38)) (-4281 (((-112) $ (-1234 (-567)) (-112)) 89 (|has| $ (-6 -4418))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4417)))) (-2245 (($) 39 T CONST)) (-3224 (($ $) 101 (|has| $ (-6 -4418)))) (-3583 (($ $) 91)) (-2440 (($ $) 69 (-12 (|has| (-112) (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4417))) (($ (-112) $) 70 (-12 (|has| (-112) (-1101)) (|has| $ (-6 -4417))))) (-2499 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1101)) (|has| $ (-6 -4417))))) (-3759 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4418)))) (-3702 (((-112) $ (-567)) 56)) (-2567 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1101))) (((-567) (-112) $) 95 (|has| (-112) (-1101))) (((-567) (-1 (-112) (-112)) $) 94)) (-3397 (((-645 (-112)) $) 46 (|has| $ (-6 -4417)))) (-1676 (($ $ $) 27)) (-1653 (($ $) 31)) (-1797 (($ $ $) 29)) (-2844 (($ (-772) (-112)) 78)) (-3688 (($ $ $) 30)) (-1904 (((-112) $ (-772)) 37)) (-3993 (((-567) $) 64 (|has| (-567) (-851)))) (-2010 (($ $ $) 14)) (-3523 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2513 (((-645 (-112)) $) 47 (|has| $ (-6 -4417)))) (-3136 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 63 (|has| (-567) (-851)))) (-2998 (($ $ $) 15)) (-3751 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-1596 (((-112) $ (-772)) 36)) (-3739 (((-1159) $) 10)) (-2842 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-2732 (((-645 (-567)) $) 61)) (-2479 (((-112) (-567) $) 60)) (-3430 (((-1121) $) 11)) (-2405 (((-112) $) 65 (|has| (-567) (-851)))) (-3424 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4271 (($ $ (-112)) 66 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101))))) (-2480 (((-112) $ $) 32)) (-2991 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3564 (((-645 (-112)) $) 59)) (-3240 (((-112) $) 35)) (-3347 (($) 34)) (-1783 (($ $ (-1234 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-1558 (($ $ (-1234 (-567))) 86) (($ $ (-567)) 85)) (-3439 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4417)))) (-2811 (($ $ $ (-567)) 100 (|has| $ (-6 -4418)))) (-4303 (($ $) 33)) (-3880 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-4142 (($ (-645 (-112))) 77)) (-2260 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2461 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4417)))) (-1664 (($ $ $) 28)) (-2465 (($ $ $) 106)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-2455 (($ $ $) 105)) (-2410 (((-772) $) 40 (|has| $ (-6 -4417))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-2038 (((-116 |#1|) $) NIL) (((-1178) $) NIL (|has| (-116 |#1|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-116 |#1|))) (|:| |vec| (-1268 (-116 |#1|)))) (-690 $) (-1268 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-116 |#1|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-116 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-116 |#1|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-116 |#1|) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-2981 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3829 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-116 |#1|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-2780 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1178)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1178) (-116 |#1|)))) (($ $ (-1178) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1178) (-116 |#1|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-116 |#1|) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1024))) (((-225) $) NIL (|has| (-116 |#1|) (-1024)))) (-1579 (((-174 (-410 (-567))) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1178)) NIL (|has| (-116 |#1|) (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))) (|has| (-116 |#1|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) NIL)) (-2219 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3060 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567)) (T -117)) +((-3050 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) +((-4284 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2182 (((-645 $) $) 31)) (-3512 (((-112) $ $) 36)) (-4337 (((-112) |#2| $) 40)) (-3773 (((-645 |#2|) $) 25)) (-2769 (((-112) $) 18)) (-1787 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3900 (((-112) $) 57)) (-4132 (((-863) $) 47)) (-1531 (((-645 $) $) 32)) (-2936 (((-112) $ $) 38)) (-2414 (((-772) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -4284 (|#1| |#1| "right" |#1|)) (-15 -4284 (|#1| |#1| "left" |#1|)) (-15 -1787 (|#1| |#1| "right")) (-15 -1787 (|#1| |#1| "left")) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3773 ((-645 |#2|) |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -2414 ((-772) |#1|))) (-119 |#2|) (-1218)) (T -118)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -4284 (|#1| |#1| "right" |#1|)) (-15 -4284 (|#1| |#1| "left" |#1|)) (-15 -1787 (|#1| |#1| "right")) (-15 -1787 (|#1| |#1| "left")) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3773 ((-645 |#2|) |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -2414 ((-772) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) (($ $ "left" $) 56 (|has| $ (-6 -4419))) (($ $ "right" $) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2963 (($ $) 58)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-2950 (($ $) 60)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-119 |#1|) (-140) (-1218)) (T -119)) +((-2950 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-4062 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-3909 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218))))) +(-13 (-1012 |t#1|) (-10 -8 (-15 -2950 ($ $)) (-15 -1787 ($ $ "left")) (-15 -2963 ($ $)) (-15 -1787 ($ $ "right")) (IF (|has| $ (-6 -4419)) (PROGN (-15 -4284 ($ $ "left" $)) (-15 -4062 ($ $ $)) (-15 -4284 ($ $ "right" $)) (-15 -3909 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2431 (((-112) |#1|) 29)) (-2066 (((-772) (-772)) 28) (((-772)) 27)) (-3834 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -3834 ((-112) |#1|)) (-15 -3834 ((-112) |#1| (-112))) (-15 -2066 ((-772))) (-15 -2066 ((-772) (-772))) (-15 -2431 ((-112) |#1|))) (-1244 (-567))) (T -120)) +((-2431 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-2066 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-3834 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))) +(-10 -7 (-15 -3834 ((-112) |#1|)) (-15 -3834 ((-112) |#1| (-112))) (-15 -2066 ((-772))) (-15 -2066 ((-772) (-772))) (-15 -2431 ((-112) |#1|))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 18)) (-4323 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-3909 (($ $ $) 21 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 23 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 20)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 27)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 22)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2341 (($ |#1| $) 28)) (-2531 (($ |#1| $) 15)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3999 (($ (-645 |#1|)) 16)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3999 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)) (-15 -2341 ($ |#1| $)) (-15 -4323 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121)) +((-3999 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-2531 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-4323 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3999 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)) (-15 -2341 ($ |#1| $)) (-15 -4323 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2425 (($ $) 13)) (-1657 (($ $) 11)) (-4005 (($ $ $) 23)) (-3107 (($ $ $) 21)) (-2470 (($ $ $) 19)) (-2458 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -4005 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -4005 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2425 (($ $) 104)) (-1689 (($ $ $) 26)) (-1783 (((-1273) $ (-567) (-567)) 67 (|has| $ (-6 -4419)))) (-2496 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1394 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4419)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4419)))) (-4396 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3445 (((-112) $ (-772)) 38)) (-4284 (((-112) $ (-1235 (-567)) (-112)) 89 (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4418)))) (-2585 (($) 39 T CONST)) (-1764 (($ $) 101 (|has| $ (-6 -4419)))) (-3584 (($ $) 91)) (-2444 (($ $) 69 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4418))) (($ (-112) $) 70 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-3741 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) 56)) (-2569 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1102))) (((-567) (-112) $) 95 (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) 94)) (-2777 (((-645 (-112)) $) 46 (|has| $ (-6 -4418)))) (-1677 (($ $ $) 27)) (-1657 (($ $) 31)) (-4005 (($ $ $) 29)) (-2846 (($ (-772) (-112)) 78)) (-3107 (($ $ $) 30)) (-2077 (((-112) $ (-772)) 37)) (-4069 (((-567) $) 64 (|has| (-567) (-851)))) (-1354 (($ $ $) 14)) (-4135 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2279 (((-645 (-112)) $) 47 (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 63 (|has| (-567) (-851)))) (-2981 (($ $ $) 15)) (-3731 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-2863 (((-112) $ (-772)) 36)) (-1419 (((-1160) $) 10)) (-2845 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-1789 (((-645 (-567)) $) 61)) (-2996 (((-112) (-567) $) 60)) (-3430 (((-1122) $) 11)) (-2409 (((-112) $) 65 (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3986 (($ $ (-112)) 66 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) 32)) (-1794 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) 59)) (-3572 (((-112) $) 35)) (-3498 (($) 34)) (-1787 (($ $ (-1235 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-1560 (($ $ (-1235 (-567))) 86) (($ $ (-567)) 85)) (-3439 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) 100 (|has| $ (-6 -4419)))) (-4305 (($ $) 33)) (-3893 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) 77)) (-2269 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4418)))) (-1667 (($ $ $) 28)) (-2470 (($ $ $) 106)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-2458 (($ $ $) 105)) (-2414 (((-772) $) 40 (|has| $ (-6 -4418))))) (((-123) (-140)) (T -123)) -((-1653 (*1 *1 *1) (-4 *1 (-123))) (-3688 (*1 *1 *1 *1) (-4 *1 (-123))) (-1797 (*1 *1 *1 *1) (-4 *1 (-123))) (-1664 (*1 *1 *1 *1) (-4 *1 (-123))) (-1676 (*1 *1 *1 *1) (-4 *1 (-123))) (-1688 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1653 ($ $)) (-15 -3688 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -1664 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1688 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1101) . T) ((-1217) . T)) -((-3751 (($ (-1 |#2| |#2|) $) 22)) (-4303 (($ $) 16)) (-2410 (((-772) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -4303 (|#1| |#1|))) (-125 |#2|) (-1101)) (T -124)) -NIL -(-10 -8 (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -4303 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-4043 (($ $ $) 53 (|has| $ (-6 -4418)))) (-4329 (($ $ $) 55 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) (($ $ "left" $) 56 (|has| $ (-6 -4418))) (($ $ "right" $) 54 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-2956 (($ $) 58)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-3403 (($ $ |#1| $) 61)) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-2944 (($ $) 60)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4126 (((-567) $ $) 45)) (-3340 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-125 |#1|) (-140) (-1101)) (T -125)) -((-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1101))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3403 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-119 |#1|) . T) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) 18)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) 22 (|has| $ (-6 -4418)))) (-4043 (($ $ $) 23 (|has| $ (-6 -4418)))) (-4329 (($ $ $) 21 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-2956 (($ $) 24)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3403 (($ $ |#1| $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2944 (($ $) NIL)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1330 (($ |#1| $) 15)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 11)) (-1783 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 20)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3722 (($ (-645 |#1|)) 16)) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-15 -3722 ($ (-645 |#1|))) (-15 -1330 ($ |#1| $)))) (-851)) (T -126)) -((-3722 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-1330 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-15 -3722 ($ (-645 |#1|))) (-15 -1330 ($ |#1| $)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) 30)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) 32 (|has| $ (-6 -4418)))) (-4043 (($ $ $) 36 (|has| $ (-6 -4418)))) (-4329 (($ $ $) 34 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-2956 (($ $) 23)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3403 (($ $ |#1| $) 16)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2944 (($ $) 22)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) 25)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 20)) (-3347 (($) 11)) (-1783 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2633 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 10 (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2633 ($ |#1|)) (-15 -2633 ($ $ |#1| $)))) (-1101)) (T -127)) -((-2633 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1101)))) (-2633 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1101))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2633 ($ |#1|)) (-15 -2633 ($ $ |#1| $)))) -((-2399 (((-112) $ $) NIL (|has| (-129) (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-3161 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-851))))) (-1332 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4418))) (((-129) $ (-1234 (-567)) (-129)) NIL (|has| $ (-6 -4418)))) (-2447 (((-772) $ (-772)) 34)) (-3338 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101))))) (-3230 (($ (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4417))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4417)))) (-3759 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4418)))) (-3702 (((-129) $ (-567)) 20)) (-2567 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1101))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1101)))) (-3397 (((-645 (-129)) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) (-129)) 14)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 27 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| (-129) (-851)))) (-3523 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-2513 (((-645 (-129)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101))))) (-1958 (((-567) $) 30 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-129) (-851)))) (-3751 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| (-129) (-1101)))) (-2842 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| (-129) (-1101)))) (-2405 (((-129) $) NIL (|has| (-567) (-851)))) (-3424 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4271 (($ $ (-129)) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1101)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1101)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1101)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101))))) (-3564 (((-645 (-129)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 12)) (-1783 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1234 (-567))) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-4142 (($ (-645 (-129))) 47)) (-2260 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-4127 (((-959 (-129)) $) 35) (((-1159) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-2709 (((-772) $) 18)) (-4031 (($ (-772)) 8)) (-4104 (((-112) $ $) NIL (|has| (-129) (-1101)))) (-2461 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2929 (((-112) $ $) 32 (|has| (-129) (-1101)))) (-2977 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2410 (((-772) $) 15 (|has| $ (-6 -4417))))) -(((-128) (-13 (-19 (-129)) (-614 (-959 (-129))) (-614 (-1159)) (-10 -8 (-15 -4031 ($ (-772))) (-15 -2709 ((-772) $)) (-15 -2447 ((-772) $ (-772))) (-6 -4417)))) (T -128)) -((-4031 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2447 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-614 (-959 (-129))) (-614 (-1159)) (-10 -8 (-15 -4031 ($ (-772))) (-15 -2709 ((-772) $)) (-15 -2447 ((-772) $ (-772))) (-6 -4417))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) 27)) (-2245 (($) 12 T CONST)) (-1378 (($) 36)) (-2010 (($ $ $) NIL) (($) 25 T CONST)) (-2998 (($ $ $) NIL) (($) 26 T CONST)) (-3425 (((-922) $) 34)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) 32)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2623 (($ (-772)) 8)) (-1725 (($ $ $) 38)) (-1713 (($ $ $) 37)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 23)) (-2964 (((-112) $ $) 21)) (-2929 (((-112) $ $) 19)) (-2977 (((-112) $ $) 22)) (-2952 (((-112) $ $) 20))) -(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -2623 ($ (-772))) (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280)))) (T -129)) -((-2623 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1713 (*1 *1 *1 *1) (-5 *1 (-129))) (-1725 (*1 *1 *1 *1) (-5 *1 (-129))) (-2245 (*1 *1) (-5 *1 (-129)))) -(-13 (-845) (-493 (-144)) (-10 -8 (-15 -2623 ($ (-772))) (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-1657 (*1 *1 *1) (-4 *1 (-123))) (-3107 (*1 *1 *1 *1) (-4 *1 (-123))) (-4005 (*1 *1 *1 *1) (-4 *1 (-123))) (-1667 (*1 *1 *1 *1) (-4 *1 (-123))) (-1677 (*1 *1 *1 *1) (-4 *1 (-123))) (-1689 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1657 ($ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1689 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1102) . T) ((-1218) . T)) +((-3731 (($ (-1 |#2| |#2|) $) 22)) (-4305 (($ $) 16)) (-2414 (((-772) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -4305 (|#1| |#1|))) (-125 |#2|) (-1102)) (T -124)) +NIL +(-10 -8 (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -4305 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) (($ $ "left" $) 56 (|has| $ (-6 -4419))) (($ $ "right" $) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2963 (($ $) 58)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 61)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-2950 (($ $) 60)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-125 |#1|) (-140) (-1102)) (T -125)) +((-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3403 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-119 |#1|) . T) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 18)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 22 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 23 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 21 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 24)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ |#1| $) 15)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 20)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2469 (($ (-645 |#1|)) 16)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4419) (-15 -2469 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)))) (-851)) (T -126)) +((-2469 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-2531 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4419) (-15 -2469 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 30)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 32 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 36 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 34 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 23)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 16)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 22)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 25)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 20)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2501 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 10 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2501 ($ $ |#1| $)))) (-1102)) (T -127)) +((-2501 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) (-2501 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2501 ($ $ |#1| $)))) +((-2403 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-1394 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-129) (-851))))) (-4396 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4419))) (((-129) $ (-1235 (-567)) (-129)) NIL (|has| $ (-6 -4419)))) (-2977 (((-772) $ (-772)) 34)) (-3350 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-3238 (($ (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4418))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4419)))) (-3680 (((-129) $ (-567)) 20)) (-2569 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1102))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1102)))) (-2777 (((-645 (-129)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-129)) 14)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 27 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-129) (-851)))) (-4135 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-2279 (((-645 (-129)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-2266 (((-567) $) 30 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-129) (-851)))) (-3731 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| (-129) (-1102)))) (-2845 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| (-129) (-1102)))) (-2409 (((-129) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3986 (($ $ (-129)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-2339 (((-645 (-129)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 12)) (-1787 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-4147 (($ (-645 (-129))) 47)) (-2269 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-4132 (((-960 (-129)) $) 35) (((-1160) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-2463 (((-772) $) 18)) (-3219 (($ (-772)) 8)) (-1745 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-1853 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2936 (((-112) $ $) 32 (|has| (-129) (-1102)))) (-2984 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2414 (((-772) $) 15 (|has| $ (-6 -4418))))) +(((-128) (-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1160)) (-10 -8 (-15 -3219 ($ (-772))) (-15 -2463 ((-772) $)) (-15 -2977 ((-772) $ (-772))) (-6 -4418)))) (T -128)) +((-3219 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2977 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1160)) (-10 -8 (-15 -3219 ($ (-772))) (-15 -2463 ((-772) $)) (-15 -2977 ((-772) $ (-772))) (-6 -4418))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 27)) (-2585 (($) 12 T CONST)) (-1348 (($) 36)) (-1354 (($ $ $) NIL) (($) 25 T CONST)) (-2981 (($ $ $) NIL) (($) 26 T CONST)) (-4249 (((-923) $) 34)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 32)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2594 (($ (-772)) 8)) (-1729 (($ $ $) 38)) (-1717 (($ $ $) 37)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) 23)) (-2971 (((-112) $ $) 21)) (-2936 (((-112) $ $) 19)) (-2984 (((-112) $ $) 22)) (-2958 (((-112) $ $) 20))) +(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -2594 ($ (-772))) (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -129)) +((-2594 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1717 (*1 *1 *1 *1) (-5 *1 (-129))) (-1729 (*1 *1 *1 *1) (-5 *1 (-129))) (-2585 (*1 *1) (-5 *1 (-129)))) +(-13 (-845) (-493 (-144)) (-10 -8 (-15 -2594 ($ (-772))) (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2399 (((-112) $ $) NIL)) (-2380 (($) 6 T CONST)) (-2919 (($) 7 T CONST)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 14)) (-2582 (($) 8 T CONST)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 10))) -(((-130) (-13 (-1101) (-10 -8 (-15 -2919 ($) -3280) (-15 -2582 ($) -3280) (-15 -2380 ($) -3280)))) (T -130)) -((-2919 (*1 *1) (-5 *1 (-130))) (-2582 (*1 *1) (-5 *1 (-130))) (-2380 (*1 *1) (-5 *1 (-130)))) -(-13 (-1101) (-10 -8 (-15 -2919 ($) -3280) (-15 -2582 ($) -3280) (-15 -2380 ($) -3280))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16))) +((-2403 (((-112) $ $) NIL)) (-3027 (($) 6 T CONST)) (-3229 (($) 7 T CONST)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 14)) (-4011 (($) 8 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10))) +(((-130) (-13 (-1102) (-10 -8 (-15 -3229 ($) -3286) (-15 -4011 ($) -3286) (-15 -3027 ($) -3286)))) (T -130)) +((-3229 (*1 *1) (-5 *1 (-130))) (-4011 (*1 *1) (-5 *1 (-130))) (-3027 (*1 *1) (-5 *1 (-130)))) +(-13 (-1102) (-10 -8 (-15 -3229 ($) -3286) (-15 -4011 ($) -3286) (-15 -3027 ($) -3286))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) (((-131) (-140)) (T -131)) -((-3460 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -3460 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2712 (((-1272) $ (-772)) 14)) (-2567 (((-772) $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-3472 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -3472 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-1526 (((-1273) $ (-772)) 14)) (-2569 (((-772) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-132) (-140)) (T -132)) -((-2567 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-2712 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1272))))) -(-13 (-1101) (-10 -8 (-15 -2567 ((-772) $)) (-15 -2712 ((-1272) $ (-772))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 16) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-645 (-1136)) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-133) (-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $))))) (T -133)) -((-1998 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-133))))) -(-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $)))) -((-2399 (((-112) $ $) 49)) (-2840 (((-112) $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-772) "failed") $) 58)) (-2033 (((-772) $) 56)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) 37)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2037 (((-112)) 59)) (-4383 (((-112) (-112)) 61)) (-3527 (((-112) $) 30)) (-4027 (((-112) $) 55)) (-4127 (((-863) $) 28) (($ (-772)) 20)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 18 T CONST)) (-1722 (($) 19 T CONST)) (-1304 (($ (-772)) 21)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) 40)) (-2929 (((-112) $ $) 32)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 35)) (-3037 (((-3 $ "failed") $ $) 42)) (-3024 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-922) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-851) (-23) (-727) (-1039 (-772)) (-10 -8 (-6 (-4419 "*")) (-15 -3037 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1304 ($ (-772))) (-15 -3527 ((-112) $)) (-15 -4027 ((-112) $)) (-15 -2037 ((-112))) (-15 -4383 ((-112) (-112)))))) (T -134)) -((-3037 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4383 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-851) (-23) (-727) (-1039 (-772)) (-10 -8 (-6 (-4419 "*")) (-15 -3037 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1304 ($ (-772))) (-15 -3527 ((-112) $)) (-15 -4027 ((-112) $)) (-15 -2037 ((-112))) (-15 -4383 ((-112) (-112))))) -((-3622 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3822 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3822 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -3622 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3822 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-2399 (((-112) $ $) NIL)) (-1417 (($ (-645 |#3|)) 64)) (-1650 (($ $) 126) (($ $ (-567) (-567)) 125)) (-2245 (($) 20)) (-3747 (((-3 |#3| "failed") $) 86)) (-2033 ((|#3| $) NIL)) (-3154 (($ $ (-645 (-567))) 127)) (-3613 (((-645 |#3|) $) 59)) (-1979 (((-772) $) 69)) (-3963 (($ $ $) 120)) (-2123 (($) 68)) (-3739 (((-1159) $) NIL)) (-2345 (($) 19)) (-3430 (((-1121) $) NIL)) (-1783 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-1813 (((-772) $) 70)) (-3560 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-4127 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1143 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 96 T CONST)) (-1722 (($) 97 T CONST)) (-2929 (((-112) $ $) 107)) (-3037 (($ $) 113) (($ $ $) 111)) (-3024 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122))) -(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4127 ($ (-240 |#2| |#3|))) (-15 -4127 ($ (-1143 |#2| |#3|))) (-15 -4127 ($ (-645 |#3|))) (-15 -4127 ($ (-645 $))) (-15 -1979 ((-772) $)) (-15 -1783 (|#3| $)) (-15 -1783 (|#3| $ (-567))) (-15 -1783 (|#3| $ (-567) (-567))) (-15 -1783 (|#3| $ (-567) (-567) (-567))) (-15 -1783 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1783 (|#3| $ (-645 (-567)))) (-15 -3963 ($ $ $)) (-15 * ($ $ $)) (-15 -3560 ($ $ (-567) $ (-567))) (-15 -3560 ($ $ (-567) (-567))) (-15 -1650 ($ $)) (-15 -1650 ($ $ (-567) (-567))) (-15 -3154 ($ $ (-645 (-567)))) (-15 -2345 ($)) (-15 -2123 ($)) (-15 -3613 ((-645 |#3|) $)) (-15 -1417 ($ (-645 |#3|))) (-15 -2245 ($)))) (-567) (-772) (-172)) (T -136)) -((-3963 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1143 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1783 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1783 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1783 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3560 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3560 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-1650 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2345 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2123 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-2245 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172))))) -(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4127 ($ (-240 |#2| |#3|))) (-15 -4127 ($ (-1143 |#2| |#3|))) (-15 -4127 ($ (-645 |#3|))) (-15 -4127 ($ (-645 $))) (-15 -1979 ((-772) $)) (-15 -1783 (|#3| $)) (-15 -1783 (|#3| $ (-567))) (-15 -1783 (|#3| $ (-567) (-567))) (-15 -1783 (|#3| $ (-567) (-567) (-567))) (-15 -1783 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1783 (|#3| $ (-645 (-567)))) (-15 -3963 ($ $ $)) (-15 * ($ $ $)) (-15 -3560 ($ $ (-567) $ (-567))) (-15 -3560 ($ $ (-567) (-567))) (-15 -1650 ($ $)) (-15 -1650 ($ $ (-567) (-567))) (-15 -3154 ($ $ (-645 (-567)))) (-15 -2345 ($)) (-15 -2123 ($)) (-15 -3613 ((-645 |#3|) $)) (-15 -1417 ($ (-645 |#3|))) (-15 -2245 ($)))) -((-2399 (((-112) $ $) NIL)) (-4100 (((-1136) $) 11)) (-4084 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-137) (-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $))))) (T -137)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137))))) -(-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-4161 (((-186) $) 10)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 20) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-645 (-1136)) $) 13)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-138) (-13 (-1084) (-10 -8 (-15 -4161 ((-186) $)) (-15 -1998 ((-645 (-1136)) $))))) (T -138)) -((-4161 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-138))))) -(-13 (-1084) (-10 -8 (-15 -4161 ((-186) $)) (-15 -1998 ((-645 (-1136)) $)))) -((-2399 (((-112) $ $) NIL)) (-3861 (((-645 (-866)) $) NIL)) (-1988 (((-509) $) NIL)) (-3739 (((-1159) $) NIL)) (-4161 (((-186) $) NIL)) (-1582 (((-112) $ (-509)) NIL)) (-3430 (((-1121) $) NIL)) (-4350 (((-645 (-112)) $) NIL)) (-4127 (((-863) $) NIL) (((-187) $) 6)) (-4104 (((-112) $ $) NIL)) (-1681 (((-55) $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2569 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-1526 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1273))))) +(-13 (-1102) (-10 -8 (-15 -2569 ((-772) $)) (-15 -1526 ((-1273) $ (-772))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-133) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))) (T -133)) +((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133))))) +(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)))) +((-2403 (((-112) $ $) 49)) (-2460 (((-112) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-772) "failed") $) 58)) (-2038 (((-772) $) 56)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) 37)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4034 (((-112)) 59)) (-4161 (((-112) (-112)) 61)) (-1314 (((-112) $) 30)) (-2758 (((-112) $) 55)) (-4132 (((-863) $) 28) (($ (-772)) 20)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 18 T CONST)) (-1728 (($) 19 T CONST)) (-2732 (($ (-772)) 21)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) 40)) (-2936 (((-112) $ $) 32)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 35)) (-3045 (((-3 $ "failed") $ $) 42)) (-3033 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-923) $) NIL) (($ $ $) 45))) +(((-134) (-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4420 "*")) (-15 -3045 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2732 ($ (-772))) (-15 -1314 ((-112) $)) (-15 -2758 ((-112) $)) (-15 -4034 ((-112))) (-15 -4161 ((-112) (-112)))))) (T -134)) +((-3045 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4034 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4420 "*")) (-15 -3045 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2732 ($ (-772))) (-15 -1314 ((-112) $)) (-15 -2758 ((-112) $)) (-15 -4034 ((-112))) (-15 -4161 ((-112) (-112))))) +((-3629 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3829 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3629 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3829 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -3629 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3829 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-2403 (((-112) $ $) NIL)) (-3752 (($ (-645 |#3|)) 64)) (-3094 (($ $) 126) (($ $ (-567) (-567)) 125)) (-2585 (($) 20)) (-3753 (((-3 |#3| "failed") $) 86)) (-2038 ((|#3| $) NIL)) (-2191 (($ $ (-645 (-567))) 127)) (-3616 (((-645 |#3|) $) 59)) (-1954 (((-772) $) 69)) (-4207 (($ $ $) 120)) (-2103 (($) 68)) (-1419 (((-1160) $) NIL)) (-2321 (($) 19)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-3077 (((-772) $) 70)) (-1971 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-4132 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1144 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 96 T CONST)) (-1728 (($) 97 T CONST)) (-2936 (((-112) $ $) 107)) (-3045 (($ $) 113) (($ $ $) 111)) (-3033 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122))) +(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4132 ($ (-240 |#2| |#3|))) (-15 -4132 ($ (-1144 |#2| |#3|))) (-15 -4132 ($ (-645 |#3|))) (-15 -4132 ($ (-645 $))) (-15 -1954 ((-772) $)) (-15 -1787 (|#3| $)) (-15 -1787 (|#3| $ (-567))) (-15 -1787 (|#3| $ (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-645 (-567)))) (-15 -4207 ($ $ $)) (-15 * ($ $ $)) (-15 -1971 ($ $ (-567) $ (-567))) (-15 -1971 ($ $ (-567) (-567))) (-15 -3094 ($ $)) (-15 -3094 ($ $ (-567) (-567))) (-15 -2191 ($ $ (-645 (-567)))) (-15 -2321 ($)) (-15 -2103 ($)) (-15 -3616 ((-645 |#3|) $)) (-15 -3752 ($ (-645 |#3|))) (-15 -2585 ($)))) (-567) (-772) (-172)) (T -136)) +((-4207 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1787 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-1971 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-1971 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3094 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3094 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2321 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2103 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-2585 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172))))) +(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4132 ($ (-240 |#2| |#3|))) (-15 -4132 ($ (-1144 |#2| |#3|))) (-15 -4132 ($ (-645 |#3|))) (-15 -4132 ($ (-645 $))) (-15 -1954 ((-772) $)) (-15 -1787 (|#3| $)) (-15 -1787 (|#3| $ (-567))) (-15 -1787 (|#3| $ (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-645 (-567)))) (-15 -4207 ($ $ $)) (-15 * ($ $ $)) (-15 -1971 ($ $ (-567) $ (-567))) (-15 -1971 ($ $ (-567) (-567))) (-15 -3094 ($ $)) (-15 -3094 ($ $ (-567) (-567))) (-15 -2191 ($ $ (-645 (-567)))) (-15 -2321 ($)) (-15 -2103 ($)) (-15 -3616 ((-645 |#3|) $)) (-15 -3752 ($ (-645 |#3|))) (-15 -2585 ($)))) +((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-137) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -137)) +((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137))))) +(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 13)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-138) (-13 (-1085) (-10 -8 (-15 -4166 ((-186) $)) (-15 -2006 ((-645 (-1137)) $))))) (T -138)) +((-4166 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138))))) +(-13 (-1085) (-10 -8 (-15 -4166 ((-186) $)) (-15 -2006 ((-645 (-1137)) $)))) +((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL) (((-187) $) 6)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) NIL)) (-2936 (((-112) $ $) NIL))) (((-139) (-13 (-185) (-614 (-187)))) (T -139)) NIL (-13 (-185) (-614 (-187))) -((-1901 (((-645 (-183 (-139))) $) 13)) (-3129 (((-645 (-183 (-139))) $) 14)) (-3145 (((-645 (-839)) $) 10)) (-3221 (((-139) $) 7)) (-4127 (((-863) $) 16))) -(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -3221 ((-139) $)) (-15 -3145 ((-645 (-839)) $)) (-15 -1901 ((-645 (-183 (-139))) $)) (-15 -3129 ((-645 (-183 (-139))) $))))) (T -140)) -((-3221 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3221 ((-139) $)) (-15 -3145 ((-645 (-839)) $)) (-15 -1901 ((-645 (-183 (-139))) $)) (-15 -3129 ((-645 (-183 (-139))) $)))) -((-2399 (((-112) $ $) NIL)) (-1863 (($) 17 T CONST)) (-3007 (($) NIL (|has| (-144) (-370)))) (-4240 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-4020 (($ $ $) NIL)) (-4202 (((-112) $ $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| (-144) (-370)))) (-4150 (($) NIL) (($ (-645 (-144))) NIL)) (-3502 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-2774 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (($ (-144) $) 61 (|has| $ (-6 -4417)))) (-3230 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-2499 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-1378 (($) NIL (|has| (-144) (-370)))) (-3397 (((-645 (-144)) $) 70 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2010 (((-144) $) NIL (|has| (-144) (-851)))) (-2513 (((-645 (-144)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-2998 (((-144) $) NIL (|has| (-144) (-851)))) (-3751 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-144) (-144)) $) 65)) (-3585 (($) 18 T CONST)) (-3425 (((-922) $) NIL (|has| (-144) (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1877 (($ $ $) 30)) (-1881 (((-144) $) 62)) (-1330 (($ (-144) $) 60)) (-3763 (($ (-922)) NIL (|has| (-144) (-370)))) (-2094 (($) 16 T CONST)) (-3430 (((-1121) $) NIL)) (-3424 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3060 (((-144) $) 63)) (-3256 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 58)) (-3887 (($) 15 T CONST)) (-1739 (($ $ $) 32) (($ $ (-144)) NIL)) (-3253 (($ (-645 (-144))) NIL) (($) NIL)) (-3439 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-1159) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-4142 (($ (-645 (-144))) NIL)) (-4092 (($ $) 33 (|has| (-144) (-370)))) (-4127 (((-863) $) 55)) (-3219 (($ (-1159)) 14) (($ (-645 (-144))) 52)) (-3725 (((-772) $) NIL)) (-2768 (($) 59) (($ (-645 (-144))) NIL)) (-4104 (((-112) $ $) NIL)) (-3911 (($ (-645 (-144))) NIL)) (-2461 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1521 (($) 21 T CONST)) (-4028 (($) 20 T CONST)) (-2929 (((-112) $ $) 24)) (-2410 (((-772) $) 57 (|has| $ (-6 -4417))))) -(((-141) (-13 (-1101) (-615 (-1159)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -3219 ($ (-1159))) (-15 -3219 ($ (-645 (-144)))) (-15 -3887 ($) -3280) (-15 -2094 ($) -3280) (-15 -1863 ($) -3280) (-15 -3585 ($) -3280) (-15 -4028 ($) -3280) (-15 -1521 ($) -3280)))) (T -141)) -((-3219 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-141)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-3887 (*1 *1) (-5 *1 (-141))) (-2094 (*1 *1) (-5 *1 (-141))) (-1863 (*1 *1) (-5 *1 (-141))) (-3585 (*1 *1) (-5 *1 (-141))) (-4028 (*1 *1) (-5 *1 (-141))) (-1521 (*1 *1) (-5 *1 (-141)))) -(-13 (-1101) (-615 (-1159)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -3219 ($ (-1159))) (-15 -3219 ($ (-645 (-144)))) (-15 -3887 ($) -3280) (-15 -2094 ($) -3280) (-15 -1863 ($) -3280) (-15 -3585 ($) -3280) (-15 -4028 ($) -3280) (-15 -1521 ($) -3280))) -((-1572 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1704 ((|#1| |#3|) 9)) (-1972 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1704 (|#1| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-993 |#1|) (-375 |#2|)) (T -142)) -((-1572 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -1704 (|#1| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2057 (($ $ $) 8)) (-1520 (($ $) 7)) (-2092 (($ $ $) 6))) +((-2914 (((-645 (-183 (-139))) $) 13)) (-3111 (((-645 (-183 (-139))) $) 14)) (-2598 (((-645 (-839)) $) 10)) (-3230 (((-139) $) 7)) (-4132 (((-863) $) 16))) +(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -3230 ((-139) $)) (-15 -2598 ((-645 (-839)) $)) (-15 -2914 ((-645 (-183 (-139))) $)) (-15 -3111 ((-645 (-183 (-139))) $))))) (T -140)) +((-3230 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) +(-13 (-614 (-863)) (-10 -8 (-15 -3230 ((-139) $)) (-15 -2598 ((-645 (-839)) $)) (-15 -2914 ((-645 (-183 (-139))) $)) (-15 -3111 ((-645 (-183 (-139))) $)))) +((-2403 (((-112) $ $) NIL)) (-3714 (($) 17 T CONST)) (-3533 (($) NIL (|has| (-144) (-370)))) (-4244 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-4287 (($ $ $) NIL)) (-2493 (((-112) $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| (-144) (-370)))) (-4155 (($) NIL) (($ (-645 (-144))) NIL)) (-2839 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2539 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (($ (-144) $) 61 (|has| $ (-6 -4418)))) (-3238 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1348 (($) NIL (|has| (-144) (-370)))) (-2777 (((-645 (-144)) $) 70 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-1354 (((-144) $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2981 (((-144) $) NIL (|has| (-144) (-851)))) (-3731 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 65)) (-3677 (($) 18 T CONST)) (-4249 (((-923) $) NIL (|has| (-144) (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 30)) (-1566 (((-144) $) 62)) (-2531 (($ (-144) $) 60)) (-3768 (($ (-923)) NIL (|has| (-144) (-370)))) (-3977 (($) 16 T CONST)) (-3430 (((-1122) $) NIL)) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1793 (((-144) $) 63)) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 58)) (-3052 (($) 15 T CONST)) (-4071 (($ $ $) 32) (($ $ (-144)) NIL)) (-2718 (($ (-645 (-144))) NIL) (($) NIL)) (-3439 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-1160) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-4147 (($ (-645 (-144))) NIL)) (-2099 (($ $) 33 (|has| (-144) (-370)))) (-4132 (((-863) $) 55)) (-1465 (($ (-1160)) 14) (($ (-645 (-144))) 52)) (-1480 (((-772) $) NIL)) (-2772 (($) 59) (($ (-645 (-144))) NIL)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 (-144))) NIL)) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-1674 (($) 21 T CONST)) (-2875 (($) 20 T CONST)) (-2936 (((-112) $ $) 24)) (-2414 (((-772) $) 57 (|has| $ (-6 -4418))))) +(((-141) (-13 (-1102) (-615 (-1160)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1465 ($ (-1160))) (-15 -1465 ($ (-645 (-144)))) (-15 -3052 ($) -3286) (-15 -3977 ($) -3286) (-15 -3714 ($) -3286) (-15 -3677 ($) -3286) (-15 -2875 ($) -3286) (-15 -1674 ($) -3286)))) (T -141)) +((-1465 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-141)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-3052 (*1 *1) (-5 *1 (-141))) (-3977 (*1 *1) (-5 *1 (-141))) (-3714 (*1 *1) (-5 *1 (-141))) (-3677 (*1 *1) (-5 *1 (-141))) (-2875 (*1 *1) (-5 *1 (-141))) (-1674 (*1 *1) (-5 *1 (-141)))) +(-13 (-1102) (-615 (-1160)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1465 ($ (-1160))) (-15 -1465 ($ (-645 (-144)))) (-15 -3052 ($) -3286) (-15 -3977 ($) -3286) (-15 -3714 ($) -3286) (-15 -3677 ($) -3286) (-15 -2875 ($) -3286) (-15 -1674 ($) -3286))) +((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3354 ((|#1| |#3|) 9)) (-4304 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-375 |#2|)) (T -142)) +((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-4304 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2967 (($ $ $) 8)) (-1576 (($ $) 7)) (-3881 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-2057 (*1 *1 *1 *1) (-4 *1 (-143))) (-1520 (*1 *1 *1) (-4 *1 (-143))) (-2092 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -2092 ($ $ $)) (-15 -1520 ($ $)) (-15 -2057 ($ $ $)))) -((-2399 (((-112) $ $) NIL)) (-1637 (((-112) $) 39)) (-1863 (($ $) 55)) (-2352 (($) 26 T CONST)) (-2371 (((-772)) 13)) (-1378 (($) 25)) (-2784 (($) 27 T CONST)) (-3851 (((-772) $) 21)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3421 (((-112) $) 41)) (-3585 (($ $) 56)) (-3425 (((-922) $) 23)) (-3739 (((-1159) $) 49)) (-3763 (($ (-922)) 20)) (-1563 (((-112) $) 37)) (-3430 (((-1121) $) NIL)) (-2469 (($) 28 T CONST)) (-1891 (((-112) $) 35)) (-4127 (((-863) $) 30)) (-2248 (($ (-772)) 19) (($ (-1159)) 54)) (-4104 (((-112) $ $) NIL)) (-1665 (((-112) $) 45)) (-3255 (((-112) $) 43)) (-2988 (((-112) $ $) 11)) (-2964 (((-112) $ $) 9)) (-2929 (((-112) $ $) 7)) (-2977 (((-112) $ $) 10)) (-2952 (((-112) $ $) 8))) -(((-144) (-13 (-845) (-10 -8 (-15 -3851 ((-772) $)) (-15 -2248 ($ (-772))) (-15 -2248 ($ (-1159))) (-15 -2352 ($) -3280) (-15 -2784 ($) -3280) (-15 -2469 ($) -3280) (-15 -1863 ($ $)) (-15 -3585 ($ $)) (-15 -1891 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -1637 ((-112) $)) (-15 -3421 ((-112) $)) (-15 -1665 ((-112) $))))) (T -144)) -((-3851 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-144)))) (-2352 (*1 *1) (-5 *1 (-144))) (-2784 (*1 *1) (-5 *1 (-144))) (-2469 (*1 *1) (-5 *1 (-144))) (-1863 (*1 *1 *1) (-5 *1 (-144))) (-3585 (*1 *1 *1) (-5 *1 (-144))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-845) (-10 -8 (-15 -3851 ((-772) $)) (-15 -2248 ($ (-772))) (-15 -2248 ($ (-1159))) (-15 -2352 ($) -3280) (-15 -2784 ($) -3280) (-15 -2469 ($) -3280) (-15 -1863 ($ $)) (-15 -3585 ($ $)) (-15 -1891 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -1637 ((-112) $)) (-15 -3421 ((-112) $)) (-15 -1665 ((-112) $)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1467 (((-3 $ "failed") $) 39)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2967 (*1 *1 *1 *1) (-4 *1 (-143))) (-1576 (*1 *1 *1) (-4 *1 (-143))) (-3881 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -3881 ($ $ $)) (-15 -1576 ($ $)) (-15 -2967 ($ $ $)))) +((-2403 (((-112) $ $) NIL)) (-3934 (((-112) $) 39)) (-3714 (($ $) 55)) (-1552 (($) 26 T CONST)) (-2375 (((-772)) 13)) (-1348 (($) 25)) (-3924 (($) 27 T CONST)) (-4380 (((-772) $) 21)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-1978 (((-112) $) 41)) (-3677 (($ $) 56)) (-4249 (((-923) $) 23)) (-1419 (((-1160) $) 49)) (-3768 (($ (-923)) 20)) (-3808 (((-112) $) 37)) (-3430 (((-1122) $) NIL)) (-3217 (($) 28 T CONST)) (-1863 (((-112) $) 35)) (-4132 (((-863) $) 30)) (-2255 (($ (-772)) 19) (($ (-1160)) 54)) (-1745 (((-112) $ $) NIL)) (-3869 (((-112) $) 45)) (-2921 (((-112) $) 43)) (-2997 (((-112) $ $) 11)) (-2971 (((-112) $ $) 9)) (-2936 (((-112) $ $) 7)) (-2984 (((-112) $ $) 10)) (-2958 (((-112) $ $) 8))) +(((-144) (-13 (-845) (-10 -8 (-15 -4380 ((-772) $)) (-15 -2255 ($ (-772))) (-15 -2255 ($ (-1160))) (-15 -1552 ($) -3286) (-15 -3924 ($) -3286) (-15 -3217 ($) -3286) (-15 -3714 ($ $)) (-15 -3677 ($ $)) (-15 -1863 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -3934 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3869 ((-112) $))))) (T -144)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-144)))) (-1552 (*1 *1) (-5 *1 (-144))) (-3924 (*1 *1) (-5 *1 (-144))) (-3217 (*1 *1) (-5 *1 (-144))) (-3714 (*1 *1 *1) (-5 *1 (-144))) (-3677 (*1 *1 *1) (-5 *1 (-144))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-845) (-10 -8 (-15 -4380 ((-772) $)) (-15 -2255 ($ (-772))) (-15 -2255 ($ (-1160))) (-15 -1552 ($) -3286) (-15 -3924 ($) -3286) (-15 -3217 ($) -3286) (-15 -3714 ($ $)) (-15 -3677 ($ $)) (-15 -1863 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -3934 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3869 ((-112) $)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-1903 (((-3 $ "failed") $) 39)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-145) (-140)) (T -145)) -((-1467 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1050) (-10 -8 (-15 -1467 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3116 ((|#1| (-690 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -3116 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146)) -((-3116 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -3116 (|#1| (-690 |#1|) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-1903 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1051) (-10 -8 (-15 -1903 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2155 ((|#1| (-690 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2155 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146)) +((-2155 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2155 (|#1| (-690 |#1|) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-147) (-140)) (T -147)) NIL -(-13 (-1050)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2974 (((-2 (|:| -4250 (-772)) (|:| -3686 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2454 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-2477 (((-2 (|:| -3686 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3989 ((|#1| |#3| |#3|) 44)) (-2631 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-1369 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-2 (|:| -3686 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2454 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2974 ((-2 (|:| -4250 (-772)) (|:| -3686 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3989 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1221) (-1243 |#1|) (-1243 (-410 |#2|))) (T -148)) -((-1369 (*1 *2 *3 *3) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5))))) (-2631 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1243 *3)))) (-3989 (*1 *2 *3 *3) (-12 (-4 *4 (-1243 *2)) (-4 *2 (-1221)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1243 (-410 *4))))) (-2974 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1221)) (-4 *6 (-1243 *5)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1243 *3)))) (-2454 (*1 *2 *3) (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5))))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| -3686 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5)))))) -(-10 -7 (-15 -2477 ((-2 (|:| -3686 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2454 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2974 ((-2 (|:| -4250 (-772)) (|:| -3686 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3989 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) -((-1885 (((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -1885 ((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|)))) (-548) (-166 |#1|)) (T -149)) -((-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 *5))) (-5 *3 (-1173 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -1885 ((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|)))) -((-3338 (($ (-1 (-112) |#2|) $) 35)) (-2440 (($ $) 42)) (-3230 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2499 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3424 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3256 (((-112) (-1 (-112) |#2|) $) 22)) (-3439 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-2461 (((-112) (-1 (-112) |#2|) $) 21)) (-2410 (((-772) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -2440 (|#1| |#1|)) (-15 -3230 (|#1| |#2| |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3338 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|))) (-151 |#2|) (-1217)) (T -150)) -NIL -(-10 -8 (-15 -2440 (|#1| |#1|)) (-15 -3230 (|#1| |#2| |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3338 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-3338 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2440 (($ $) 42 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417))) (($ |#1| $) 43 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 50)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-151 |#1|) (-140) (-1217)) (T -151)) -((-4142 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-151 *3)))) (-3424 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1217)))) (-2499 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)))) (-2499 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) (-4 *3 (-1217)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) (-4 *3 (-1217)))) (-2499 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1101)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)))) (-3230 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)) (-4 *2 (-1101)))) (-2440 (*1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)) (-4 *2 (-1101))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -4142 ($ (-645 |t#1|))) (-15 -3424 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4417)) (PROGN (-15 -2499 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2499 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3230 ($ (-1 (-112) |t#1|) $)) (-15 -3338 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1101)) (PROGN (-15 -2499 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3230 ($ |t#1| $)) (-15 -2440 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) 114)) (-2843 (((-112) $) NIL)) (-2821 (($ |#2| (-645 (-922))) 74)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1941 (($ (-922)) 61)) (-1635 (((-134)) 26)) (-4127 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-2253 ((|#2| $ (-645 (-922))) 77)) (-1772 (((-772)) 23 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 51 T CONST)) (-1722 (($) 55 T CONST)) (-2929 (((-112) $ $) 37)) (-3050 (($ $ |#2|) NIL)) (-3037 (($ $) 46) (($ $ $) 44)) (-3024 (($ $ $) 42)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1050) (-38 |#2|) (-1274 |#2|) (-10 -8 (-15 -1941 ($ (-922))) (-15 -2821 ($ |#2| (-645 (-922)))) (-15 -2253 (|#2| $ (-645 (-922)))) (-15 -3153 ((-3 $ "failed") $)))) (-922) (-365) (-994 |#1| |#2|)) (T -152)) -((-3153 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) (-14 *4 (-994 *2 *3)))) (-1941 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-994 *3 *4)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-4 *2 (-365)) (-14 *5 (-994 *4 *2)))) (-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-14 *5 (-994 *4 *2))))) -(-13 (-1050) (-38 |#2|) (-1274 |#2|) (-10 -8 (-15 -1941 ($ (-922))) (-15 -2821 ($ |#2| (-645 (-922)))) (-15 -2253 (|#2| $ (-645 (-922)))) (-15 -3153 ((-3 $ "failed") $)))) -((-1763 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-1367 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928)) 102)) (-2999 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-944 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928)) 97))) -(((-153) (-10 -7 (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1367 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928))) (-15 -1367 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1763 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-944 (-225))))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225)))))))) (T -153)) -((-2999 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 (-225))))))) (-2999 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-944 (-225)))))) (-1763 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 *4)))) (|:| |xValues| (-1095 *4)) (|:| |yValues| (-1095 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 *4)))))) (-1367 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153)))) (-2999 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1367 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928))) (-15 -1367 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1763 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-944 (-225))))) (-15 -2999 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225)))) (-645 (-645 (-944 (-225))))))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3647 (((-645 (-1136)) $) 20)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 27) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 9)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-154) (-13 (-1084) (-10 -8 (-15 -3647 ((-645 (-1136)) $)) (-15 -1998 ((-1136) $))))) (T -154)) -((-3647 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-154)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-154))))) -(-13 (-1084) (-10 -8 (-15 -3647 ((-645 (-1136)) $)) (-15 -1998 ((-1136) $)))) -((-3663 (((-645 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3663 ((-645 (-169 |#2|)) |#1| |#2|))) (-1243 (-169 (-567))) (-13 (-365) (-849))) (T -155)) -((-3663 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1243 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3663 ((-645 (-169 |#2|)) |#1| |#2|))) -((-2399 (((-112) $ $) NIL)) (-4100 (((-1216) $) 12)) (-4084 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 19) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-156) (-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1216) $))))) (T -156)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-156)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-156))))) -(-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1216) $)))) -((-2399 (((-112) $ $) NIL)) (-3499 (($) 41)) (-2196 (($) 40)) (-4033 (((-922)) 46)) (-3739 (((-1159) $) NIL)) (-3534 (((-567) $) 44)) (-3430 (((-1121) $) NIL)) (-4088 (($) 42)) (-3341 (($ (-567)) 47)) (-4127 (((-863) $) 53)) (-3390 (($) 43)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 38)) (-3024 (($ $ $) 35)) (* (($ (-922) $) 45) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -3024 ($ $ $)) (-15 -2196 ($)) (-15 -3499 ($)) (-15 -4088 ($)) (-15 -3390 ($)) (-15 -3534 ((-567) $)) (-15 -4033 ((-922))) (-15 -3341 ($ (-567)))))) (T -157)) -((-3024 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2196 (*1 *1) (-5 *1 (-157))) (-3499 (*1 *1) (-5 *1 (-157))) (-4088 (*1 *1) (-5 *1 (-157))) (-3390 (*1 *1) (-5 *1 (-157))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-4033 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -3024 ($ $ $)) (-15 -2196 ($)) (-15 -3499 ($)) (-15 -4088 ($)) (-15 -3390 ($)) (-15 -3534 ((-567) $)) (-15 -4033 ((-922))) (-15 -3341 ($ (-567))))) -((-4369 ((|#2| |#2| (-1093 |#2|)) 98) ((|#2| |#2| (-1177)) 75)) (-3963 ((|#2| |#2| (-1093 |#2|)) 97) ((|#2| |#2| (-1177)) 74)) (-2057 ((|#2| |#2| |#2|) 25)) (-2652 (((-114) (-114)) 111)) (-2524 ((|#2| (-645 |#2|)) 130)) (-3720 ((|#2| (-645 |#2|)) 152)) (-3648 ((|#2| (-645 |#2|)) 138)) (-2505 ((|#2| |#2|) 136)) (-2878 ((|#2| (-645 |#2|)) 124)) (-3691 ((|#2| (-645 |#2|)) 125)) (-1492 ((|#2| (-645 |#2|)) 150)) (-2958 ((|#2| |#2| (-1177)) 63) ((|#2| |#2|) 62)) (-1520 ((|#2| |#2|) 21)) (-2092 ((|#2| |#2| |#2|) 24)) (-2134 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2092 (|#2| |#2| |#2|)) (-15 -2057 (|#2| |#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2958 (|#2| |#2| (-1177))) (-15 -4369 (|#2| |#2| (-1177))) (-15 -4369 (|#2| |#2| (-1093 |#2|))) (-15 -3963 (|#2| |#2| (-1177))) (-15 -3963 (|#2| |#2| (-1093 |#2|))) (-15 -2505 (|#2| |#2|)) (-15 -1492 (|#2| (-645 |#2|))) (-15 -3648 (|#2| (-645 |#2|))) (-15 -3720 (|#2| (-645 |#2|))) (-15 -2878 (|#2| (-645 |#2|))) (-15 -3691 (|#2| (-645 |#2|))) (-15 -2524 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158)) -((-2524 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2505 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1093 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-4369 (*1 *2 *2 *3) (-12 (-5 *3 (-1093 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-4369 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2057 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2092 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))) -(-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2092 (|#2| |#2| |#2|)) (-15 -2057 (|#2| |#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2958 (|#2| |#2| (-1177))) (-15 -4369 (|#2| |#2| (-1177))) (-15 -4369 (|#2| |#2| (-1093 |#2|))) (-15 -3963 (|#2| |#2| (-1177))) (-15 -3963 (|#2| |#2| (-1093 |#2|))) (-15 -2505 (|#2| |#2|)) (-15 -1492 (|#2| (-645 |#2|))) (-15 -3648 (|#2| (-645 |#2|))) (-15 -3720 (|#2| (-645 |#2|))) (-15 -2878 (|#2| (-645 |#2|))) (-15 -3691 (|#2| (-645 |#2|))) (-15 -2524 (|#2| (-645 |#2|)))) -((-3756 ((|#1| |#1| |#1|) 67)) (-2220 ((|#1| |#1| |#1|) 64)) (-2057 ((|#1| |#1| |#1|) 58)) (-3768 ((|#1| |#1|) 45)) (-3526 ((|#1| |#1| (-645 |#1|)) 55)) (-1520 ((|#1| |#1|) 48)) (-2092 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -2092 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-645 |#1|))) (-15 -3768 (|#1| |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|))) (-548)) (T -159)) -((-3756 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2220 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3768 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1520 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2092 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(-10 -7 (-15 -2092 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-645 |#1|))) (-15 -3768 (|#1| |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|))) -((-4369 (($ $ (-1177)) 12) (($ $ (-1093 $)) 11)) (-3963 (($ $ (-1177)) 10) (($ $ (-1093 $)) 9)) (-2057 (($ $ $) 8)) (-2958 (($ $) 14) (($ $ (-1177)) 13)) (-1520 (($ $) 7)) (-2092 (($ $ $) 6))) +(-13 (-1051)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2814 (((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2451 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-2791 (((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3774 ((|#1| |#3| |#3|) 44)) (-2631 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-2933 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2791 ((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2451 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2814 ((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3774 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2933 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1222) (-1244 |#1|) (-1244 (-410 |#2|))) (T -148)) +((-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))) (-2631 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1244 *3)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-1222)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1244 *3)))) (-2451 (*1 *2 *3) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))) (-2791 (*1 *2 *3) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -3694 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5)))))) +(-10 -7 (-15 -2791 ((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2451 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2814 ((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3774 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2933 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) +((-3815 (((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)) 35))) +(((-149 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)))) (-548) (-166 |#1|)) (T -149)) +((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -3815 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)))) +((-3350 (($ (-1 (-112) |#2|) $) 35)) (-2444 (($ $) 42)) (-3238 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3025 (((-112) (-1 (-112) |#2|) $) 22)) (-3439 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) 21)) (-2414 (((-772) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) (-151 |#2|) (-1218)) (T -150)) +NIL +(-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-3350 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 42 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418))) (($ |#1| $) 43 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 50)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-151 |#1|) (-140) (-1218)) (T -151)) +((-4147 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-151 *3)))) (-4128 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-2477 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-2477 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) (-4 *3 (-1218)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) (-4 *3 (-1218)))) (-2477 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-3238 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2444 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) (-4 *2 (-1102))))) +(-13 (-492 |t#1|) (-10 -8 (-15 -4147 ($ (-645 |t#1|))) (-15 -4128 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3238 ($ (-1 (-112) |t#1|) $)) (-15 -3350 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3238 ($ |t#1| $)) (-15 -2444 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 114)) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-645 (-923))) 74)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1945 (($ (-923)) 61)) (-1879 (((-134)) 26)) (-4132 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-4136 ((|#2| $ (-645 (-923))) 77)) (-4221 (((-772)) 23 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 51 T CONST)) (-1728 (($) 55 T CONST)) (-2936 (((-112) $ $) 37)) (-3060 (($ $ |#2|) NIL)) (-3045 (($ $) 46) (($ $ $) 44)) (-3033 (($ $ $) 42)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1051) (-38 |#2|) (-1275 |#2|) (-10 -8 (-15 -1945 ($ (-923))) (-15 -2824 ($ |#2| (-645 (-923)))) (-15 -4136 (|#2| $ (-645 (-923)))) (-15 -2109 ((-3 $ "failed") $)))) (-923) (-365) (-995 |#1| |#2|)) (T -152)) +((-2109 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) (-14 *4 (-995 *2 *3)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-995 *3 *4)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-14 *5 (-995 *4 *2))))) +(-13 (-1051) (-38 |#2|) (-1275 |#2|) (-10 -8 (-15 -1945 ($ (-923))) (-15 -2824 ($ |#2| (-645 (-923)))) (-15 -4136 (|#2| $ (-645 (-923)))) (-15 -2109 ((-3 $ "failed") $)))) +((-1438 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-2707 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 102)) (-4218 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 97))) +(((-153) (-10 -7 (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -1438 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))) (T -153)) +((-4218 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) (-1438 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 *4)))) (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))) (-2707 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -1438 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3653 (((-645 (-1137)) $) 20)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-154) (-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))) (T -154)) +((-3653 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154))))) +(-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $)))) +((-2445 (((-645 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -2445 ((-645 (-169 |#2|)) |#1| |#2|))) (-1244 (-169 (-567))) (-13 (-365) (-849))) (T -155)) +((-2445 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1244 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))) +(-10 -7 (-15 -2445 ((-645 (-169 |#2|)) |#1| |#2|))) +((-2403 (((-112) $ $) NIL)) (-4104 (((-1217) $) 12)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-156) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1217) $))))) (T -156)) +((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-156))))) +(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1217) $)))) +((-2403 (((-112) $ $) NIL)) (-3700 (($) 41)) (-3695 (($) 40)) (-2223 (((-923)) 46)) (-1419 (((-1160) $) NIL)) (-3811 (((-567) $) 44)) (-3430 (((-1122) $) NIL)) (-3043 (($) 42)) (-4039 (($ (-567)) 47)) (-4132 (((-863) $) 53)) (-1904 (($) 43)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 38)) (-3033 (($ $ $) 35)) (* (($ (-923) $) 45) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3033 ($ $ $)) (-15 -3695 ($)) (-15 -3700 ($)) (-15 -3043 ($)) (-15 -1904 ($)) (-15 -3811 ((-567) $)) (-15 -2223 ((-923))) (-15 -4039 ($ (-567)))))) (T -157)) +((-3033 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3695 (*1 *1) (-5 *1 (-157))) (-3700 (*1 *1) (-5 *1 (-157))) (-3043 (*1 *1) (-5 *1 (-157))) (-1904 (*1 *1) (-5 *1 (-157))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-2223 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3033 ($ $ $)) (-15 -3695 ($)) (-15 -3700 ($)) (-15 -3043 ($)) (-15 -1904 ($)) (-15 -3811 ((-567) $)) (-15 -2223 ((-923))) (-15 -4039 ($ (-567))))) +((-3220 ((|#2| |#2| (-1094 |#2|)) 98) ((|#2| |#2| (-1178)) 75)) (-4207 ((|#2| |#2| (-1094 |#2|)) 97) ((|#2| |#2| (-1178)) 74)) (-2967 ((|#2| |#2| |#2|) 25)) (-2654 (((-114) (-114)) 111)) (-3959 ((|#2| (-645 |#2|)) 130)) (-2242 ((|#2| (-645 |#2|)) 152)) (-3441 ((|#2| (-645 |#2|)) 138)) (-2601 ((|#2| |#2|) 136)) (-3865 ((|#2| (-645 |#2|)) 124)) (-2259 ((|#2| (-645 |#2|)) 125)) (-1848 ((|#2| (-645 |#2|)) 150)) (-1830 ((|#2| |#2| (-1178)) 63) ((|#2| |#2|) 62)) (-1576 ((|#2| |#2|) 21)) (-3881 ((|#2| |#2| |#2|) 24)) (-3797 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1094 |#2|))) (-15 -4207 (|#2| |#2| (-1178))) (-15 -4207 (|#2| |#2| (-1094 |#2|))) (-15 -2601 (|#2| |#2|)) (-15 -1848 (|#2| (-645 |#2|))) (-15 -3441 (|#2| (-645 |#2|))) (-15 -2242 (|#2| (-645 |#2|))) (-15 -3865 (|#2| (-645 |#2|))) (-15 -2259 (|#2| (-645 |#2|))) (-15 -3959 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158)) +((-3959 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-4207 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-4207 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1830 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2967 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3881 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))) +(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1094 |#2|))) (-15 -4207 (|#2| |#2| (-1178))) (-15 -4207 (|#2| |#2| (-1094 |#2|))) (-15 -2601 (|#2| |#2|)) (-15 -1848 (|#2| (-645 |#2|))) (-15 -3441 (|#2| (-645 |#2|))) (-15 -2242 (|#2| (-645 |#2|))) (-15 -3865 (|#2| (-645 |#2|))) (-15 -2259 (|#2| (-645 |#2|))) (-15 -3959 (|#2| (-645 |#2|)))) +((-2528 ((|#1| |#1| |#1|) 67)) (-1487 ((|#1| |#1| |#1|) 64)) (-2967 ((|#1| |#1| |#1|) 58)) (-4149 ((|#1| |#1|) 45)) (-1323 ((|#1| |#1| (-645 |#1|)) 55)) (-1576 ((|#1| |#1|) 48)) (-3881 ((|#1| |#1| |#1|) 51))) +(((-159 |#1|) (-10 -7 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1323 (|#1| |#1| (-645 |#1|))) (-15 -4149 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|))) (-548)) (T -159)) +((-2528 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1487 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2967 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-4149 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1323 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1576 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3881 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(-10 -7 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1323 (|#1| |#1| (-645 |#1|))) (-15 -4149 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|))) +((-3220 (($ $ (-1178)) 12) (($ $ (-1094 $)) 11)) (-4207 (($ $ (-1178)) 10) (($ $ (-1094 $)) 9)) (-2967 (($ $ $) 8)) (-1830 (($ $) 14) (($ $ (-1178)) 13)) (-1576 (($ $) 7)) (-3881 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-2958 (*1 *1 *1) (-4 *1 (-160))) (-2958 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-160)))) (-3963 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -2958 ($ $)) (-15 -2958 ($ $ (-1177))) (-15 -4369 ($ $ (-1177))) (-15 -4369 ($ $ (-1093 $))) (-15 -3963 ($ $ (-1177))) (-15 -3963 ($ $ (-1093 $))))) +((-1830 (*1 *1 *1) (-4 *1 (-160))) (-1830 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) (-4207 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -1830 ($ $)) (-15 -1830 ($ $ (-1178))) (-15 -3220 ($ $ (-1178))) (-15 -3220 ($ $ (-1094 $))) (-15 -4207 ($ $ (-1178))) (-15 -4207 ($ $ (-1094 $))))) (((-143) . T)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 16) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-645 (-1136)) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-161) (-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $))))) (T -161)) -((-1998 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-161))))) -(-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $)))) -((-2399 (((-112) $ $) NIL)) (-3496 (($ (-567)) 14) (($ $ $) 15)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9))) -(((-162) (-13 (-1101) (-10 -8 (-15 -3496 ($ (-567))) (-15 -3496 ($ $ $))))) (T -162)) -((-3496 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-3496 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1101) (-10 -8 (-15 -3496 ($ (-567))) (-15 -3496 ($ $ $)))) -((-2652 (((-114) (-1177)) 102))) -(((-163) (-10 -7 (-15 -2652 ((-114) (-1177))))) (T -163)) -((-2652 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -2652 ((-114) (-1177)))) -((-3001 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3001 (|#3| |#3|))) (-1050) (-1243 |#1|) (-1243 |#2|)) (T -164)) -((-3001 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-4 *4 (-1243 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1243 *4))))) -(-10 -7 (-15 -3001 (|#3| |#3|))) -((-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 223)) (-4290 ((|#2| $) 102)) (-3165 (($ $) 256)) (-3039 (($ $) 250)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 47)) (-3148 (($ $) 254)) (-3015 (($ $) 248)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2344 (($ $ $) 229)) (-1868 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-2499 (($ (-1173 |#2|)) 125) (((-3 $ "failed") (-410 (-1173 |#2|))) NIL)) (-3153 (((-3 $ "failed") $) 214)) (-2240 (((-3 (-410 (-567)) "failed") $) 204)) (-1426 (((-112) $) 199)) (-2242 (((-410 (-567)) $) 202)) (-1979 (((-922)) 96)) (-2355 (($ $ $) 231)) (-3539 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1480 (($) 245)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 193) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 198)) (-2896 ((|#2| $) 100)) (-2612 (((-1173 |#2|) $) 127)) (-3822 (($ (-1 |#2| |#2|) $) 108)) (-3053 (($ $) 247)) (-2488 (((-1173 |#2|) $) 126)) (-2933 (($ $) 207)) (-2293 (($) 103)) (-3475 (((-421 (-1173 $)) (-1173 $)) 95)) (-3871 (((-421 (-1173 $)) (-1173 $)) 64)) (-2387 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3927 (($ $) 246)) (-4197 (((-772) $) 226)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 236)) (-1999 ((|#2| (-1267 $)) NIL) ((|#2|) 98)) (-1621 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2530 (((-1173 |#2|)) 120)) (-3157 (($ $) 255)) (-3026 (($ $) 249)) (-2446 (((-1267 |#2|) $ (-1267 $)) 136) (((-690 |#2|) (-1267 $) (-1267 $)) NIL) (((-1267 |#2|) $) 116) (((-690 |#2|) (-1267 $)) NIL)) (-3880 (((-1267 |#2|) $) NIL) (($ (-1267 |#2|)) NIL) (((-1173 |#2|) $) NIL) (($ (-1173 |#2|)) NIL) (((-893 (-567)) $) 184) (((-893 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-2073 (($ $) 104)) (-4127 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-3116 (((-1173 |#2|) $) 32)) (-1772 (((-772)) 106)) (-4104 (((-112) $ $) 13)) (-3220 (($ $) 259)) (-3109 (($ $) 253)) (-3201 (($ $) 257)) (-3087 (($ $) 251)) (-3011 ((|#2| $) 242)) (-3210 (($ $) 258)) (-3098 (($ $) 252)) (-4137 (($ $) 162)) (-2929 (((-112) $ $) 110)) (-3037 (($ $) 112) (($ $ $) NIL)) (-3024 (($ $ $) 111)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -4127 (|#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -4197 ((-772) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2344 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-169 (-225)) |#1|)) (-15 -3880 ((-169 (-381)) |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3109 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1480 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -3539 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2073 (|#1| |#1|)) (-15 -2293 (|#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2499 ((-3 |#1| "failed") (-410 (-1173 |#2|)))) (-15 -2488 ((-1173 |#2|) |#1|)) (-15 -3880 (|#1| (-1173 |#2|))) (-15 -2499 (|#1| (-1173 |#2|))) (-15 -2530 ((-1173 |#2|))) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 ((-1173 |#2|) |#1|)) (-15 -1999 (|#2|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2612 ((-1173 |#2|) |#1|)) (-15 -3116 ((-1173 |#2|) |#1|)) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -2896 (|#2| |#1|)) (-15 -4290 (|#2| |#1|)) (-15 -1979 ((-922))) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-1772 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1979 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1999 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1173 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -4127 (|#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -4197 ((-772) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2344 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-169 (-225)) |#1|)) (-15 -3880 ((-169 (-381)) |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3109 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1480 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -3539 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2073 (|#1| |#1|)) (-15 -2293 (|#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2499 ((-3 |#1| "failed") (-410 (-1173 |#2|)))) (-15 -2488 ((-1173 |#2|) |#1|)) (-15 -3880 (|#1| (-1173 |#2|))) (-15 -2499 (|#1| (-1173 |#2|))) (-15 -2530 ((-1173 |#2|))) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 ((-1173 |#2|) |#1|)) (-15 -1999 (|#2|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2612 ((-1173 |#2|) |#1|)) (-15 -3116 ((-1173 |#2|) |#1|)) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -2896 (|#2| |#1|)) (-15 -4290 (|#2| |#1|)) (-15 -1979 ((-922))) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-1312 (($ $) 103 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2318 (((-112) $) 105 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2981 (((-690 |#1|) (-1267 $)) 53) (((-690 |#1|)) 68)) (-4290 ((|#1| $) 59)) (-3165 (($ $) 229 (|has| |#1| (-1202)))) (-3039 (($ $) 212 (|has| |#1| (-1202)))) (-3581 (((-1190 (-922) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3081 (($ $) 122 (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2833 (((-421 $) $) 123 (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2714 (($ $) 242 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2373 (((-112) $ $) 113 (|has| |#1| (-308)))) (-2371 (((-772)) 96 (|has| |#1| (-370)))) (-3148 (($ $) 228 (|has| |#1| (-1202)))) (-3015 (($ $) 213 (|has| |#1| (-1202)))) (-3184 (($ $) 227 (|has| |#1| (-1202)))) (-3065 (($ $) 214 (|has| |#1| (-1202)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2033 (((-567) $) 177 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 174)) (-4025 (($ (-1267 |#1|) (-1267 $)) 55) (($ (-1267 |#1|)) 71)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2344 (($ $ $) 117 (|has| |#1| (-308)))) (-1937 (((-690 |#1|) $ (-1267 $)) 60) (((-690 |#1|) $) 66)) (-1868 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2499 (($ (-1173 |#1|)) 166) (((-3 $ "failed") (-410 (-1173 |#1|))) 163 (|has| |#1| (-365)))) (-3153 (((-3 $ "failed") $) 37)) (-2724 ((|#1| $) 254)) (-2240 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-1426 (((-112) $) 249 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-1979 (((-922)) 61)) (-1378 (($) 99 (|has| |#1| (-370)))) (-2355 (($ $ $) 116 (|has| |#1| (-308)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-3005 (($) 157 (|has| |#1| (-351)))) (-4284 (((-112) $) 158 (|has| |#1| (-351)))) (-4112 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-4341 (((-112) $) 124 (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-3539 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1202))))) (-1480 (($) 239 (|has| |#1| (-1202)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 262 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 261 (|has| |#1| (-887 (-381))))) (-2937 (((-922) $) 160 (|has| |#1| (-351))) (((-834 (-922)) $) 146 (|has| |#1| (-351)))) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 241 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202))))) (-2896 ((|#1| $) 58)) (-3641 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-2612 (((-1173 |#1|) $) 51 (|has| |#1| (-365)))) (-3822 (($ (-1 |#1| |#1|) $) 263)) (-3425 (((-922) $) 98 (|has| |#1| (-370)))) (-3053 (($ $) 236 (|has| |#1| (-1202)))) (-2488 (((-1173 |#1|) $) 164)) (-2735 (($ (-645 $)) 109 (-2797 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (($ $ $) 108 (-2797 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 125 (|has| |#1| (-365)))) (-2701 (($) 151 (|has| |#1| (-351)) CONST)) (-3763 (($ (-922)) 97 (|has| |#1| (-370)))) (-2293 (($) 258)) (-2736 ((|#1| $) 255)) (-3430 (((-1121) $) 11)) (-1394 (($) 168)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 110 (-2797 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2771 (($ (-645 $)) 107 (-2797 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (($ $ $) 106 (-2797 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 154 (|has| |#1| (-351)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3871 (((-421 (-1173 $)) (-1173 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2703 (((-421 $) $) 121 (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 118 (|has| |#1| (-308)))) (-2387 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-3927 (($ $) 237 (|has| |#1| (-1202)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) 264 (|has| |#1| (-517 (-1177) |#1|)))) (-4197 (((-772) $) 114 (|has| |#1| (-308)))) (-1783 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 115 (|has| |#1| (-308)))) (-1999 ((|#1| (-1267 $)) 54) ((|#1|) 67)) (-3942 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1621 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1177)) (-645 (-772))) 138 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 139 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 140 (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) 141 (|has| |#1| (-901 (-1177)))) (($ $ (-772)) 143 (-2797 (-1664 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2797 (-1664 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1664 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3337 (((-690 |#1|) (-1267 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2530 (((-1173 |#1|)) 167)) (-3192 (($ $) 226 (|has| |#1| (-1202)))) (-3076 (($ $) 215 (|has| |#1| (-1202)))) (-3057 (($) 156 (|has| |#1| (-351)))) (-3174 (($ $) 225 (|has| |#1| (-1202)))) (-3052 (($ $) 216 (|has| |#1| (-1202)))) (-3157 (($ $) 224 (|has| |#1| (-1202)))) (-3026 (($ $) 217 (|has| |#1| (-1202)))) (-2446 (((-1267 |#1|) $ (-1267 $)) 57) (((-690 |#1|) (-1267 $) (-1267 $)) 56) (((-1267 |#1|) $) 73) (((-690 |#1|) (-1267 $)) 72)) (-3880 (((-1267 |#1|) $) 70) (($ (-1267 |#1|)) 69) (((-1173 |#1|) $) 179) (($ (-1173 |#1|)) 165) (((-893 (-567)) $) 260 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 259 (|has| |#1| (-615 (-893 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1023))) (((-169 (-225)) $) 210 (|has| |#1| (-1023))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-2073 (($ $) 257)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 153 (-2797 (-1664 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (|has| |#1| (-351))))) (-3046 (($ |#1| |#1|) 256)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) 100 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-1467 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2797 (-1664 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (|has| |#1| (-145))))) (-3116 (((-1173 |#1|) $) 52)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 74)) (-3220 (($ $) 235 (|has| |#1| (-1202)))) (-3109 (($ $) 223 (|has| |#1| (-1202)))) (-4380 (((-112) $ $) 104 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3201 (($ $) 234 (|has| |#1| (-1202)))) (-3087 (($ $) 222 (|has| |#1| (-1202)))) (-3241 (($ $) 233 (|has| |#1| (-1202)))) (-3128 (($ $) 221 (|has| |#1| (-1202)))) (-3011 ((|#1| $) 251 (|has| |#1| (-1202)))) (-3807 (($ $) 232 (|has| |#1| (-1202)))) (-3137 (($ $) 220 (|has| |#1| (-1202)))) (-3228 (($ $) 231 (|has| |#1| (-1202)))) (-3119 (($ $) 219 (|has| |#1| (-1202)))) (-3210 (($ $) 230 (|has| |#1| (-1202)))) (-3098 (($ $) 218 (|has| |#1| (-1202)))) (-4137 (($ $) 252 (|has| |#1| (-1061)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1177)) (-645 (-772))) 134 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 135 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 136 (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) 137 (|has| |#1| (-901 (-1177)))) (($ $ (-772)) 142 (-2797 (-1664 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2797 (-1664 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1664 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 129 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202)))) (($ $ $) 238 (|has| |#1| (-1202))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-161) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))) (T -161)) +((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161))))) +(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)))) +((-2403 (((-112) $ $) NIL)) (-3424 (($ (-567)) 14) (($ $ $) 15)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9))) +(((-162) (-13 (-1102) (-10 -8 (-15 -3424 ($ (-567))) (-15 -3424 ($ $ $))))) (T -162)) +((-3424 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-3424 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1102) (-10 -8 (-15 -3424 ($ (-567))) (-15 -3424 ($ $ $)))) +((-2654 (((-114) (-1178)) 102))) +(((-163) (-10 -7 (-15 -2654 ((-114) (-1178))))) (T -163)) +((-2654 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -2654 ((-114) (-1178)))) +((-3226 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3226 (|#3| |#3|))) (-1051) (-1244 |#1|) (-1244 |#2|)) (T -164)) +((-3226 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-1244 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1244 *4))))) +(-10 -7 (-15 -3226 (|#3| |#3|))) +((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 223)) (-4293 ((|#2| $) 102)) (-3146 (($ $) 256)) (-3012 (($ $) 250)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 47)) (-3128 (($ $) 254)) (-2987 (($ $) 248)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2349 (($ $ $) 229)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-2477 (($ (-1174 |#2|)) 125) (((-3 $ "failed") (-410 (-1174 |#2|))) NIL)) (-2109 (((-3 $ "failed") $) 214)) (-2085 (((-3 (-410 (-567)) "failed") $) 204)) (-1862 (((-112) $) 199)) (-2331 (((-410 (-567)) $) 202)) (-1954 (((-923)) 96)) (-2360 (($ $ $) 231)) (-4351 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1482 (($) 245)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 193) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 198)) (-2475 ((|#2| $) 100)) (-4206 (((-1174 |#2|) $) 127)) (-3829 (($ (-1 |#2| |#2|) $) 108)) (-3063 (($ $) 247)) (-2465 (((-1174 |#2|) $) 126)) (-2939 (($ $) 207)) (-2825 (($) 103)) (-2435 (((-421 (-1174 $)) (-1174 $)) 95)) (-3517 (((-421 (-1174 $)) (-1174 $)) 64)) (-2391 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3946 (($ $) 246)) (-1990 (((-772) $) 226)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 236)) (-3788 ((|#2| (-1268 $)) NIL) ((|#2|) 98)) (-1593 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3341 (((-1174 |#2|)) 120)) (-3137 (($ $) 255)) (-2999 (($ $) 249)) (-2887 (((-1268 |#2|) $ (-1268 $)) 136) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 116) (((-690 |#2|) (-1268 $)) NIL)) (-3893 (((-1268 |#2|) $) NIL) (($ (-1268 |#2|)) NIL) (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-894 (-567)) $) 184) (((-894 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-1823 (($ $) 104)) (-4132 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2155 (((-1174 |#2|) $) 32)) (-4221 (((-772)) 106)) (-1745 (((-112) $ $) 13)) (-3200 (($ $) 259)) (-3084 (($ $) 253)) (-3183 (($ $) 257)) (-3062 (($ $) 251)) (-2799 ((|#2| $) 242)) (-3193 (($ $) 258)) (-3074 (($ $) 252)) (-2219 (($ $) 162)) (-2936 (((-112) $ $) 110)) (-3045 (($ $) 112) (($ $ $) NIL)) (-3033 (($ $ $) 111)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4132 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-169 (-225)) |#1|)) (-15 -3893 ((-169 (-381)) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1482 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -4351 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -2825 (|#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2477 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -2465 ((-1174 |#2|) |#1|)) (-15 -3893 (|#1| (-1174 |#2|))) (-15 -2477 (|#1| (-1174 |#2|))) (-15 -3341 ((-1174 |#2|))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -2155 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -2475 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1954 ((-923))) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1954 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3788 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3341 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4132 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-169 (-225)) |#1|)) (-15 -3893 ((-169 (-381)) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1482 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -4351 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -2825 (|#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2477 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -2465 ((-1174 |#2|) |#1|)) (-15 -3893 (|#1| (-1174 |#2|))) (-15 -2477 (|#1| (-1174 |#2|))) (-15 -3341 ((-1174 |#2|))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -2155 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -2475 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1954 ((-923))) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-4381 (($ $) 103 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3949 (((-112) $) 105 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3146 (($ $) 229 (|has| |#1| (-1203)))) (-3012 (($ $) 212 (|has| |#1| (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3248 (($ $) 122 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2908 (((-421 $) $) 123 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2716 (($ $) 242 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3609 (((-112) $ $) 113 (|has| |#1| (-308)))) (-2375 (((-772)) 96 (|has| |#1| (-370)))) (-3128 (($ $) 228 (|has| |#1| (-1203)))) (-2987 (($ $) 213 (|has| |#1| (-1203)))) (-3166 (($ $) 227 (|has| |#1| (-1203)))) (-3035 (($ $) 214 (|has| |#1| (-1203)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2038 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2349 (($ $ $) 117 (|has| |#1| (-308)))) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2477 (($ (-1174 |#1|)) 166) (((-3 $ "failed") (-410 (-1174 |#1|))) 163 (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 254)) (-2085 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-1862 (((-112) $) 249 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| |#1| (-370)))) (-2360 (($ $ $) 116 (|has| |#1| (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-3431 (($) 157 (|has| |#1| (-351)))) (-2722 (((-112) $) 158 (|has| |#1| (-351)))) (-4225 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3184 (((-112) $) 124 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4351 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1203))))) (-1482 (($) 239 (|has| |#1| (-1203)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 262 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 261 (|has| |#1| (-888 (-381))))) (-4384 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 241 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-2475 ((|#1| $) 58)) (-3972 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-4206 (((-1174 |#1|) $) 51 (|has| |#1| (-365)))) (-3829 (($ (-1 |#1| |#1|) $) 263)) (-4249 (((-923) $) 98 (|has| |#1| (-370)))) (-3063 (($ $) 236 (|has| |#1| (-1203)))) (-2465 (((-1174 |#1|) $) 164)) (-2740 (($ (-645 $)) 109 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 108 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125 (|has| |#1| (-365)))) (-2672 (($) 151 (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| |#1| (-370)))) (-2825 (($) 258)) (-2739 ((|#1| $) 255)) (-3430 (((-1122) $) 11)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2774 (($ (-645 $)) 107 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 106 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2706 (((-421 $) $) 121 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| |#1| (-308)))) (-2391 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-3946 (($ $) 237 (|has| |#1| (-1203)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 264 (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) 114 (|has| |#1| (-308)))) (-1787 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| |#1| (-308)))) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2491 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1593 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1178)) (-645 (-772))) 138 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 139 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 140 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 141 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 143 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3341 (((-1174 |#1|)) 167)) (-3175 (($ $) 226 (|has| |#1| (-1203)))) (-3049 (($ $) 215 (|has| |#1| (-1203)))) (-1527 (($) 156 (|has| |#1| (-351)))) (-3156 (($ $) 225 (|has| |#1| (-1203)))) (-3023 (($ $) 216 (|has| |#1| (-1203)))) (-3137 (($ $) 224 (|has| |#1| (-1203)))) (-2999 (($ $) 217 (|has| |#1| (-1203)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69) (((-1174 |#1|) $) 179) (($ (-1174 |#1|)) 165) (((-894 (-567)) $) 260 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 259 (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1024))) (((-169 (-225)) $) 210 (|has| |#1| (-1024))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 257)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (-2800 (-1667 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-351))))) (-3056 (($ |#1| |#1|) 256)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) 100 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1903 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2800 (-1667 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-145))))) (-2155 (((-1174 |#1|) $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3200 (($ $) 235 (|has| |#1| (-1203)))) (-3084 (($ $) 223 (|has| |#1| (-1203)))) (-3816 (((-112) $ $) 104 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3183 (($ $) 234 (|has| |#1| (-1203)))) (-3062 (($ $) 222 (|has| |#1| (-1203)))) (-3221 (($ $) 233 (|has| |#1| (-1203)))) (-3106 (($ $) 221 (|has| |#1| (-1203)))) (-2799 ((|#1| $) 251 (|has| |#1| (-1203)))) (-3785 (($ $) 232 (|has| |#1| (-1203)))) (-3118 (($ $) 220 (|has| |#1| (-1203)))) (-3211 (($ $) 231 (|has| |#1| (-1203)))) (-3095 (($ $) 219 (|has| |#1| (-1203)))) (-3193 (($ $) 230 (|has| |#1| (-1203)))) (-3074 (($ $) 218 (|has| |#1| (-1203)))) (-2219 (($ $) 252 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1178)) (-645 (-772))) 134 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 135 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 136 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 137 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 142 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203)))) (($ $ $) 238 (|has| |#1| (-1203))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-2896 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2293 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2073 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3046 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2387 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1202)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1061)) (-4 *3 (-1202)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2240 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) -(-13 (-725 |t#1| (-1173 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-885 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3046) (-15 -2293 ($)) (-15 -2073 ($ $)) (-15 -3046 ($ |t#1| |t#1|)) (-15 -2736 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -2896 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2387 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4416)) (-6 -4416) |%noBranch|) (IF (|has| |t#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1061)) (-15 -4137 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1202)) (PROGN (-6 (-1202)) (-15 -3011 (|t#1| $)) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |t#1| (-1061)) (-15 -3539 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-910)) (IF (|has| |t#1| (-308)) (-6 (-910)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1202)) ((-95) |has| |#1| (-1202)) ((-102) . T) ((-111 #0# #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2797 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1023)) ((-615 (-169 (-381))) |has| |#1| (-1023)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-615 #1=(-1173 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2797 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1202)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2797 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2797 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1202)) ((-517 (-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-910) -12 (|has| |#1| (-308)) (|has| |#1| (-910))) ((-921) -2797 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1003) -12 (|has| |#1| (-1003)) (|has| |#1| (-1202))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| |#1| (-351)) ((-1202) |has| |#1| (-1202)) ((-1205) |has| |#1| (-1202)) ((-1217) . T) ((-1221) -2797 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) -((-2703 (((-421 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -2703 ((-421 |#2|) |#2|))) (-308) (-1243 (-169 |#1|))) (T -167)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(-10 -7 (-15 -2703 ((-421 |#2|) |#2|))) -((-3822 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -3822 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -3822 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 34)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-1312 (($ $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-2318 (((-112) $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-2981 (((-690 |#1|) (-1267 $)) NIL) (((-690 |#1|)) NIL)) (-4290 ((|#1| $) NIL)) (-3165 (($ $) NIL (|has| |#1| (-1202)))) (-3039 (($ $) NIL (|has| |#1| (-1202)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3081 (($ $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2833 (((-421 $) $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2714 (($ $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-308)))) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-3148 (($ $) NIL (|has| |#1| (-1202)))) (-3015 (($ $) NIL (|has| |#1| (-1202)))) (-3184 (($ $) NIL (|has| |#1| (-1202)))) (-3065 (($ $) NIL (|has| |#1| (-1202)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-4025 (($ (-1267 |#1|) (-1267 $)) NIL) (($ (-1267 |#1|)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2344 (($ $ $) NIL (|has| |#1| (-308)))) (-1937 (((-690 |#1|) $ (-1267 $)) NIL) (((-690 |#1|) $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2499 (($ (-1173 |#1|)) NIL) (((-3 $ "failed") (-410 (-1173 |#1|))) NIL (|has| |#1| (-365)))) (-3153 (((-3 $ "failed") $) NIL)) (-2724 ((|#1| $) 13)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1426 (((-112) $) NIL (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1979 (((-922)) NIL)) (-1378 (($) NIL (|has| |#1| (-370)))) (-2355 (($ $ $) NIL (|has| |#1| (-308)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-3005 (($) NIL (|has| |#1| (-351)))) (-4284 (((-112) $) NIL (|has| |#1| (-351)))) (-4112 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-4341 (((-112) $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-3539 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1061)) (|has| |#1| (-1202))))) (-1480 (($) NIL (|has| |#1| (-1202)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#1| (-887 (-381))))) (-2937 (((-922) $) NIL (|has| |#1| (-351))) (((-834 (-922)) $) NIL (|has| |#1| (-351)))) (-2843 (((-112) $) 36)) (-1709 (($ $ (-567)) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202))))) (-2896 ((|#1| $) 47)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-2612 (((-1173 |#1|) $) NIL (|has| |#1| (-365)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-3053 (($ $) NIL (|has| |#1| (-1202)))) (-2488 (((-1173 |#1|) $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-2701 (($) NIL (|has| |#1| (-351)) CONST)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-2293 (($) NIL)) (-2736 ((|#1| $) 15)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-308)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| |#1| (-351)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2703 (((-421 $) $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-308)))) (-2387 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-3927 (($ $) NIL (|has| |#1| (-1202)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-517 (-1177) |#1|)))) (-4197 (((-772) $) NIL (|has| |#1| (-308)))) (-1783 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-308)))) (-1999 ((|#1| (-1267 $)) NIL) ((|#1|) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1621 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3337 (((-690 |#1|) (-1267 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2530 (((-1173 |#1|)) NIL)) (-3192 (($ $) NIL (|has| |#1| (-1202)))) (-3076 (($ $) NIL (|has| |#1| (-1202)))) (-3057 (($) NIL (|has| |#1| (-351)))) (-3174 (($ $) NIL (|has| |#1| (-1202)))) (-3052 (($ $) NIL (|has| |#1| (-1202)))) (-3157 (($ $) NIL (|has| |#1| (-1202)))) (-3026 (($ $) NIL (|has| |#1| (-1202)))) (-2446 (((-1267 |#1|) $ (-1267 $)) NIL) (((-690 |#1|) (-1267 $) (-1267 $)) NIL) (((-1267 |#1|) $) NIL) (((-690 |#1|) (-1267 $)) NIL)) (-3880 (((-1267 |#1|) $) NIL) (($ (-1267 |#1|)) NIL) (((-1173 |#1|) $) NIL) (($ (-1173 |#1|)) NIL) (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1023))) (((-169 (-225)) $) NIL (|has| |#1| (-1023))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2073 (($ $) 46)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-351))))) (-3046 (($ |#1| |#1|) 38)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-1467 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-3116 (((-1173 |#1|) $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL)) (-3220 (($ $) NIL (|has| |#1| (-1202)))) (-3109 (($ $) NIL (|has| |#1| (-1202)))) (-4380 (((-112) $ $) NIL (-2797 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-3201 (($ $) NIL (|has| |#1| (-1202)))) (-3087 (($ $) NIL (|has| |#1| (-1202)))) (-3241 (($ $) NIL (|has| |#1| (-1202)))) (-3128 (($ $) NIL (|has| |#1| (-1202)))) (-3011 ((|#1| $) NIL (|has| |#1| (-1202)))) (-3807 (($ $) NIL (|has| |#1| (-1202)))) (-3137 (($ $) NIL (|has| |#1| (-1202)))) (-3228 (($ $) NIL (|has| |#1| (-1202)))) (-3119 (($ $) NIL (|has| |#1| (-1202)))) (-3210 (($ $) NIL (|has| |#1| (-1202)))) (-3098 (($ $) NIL (|has| |#1| (-1202)))) (-4137 (($ $) NIL (|has| |#1| (-1061)))) (-1710 (($) 28 T CONST)) (-1722 (($) 30 T CONST)) (-4224 (((-1159) $) 23 (|has| |#1| (-829))) (((-1159) $ (-112)) 25 (|has| |#1| (-829))) (((-1272) (-823) $) 26 (|has| |#1| (-829))) (((-1272) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2636 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 40)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1202)))) (($ $ $) NIL (|has| |#1| (-1202))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) +((-2475 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2825 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1823 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3056 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2219 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1203)))) (-4351 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1203)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) +(-13 (-725 |t#1| (-1174 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-886 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3056) (-15 -2825 ($)) (-15 -1823 ($ $)) (-15 -3056 ($ |t#1| |t#1|)) (-15 -2739 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -2475 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4417)) (-6 -4417) |%noBranch|) (IF (|has| |t#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1203)) (PROGN (-6 (-1203)) (-15 -2799 (|t#1| $)) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -4351 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-911)) (IF (|has| |t#1| (-308)) (-6 (-911)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1203)) ((-95) |has| |#1| (-1203)) ((-102) . T) ((-111 #0# #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1024)) ((-615 (-169 (-381))) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-615 #1=(-1174 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2800 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1203)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2800 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1203)) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) -12 (|has| |#1| (-308)) (|has| |#1| (-911))) ((-922) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1004) -12 (|has| |#1| (-1004)) (|has| |#1| (-1203))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-351)) ((-1203) |has| |#1| (-1203)) ((-1206) |has| |#1| (-1203)) ((-1218) . T) ((-1222) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) +((-2706 (((-421 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -2706 ((-421 |#2|) |#2|))) (-308) (-1244 (-169 |#1|))) (T -167)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) +(-10 -7 (-15 -2706 ((-421 |#2|) |#2|))) +((-3829 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3829 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -3829 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 34)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2141 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-4293 ((|#1| $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-1203)))) (-3012 (($ $) NIL (|has| |#1| (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3248 (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2908 (((-421 $) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2716 (($ $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-308)))) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-3128 (($ $) NIL (|has| |#1| (-1203)))) (-2987 (($ $) NIL (|has| |#1| (-1203)))) (-3166 (($ $) NIL (|has| |#1| (-1203)))) (-3035 (($ $) NIL (|has| |#1| (-1203)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2349 (($ $ $) NIL (|has| |#1| (-308)))) (-1811 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2477 (($ (-1174 |#1|)) NIL) (((-3 $ "failed") (-410 (-1174 |#1|))) NIL (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 13)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-3431 (($) NIL (|has| |#1| (-351)))) (-2722 (((-112) $) NIL (|has| |#1| (-351)))) (-4225 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3184 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4351 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1062)) (|has| |#1| (-1203))))) (-1482 (($) NIL (|has| |#1| (-1203)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-4384 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-1433 (((-112) $) 36)) (-2651 (($ $ (-567)) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-2475 ((|#1| $) 47)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-4206 (((-1174 |#1|) $) NIL (|has| |#1| (-365)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-3063 (($ $) NIL (|has| |#1| (-1203)))) (-2465 (((-1174 |#1|) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2672 (($) NIL (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2825 (($) NIL)) (-2739 ((|#1| $) 15)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-308)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2706 (((-421 $) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-308)))) (-2391 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-3946 (($ $) NIL (|has| |#1| (-1203)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) NIL (|has| |#1| (-308)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-308)))) (-3788 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1593 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3341 (((-1174 |#1|)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-1203)))) (-3049 (($ $) NIL (|has| |#1| (-1203)))) (-1527 (($) NIL (|has| |#1| (-351)))) (-3156 (($ $) NIL (|has| |#1| (-1203)))) (-3023 (($ $) NIL (|has| |#1| (-1203)))) (-3137 (($ $) NIL (|has| |#1| (-1203)))) (-2999 (($ $) NIL (|has| |#1| (-1203)))) (-2887 (((-1268 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL) (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1024))) (((-169 (-225)) $) NIL (|has| |#1| (-1024))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) 46)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-351))))) (-3056 (($ |#1| |#1|) 38)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-1903 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2155 (((-1174 |#1|) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL)) (-3200 (($ $) NIL (|has| |#1| (-1203)))) (-3084 (($ $) NIL (|has| |#1| (-1203)))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3183 (($ $) NIL (|has| |#1| (-1203)))) (-3062 (($ $) NIL (|has| |#1| (-1203)))) (-3221 (($ $) NIL (|has| |#1| (-1203)))) (-3106 (($ $) NIL (|has| |#1| (-1203)))) (-2799 ((|#1| $) NIL (|has| |#1| (-1203)))) (-3785 (($ $) NIL (|has| |#1| (-1203)))) (-3118 (($ $) NIL (|has| |#1| (-1203)))) (-3211 (($ $) NIL (|has| |#1| (-1203)))) (-3095 (($ $) NIL (|has| |#1| (-1203)))) (-3193 (($ $) NIL (|has| |#1| (-1203)))) (-3074 (($ $) NIL (|has| |#1| (-1203)))) (-2219 (($ $) NIL (|has| |#1| (-1062)))) (-1716 (($) 28 T CONST)) (-1728 (($) 30 T CONST)) (-2904 (((-1160) $) 23 (|has| |#1| (-829))) (((-1160) $ (-112)) 25 (|has| |#1| (-829))) (((-1273) (-823) $) 26 (|has| |#1| (-829))) (((-1273) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2637 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 40)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203)))) (($ $ $) NIL (|has| |#1| (-1203))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) (((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-172)) (T -169)) NIL (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) -((-3880 (((-893 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3880 ((-893 |#1|) |#3|))) (-1101) (-13 (-615 (-893 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-3880 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1101)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -3880 ((-893 |#1|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-2138 (((-112) $) 9)) (-3177 (((-112) $ (-112)) 11)) (-2844 (($) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4303 (($ $) 14)) (-4127 (((-863) $) 18)) (-3238 (((-112) $) 8)) (-3988 (((-112) $ (-112)) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-171) (-13 (-1101) (-10 -8 (-15 -2844 ($)) (-15 -3238 ((-112) $)) (-15 -2138 ((-112) $)) (-15 -3988 ((-112) $ (-112))) (-15 -3177 ((-112) $ (-112))) (-15 -4303 ($ $))))) (T -171)) -((-2844 (*1 *1) (-5 *1 (-171))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3988 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3177 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4303 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1101) (-10 -8 (-15 -2844 ($)) (-15 -3238 ((-112) $)) (-15 -2138 ((-112) $)) (-15 -3988 ((-112) $ (-112))) (-15 -3177 ((-112) $ (-112))) (-15 -4303 ($ $)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-3893 (((-894 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-894 |#1|) |#3|))) (-1102) (-13 (-615 (-894 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-3893 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -3893 ((-894 |#1|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-4174 (((-112) $) 9)) (-4247 (((-112) $ (-112)) 11)) (-2846 (($) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4305 (($ $) 14)) (-4132 (((-863) $) 18)) (-3416 (((-112) $) 8)) (-3995 (((-112) $ (-112)) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-171) (-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3416 ((-112) $)) (-15 -4174 ((-112) $)) (-15 -3995 ((-112) $ (-112))) (-15 -4247 ((-112) $ (-112))) (-15 -4305 ($ $))))) (T -171)) +((-2846 (*1 *1) (-5 *1 (-171))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3995 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4247 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4305 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3416 ((-112) $)) (-15 -4174 ((-112) $)) (-15 -3995 ((-112) $ (-112))) (-15 -4247 ((-112) $ (-112))) (-15 -4305 ($ $)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-172) (-140)) (T -172)) NIL -(-13 (-1050) (-111 $ $) (-10 -7 (-6 (-4419 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2990 (($ $) 6))) +(-13 (-1051) (-111 $ $) (-10 -7 (-6 (-4420 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-1675 (($ $) 6))) (((-173) (-140)) (T -173)) -((-2990 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -2990 ($ $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 ((|#1| $) 81)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL)) (-1433 (($ $) 21)) (-3486 (($ |#1| (-1157 |#1|)) 50)) (-3153 (((-3 $ "failed") $) 123)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3547 (((-1157 |#1|) $) 88)) (-2599 (((-1157 |#1|) $) 85)) (-4219 (((-1157 |#1|) $) 86)) (-2843 (((-112) $) NIL)) (-3071 (((-1157 |#1|) $) 94)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2735 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-3981 (($ $ (-567)) 97)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3491 (((-1157 |#1|) $) 95)) (-3606 (((-1157 (-410 |#1|)) $) 14)) (-4145 (($ (-410 |#1|)) 17) (($ |#1| (-1157 |#1|) (-1157 |#1|)) 40)) (-1546 (($ $) 99)) (-4127 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-1772 (((-772)) 70 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-2916 (((-1157 (-410 |#1|)) $) 20)) (-1710 (($) 27 T CONST)) (-1722 (($) 30 T CONST)) (-2929 (((-112) $ $) 37)) (-3050 (($ $ $) 121)) (-3037 (($ $) 112) (($ $ $) 109)) (-3024 (($ $ $) 107)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -4145 ($ (-410 |#1|))) (-15 -4145 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -3486 ($ |#1| (-1157 |#1|))) (-15 -2599 ((-1157 |#1|) $)) (-15 -4219 ((-1157 |#1|) $)) (-15 -3547 ((-1157 |#1|) $)) (-15 -2660 (|#1| $)) (-15 -1433 ($ $)) (-15 -2916 ((-1157 (-410 |#1|)) $)) (-15 -3606 ((-1157 (-410 |#1|)) $)) (-15 -3071 ((-1157 |#1|) $)) (-15 -3491 ((-1157 |#1|) $)) (-15 -3981 ($ $ (-567))) (-15 -1546 ($ $)))) (-308)) (T -174)) -((-4145 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-4145 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3486 (*1 *1 *2 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2660 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-1433 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1546 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -4145 ($ (-410 |#1|))) (-15 -4145 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -3486 ($ |#1| (-1157 |#1|))) (-15 -2599 ((-1157 |#1|) $)) (-15 -4219 ((-1157 |#1|) $)) (-15 -3547 ((-1157 |#1|) $)) (-15 -2660 (|#1| $)) (-15 -1433 ($ $)) (-15 -2916 ((-1157 (-410 |#1|)) $)) (-15 -3606 ((-1157 (-410 |#1|)) $)) (-15 -3071 ((-1157 |#1|) $)) (-15 -3491 ((-1157 |#1|) $)) (-15 -3981 ($ $ (-567))) (-15 -1546 ($ $)))) -((-1419 (($ (-109) $) 15)) (-2154 (((-692 (-109)) (-509) $) 14)) (-4127 (((-863) $) 18)) (-3628 (((-645 (-109)) $) 8))) -(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -3628 ((-645 (-109)) $)) (-15 -1419 ($ (-109) $)) (-15 -2154 ((-692 (-109)) (-509) $))))) (T -175)) -((-3628 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-1419 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2154 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3628 ((-645 (-109)) $)) (-15 -1419 ($ (-109) $)) (-15 -2154 ((-692 (-109)) (-509) $)))) -((-3590 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 40)) (-1511 (((-944 |#1|) (-944 |#1|)) 24)) (-1389 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 36)) (-2031 (((-944 |#1|) (-944 |#1|)) 22)) (-1415 (((-944 |#1|) (-944 |#1|)) 30)) (-1311 (((-944 |#1|) (-944 |#1|)) 29)) (-4327 (((-944 |#1|) (-944 |#1|)) 28)) (-2335 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 37)) (-1658 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 35)) (-3237 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 34)) (-1776 (((-944 |#1|) (-944 |#1|)) 23)) (-2404 (((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|) 43)) (-2066 (((-944 |#1|) (-944 |#1|)) 8)) (-3992 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 39)) (-4236 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -2066 ((-944 |#1|) (-944 |#1|))) (-15 -2031 ((-944 |#1|) (-944 |#1|))) (-15 -1776 ((-944 |#1|) (-944 |#1|))) (-15 -1511 ((-944 |#1|) (-944 |#1|))) (-15 -4327 ((-944 |#1|) (-944 |#1|))) (-15 -1311 ((-944 |#1|) (-944 |#1|))) (-15 -1415 ((-944 |#1|) (-944 |#1|))) (-15 -3237 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1658 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1389 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2335 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4236 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3992 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3590 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2404 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|))) (-13 (-365) (-1202) (-1003))) (T -176)) -((-2404 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-3590 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-3992 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-1389 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-1658 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-3237 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-1311 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -2066 ((-944 |#1|) (-944 |#1|))) (-15 -2031 ((-944 |#1|) (-944 |#1|))) (-15 -1776 ((-944 |#1|) (-944 |#1|))) (-15 -1511 ((-944 |#1|) (-944 |#1|))) (-15 -4327 ((-944 |#1|) (-944 |#1|))) (-15 -1311 ((-944 |#1|) (-944 |#1|))) (-15 -1415 ((-944 |#1|) (-944 |#1|))) (-15 -3237 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1658 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1389 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2335 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4236 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3992 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3590 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2404 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|))) -((-3116 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3116 (|#2| |#3|))) (-172) (-1243 |#1|) (-725 |#1| |#2|)) (T -177)) -((-3116 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1243 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2))))) -(-10 -7 (-15 -3116 (|#2| |#3|))) -((-3489 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 44 (|has| (-953 |#2|) (-887 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-953 |#2|) (-887 |#1|)) (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) |%noBranch|)) (-1101) (-13 (-887 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-4 *3 (-166 *6)) (-4 (-953 *6) (-887 *5)) (-4 *6 (-13 (-887 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-953 |#2|) (-887 |#1|)) (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) |%noBranch|)) -((-2836 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-3127 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-2181 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -3127 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2181 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2181 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2836 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179)) -((-2836 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2181 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2181 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-3127 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -3127 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2181 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2181 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2836 ((-645 |#1|) (-645 |#1|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-3568 (((-1216) $) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 10)) (-4127 (((-863) $) 20) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-180) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $))))) (T -180)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-180)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-180))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $)))) -((-3181 (((-2 (|:| |start| |#2|) (|:| -2166 (-421 |#2|))) |#2|) 66)) (-3855 ((|#1| |#1|) 58)) (-4039 (((-169 |#1|) |#2|) 93)) (-4261 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2475 ((|#2| |#2|) 91)) (-1887 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-2896 ((|#1| |#2|) 120)) (-1743 ((|#2| |#2|) 135)) (-2703 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-4259 (((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2| (-112)) 81)) (-3663 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -3663 ((-645 (-169 |#1|)) |#2|)) (-15 -3663 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -4259 ((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2| (-112))) (-15 -4259 ((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2|)) (-15 -2703 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2703 ((-421 |#2|) |#2| |#1|)) (-15 -2703 ((-421 |#2|) |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2896 (|#1| |#2|)) (-15 -1887 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1887 ((-421 |#2|) |#2| |#1|)) (-15 -2475 (|#2| |#2|)) (-15 -4261 (|#1| |#2| |#1|)) (-15 -4261 (|#1| |#2|)) (-15 -4039 ((-169 |#1|) |#2|)) (-15 -3855 (|#1| |#1|)) (-15 -3181 ((-2 (|:| |start| |#2|) (|:| -2166 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1243 (-169 |#1|))) (T -181)) -((-3181 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -2166 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-3855 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1243 (-169 *2))))) (-4039 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1243 *2)))) (-4261 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1243 (-169 *2))))) (-4261 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1243 (-169 *2))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1243 (-169 *3))))) (-1887 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-1887 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-2896 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1243 (-169 *2))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1243 (-169 *3))))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-2703 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-2703 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-4259 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2166 (-645 *3)) (|:| -2053 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-4259 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2166 (-645 *3)) (|:| -2053 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1243 (-169 *5))))) (-3663 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(-10 -7 (-15 -3663 ((-645 (-169 |#1|)) |#2|)) (-15 -3663 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -4259 ((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2| (-112))) (-15 -4259 ((-645 (-2 (|:| -2166 (-645 |#2|)) (|:| -2053 |#1|))) |#2| |#2|)) (-15 -2703 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2703 ((-421 |#2|) |#2| |#1|)) (-15 -2703 ((-421 |#2|) |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2896 (|#1| |#2|)) (-15 -1887 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1887 ((-421 |#2|) |#2| |#1|)) (-15 -2475 (|#2| |#2|)) (-15 -4261 (|#1| |#2| |#1|)) (-15 -4261 (|#1| |#2|)) (-15 -4039 ((-169 |#1|) |#2|)) (-15 -3855 (|#1| |#1|)) (-15 -3181 ((-2 (|:| |start| |#2|) (|:| -2166 (-421 |#2|))) |#2|))) -((-3559 (((-3 |#2| "failed") |#2|) 20)) (-3823 (((-772) |#2|) 23)) (-3325 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3559 ((-3 |#2| "failed") |#2|)) (-15 -3823 ((-772) |#2|)) (-15 -3325 (|#2| |#2| |#2|))) (-1217) (-675 |#1|)) (T -182)) -((-3325 (*1 *2 *2 *2) (-12 (-4 *3 (-1217)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-1217)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-3559 (*1 *2 *2) (|partial| -12 (-4 *3 (-1217)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) -(-10 -7 (-15 -3559 ((-3 |#2| "failed") |#2|)) (-15 -3823 ((-772) |#2|)) (-15 -3325 (|#2| |#2| |#2|))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3221 ((|#1| $) 7)) (-4127 (((-863) $) 14)) (-4104 (((-112) $ $) NIL)) (-4187 (((-645 (-1182)) $) 10)) (-2929 (((-112) $ $) 12))) -(((-183 |#1|) (-13 (-1101) (-10 -8 (-15 -3221 (|#1| $)) (-15 -4187 ((-645 (-1182)) $)))) (-185)) (T -183)) -((-3221 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(-13 (-1101) (-10 -8 (-15 -3221 (|#1| $)) (-15 -4187 ((-645 (-1182)) $)))) -((-3861 (((-645 (-866)) $) 16)) (-4161 (((-186) $) 8)) (-4350 (((-645 (-112)) $) 13)) (-1681 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -3861 ((-645 (-866)) |#1|)) (-15 -4350 ((-645 (-112)) |#1|)) (-15 -4161 ((-186) |#1|)) (-15 -1681 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -3861 ((-645 (-866)) |#1|)) (-15 -4350 ((-645 (-112)) |#1|)) (-15 -4161 ((-186) |#1|)) (-15 -1681 ((-55) |#1|))) -((-2399 (((-112) $ $) 7)) (-3861 (((-645 (-866)) $) 19)) (-1988 (((-509) $) 16)) (-3739 (((-1159) $) 10)) (-4161 (((-186) $) 21)) (-1582 (((-112) $ (-509)) 14)) (-3430 (((-1121) $) 11)) (-4350 (((-645 (-112)) $) 20)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1681 (((-55) $) 15)) (-2929 (((-112) $ $) 6))) +((-1675 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -1675 ($ $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#1| $) 81)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-4313 (($ $) 21)) (-3991 (($ |#1| (-1158 |#1|)) 50)) (-2109 (((-3 $ "failed") $) 123)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2590 (((-1158 |#1|) $) 88)) (-2379 (((-1158 |#1|) $) 85)) (-3595 (((-1158 |#1|) $) 86)) (-1433 (((-112) $) NIL)) (-3578 (((-1158 |#1|) $) 94)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2410 (($ $ (-567)) 97)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4193 (((-1158 |#1|) $) 95)) (-1908 (((-1158 (-410 |#1|)) $) 14)) (-1579 (($ (-410 |#1|)) 17) (($ |#1| (-1158 |#1|) (-1158 |#1|)) 40)) (-2192 (($ $) 99)) (-4132 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4221 (((-772)) 70 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2884 (((-1158 (-410 |#1|)) $) 20)) (-1716 (($) 27 T CONST)) (-1728 (($) 30 T CONST)) (-2936 (((-112) $ $) 37)) (-3060 (($ $ $) 121)) (-3045 (($ $) 112) (($ $ $) 109)) (-3033 (($ $ $) 107)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1579 ($ (-410 |#1|))) (-15 -1579 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -3991 ($ |#1| (-1158 |#1|))) (-15 -2379 ((-1158 |#1|) $)) (-15 -3595 ((-1158 |#1|) $)) (-15 -2590 ((-1158 |#1|) $)) (-15 -3093 (|#1| $)) (-15 -4313 ($ $)) (-15 -2884 ((-1158 (-410 |#1|)) $)) (-15 -1908 ((-1158 (-410 |#1|)) $)) (-15 -3578 ((-1158 |#1|) $)) (-15 -4193 ((-1158 |#1|) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)))) (-308)) (T -174)) +((-1579 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-1579 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3991 (*1 *1 *2 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3093 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-4313 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) +(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1579 ($ (-410 |#1|))) (-15 -1579 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -3991 ($ |#1| (-1158 |#1|))) (-15 -2379 ((-1158 |#1|) $)) (-15 -3595 ((-1158 |#1|) $)) (-15 -2590 ((-1158 |#1|) $)) (-15 -3093 (|#1| $)) (-15 -4313 ($ $)) (-15 -2884 ((-1158 (-410 |#1|)) $)) (-15 -1908 ((-1158 (-410 |#1|)) $)) (-15 -3578 ((-1158 |#1|) $)) (-15 -4193 ((-1158 |#1|) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)))) +((-1363 (($ (-109) $) 15)) (-2025 (((-692 (-109)) (-509) $) 14)) (-4132 (((-863) $) 18)) (-2267 (((-645 (-109)) $) 8))) +(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -2267 ((-645 (-109)) $)) (-15 -1363 ($ (-109) $)) (-15 -2025 ((-692 (-109)) (-509) $))))) (T -175)) +((-2267 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-1363 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))) +(-13 (-614 (-863)) (-10 -8 (-15 -2267 ((-645 (-109)) $)) (-15 -1363 ($ (-109) $)) (-15 -2025 ((-692 (-109)) (-509) $)))) +((-2982 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 40)) (-3119 (((-945 |#1|) (-945 |#1|)) 24)) (-3005 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 36)) (-1861 (((-945 |#1|) (-945 |#1|)) 22)) (-3545 (((-945 |#1|) (-945 |#1|)) 30)) (-2356 (((-945 |#1|) (-945 |#1|)) 29)) (-1972 (((-945 |#1|) (-945 |#1|)) 28)) (-2903 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 37)) (-2620 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 35)) (-3346 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 34)) (-1303 (((-945 |#1|) (-945 |#1|)) 23)) (-4319 (((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|) 43)) (-2442 (((-945 |#1|) (-945 |#1|)) 8)) (-3978 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 39)) (-1541 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -2442 ((-945 |#1|) (-945 |#1|))) (-15 -1861 ((-945 |#1|) (-945 |#1|))) (-15 -1303 ((-945 |#1|) (-945 |#1|))) (-15 -3119 ((-945 |#1|) (-945 |#1|))) (-15 -1972 ((-945 |#1|) (-945 |#1|))) (-15 -2356 ((-945 |#1|) (-945 |#1|))) (-15 -3545 ((-945 |#1|) (-945 |#1|))) (-15 -3346 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2620 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3005 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2903 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1541 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3978 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2982 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4319 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) (-13 (-365) (-1203) (-1004))) (T -176)) +((-4319 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2982 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3978 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2903 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2620 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3346 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1303 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -2442 ((-945 |#1|) (-945 |#1|))) (-15 -1861 ((-945 |#1|) (-945 |#1|))) (-15 -1303 ((-945 |#1|) (-945 |#1|))) (-15 -3119 ((-945 |#1|) (-945 |#1|))) (-15 -1972 ((-945 |#1|) (-945 |#1|))) (-15 -2356 ((-945 |#1|) (-945 |#1|))) (-15 -3545 ((-945 |#1|) (-945 |#1|))) (-15 -3346 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2620 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3005 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2903 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1541 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3978 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2982 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4319 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) +((-2155 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2155 (|#2| |#3|))) (-172) (-1244 |#1|) (-725 |#1| |#2|)) (T -177)) +((-2155 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1244 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2))))) +(-10 -7 (-15 -2155 (|#2| |#3|))) +((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 44 (|has| (-954 |#2|) (-888 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1102) (-13 (-888 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) +((-2019 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-1769 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-2876 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -1769 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2876 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2876 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2019 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179)) +((-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2876 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-1769 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -1769 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2876 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2876 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2019 ((-645 |#1|) (-645 |#1|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-180) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -180)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-180))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $)))) +((-3377 (((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|) 66)) (-1680 ((|#1| |#1|) 58)) (-1650 (((-169 |#1|) |#2|) 93)) (-4375 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2599 ((|#2| |#2|) 91)) (-4075 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-2475 ((|#1| |#2|) 120)) (-4372 ((|#2| |#2|) 135)) (-2706 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-2291 (((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112)) 81)) (-2445 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -2445 ((-645 (-169 |#1|)) |#2|)) (-15 -2445 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112))) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|)) (-15 -2706 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2706 ((-421 |#2|) |#2| |#1|)) (-15 -2706 ((-421 |#2|) |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -2475 (|#1| |#2|)) (-15 -4075 ((-421 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-421 |#2|) |#2| |#1|)) (-15 -2599 (|#2| |#2|)) (-15 -4375 (|#1| |#2| |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -1650 ((-169 |#1|) |#2|)) (-15 -1680 (|#1| |#1|)) (-15 -3377 ((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1244 (-169 |#1|))) (T -181)) +((-3377 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -3920 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-1680 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-1650 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1244 *2)))) (-4375 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-4375 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1244 (-169 *3))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2475 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1244 (-169 *3))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2706 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2291 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1244 (-169 *5))))) (-2445 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) +(-10 -7 (-15 -2445 ((-645 (-169 |#1|)) |#2|)) (-15 -2445 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112))) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|)) (-15 -2706 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2706 ((-421 |#2|) |#2| |#1|)) (-15 -2706 ((-421 |#2|) |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -2475 (|#1| |#2|)) (-15 -4075 ((-421 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-421 |#2|) |#2| |#1|)) (-15 -2599 (|#2| |#2|)) (-15 -4375 (|#1| |#2| |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -1650 ((-169 |#1|) |#2|)) (-15 -1680 (|#1| |#1|)) (-15 -3377 ((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|))) +((-3087 (((-3 |#2| "failed") |#2|) 20)) (-2797 (((-772) |#2|) 23)) (-1897 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3087 ((-3 |#2| "failed") |#2|)) (-15 -2797 ((-772) |#2|)) (-15 -1897 (|#2| |#2| |#2|))) (-1218) (-675 |#1|)) (T -182)) +((-1897 (*1 *2 *2 *2) (-12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-2797 (*1 *2 *3) (-12 (-4 *4 (-1218)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-3087 (*1 *2 *2) (|partial| -12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) +(-10 -7 (-15 -3087 ((-3 |#2| "failed") |#2|)) (-15 -2797 ((-772) |#2|)) (-15 -1897 (|#2| |#2| |#2|))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3230 ((|#1| $) 7)) (-4132 (((-863) $) 14)) (-1745 (((-112) $ $) NIL)) (-4165 (((-645 (-1183)) $) 10)) (-2936 (((-112) $ $) 12))) +(((-183 |#1|) (-13 (-1102) (-10 -8 (-15 -3230 (|#1| $)) (-15 -4165 ((-645 (-1183)) $)))) (-185)) (T -183)) +((-3230 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) +(-13 (-1102) (-10 -8 (-15 -3230 (|#1| $)) (-15 -4165 ((-645 (-1183)) $)))) +((-3871 (((-645 (-866)) $) 16)) (-4166 (((-186) $) 8)) (-1722 (((-645 (-112)) $) 13)) (-2124 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -3871 ((-645 (-866)) |#1|)) (-15 -1722 ((-645 (-112)) |#1|)) (-15 -4166 ((-186) |#1|)) (-15 -2124 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -3871 ((-645 (-866)) |#1|)) (-15 -1722 ((-645 (-112)) |#1|)) (-15 -4166 ((-186) |#1|)) (-15 -2124 ((-55) |#1|))) +((-2403 (((-112) $ $) 7)) (-3871 (((-645 (-866)) $) 19)) (-1996 (((-509) $) 16)) (-1419 (((-1160) $) 10)) (-4166 (((-186) $) 21)) (-1854 (((-112) $ (-509)) 14)) (-3430 (((-1122) $) 11)) (-1722 (((-645 (-112)) $) 20)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2124 (((-55) $) 15)) (-2936 (((-112) $ $) 6))) (((-185) (-140)) (T -185)) -((-4161 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) -(-13 (-836 (-509)) (-10 -8 (-15 -4161 ((-186) $)) (-15 -4350 ((-645 (-112)) $)) (-15 -3861 ((-645 (-866)) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-836 (-509)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-8 (($) 7 T CONST)) (-4127 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 10))) -(((-186) (-13 (-1101) (-10 -8 (-15 -9 ($) -3280) (-15 -8 ($) -3280) (-15 -7 ($) -3280)))) (T -186)) +((-4166 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) +(-13 (-836 (-509)) (-10 -8 (-15 -4166 ((-186) $)) (-15 -1722 ((-645 (-112)) $)) (-15 -3871 ((-645 (-866)) $)))) +(((-102) . T) ((-614 (-863)) . T) ((-836 (-509)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-8 (($) 7 T CONST)) (-4132 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10))) +(((-186) (-13 (-1102) (-10 -8 (-15 -9 ($) -3286) (-15 -8 ($) -3286) (-15 -7 ($) -3286)))) (T -186)) ((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1101) (-10 -8 (-15 -9 ($) -3280) (-15 -8 ($) -3280) (-15 -7 ($) -3280))) -((-2399 (((-112) $ $) NIL)) (-3861 (((-645 (-866)) $) NIL)) (-1988 (((-509) $) 8)) (-3739 (((-1159) $) NIL)) (-4161 (((-186) $) 10)) (-1582 (((-112) $ (-509)) NIL)) (-3430 (((-1121) $) NIL)) (-2210 (((-692 $) (-509)) 17)) (-4350 (((-645 (-112)) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1681 (((-55) $) 12)) (-2929 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -2210 ((-692 $) (-509)))))) (T -187)) -((-2210 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -2210 ((-692 $) (-509))))) -((-1986 ((|#2| |#2|) 28)) (-1964 (((-112) |#2|) 19)) (-2724 (((-317 |#1|) |#2|) 12)) (-2736 (((-317 |#1|) |#2|) 14)) (-1557 ((|#2| |#2| (-1177)) 69) ((|#2| |#2|) 70)) (-2949 (((-169 (-317 |#1|)) |#2|) 10)) (-1856 ((|#2| |#2| (-1177)) 66) ((|#2| |#2|) 60))) -(((-188 |#1| |#2|) (-10 -7 (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1177))) (-15 -1856 (|#2| |#2|)) (-15 -1856 (|#2| |#2| (-1177))) (-15 -2724 ((-317 |#1|) |#2|)) (-15 -2736 ((-317 |#1|) |#2|)) (-15 -1964 ((-112) |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2949 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1039 (-567))) (-13 (-27) (-1202) (-433 (-169 |#1|)))) (T -188)) -((-2949 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3)))))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3)))))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *4)))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3))))))) -(-10 -7 (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1177))) (-15 -1856 (|#2| |#2|)) (-15 -1856 (|#2| |#2| (-1177))) (-15 -2724 ((-317 |#1|) |#2|)) (-15 -2736 ((-317 |#1|) |#2|)) (-15 -1964 ((-112) |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2949 ((-169 (-317 |#1|)) |#2|))) -((-2028 (((-1267 (-690 (-953 |#1|))) (-1267 (-690 |#1|))) 26)) (-4127 (((-1267 (-690 (-410 (-953 |#1|)))) (-1267 (-690 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -2028 ((-1267 (-690 (-953 |#1|))) (-1267 (-690 |#1|)))) (-15 -4127 ((-1267 (-690 (-410 (-953 |#1|)))) (-1267 (-690 |#1|))))) (-172)) (T -189)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-1267 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1267 (-690 (-410 (-953 *4))))) (-5 *1 (-189 *4)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1267 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1267 (-690 (-953 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -2028 ((-1267 (-690 (-953 |#1|))) (-1267 (-690 |#1|)))) (-15 -4127 ((-1267 (-690 (-410 (-953 |#1|)))) (-1267 (-690 |#1|))))) -((-3728 (((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567)))) 89)) (-2490 (((-1179 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-3538 (((-1179 (-410 (-567))) (-567)) 56)) (-2292 (((-1179 (-410 (-567))) (-567)) 75)) (-2631 (((-410 (-567)) (-1179 (-410 (-567)))) 85)) (-2159 (((-1179 (-410 (-567))) (-567)) 37)) (-3215 (((-1179 (-410 (-567))) (-567)) 68)) (-2462 (((-1179 (-410 (-567))) (-567)) 62)) (-2555 (((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567)))) 83)) (-1546 (((-1179 (-410 (-567))) (-567)) 29)) (-3907 (((-410 (-567)) (-1179 (-410 (-567))) (-1179 (-410 (-567)))) 87)) (-1967 (((-1179 (-410 (-567))) (-567)) 35)) (-3097 (((-1179 (-410 (-567))) (-645 (-567))) 96))) -(((-190) (-10 -7 (-15 -1546 ((-1179 (-410 (-567))) (-567))) (-15 -3538 ((-1179 (-410 (-567))) (-567))) (-15 -2159 ((-1179 (-410 (-567))) (-567))) (-15 -1967 ((-1179 (-410 (-567))) (-567))) (-15 -2462 ((-1179 (-410 (-567))) (-567))) (-15 -3215 ((-1179 (-410 (-567))) (-567))) (-15 -2292 ((-1179 (-410 (-567))) (-567))) (-15 -3907 ((-410 (-567)) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -2555 ((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1179 (-410 (-567))))) (-15 -3728 ((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -3097 ((-1179 (-410 (-567))) (-645 (-567)))) (-15 -2490 ((-1179 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190)) -((-2490 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)))) (-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-1179 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-2555 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)))) (-3907 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-2292 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3215 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1967 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2159 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3538 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1546 (*1 *2 *3) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(-10 -7 (-15 -1546 ((-1179 (-410 (-567))) (-567))) (-15 -3538 ((-1179 (-410 (-567))) (-567))) (-15 -2159 ((-1179 (-410 (-567))) (-567))) (-15 -1967 ((-1179 (-410 (-567))) (-567))) (-15 -2462 ((-1179 (-410 (-567))) (-567))) (-15 -3215 ((-1179 (-410 (-567))) (-567))) (-15 -2292 ((-1179 (-410 (-567))) (-567))) (-15 -3907 ((-410 (-567)) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -2555 ((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1179 (-410 (-567))))) (-15 -3728 ((-1179 (-410 (-567))) (-1179 (-410 (-567))) (-1179 (-410 (-567))))) (-15 -3097 ((-1179 (-410 (-567))) (-645 (-567)))) (-15 -2490 ((-1179 (-410 (-567))) (-645 (-567)) (-645 (-567))))) -((-2363 (((-421 (-1173 (-567))) (-567)) 38)) (-2549 (((-645 (-1173 (-567))) (-567)) 33)) (-4023 (((-1173 (-567)) (-567)) 28))) -(((-191) (-10 -7 (-15 -2549 ((-645 (-1173 (-567))) (-567))) (-15 -4023 ((-1173 (-567)) (-567))) (-15 -2363 ((-421 (-1173 (-567))) (-567))))) (T -191)) -((-2363 (*1 *2 *3) (-12 (-5 *2 (-421 (-1173 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-4023 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-2549 (*1 *2 *3) (-12 (-5 *2 (-645 (-1173 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) -(-10 -7 (-15 -2549 ((-645 (-1173 (-567))) (-567))) (-15 -4023 ((-1173 (-567)) (-567))) (-15 -2363 ((-421 (-1173 (-567))) (-567)))) -((-2708 (((-1157 (-225)) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-4370 (((-645 (-1159)) (-1157 (-225))) NIL)) (-2792 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-2252 (((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225)))) NIL)) (-3236 (((-645 (-1159)) (-645 (-225))) NIL)) (-1489 (((-225) (-1095 (-844 (-225)))) 31)) (-3595 (((-225) (-1095 (-844 (-225)))) 32)) (-2616 (((-381) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2851 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3672 (((-1159) (-225)) NIL)) (-4375 (((-1159) (-645 (-1159))) 27)) (-1300 (((-1036) (-1177) (-1177) (-1036)) 13))) -(((-192) (-10 -7 (-15 -2792 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2851 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2616 ((-381) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2252 ((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225)))) (-15 -4375 ((-1159) (-645 (-1159)))) (-15 -1300 ((-1036) (-1177) (-1177) (-1036))))) (T -192)) -((-1300 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1177)) (-5 *1 (-192)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-192)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-192)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-192)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-192)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) (-2252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1177)) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -2792 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2851 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2616 ((-381) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2252 ((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225)))) (-15 -4375 ((-1159) (-645 (-1159)))) (-15 -1300 ((-1036) (-1177) (-1177) (-1036)))) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 61) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +(-13 (-1102) (-10 -8 (-15 -9 ($) -3286) (-15 -8 ($) -3286) (-15 -7 ($) -3286))) +((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) 8)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) 10)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-2755 (((-692 $) (-509)) 17)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) 12)) (-2936 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -2755 ((-692 $) (-509)))))) (T -187)) +((-2755 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -2755 ((-692 $) (-509))))) +((-2165 ((|#2| |#2|) 28)) (-1684 (((-112) |#2|) 19)) (-2727 (((-317 |#1|) |#2|) 12)) (-2739 (((-317 |#1|) |#2|) 14)) (-4049 ((|#2| |#2| (-1178)) 69) ((|#2| |#2|) 70)) (-1327 (((-169 (-317 |#1|)) |#2|) 10)) (-2912 ((|#2| |#2| (-1178)) 66) ((|#2| |#2|) 60))) +(((-188 |#1| |#2|) (-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2727 ((-317 |#1|) |#2|)) (-15 -2739 ((-317 |#1|) |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1327 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-1203) (-433 (-169 |#1|)))) (T -188)) +((-1327 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2727 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2912 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3))))))) +(-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2727 ((-317 |#1|) |#2|)) (-15 -2739 ((-317 |#1|) |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1327 ((-169 (-317 |#1|)) |#2|))) +((-1573 (((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|))) 26)) (-4132 (((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -1573 ((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|)))) (-15 -4132 ((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|))))) (-172)) (T -189)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1268 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1268 (-690 (-954 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -1573 ((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|)))) (-15 -4132 ((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|))))) +((-1792 (((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 89)) (-1520 (((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-4265 (((-1180 (-410 (-567))) (-567)) 56)) (-3541 (((-1180 (-410 (-567))) (-567)) 75)) (-2631 (((-410 (-567)) (-1180 (-410 (-567)))) 85)) (-2506 (((-1180 (-410 (-567))) (-567)) 37)) (-4369 (((-1180 (-410 (-567))) (-567)) 68)) (-3760 (((-1180 (-410 (-567))) (-567)) 62)) (-4017 (((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 83)) (-2192 (((-1180 (-410 (-567))) (-567)) 29)) (-4376 (((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 87)) (-2009 (((-1180 (-410 (-567))) (-567)) 35)) (-4060 (((-1180 (-410 (-567))) (-645 (-567))) 96))) +(((-190) (-10 -7 (-15 -2192 ((-1180 (-410 (-567))) (-567))) (-15 -4265 ((-1180 (-410 (-567))) (-567))) (-15 -2506 ((-1180 (-410 (-567))) (-567))) (-15 -2009 ((-1180 (-410 (-567))) (-567))) (-15 -3760 ((-1180 (-410 (-567))) (-567))) (-15 -4369 ((-1180 (-410 (-567))) (-567))) (-15 -3541 ((-1180 (-410 (-567))) (-567))) (-15 -4376 ((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4017 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1180 (-410 (-567))))) (-15 -1792 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4060 ((-1180 (-410 (-567))) (-645 (-567)))) (-15 -1520 ((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190)) +((-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-4376 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-3541 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4369 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2506 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4265 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2192 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(-10 -7 (-15 -2192 ((-1180 (-410 (-567))) (-567))) (-15 -4265 ((-1180 (-410 (-567))) (-567))) (-15 -2506 ((-1180 (-410 (-567))) (-567))) (-15 -2009 ((-1180 (-410 (-567))) (-567))) (-15 -3760 ((-1180 (-410 (-567))) (-567))) (-15 -4369 ((-1180 (-410 (-567))) (-567))) (-15 -3541 ((-1180 (-410 (-567))) (-567))) (-15 -4376 ((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4017 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1180 (-410 (-567))))) (-15 -1792 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4060 ((-1180 (-410 (-567))) (-645 (-567)))) (-15 -1520 ((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567))))) +((-4289 (((-421 (-1174 (-567))) (-567)) 38)) (-1561 (((-645 (-1174 (-567))) (-567)) 33)) (-3444 (((-1174 (-567)) (-567)) 28))) +(((-191) (-10 -7 (-15 -1561 ((-645 (-1174 (-567))) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -4289 ((-421 (-1174 (-567))) (-567))))) (T -191)) +((-4289 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-3444 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-1561 (*1 *2 *3) (-12 (-5 *2 (-645 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) +(-10 -7 (-15 -1561 ((-645 (-1174 (-567))) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -4289 ((-421 (-1174 (-567))) (-567)))) +((-2364 (((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-2308 (((-645 (-1160)) (-1158 (-225))) NIL)) (-3463 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3947 (((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225)))) NIL)) (-3258 (((-645 (-1160)) (-645 (-225))) NIL)) (-1594 (((-225) (-1096 (-844 (-225)))) 31)) (-2158 (((-225) (-1096 (-844 (-225)))) 32)) (-3389 (((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3911 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3905 (((-1160) (-225)) NIL)) (-1514 (((-1160) (-645 (-1160))) 27)) (-3664 (((-1037) (-1178) (-1178) (-1037)) 13))) +(((-192) (-10 -7 (-15 -3463 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3911 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3389 ((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1514 ((-1160) (-645 (-1160)))) (-15 -3664 ((-1037) (-1178) (-1178) (-1037))))) (T -192)) +((-3664 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-192)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-192)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-192)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-192)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -3463 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3911 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3389 ((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1514 ((-1160) (-645 (-1160)))) (-15 -3664 ((-1037) (-1178) (-1178) (-1037)))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 61) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-193) (-788)) (T -193)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 66) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 66) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-194) (-788)) (T -194)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 81) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 81) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-195) (-788)) (T -195)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 63) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 63) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-196) (-788)) (T -196)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 75) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 75) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-197) (-788)) (T -197)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-198) (-788)) (T -198)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-199) (-788)) (T -199)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 77) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 77) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-200) (-788)) (T -200)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 78)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 78)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-201) (-788)) (T -201)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 79)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 79)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-202) (-788)) (T -202)) NIL (-788) -((-2399 (((-112) $ $) NIL)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 105) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 105) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-203) (-788)) (T -203)) NIL (-788) -((-3359 (((-3 (-2 (|:| -4174 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2574 (((-567) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-1826 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) -(((-204) (-10 -7 (-15 -3359 ((-3 (-2 (|:| -4174 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1826 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2574 ((-567) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-2574 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-1826 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-3359 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4174 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -3359 ((-3 (-2 (|:| -4174 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1826 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2574 ((-567) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-1522 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-3656 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-3479 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-3984 (((-381) (-690 (-317 (-225)))) 140)) (-1730 (((-690 (-317 (-225))) (-1267 (-317 (-225))) (-645 (-1177))) 136)) (-1897 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-2009 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2631 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1177)) (-1267 (-317 (-225)))) 125)) (-3792 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-4204 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -3792 ((-381) (-381) (-381))) (-15 -3792 ((-381) (-381) (-645 (-381)))) (-15 -3984 ((-381) (-690 (-317 (-225))))) (-15 -1730 ((-690 (-317 (-225))) (-1267 (-317 (-225))) (-645 (-1177)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1177)) (-1267 (-317 (-225))))) (-15 -3479 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -3656 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1522 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2009 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4204 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1897 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-1897 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1177))) (-5 *4 (-1267 (-317 (-225)))) (-5 *1 (-205)))) (-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *4 (-645 (-1177))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3792 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) -(-10 -7 (-15 -3792 ((-381) (-381) (-381))) (-15 -3792 ((-381) (-381) (-645 (-381)))) (-15 -3984 ((-381) (-690 (-317 (-225))))) (-15 -1730 ((-690 (-317 (-225))) (-1267 (-317 (-225))) (-645 (-1177)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1177)) (-1267 (-317 (-225))))) (-15 -3479 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -3656 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1522 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2009 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4204 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1897 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-4333 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2929 (((-112) $ $) NIL))) +((-2478 (((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2512 (((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-1841 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) +(((-204) (-10 -7 (-15 -2478 ((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1841 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2512 ((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-2512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-1841 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-2478 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4179 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -2478 ((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1841 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2512 ((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1780 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2934 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-1542 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-1498 (((-381) (-690 (-317 (-225)))) 140)) (-1816 (((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178))) 136)) (-2562 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-3576 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2631 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225)))) 125)) (-2552 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-1461 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -2552 ((-381) (-381) (-381))) (-15 -2552 ((-381) (-381) (-645 (-381)))) (-15 -1498 ((-381) (-690 (-317 (-225))))) (-15 -1816 ((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -2934 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1780 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1461 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2562 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-2562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1178))) (-5 *4 (-1268 (-317 (-225)))) (-5 *1 (-205)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2552 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2552 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) +(-10 -7 (-15 -2552 ((-381) (-381) (-381))) (-15 -2552 ((-381) (-381) (-645 (-381)))) (-15 -1498 ((-381) (-690 (-317 (-225))))) (-15 -1816 ((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -2934 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1780 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1461 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2562 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2936 (((-112) $ $) NIL))) (((-206) (-801)) (T -206)) NIL (-801) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-4333 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2936 (((-112) $ $) NIL))) (((-207) (-801)) (T -207)) NIL (-801) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-4333 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2936 (((-112) $ $) NIL))) (((-208) (-801)) (T -208)) NIL (-801) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-4333 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2936 (((-112) $ $) NIL))) (((-209) (-801)) (T -209)) NIL (-801) -((-3259 (((-645 (-1177)) (-1177) (-772)) 26)) (-2360 (((-317 (-225)) (-317 (-225))) 35)) (-3868 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 87)) (-2024 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47))) -(((-210) (-10 -7 (-15 -3259 ((-645 (-1177)) (-1177) (-772))) (-15 -2360 ((-317 (-225)) (-317 (-225)))) (-15 -2024 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3868 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))))))) (T -210)) -((-3868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2024 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1177))) (-5 *1 (-210)) (-5 *3 (-1177))))) -(-10 -7 (-15 -3259 ((-645 (-1177)) (-1177) (-772))) (-15 -2360 ((-317 (-225)) (-317 (-225)))) (-15 -2024 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3868 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))))) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 28)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-3910 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 70)) (-2929 (((-112) $ $) NIL))) -(((-211) (-896)) (T -211)) -NIL -(-896) -((-2399 (((-112) $ $) NIL)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 24)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-3910 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) NIL)) (-2929 (((-112) $ $) NIL))) -(((-212) (-896)) (T -212)) -NIL -(-896) -((-2399 (((-112) $ $) NIL)) (-3711 ((|#2| $ (-772) |#2|) 11)) (-3702 ((|#2| $ (-772)) 10)) (-2844 (($) 8)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 26)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -2844 ($)) (-15 -3702 (|#2| $ (-772))) (-15 -3711 (|#2| $ (-772) |#2|)))) (-922) (-1101)) (T -213)) -((-2844 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1101)))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1101)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) (-3711 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -2844 ($)) (-15 -3702 (|#2| $ (-772))) (-15 -3711 (|#2| $ (-772) |#2|)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2985 (((-1272) $) 37) (((-1272) $ (-922) (-922)) 44)) (-1783 (($ $ (-990)) 19) (((-245 (-1159)) $ (-1177)) 15)) (-4015 (((-1272) $) 35)) (-4127 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $ $) 27)) (-3024 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1101) (-617 (-645 |#1|)) (-10 -8 (-15 -1783 ($ $ (-990))) (-15 -1783 ((-245 (-1159)) $ (-1177))) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $)) (-15 -2985 ((-1272) $ (-922) (-922))))) (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $))))) (T -214)) -((-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-990)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $))))))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-245 (-1159))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ *3)) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $))))))) (-3024 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $))))))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $))))))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) (-15 -2985 (*2 $))))))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) (-15 -2985 (*2 $))))))) (-2985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) (-15 -2985 (*2 $)))))))) -(-13 (-1101) (-617 (-645 |#1|)) (-10 -8 (-15 -1783 ($ $ (-990))) (-15 -1783 ((-245 (-1159)) $ (-1177))) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $)) (-15 -2985 ((-1272) $ (-922) (-922))))) -((-1952 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1952 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) -((-1952 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1243 (-410 *2))) (-4 *2 (-1243 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) -(-10 -7 (-15 -1952 (|#2| |#4| (-1 |#2| |#2|)))) -((-1400 ((|#2| |#2| (-772) |#2|) 58)) (-2870 ((|#2| |#2| (-772) |#2|) 54)) (-2608 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|)))) 82)) (-4225 (((-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|))) |#2|) 76)) (-1798 (((-112) |#2|) 74)) (-2443 (((-421 |#2|) |#2|) 96)) (-2703 (((-421 |#2|) |#2|) 95)) (-3666 ((|#2| |#2| (-772) |#2|) 52)) (-1556 (((-2 (|:| |cont| |#1|) (|:| -2166 (-645 (-2 (|:| |irr| |#2|) (|:| -1594 (-567)))))) |#2| (-112)) 88))) -(((-216 |#1| |#2|) (-10 -7 (-15 -2703 ((-421 |#2|) |#2|)) (-15 -2443 ((-421 |#2|) |#2|)) (-15 -1556 ((-2 (|:| |cont| |#1|) (|:| -2166 (-645 (-2 (|:| |irr| |#2|) (|:| -1594 (-567)))))) |#2| (-112))) (-15 -4225 ((-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|))) |#2|)) (-15 -2608 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|))))) (-15 -3666 (|#2| |#2| (-772) |#2|)) (-15 -2870 (|#2| |#2| (-772) |#2|)) (-15 -1400 (|#2| |#2| (-772) |#2|)) (-15 -1798 ((-112) |#2|))) (-351) (-1243 |#1|)) (T -216)) -((-1798 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1243 *4)))) (-1400 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1243 *4)))) (-2870 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1243 *4)))) (-3666 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1243 *4)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -3301 *5)))) (-4 *5 (-1243 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3301 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1243 *4)))) (-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1243 *5)))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1243 *4)))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -2703 ((-421 |#2|) |#2|)) (-15 -2443 ((-421 |#2|) |#2|)) (-15 -1556 ((-2 (|:| |cont| |#1|) (|:| -2166 (-645 (-2 (|:| |irr| |#2|) (|:| -1594 (-567)))))) |#2| (-112))) (-15 -4225 ((-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|))) |#2|)) (-15 -2608 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3301 |#2|))))) (-15 -3666 (|#2| |#2| (-772) |#2|)) (-15 -2870 (|#2| |#2| (-772) |#2|)) (-15 -1400 (|#2| |#2| (-772) |#2|)) (-15 -1798 ((-112) |#2|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-567) $) NIL (|has| (-567) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-567) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-567) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-2033 (((-567) $) NIL) (((-1177) $) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-567) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-567) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-567) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-567) (-1152)))) (-2102 (((-112) $) NIL (|has| (-567) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-567) (-851)))) (-3822 (($ (-1 (-567) (-567)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-567) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1842 (((-567) $) NIL (|has| (-567) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1177)) (-645 (-567))) NIL (|has| (-567) (-517 (-1177) (-567)))) (($ $ (-1177) (-567)) NIL (|has| (-567) (-517 (-1177) (-567))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-567) $) NIL)) (-2946 (($ (-410 (-567))) 9)) (-3880 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1177)) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL) (((-1005 10) $) 10)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-567) $) NIL (|has| (-567) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| (-567) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3050 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-217) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 10)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -2946 ($ (-410 (-567))))))) (T -217)) -((-2721 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) -(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 10)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -2946 ($ (-410 (-567)))))) -((-2399 (((-112) $ $) NIL)) (-3384 (((-1119) $) 13)) (-3739 (((-1159) $) NIL)) (-3146 (((-486) $) 10)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 23) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 15)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-218) (-13 (-1084) (-10 -8 (-15 -3146 ((-486) $)) (-15 -3384 ((-1119) $)) (-15 -1998 ((-1136) $))))) (T -218)) -((-3146 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-218)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-218))))) -(-13 (-1084) (-10 -8 (-15 -3146 ((-486) $)) (-15 -3384 ((-1119) $)) (-15 -1998 ((-1136) $)))) -((-1576 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|)) (-1159)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|))) 25)) (-1654 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1177) (-844 |#2|) (-844 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -1576 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|)))) (-15 -1576 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|)) (-1159))) (-15 -1654 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1177) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-960) (-29 |#1|))) (T -219)) -((-1654 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1177)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1202) (-960) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-1576 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1093 (-844 *3))) (-5 *5 (-1159)) (-4 *3 (-13 (-1202) (-960) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-844 *3))) (-4 *3 (-13 (-1202) (-960) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -1576 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|)))) (-15 -1576 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1093 (-844 |#2|)) (-1159))) (-15 -1654 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1177) (-844 |#2|) (-844 |#2|) (-112)))) -((-1576 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|)))) (-1159)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|))) (-1159)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|))))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|))) (-1159))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|)))))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|)))) (-1159)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (T -220)) -((-1576 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1093 (-844 (-410 (-953 *6))))) (-5 *5 (-1159)) (-5 *3 (-410 (-953 *6))) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-844 (-410 (-953 *5))))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-1576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1093 (-844 (-317 *6)))) (-5 *5 (-1159)) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1093 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|))))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-317 |#1|))) (-1159))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|)))))) (-15 -1576 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1093 (-844 (-410 (-953 |#1|)))) (-1159)))) -((-2499 (((-2 (|:| -1867 (-1173 |#1|)) (|:| |deg| (-922))) (-1173 |#1|)) 26)) (-3304 (((-645 (-317 |#2|)) (-317 |#2|) (-922)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -2499 ((-2 (|:| -1867 (-1173 |#1|)) (|:| |deg| (-922))) (-1173 |#1|))) (-15 -3304 ((-645 (-317 |#2|)) (-317 |#2|) (-922)))) (-1050) (-559)) (T -221)) -((-3304 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1050)))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-2 (|:| -1867 (-1173 *4)) (|:| |deg| (-922)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1173 *4)) (-4 *5 (-559))))) -(-10 -7 (-15 -2499 ((-2 (|:| -1867 (-1173 |#1|)) (|:| |deg| (-922))) (-1173 |#1|))) (-15 -3304 ((-645 (-317 |#2|)) (-317 |#2|) (-922)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3094 ((|#1| $) NIL)) (-2254 ((|#1| $) 30)) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-3715 (($ $) NIL)) (-3224 (($ $) 39)) (-3009 ((|#1| |#1| $) NIL)) (-4214 ((|#1| $) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2334 (((-772) $) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) NIL)) (-4205 ((|#1| |#1| $) 35)) (-2711 ((|#1| |#1| $) 37)) (-1330 (($ |#1| $) NIL)) (-4133 (((-772) $) 33)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2006 ((|#1| $) NIL)) (-2029 ((|#1| $) 31)) (-4098 ((|#1| $) 29)) (-3060 ((|#1| $) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-4030 ((|#1| |#1| $) NIL)) (-3240 (((-112) $) 9)) (-3347 (($) NIL)) (-1818 ((|#1| $) NIL)) (-4304 (($) NIL) (($ (-645 |#1|)) 16)) (-3298 (((-772) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1559 ((|#1| $) 13)) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) NIL)) (-2058 ((|#1| $) NIL)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -4304 ($ (-645 |#1|))))) (-1101)) (T -222)) -((-4304 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-222 *3))))) -(-13 (-255 |#1|) (-10 -8 (-15 -4304 ($ (-645 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-4372 (($ (-317 |#1|)) 27)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2803 (((-112) $) NIL)) (-3747 (((-3 (-317 |#1|) "failed") $) NIL)) (-2033 (((-317 |#1|) $) NIL)) (-3006 (($ $) 35)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3822 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2980 (((-317 |#1|) $) NIL)) (-4328 (($ $) 34)) (-3739 (((-1159) $) NIL)) (-3609 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($ (-772)) NIL)) (-1718 (($ $) 36)) (-1813 (((-567) $) NIL)) (-4127 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-2253 (((-317 |#1|) $ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 29 T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) 32)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1039 (-317 |#1|)) (-10 -8 (-15 -2980 ((-317 |#1|) $)) (-15 -4328 ($ $)) (-15 -3006 ($ $)) (-15 -2253 ((-317 |#1|) $ $)) (-15 -1394 ($ (-772))) (-15 -3609 ((-112) $)) (-15 -2803 ((-112) $)) (-15 -1813 ((-567) $)) (-15 -3822 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4372 ($ (-317 |#1|))) (-15 -1718 ($ $)))) (-13 (-1050) (-851)) (-645 (-1177))) (T -223)) -((-2980 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1177))))) (-3006 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1177))))) (-2253 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1050) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1177))))) (-4372 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1050) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1177))))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1177)))))) -(-13 (-621 (-317 |#1|)) (-1039 (-317 |#1|)) (-10 -8 (-15 -2980 ((-317 |#1|) $)) (-15 -4328 ($ $)) (-15 -3006 ($ $)) (-15 -2253 ((-317 |#1|) $ $)) (-15 -1394 ($ (-772))) (-15 -3609 ((-112) $)) (-15 -2803 ((-112) $)) (-15 -1813 ((-567) $)) (-15 -3822 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4372 ($ (-317 |#1|))) (-15 -1718 ($ $)))) -((-1610 (((-112) (-1159)) 26)) (-2018 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-1889 (((-3 (-112) "failed") (-1173 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-953 |#1|) (-1177) (-844 |#2|) (-844 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -1610 ((-112) (-1159))) (-15 -2018 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1889 ((-3 (-112) "failed") (-953 |#1|) (-1177) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1889 ((-3 (-112) "failed") (-1173 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-29 |#1|))) (T -224)) -((-1889 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1173 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1202) (-29 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-1889 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-953 *6)) (-5 *4 (-1177)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1202) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2018 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1202) (-29 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1202) (-29 *4)))))) -(-10 -7 (-15 -1610 ((-112) (-1159))) (-15 -2018 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1889 ((-3 (-112) "failed") (-953 |#1|) (-1177) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1889 ((-3 (-112) "failed") (-1173 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 100)) (-2660 (((-567) $) 36)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1873 (($ $) NIL)) (-3165 (($ $) 89)) (-3039 (($ $) 77)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) 68)) (-2373 (((-112) $ $) NIL)) (-3148 (($ $) 87)) (-3015 (($ $) 75)) (-3449 (((-567) $) 130)) (-3184 (($ $) 92)) (-3065 (($ $) 79)) (-2245 (($) NIL T CONST)) (-2273 (($ $) NIL)) (-3747 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-2033 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) 105)) (-2839 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3735 (((-922)) 29) (((-922) (-922)) NIL (|has| $ (-6 -4408)))) (-4357 (((-112) $) NIL)) (-1480 (($) 47)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-2937 (((-567) $) 43)) (-2843 (((-112) $) 101)) (-1709 (($ $ (-567)) NIL)) (-2896 (($ $) NIL)) (-2102 (((-112) $) 99)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) 65) (($) 39 (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2998 (($ $ $) 64) (($) 38 (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2145 (((-567) $) 27)) (-1770 (($ $) 34)) (-1700 (($ $) 69)) (-3053 (($ $) 74)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-3507 (((-922) (-567)) NIL (|has| $ (-6 -4408)))) (-3430 (((-1121) $) 103)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL)) (-1842 (($ $) NIL)) (-2319 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-922)) 112)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4250 (((-567) $) 28)) (-2788 (($) 46)) (-3927 (($ $) 73)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3435 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4408)))) (-1621 (($ $ (-772)) NIL) (($ $) 106)) (-3676 (((-922) (-567)) NIL (|has| $ (-6 -4408)))) (-3192 (($ $) 90)) (-3076 (($ $) 80)) (-3174 (($ $) 91)) (-3052 (($ $) 78)) (-3157 (($ $) 88)) (-3026 (($ $) 76)) (-3880 (((-381) $) 115) (((-225) $) 14) (((-893 (-381)) $) NIL) (((-539) $) 53)) (-4127 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-1772 (((-772)) NIL T CONST)) (-1687 (($ $) NIL)) (-4009 (((-922)) 37) (((-922) (-922)) NIL (|has| $ (-6 -4408)))) (-4104 (((-112) $ $) NIL)) (-3074 (((-922)) 25)) (-3220 (($ $) 95)) (-3109 (($ $) 83) (($ $ $) 122)) (-4380 (((-112) $ $) NIL)) (-3201 (($ $) 93)) (-3087 (($ $) 81)) (-3241 (($ $) 98)) (-3128 (($ $) 86)) (-3807 (($ $) 96)) (-3137 (($ $) 84)) (-3228 (($ $) 97)) (-3119 (($ $) 85)) (-3210 (($ $) 94)) (-3098 (($ $) 82)) (-4137 (($ $) 121)) (-1710 (($) 23 T CONST)) (-1722 (($) 44 T CONST)) (-4224 (((-1159) $) 18) (((-1159) $ (-112)) 20) (((-1272) (-823) $) 21) (((-1272) (-823) $ (-112)) 22)) (-4148 (($ $) 109)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2947 (($ $ $) 111)) (-2988 (((-112) $ $) 58)) (-2964 (((-112) $ $) 55)) (-2929 (((-112) $ $) 66)) (-2977 (((-112) $ $) 57)) (-2952 (((-112) $ $) 54)) (-3050 (($ $ $) 45) (($ $ (-567)) 67)) (-3037 (($ $) 59) (($ $ $) 61)) (-3024 (($ $ $) 60)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-922) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-225) (-13 (-407) (-233) (-829) (-1202) (-615 (-539)) (-10 -8 (-15 -3050 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2788 ($)) (-15 -1770 ($ $)) (-15 -1700 ($ $)) (-15 -3109 ($ $ $)) (-15 -4148 ($ $)) (-15 -2947 ($ $ $)) (-15 -2839 ((-410 (-567)) $ (-772))) (-15 -2839 ((-410 (-567)) $ (-772) (-772)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-2788 (*1 *1) (-5 *1 (-225))) (-1770 (*1 *1 *1) (-5 *1 (-225))) (-1700 (*1 *1 *1) (-5 *1 (-225))) (-3109 (*1 *1 *1 *1) (-5 *1 (-225))) (-4148 (*1 *1 *1) (-5 *1 (-225))) (-2947 (*1 *1 *1 *1) (-5 *1 (-225))) (-2839 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-2839 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))) -(-13 (-407) (-233) (-829) (-1202) (-615 (-539)) (-10 -8 (-15 -3050 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2788 ($)) (-15 -1770 ($ $)) (-15 -1700 ($ $)) (-15 -3109 ($ $ $)) (-15 -4148 ($ $)) (-15 -2947 ($ $ $)) (-15 -2839 ((-410 (-567)) $ (-772))) (-15 -2839 ((-410 (-567)) $ (-772) (-772))))) -((-2217 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-3679 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3441 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3214 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3975 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3749 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2136 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2889 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-4079 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2622 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-4148 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2947 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -4148 ((-225) (-225))) (-15 -4148 ((-169 (-225)) (-169 (-225)))) (-15 -2947 ((-225) (-225) (-225))) (-15 -2947 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3679 ((-225) (-225))) (-15 -3679 ((-169 (-225)) (-169 (-225)))) (-15 -3214 ((-225) (-225))) (-15 -3214 ((-169 (-225)) (-169 (-225)))) (-15 -2217 ((-225) (-772) (-225))) (-15 -2217 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2136 ((-225) (-225) (-225))) (-15 -2136 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3975 ((-225) (-225) (-225))) (-15 -3975 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2889 ((-225) (-225) (-225))) (-15 -2889 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3749 ((-225) (-225) (-225))) (-15 -3749 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2622 ((-169 (-225)) (-169 (-225)))) (-15 -2622 ((-225) (-225))) (-15 -4079 ((-225) (-225))) (-15 -4079 ((-169 (-225)) (-169 (-225)))) (-15 -3441 ((-225) (-225) (-225))) (-15 -3441 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-3441 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3441 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2889 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2889 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3975 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3975 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2136 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2136 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2217 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-2217 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-3214 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3214 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -4148 ((-225) (-225))) (-15 -4148 ((-169 (-225)) (-169 (-225)))) (-15 -2947 ((-225) (-225) (-225))) (-15 -2947 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3679 ((-225) (-225))) (-15 -3679 ((-169 (-225)) (-169 (-225)))) (-15 -3214 ((-225) (-225))) (-15 -3214 ((-169 (-225)) (-169 (-225)))) (-15 -2217 ((-225) (-772) (-225))) (-15 -2217 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2136 ((-225) (-225) (-225))) (-15 -2136 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3975 ((-225) (-225) (-225))) (-15 -3975 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2889 ((-225) (-225) (-225))) (-15 -2889 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3749 ((-225) (-225) (-225))) (-15 -3749 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2622 ((-169 (-225)) (-169 (-225)))) (-15 -2622 ((-225) (-225))) (-15 -4079 ((-225) (-225))) (-15 -4079 ((-169 (-225)) (-169 (-225)))) (-15 -3441 ((-225) (-225) (-225))) (-15 -3441 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772) (-772)) NIL)) (-1420 (($ $ $) NIL)) (-1650 (($ (-1267 |#1|)) NIL) (($ $) NIL)) (-2559 (($ |#1| |#1| |#1|) 33)) (-2449 (((-112) $) NIL)) (-3103 (($ $ (-567) (-567)) NIL)) (-3878 (($ $ (-567) (-567)) NIL)) (-1581 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3132 (($ $) NIL)) (-2038 (((-112) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2638 (($ $ (-567) (-567) $) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3056 (($ $ (-567) (-1267 |#1|)) NIL)) (-1814 (($ $ (-567) (-1267 |#1|)) NIL)) (-3719 (($ |#1| |#1| |#1|) 32)) (-1644 (($ (-772) |#1|) NIL)) (-2245 (($) NIL T CONST)) (-2838 (($ $) NIL (|has| |#1| (-308)))) (-1938 (((-1267 |#1|) $ (-567)) NIL)) (-4045 (($ |#1|) 31)) (-3277 (($ |#1|) 30)) (-2696 (($ |#1|) 29)) (-1979 (((-772) $) NIL (|has| |#1| (-559)))) (-3759 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3702 ((|#1| $ (-567) (-567)) NIL)) (-3397 (((-645 |#1|) $) NIL)) (-2978 (((-772) $) NIL (|has| |#1| (-559)))) (-2407 (((-645 (-1267 |#1|)) $) NIL (|has| |#1| (-559)))) (-4313 (((-772) $) NIL)) (-2844 (($ (-772) (-772) |#1|) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2570 ((|#1| $) NIL (|has| |#1| (-6 (-4419 "*"))))) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-2109 (($ (-645 (-645 |#1|))) 11)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1633 (((-645 (-645 |#1|)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2634 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-1974 (($) 12)) (-1853 (($ $ $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-1449 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-4116 (((-112) $) NIL)) (-2880 ((|#1| $) NIL (|has| |#1| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-1454 (((-1267 |#1|) $ (-567)) NIL)) (-4127 (($ (-1267 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1267 |#1|) $ (-1267 |#1|)) 15) (((-1267 |#1|) (-1267 |#1|) $) NIL) (((-944 |#1|) $ (-944 |#1|)) 21)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-227 |#1|) (-13 (-688 |#1| (-1267 |#1|) (-1267 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -1974 ($)) (-15 -2696 ($ |#1|)) (-15 -3277 ($ |#1|)) (-15 -4045 ($ |#1|)) (-15 -3719 ($ |#1| |#1| |#1|)) (-15 -2559 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1202))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202))) (-5 *1 (-227 *3)))) (-1974 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) (-2696 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) (-3277 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) (-4045 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) (-3719 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) (-2559 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202)))))) -(-13 (-688 |#1| (-1267 |#1|) (-1267 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -1974 ($)) (-15 -2696 ($ |#1|)) (-15 -3277 ($ |#1|)) (-15 -4045 ($ |#1|)) (-15 -3719 ($ |#1| |#1| |#1|)) (-15 -2559 ($ |#1| |#1| |#1|)))) -((-3502 (($ (-1 (-112) |#2|) $) 16)) (-2774 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-3253 (($) NIL) (($ (-645 |#2|)) 11)) (-2929 (((-112) $ $) 25))) -(((-228 |#1| |#2|) (-10 -8 (-15 -3502 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -3253 (|#1| (-645 |#2|))) (-15 -3253 (|#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-229 |#2|) (-1101)) (T -228)) -NIL -(-10 -8 (-15 -3502 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -3253 (|#1| (-645 |#2|))) (-15 -3253 (|#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-229 |#1|) (-140) (-1101)) (T -229)) +((-3267 (((-645 (-1178)) (-1178) (-772)) 26)) (-4007 (((-317 (-225)) (-317 (-225))) 35)) (-3277 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 87)) (-2456 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47))) +(((-210) (-10 -7 (-15 -3267 ((-645 (-1178)) (-1178) (-772))) (-15 -4007 ((-317 (-225)) (-317 (-225)))) (-15 -2456 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3277 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))))) (T -210)) +((-3277 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2456 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-4007 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-210)) (-5 *3 (-1178))))) +(-10 -7 (-15 -3267 ((-645 (-1178)) (-1178) (-772))) (-15 -4007 ((-317 (-225)) (-317 (-225)))) (-15 -2456 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3277 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))))) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 28)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 70)) (-2936 (((-112) $ $) NIL))) +(((-211) (-897)) (T -211)) +NIL +(-897) +((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 24)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) NIL)) (-2936 (((-112) $ $) NIL))) +(((-212) (-897)) (T -212)) +NIL +(-897) +((-2403 (((-112) $ $) NIL)) (-3689 ((|#2| $ (-772) |#2|) 11)) (-3680 ((|#2| $ (-772)) 10)) (-2846 (($) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 26)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3680 (|#2| $ (-772))) (-15 -3689 (|#2| $ (-772) |#2|)))) (-923) (-1102)) (T -213)) +((-2846 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)))) (-3689 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3680 (|#2| $ (-772))) (-15 -3689 (|#2| $ (-772) |#2|)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1345 (((-1273) $) 37) (((-1273) $ (-923) (-923)) 44)) (-1787 (($ $ (-991)) 19) (((-245 (-1160)) $ (-1178)) 15)) (-4022 (((-1273) $) 35)) (-4132 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $ $) 27)) (-3033 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1787 ($ $ (-991))) (-15 -1787 ((-245 (-1160)) $ (-1178))) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -1345 ((-1273) $ (-923) (-923))))) (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))) (T -214)) +((-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-245 (-1160))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ *3)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-3033 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $))))))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $))))))) (-1345 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $)))))))) +(-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1787 ($ $ (-991))) (-15 -1787 ((-245 (-1160)) $ (-1178))) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -1345 ((-1273) $ (-923) (-923))))) +((-2781 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1244 (-410 *2))) (-4 *2 (-1244 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) +(-10 -7 (-15 -2781 (|#2| |#4| (-1 |#2| |#2|)))) +((-4169 ((|#2| |#2| (-772) |#2|) 58)) (-2399 ((|#2| |#2| (-772) |#2|) 54)) (-3970 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|)))) 82)) (-3007 (((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|) 76)) (-4096 (((-112) |#2|) 74)) (-2688 (((-421 |#2|) |#2|) 96)) (-2706 (((-421 |#2|) |#2|) 95)) (-1454 ((|#2| |#2| (-772) |#2|) 52)) (-3910 (((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112)) 88))) +(((-216 |#1| |#2|) (-10 -7 (-15 -2706 ((-421 |#2|) |#2|)) (-15 -2688 ((-421 |#2|) |#2|)) (-15 -3910 ((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112))) (-15 -3007 ((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|)) (-15 -3970 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))))) (-15 -1454 (|#2| |#2| (-772) |#2|)) (-15 -2399 (|#2| |#2| (-772) |#2|)) (-15 -4169 (|#2| |#2| (-772) |#2|)) (-15 -4096 ((-112) |#2|))) (-351) (-1244 |#1|)) (T -216)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-4169 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-2399 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-1454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *5)))) (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-3007 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1244 *5)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -2706 ((-421 |#2|) |#2|)) (-15 -2688 ((-421 |#2|) |#2|)) (-15 -3910 ((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112))) (-15 -3007 ((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|)) (-15 -3970 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))))) (-15 -1454 (|#2| |#2| (-772) |#2|)) (-15 -2399 (|#2| |#2| (-772) |#2|)) (-15 -4169 (|#2| |#2| (-772) |#2|)) (-15 -4096 ((-112) |#2|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-1992 (($ (-410 (-567))) 9)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 10) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) +(((-217) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -1992 ($ (-410 (-567))))))) (T -217)) +((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) +(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -1992 ($ (-410 (-567)))))) +((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 13)) (-1419 (((-1160) $) NIL)) (-2724 (((-486) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 23) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 15)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-218) (-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -3386 ((-1120) $)) (-15 -2006 ((-1137) $))))) (T -218)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218))))) +(-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -3386 ((-1120) $)) (-15 -2006 ((-1137) $)))) +((-2416 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|))) 25)) (-2193 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160))) (-15 -2193 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -219)) +((-2193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1178)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1203) (-961) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1160)) (-4 *3 (-13 (-1203) (-961) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1203) (-961) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160))) (-15 -2193 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112)))) +((-2416 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (T -220)) +((-2416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1160)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) (-5 *5 (-1160)) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160)))) +((-2477 (((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|)) 26)) (-3317 (((-645 (-317 |#2|)) (-317 |#2|) (-923)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -2477 ((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|))) (-15 -3317 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) (-1051) (-559)) (T -221)) +((-3317 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-2 (|:| -2517 (-1174 *4)) (|:| |deg| (-923)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-559))))) +(-10 -7 (-15 -2477 ((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|))) (-15 -3317 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1910 ((|#1| $) NIL)) (-2262 ((|#1| $) 30)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-3061 (($ $) NIL)) (-1764 (($ $) 39)) (-2576 ((|#1| |#1| $) NIL)) (-4338 ((|#1| $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1699 (((-772) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) NIL)) (-1567 ((|#1| |#1| $) 35)) (-1420 ((|#1| |#1| $) 37)) (-2531 (($ |#1| $) NIL)) (-4138 (((-772) $) 33)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3303 ((|#1| $) NIL)) (-1660 ((|#1| $) 31)) (-2524 ((|#1| $) 29)) (-1793 ((|#1| $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3136 ((|#1| |#1| $) NIL)) (-3572 (((-112) $) 9)) (-3498 (($) NIL)) (-2234 ((|#1| $) NIL)) (-4137 (($) NIL) (($ (-645 |#1|)) 16)) (-3272 (((-772) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4158 ((|#1| $) 13)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-3090 ((|#1| $) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -4137 ($ (-645 |#1|))))) (-1102)) (T -222)) +((-4137 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3))))) +(-13 (-255 |#1|) (-10 -8 (-15 -4137 ($ (-645 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4076 (($ (-317 |#1|)) 27)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3164 (((-112) $) NIL)) (-3753 (((-3 (-317 |#1|) "failed") $) NIL)) (-2038 (((-317 |#1|) $) NIL)) (-3014 (($ $) 35)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3829 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2989 (((-317 |#1|) $) NIL)) (-3914 (($ $) 34)) (-1419 (((-1160) $) NIL)) (-1974 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) NIL)) (-2147 (($ $) 36)) (-3077 (((-567) $) NIL)) (-4132 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-4136 (((-317 |#1|) $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 29 T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) 32)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2989 ((-317 |#1|) $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 ((-317 |#1|) $ $)) (-15 -1398 ($ (-772))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -3829 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4076 ($ (-317 |#1|))) (-15 -2147 ($ $)))) (-13 (-1051) (-851)) (-645 (-1178))) (T -223)) +((-2989 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178))))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178))))) (-4136 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178)))))) +(-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2989 ((-317 |#1|) $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 ((-317 |#1|) $ $)) (-15 -1398 ($ (-772))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -3829 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4076 ($ (-317 |#1|))) (-15 -2147 ($ $)))) +((-4278 (((-112) (-1160)) 26)) (-2023 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-4327 (((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -4278 ((-112) (-1160))) (-15 -2023 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-29 |#1|))) (T -224)) +((-4327 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1203) (-29 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-4327 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1178)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1203) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2023 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1203) (-29 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1203) (-29 *4)))))) +(-10 -7 (-15 -4278 ((-112) (-1160))) (-15 -2023 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 100)) (-3093 (((-567) $) 36)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) NIL)) (-3146 (($ $) 89)) (-3012 (($ $) 77)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) 68)) (-3609 (((-112) $ $) NIL)) (-3128 (($ $) 87)) (-2987 (($ $) 75)) (-1750 (((-567) $) 130)) (-3166 (($ $) 92)) (-3035 (($ $) 79)) (-2585 (($) NIL T CONST)) (-2535 (($ $) NIL)) (-3753 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-2038 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 105)) (-2350 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 29) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-4336 (((-112) $) NIL)) (-1482 (($) 47)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-4384 (((-567) $) 43)) (-1433 (((-112) $) 101)) (-2651 (($ $ (-567)) NIL)) (-2475 (($ $) NIL)) (-3494 (((-112) $) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) 65) (($) 39 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2981 (($ $ $) 64) (($) 38 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 27)) (-3971 (($ $) 34)) (-1703 (($ $) 69)) (-3063 (($ $) 74)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3214 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3430 (((-1122) $) 103)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL)) (-2780 (($ $) NIL)) (-2327 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) 112)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 28)) (-4297 (($) 46)) (-3946 (($ $) 73)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1593 (($ $ (-772)) NIL) (($ $) 106)) (-4223 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3175 (($ $) 90)) (-3049 (($ $) 80)) (-3156 (($ $) 91)) (-3023 (($ $) 78)) (-3137 (($ $) 88)) (-2999 (($ $) 76)) (-3893 (((-381) $) 115) (((-225) $) 14) (((-894 (-381)) $) NIL) (((-539) $) 53)) (-4132 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-4221 (((-772)) NIL T CONST)) (-1423 (($ $) NIL)) (-2547 (((-923)) 37) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 25)) (-3200 (($ $) 95)) (-3084 (($ $) 83) (($ $ $) 122)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 93)) (-3062 (($ $) 81)) (-3221 (($ $) 98)) (-3106 (($ $) 86)) (-3785 (($ $) 96)) (-3118 (($ $) 84)) (-3211 (($ $) 97)) (-3095 (($ $) 85)) (-3193 (($ $) 94)) (-3074 (($ $) 82)) (-2219 (($ $) 121)) (-1716 (($) 23 T CONST)) (-1728 (($) 44 T CONST)) (-2904 (((-1160) $) 18) (((-1160) $ (-112)) 20) (((-1273) (-823) $) 21) (((-1273) (-823) $ (-112)) 22)) (-1890 (($ $) 109)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-3944 (($ $ $) 111)) (-2997 (((-112) $ $) 58)) (-2971 (((-112) $ $) 55)) (-2936 (((-112) $ $) 66)) (-2984 (((-112) $ $) 57)) (-2958 (((-112) $ $) 54)) (-3060 (($ $ $) 45) (($ $ (-567)) 67)) (-3045 (($ $) 59) (($ $ $) 61)) (-3033 (($ $ $) 60)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-923) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-225) (-13 (-407) (-233) (-829) (-1203) (-615 (-539)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -4297 ($)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -3084 ($ $ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-4297 (*1 *1) (-5 *1 (-225))) (-3971 (*1 *1 *1) (-5 *1 (-225))) (-1703 (*1 *1 *1) (-5 *1 (-225))) (-3084 (*1 *1 *1 *1) (-5 *1 (-225))) (-1890 (*1 *1 *1) (-5 *1 (-225))) (-3944 (*1 *1 *1 *1) (-5 *1 (-225))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-2350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))) +(-13 (-407) (-233) (-829) (-1203) (-615 (-539)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -4297 ($)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -3084 ($ $ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772))))) +((-2387 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-3591 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2207 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-4275 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3031 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-2030 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3913 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2944 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3382 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-4023 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-1890 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3944 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -1890 ((-225) (-225))) (-15 -1890 ((-169 (-225)) (-169 (-225)))) (-15 -3944 ((-225) (-225) (-225))) (-15 -3944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3591 ((-225) (-225))) (-15 -3591 ((-169 (-225)) (-169 (-225)))) (-15 -4275 ((-225) (-225))) (-15 -4275 ((-169 (-225)) (-169 (-225)))) (-15 -2387 ((-225) (-772) (-225))) (-15 -2387 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3913 ((-225) (-225) (-225))) (-15 -3913 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3031 ((-225) (-225) (-225))) (-15 -3031 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2944 ((-225) (-225) (-225))) (-15 -2944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2030 ((-225) (-225) (-225))) (-15 -2030 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4023 ((-169 (-225)) (-169 (-225)))) (-15 -4023 ((-225) (-225))) (-15 -3382 ((-225) (-225))) (-15 -3382 ((-169 (-225)) (-169 (-225)))) (-15 -2207 ((-225) (-225) (-225))) (-15 -2207 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3913 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3913 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3944 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3944 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -1890 ((-225) (-225))) (-15 -1890 ((-169 (-225)) (-169 (-225)))) (-15 -3944 ((-225) (-225) (-225))) (-15 -3944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3591 ((-225) (-225))) (-15 -3591 ((-169 (-225)) (-169 (-225)))) (-15 -4275 ((-225) (-225))) (-15 -4275 ((-169 (-225)) (-169 (-225)))) (-15 -2387 ((-225) (-772) (-225))) (-15 -2387 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3913 ((-225) (-225) (-225))) (-15 -3913 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3031 ((-225) (-225) (-225))) (-15 -3031 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2944 ((-225) (-225) (-225))) (-15 -2944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2030 ((-225) (-225) (-225))) (-15 -2030 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4023 ((-169 (-225)) (-169 (-225)))) (-15 -4023 ((-225) (-225))) (-15 -3382 ((-225) (-225))) (-15 -3382 ((-169 (-225)) (-169 (-225)))) (-15 -2207 ((-225) (-225) (-225))) (-15 -2207 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) NIL)) (-1467 (($ $ $) NIL)) (-3094 (($ (-1268 |#1|)) NIL) (($ $) NIL)) (-2563 (($ |#1| |#1| |#1|) 33)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) NIL)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-1268 |#1|)) NIL)) (-1961 (($ $ (-567) (-1268 |#1|)) NIL)) (-2172 (($ |#1| |#1| |#1|) 32)) (-3536 (($ (-772) |#1|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) NIL (|has| |#1| (-308)))) (-1944 (((-1268 |#1|) $ (-567)) NIL)) (-4157 (($ |#1|) 31)) (-4026 (($ |#1|) 30)) (-2699 (($ |#1|) 29)) (-1954 (((-772) $) NIL (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) NIL (|has| |#1| (-559)))) (-1325 (((-645 (-1268 |#1|)) $) NIL (|has| |#1| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) NIL (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#1|))) 11)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3701 (($) 12)) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) NIL (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-1268 |#1|) $ (-567)) NIL)) (-4132 (($ (-1268 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1268 |#1|) $ (-1268 |#1|)) 15) (((-1268 |#1|) (-1268 |#1|) $) NIL) (((-945 |#1|) $ (-945 |#1|)) 21)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-227 |#1|) (-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3701 ($)) (-15 -2699 ($ |#1|)) (-15 -4026 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -2172 ($ |#1| |#1| |#1|)) (-15 -2563 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1203))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203))) (-5 *1 (-227 *3)))) (-3701 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2699 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-4026 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-4157 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2172 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2563 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))) +(-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3701 ($)) (-15 -2699 ($ |#1|)) (-15 -4026 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -2172 ($ |#1| |#1| |#1|)) (-15 -2563 ($ |#1| |#1| |#1|)))) +((-2839 (($ (-1 (-112) |#2|) $) 16)) (-2539 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2718 (($) NIL) (($ (-645 |#2|)) 11)) (-2936 (((-112) $ $) 25))) +(((-228 |#1| |#2|) (-10 -8 (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-229 |#2|) (-1102)) (T -228)) +NIL +(-10 -8 (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-229 |#1|) (-140) (-1102)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-1621 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2636 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -2636 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -2636 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2636 (|#1| |#1| (-1177))) (-15 -2636 (|#1| |#1| (-645 (-1177)))) (-15 -2636 (|#1| |#1| (-1177) (-772))) (-15 -2636 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2636 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2636 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1050)) (T -230)) -NIL -(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -2636 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -2636 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2636 (|#1| |#1| (-1177))) (-15 -2636 (|#1| |#1| (-645 (-1177)))) (-15 -2636 (|#1| |#1| (-1177) (-772))) (-15 -2636 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2636 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2636 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1621 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1177)) (-645 (-772))) 48 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 47 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 46 (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) 45 (|has| |#1| (-901 (-1177)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1177)) (-645 (-772))) 52 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 51 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 50 (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) 49 (|has| |#1| (-901 (-1177)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-231 |#1|) (-140) (-1050)) (T -231)) -((-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) (-1621 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1050)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1050))))) -(-13 (-1050) (-10 -8 (-15 -1621 ($ $ (-1 |t#1| |t#1|))) (-15 -1621 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2636 ($ $ (-1 |t#1| |t#1|))) (-15 -2636 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-901 (-1177))) (-6 (-901 (-1177))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-1621 (($ $) NIL) (($ $ (-772)) 13)) (-2636 (($ $) 8) (($ $ (-772)) 15))) -(((-232 |#1|) (-10 -8 (-15 -2636 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-772))) (-15 -2636 (|#1| |#1|)) (-15 -1621 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -2636 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-772))) (-15 -2636 (|#1| |#1|)) (-15 -1621 (|#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1621 (($ $) 42) (($ $ (-772)) 40)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $) 41) (($ $ (-772)) 39)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2637 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1178))) (-15 -2637 (|#1| |#1| (-645 (-1178)))) (-15 -2637 (|#1| |#1| (-1178) (-772))) (-15 -2637 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1051)) (T -230)) +NIL +(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1178))) (-15 -2637 (|#1| |#1| (-645 (-1178)))) (-15 -2637 (|#1| |#1| (-1178) (-772))) (-15 -2637 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1178)) (-645 (-772))) 48 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 47 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 46 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 45 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1178)) (-645 (-772))) 52 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 51 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 50 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 49 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-231 |#1|) (-140) (-1051)) (T -231)) +((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051))))) +(-13 (-1051) (-10 -8 (-15 -1593 ($ $ (-1 |t#1| |t#1|))) (-15 -1593 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2637 ($ $ (-1 |t#1| |t#1|))) (-15 -2637 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-1593 (($ $) NIL) (($ $ (-772)) 13)) (-2637 (($ $) 8) (($ $ (-772)) 15))) +(((-232 |#1|) (-10 -8 (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $) 42) (($ $ (-772)) 40)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 41) (($ $ (-772)) 39)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-233) (-140)) (T -233)) -((-1621 (*1 *1 *1) (-4 *1 (-233))) (-2636 (*1 *1 *1) (-4 *1 (-233))) (-1621 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772))))) -(-13 (-1050) (-10 -8 (-15 -1621 ($ $)) (-15 -2636 ($ $)) (-15 -1621 ($ $ (-772))) (-15 -2636 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3253 (($) 12) (($ (-645 |#2|)) NIL)) (-4303 (($ $) 14)) (-4142 (($ (-645 |#2|)) 10)) (-4127 (((-863) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -3253 (|#1| (-645 |#2|))) (-15 -3253 (|#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -4303 (|#1| |#1|))) (-235 |#2|) (-1101)) (T -234)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -3253 (|#1| (-645 |#2|))) (-15 -3253 (|#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -4303 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-235 |#1|) (-140) (-1101)) (T -235)) -((-3253 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1101)))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-235 *3)))) (-2774 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-235 *2)) (-4 *2 (-1101)))) (-2774 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) (-4 *3 (-1101)))) (-3502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) (-4 *3 (-1101))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3253 ($)) (-15 -3253 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4417)) (PROGN (-15 -2774 ($ |t#1| $)) (-15 -2774 ($ (-1 (-112) |t#1|) $)) (-15 -3502 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-1319 (((-2 (|:| |varOrder| (-645 (-1177))) (|:| |inhom| (-3 (-645 (-1267 (-772))) "failed")) (|:| |hom| (-645 (-1267 (-772))))) (-295 (-953 (-567)))) 42))) -(((-236) (-10 -7 (-15 -1319 ((-2 (|:| |varOrder| (-645 (-1177))) (|:| |inhom| (-3 (-645 (-1267 (-772))) "failed")) (|:| |hom| (-645 (-1267 (-772))))) (-295 (-953 (-567))))))) (T -236)) -((-1319 (*1 *2 *3) (-12 (-5 *3 (-295 (-953 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1177))) (|:| |inhom| (-3 (-645 (-1267 (-772))) "failed")) (|:| |hom| (-645 (-1267 (-772)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -1319 ((-2 (|:| |varOrder| (-645 (-1177))) (|:| |inhom| (-3 (-645 (-1267 (-772))) "failed")) (|:| |hom| (-645 (-1267 (-772))))) (-295 (-953 (-567)))))) -((-2371 (((-772)) 56)) (-1868 (((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 $) (-1267 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1635 (((-134)) 62)) (-1621 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4127 (((-1267 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-1772 (((-772)) 15)) (-3050 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|)) (-15 -1772 ((-772))) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -4127 (|#1| |#3|)) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1868 ((-690 |#3|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 |#1|) (-1267 |#1|))) (-15 -2371 ((-772))) (-15 -3050 (|#1| |#1| |#3|)) (-15 -1635 ((-134))) (-15 -4127 ((-1267 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1217)) (T -237)) -((-1635 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1217)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2371 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1217)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1772 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1217)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|)) (-15 -1772 ((-772))) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -4127 (|#1| |#3|)) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1868 ((-690 |#3|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 |#1|) (-1267 |#1|))) (-15 -2371 ((-772))) (-15 -3050 (|#1| |#1| |#3|)) (-15 -1635 ((-134))) (-15 -4127 ((-1267 |#3|) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#2| (-1101)))) (-2840 (((-112) $) 73 (|has| |#2| (-131)))) (-3457 (($ (-922)) 126 (|has| |#2| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2825 (($ $ $) 122 (|has| |#2| (-794)))) (-3460 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-2112 (((-112) $ (-772)) 8)) (-2371 (((-772)) 108 (|has| |#2| (-370)))) (-3449 (((-567) $) 120 (|has| |#2| (-849)))) (-4281 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-3747 (((-3 (-567) "failed") $) 68 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-3 (-410 (-567)) "failed") $) 65 (-1664 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1101)))) (-2033 (((-567) $) 67 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-410 (-567)) $) 64 (-1664 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) ((|#2| $) 63 (|has| |#2| (-1101)))) (-1868 (((-690 (-567)) (-690 $)) 107 (-1664 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 106 (-1664 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 105 (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1050)))) (-3153 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-1378 (($) 111 (|has| |#2| (-370)))) (-3759 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#2| $ (-567)) 52)) (-4357 (((-112) $) 118 (|has| |#2| (-849)))) (-3397 (((-645 |#2|) $) 31 (|has| $ (-6 -4417)))) (-2843 (((-112) $) 82 (|has| |#2| (-727)))) (-2102 (((-112) $) 119 (|has| |#2| (-849)))) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 117 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2513 (((-645 |#2|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 116 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3751 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2|) $) 36)) (-3425 (((-922) $) 110 (|has| |#2| (-370)))) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#2| (-1101)))) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3763 (($ (-922)) 109 (|has| |#2| (-370)))) (-3430 (((-1121) $) 21 (|has| |#2| (-1101)))) (-2405 ((|#2| $) 43 (|has| (-567) (-851)))) (-4271 (($ $ |#2|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-3246 ((|#2| $ $) 125 (|has| |#2| (-1050)))) (-2746 (($ (-1267 |#2|)) 127)) (-1635 (((-134)) 124 (|has| |#2| (-365)))) (-1621 (($ $) 99 (-1664 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) 97 (-1664 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) 95 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) 94 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) 93 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) 92 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1050)))) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4417))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-1267 |#2|) $) 128) (($ (-567)) 69 (-2797 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050)))) (($ (-410 (-567))) 66 (-1664 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (($ |#2|) 61 (|has| |#2| (-1101))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-1772 (((-772)) 103 (|has| |#2| (-1050)) CONST)) (-4104 (((-112) $ $) 23 (|has| |#2| (-1101)))) (-2461 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4417)))) (-4137 (($ $) 121 (|has| |#2| (-849)))) (-1710 (($) 72 (|has| |#2| (-131)) CONST)) (-1722 (($) 83 (|has| |#2| (-727)) CONST)) (-2636 (($ $) 98 (-1664 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) 96 (-1664 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) 91 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) 90 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) 89 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) 88 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1050)))) (-2988 (((-112) $ $) 114 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2964 (((-112) $ $) 113 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2929 (((-112) $ $) 20 (|has| |#2| (-1101)))) (-2977 (((-112) $ $) 115 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2952 (((-112) $ $) 112 (-2797 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3050 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3037 (($ $ $) 102 (|has| |#2| (-1050))) (($ $) 101 (|has| |#2| (-1050)))) (-3024 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-922)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1050))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-922) $) 71 (|has| |#2| (-25)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-238 |#1| |#2|) (-140) (-772) (-1217)) (T -238)) -((-2746 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1217)) (-4 *1 (-238 *3 *4)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1050)) (-4 *4 (-1217)))) (-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-1050)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-727))))) -(-13 (-605 (-567) |t#2|) (-614 (-1267 |t#2|)) (-10 -8 (-6 -4417) (-15 -2746 ($ (-1267 |t#2|))) (IF (|has| |t#2| (-1101)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1050)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -3457 ($ (-922))) (-15 -3246 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1274 |t#2|)) |%noBranch|))) -(((-21) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2797 (|has| |#2| (-1101)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2797 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101))) ((-617 (-567)) -2797 (|has| |#2| (-1050)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2797 (|has| |#2| (-1101)) (|has| |#2| (-172))) ((-614 (-863)) -2797 (|has| |#2| (-1101)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1267 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1050)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1050))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1050)) ((-414 |#2|) |has| |#2| (-1101)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-647 (-567)) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2797 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2797 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2797 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050))) ((-640 |#2|) |has| |#2| (-1050)) ((-718 |#2|) -2797 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2797 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2797 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2797 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2797 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-901 (-1177)) -12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050))) ((-1039 #0#) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101))) ((-1039 (-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) ((-1039 |#2|) |has| |#2| (-1101)) ((-1052 |#2|) -2797 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1057 |#2|) -2797 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1057 $) |has| |#2| (-172)) ((-1050) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1059) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1113) -2797 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1101) -2797 (|has| |#2| (-1101)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1217) . T) ((-1274 |#2|) |has| |#2| (-365))) -((-2565 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2499 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3822 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2565 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2499 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3822 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1217) (-1217)) (T -239)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1217)) (-4 *2 (-1217)) (-5 *1 (-239 *5 *6 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1217)) (-4 *5 (-1217)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -2565 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2499 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3822 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-2399 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2840 (((-112) $) NIL (|has| |#2| (-131)))) (-3457 (($ (-922)) 65 (|has| |#2| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) 70 (|has| |#2| (-794)))) (-3460 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2112 (((-112) $ (-772)) 17)) (-2371 (((-772)) NIL (|has| |#2| (-370)))) (-3449 (((-567) $) NIL (|has| |#2| (-849)))) (-4281 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1101)))) (-2033 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) ((|#2| $) 32 (|has| |#2| (-1101)))) (-1868 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-3153 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-1378 (($) NIL (|has| |#2| (-370)))) (-3759 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ (-567)) 59)) (-4357 (((-112) $) NIL (|has| |#2| (-849)))) (-3397 (((-645 |#2|) $) 15 (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (|has| |#2| (-727)))) (-2102 (((-112) $) NIL (|has| |#2| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 20 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2513 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 (((-567) $) 58 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2|) $) 47)) (-3425 (((-922) $) NIL (|has| |#2| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#2| (-1101)))) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#2| (-370)))) (-3430 (((-1121) $) NIL (|has| |#2| (-1101)))) (-2405 ((|#2| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-3246 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2746 (($ (-1267 |#2|)) 18)) (-1635 (((-134)) NIL (|has| |#2| (-365)))) (-1621 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#2|) $) 10) (($ (-567)) NIL (-2797 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (($ |#2|) 13 (|has| |#2| (-1101))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-1772 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-4104 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2461 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#2| (-849)))) (-1710 (($) 40 (|has| |#2| (-131)) CONST)) (-1722 (($) 44 (|has| |#2| (-727)) CONST)) (-2636 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2929 (((-112) $ $) 31 (|has| |#2| (-1101)))) (-2977 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2952 (((-112) $ $) 68 (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3024 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1217)) (T -240)) +((-1593 (*1 *1 *1) (-4 *1 (-233))) (-2637 (*1 *1 *1) (-4 *1 (-233))) (-1593 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772))))) +(-13 (-1051) (-10 -8 (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2718 (($) 12) (($ (-645 |#2|)) NIL)) (-4305 (($ $) 14)) (-4147 (($ (-645 |#2|)) 10)) (-4132 (((-863) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4305 (|#1| |#1|))) (-235 |#2|) (-1102)) (T -234)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4305 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-235 |#1|) (-140) (-1102)) (T -235)) +((-2718 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) (-2539 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) (-4 *3 (-1102))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2718 ($)) (-15 -2718 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4418)) (PROGN (-15 -2539 ($ |t#1| $)) (-15 -2539 ($ (-1 (-112) |t#1|) $)) (-15 -2839 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-3201 (((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567)))) 42))) +(((-236) (-10 -7 (-15 -3201 ((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567))))))) (T -236)) +((-3201 (*1 *2 *3) (-12 (-5 *3 (-295 (-954 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -3201 ((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567)))))) +((-2375 (((-772)) 56)) (-2630 (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1879 (((-134)) 62)) (-1593 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 15)) (-3060 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)) (-15 -4221 ((-772))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2375 ((-772))) (-15 -3060 (|#1| |#1| |#3|)) (-15 -1879 ((-134))) (-15 -4132 ((-1268 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1218)) (T -237)) +((-1879 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1218)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2375 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-4221 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)) (-15 -4221 ((-772))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2375 ((-772))) (-15 -3060 (|#1| |#1| |#3|)) (-15 -1879 ((-134))) (-15 -4132 ((-1268 |#3|) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-2460 (((-112) $) 73 (|has| |#2| (-131)))) (-4387 (($ (-923)) 126 (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-4016 (($ $ $) 122 (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) 8)) (-2375 (((-772)) 108 (|has| |#2| (-370)))) (-1750 (((-567) $) 120 (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3753 (((-3 (-567) "failed") $) 68 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) 65 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1102)))) (-2038 (((-567) $) 67 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) 64 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 63 (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) 107 (-1667 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 106 (-1667 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 105 (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-1348 (($) 111 (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 52)) (-4336 (((-112) $) 118 (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) 31 (|has| $ (-6 -4418)))) (-1433 (((-112) $) 82 (|has| |#2| (-727)))) (-3494 (((-112) $) 119 (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 117 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2279 (((-645 |#2|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 116 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3731 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 36)) (-4249 (((-923) $) 110 (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3768 (($ (-923)) 109 (|has| |#2| (-370)))) (-3430 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2409 ((|#2| $) 43 (|has| (-567) (-851)))) (-3986 (($ $ |#2|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-3366 ((|#2| $ $) 125 (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) 127)) (-1879 (((-134)) 124 (|has| |#2| (-365)))) (-1593 (($ $) 99 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 97 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) 95 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) 94 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) 93 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) 92 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4418))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-1268 |#2|) $) 128) (($ (-567)) 69 (-2800 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) 66 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 61 (|has| |#2| (-1102))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-4221 (((-772)) 103 (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4418)))) (-2219 (($ $) 121 (|has| |#2| (-849)))) (-1716 (($) 72 (|has| |#2| (-131)) CONST)) (-1728 (($) 83 (|has| |#2| (-727)) CONST)) (-2637 (($ $) 98 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 96 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) 91 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) 90 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) 89 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) 88 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1051)))) (-2997 (((-112) $ $) 114 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2971 (((-112) $ $) 113 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2936 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2984 (((-112) $ $) 115 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2958 (((-112) $ $) 112 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3060 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3045 (($ $ $) 102 (|has| |#2| (-1051))) (($ $) 101 (|has| |#2| (-1051)))) (-3033 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-923)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1051))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-923) $) 71 (|has| |#2| (-25)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-238 |#1| |#2|) (-140) (-772) (-1218)) (T -238)) +((-2749 (*1 *1 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1218)) (-4 *1 (-238 *3 *4)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) (-4 *4 (-1218)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727))))) +(-13 (-605 (-567) |t#2|) (-614 (-1268 |t#2|)) (-10 -8 (-6 -4418) (-15 -2749 ($ (-1268 |t#2|))) (IF (|has| |t#2| (-1102)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1051)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4387 ($ (-923))) (-15 -3366 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1275 |t#2|)) |%noBranch|))) +(((-21) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-617 (-567)) -2800 (|has| |#2| (-1051)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2800 (|has| |#2| (-1102)) (|has| |#2| (-172))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1268 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1051)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1051))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1051)) ((-414 |#2|) |has| |#2| (-1102)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2800 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))) ((-640 |#2|) |has| |#2| (-1051)) ((-718 |#2|) -2800 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-902 (-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051))) ((-1040 #0#) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-1040 (-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) ((-1040 |#2|) |has| |#2| (-1102)) ((-1053 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1053 $) |has| |#2| (-172)) ((-1058 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1058 $) |has| |#2| (-172)) ((-1051) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1060) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1114) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1102) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1218) . T) ((-1275 |#2|) |has| |#2| (-365))) +((-2788 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2477 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3829 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2788 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2477 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3829 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1218) (-1218)) (T -239)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1218)) (-4 *2 (-1218)) (-5 *1 (-239 *5 *6 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1218)) (-4 *5 (-1218)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -2788 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2477 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3829 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) 65 (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) 70 (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) 17)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 32 (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 59)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) 15 (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 20 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) 58 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 47)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) 18)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) 10) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 13 (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) 40 (|has| |#2| (-131)) CONST)) (-1728 (($) 44 (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) 31 (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 68 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1218)) (T -240)) NIL (-238 |#1| |#2|) -((-3466 (((-567) (-645 (-1159))) 36) (((-567) (-1159)) 29)) (-3104 (((-1272) (-645 (-1159))) 41) (((-1272) (-1159)) 40)) (-3574 (((-1159)) 16)) (-2698 (((-1159) (-567) (-1159)) 23)) (-2793 (((-645 (-1159)) (-645 (-1159)) (-567) (-1159)) 37) (((-1159) (-1159) (-567) (-1159)) 35)) (-2592 (((-645 (-1159)) (-645 (-1159))) 15) (((-645 (-1159)) (-1159)) 11))) -(((-241) (-10 -7 (-15 -2592 ((-645 (-1159)) (-1159))) (-15 -2592 ((-645 (-1159)) (-645 (-1159)))) (-15 -3574 ((-1159))) (-15 -2698 ((-1159) (-567) (-1159))) (-15 -2793 ((-1159) (-1159) (-567) (-1159))) (-15 -2793 ((-645 (-1159)) (-645 (-1159)) (-567) (-1159))) (-15 -3104 ((-1272) (-1159))) (-15 -3104 ((-1272) (-645 (-1159)))) (-15 -3466 ((-567) (-1159))) (-15 -3466 ((-567) (-645 (-1159)))))) (T -241)) -((-3466 (*1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-567)) (-5 *1 (-241)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-567)) (-5 *1 (-241)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1272)) (-5 *1 (-241)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-241)))) (-2793 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1159))) (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *1 (-241)))) (-2793 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-241)))) (-3574 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-241)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-241)))) (-2592 (*1 *2 *3) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-241)) (-5 *3 (-1159))))) -(-10 -7 (-15 -2592 ((-645 (-1159)) (-1159))) (-15 -2592 ((-645 (-1159)) (-645 (-1159)))) (-15 -3574 ((-1159))) (-15 -2698 ((-1159) (-567) (-1159))) (-15 -2793 ((-1159) (-1159) (-567) (-1159))) (-15 -2793 ((-645 (-1159)) (-645 (-1159)) (-567) (-1159))) (-15 -3104 ((-1272) (-1159))) (-15 -3104 ((-1272) (-645 (-1159)))) (-15 -3466 ((-567) (-1159))) (-15 -3466 ((-567) (-645 (-1159))))) -((** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 20)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 47)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49))) +((-2779 (((-567) (-645 (-1160))) 36) (((-567) (-1160)) 29)) (-3113 (((-1273) (-645 (-1160))) 41) (((-1273) (-1160)) 40)) (-3846 (((-1160)) 16)) (-2807 (((-1160) (-567) (-1160)) 23)) (-2166 (((-645 (-1160)) (-645 (-1160)) (-567) (-1160)) 37) (((-1160) (-1160) (-567) (-1160)) 35)) (-2597 (((-645 (-1160)) (-645 (-1160))) 15) (((-645 (-1160)) (-1160)) 11))) +(((-241) (-10 -7 (-15 -2597 ((-645 (-1160)) (-1160))) (-15 -2597 ((-645 (-1160)) (-645 (-1160)))) (-15 -3846 ((-1160))) (-15 -2807 ((-1160) (-567) (-1160))) (-15 -2166 ((-1160) (-1160) (-567) (-1160))) (-15 -2166 ((-645 (-1160)) (-645 (-1160)) (-567) (-1160))) (-15 -3113 ((-1273) (-1160))) (-15 -3113 ((-1273) (-645 (-1160)))) (-15 -2779 ((-567) (-1160))) (-15 -2779 ((-567) (-645 (-1160)))))) (T -241)) +((-2779 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-567)) (-5 *1 (-241)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-241)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1273)) (-5 *1 (-241)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-241)))) (-2166 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1160))) (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *1 (-241)))) (-2166 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2807 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))) (-3846 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-241)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)))) (-2597 (*1 *2 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)) (-5 *3 (-1160))))) +(-10 -7 (-15 -2597 ((-645 (-1160)) (-1160))) (-15 -2597 ((-645 (-1160)) (-645 (-1160)))) (-15 -3846 ((-1160))) (-15 -2807 ((-1160) (-567) (-1160))) (-15 -2166 ((-1160) (-1160) (-567) (-1160))) (-15 -2166 ((-645 (-1160)) (-645 (-1160)) (-567) (-1160))) (-15 -3113 ((-1273) (-1160))) (-15 -3113 ((-1273) (-645 (-1160)))) (-15 -2779 ((-567) (-1160))) (-15 -2779 ((-567) (-645 (-1160))))) +((** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 47)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-2933 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -2933 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-291) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-718 #0#) . T) ((-727) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-4280 (($ $) 58)) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1671 (($ $ $) 54 (|has| $ (-6 -4418)))) (-2909 (($ $ $) 53 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-3183 (($ $) 57)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-3032 (($ $) 56)) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3250 ((|#1| $) 60)) (-3146 (($ $) 59)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48)) (-4126 (((-567) $ $) 45)) (-3340 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3444 (($ $ $) 55 (|has| $ (-6 -4418)))) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-244 |#1|) (-140) (-1217)) (T -244)) -((-3250 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-4280 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-3032 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-3444 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-1671 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217)))) (-2909 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217))))) -(-13 (-1011 |t#1|) (-10 -8 (-15 -3250 (|t#1| $)) (-15 -3146 ($ $)) (-15 -4280 ($ $)) (-15 -3183 ($ $)) (-15 -3032 ($ $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3444 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -2909 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) NIL)) (-3991 ((|#1| $) NIL)) (-4280 (($ $) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3161 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-1332 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1831 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) NIL)) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3977 ((|#1| $) NIL)) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2417 (($ $) NIL) (($ $ (-772)) NIL)) (-2300 (($ $) NIL (|has| |#1| (-1101)))) (-2440 (($ $) 7 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) NIL (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) NIL)) (-3230 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-1578 (((-112) $) NIL)) (-2567 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101))) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-1812 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2276 (($ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3250 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1330 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3580 (((-112) $) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1234 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-4126 (((-567) $ $) NIL)) (-2115 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-2528 (($ (-645 |#1|)) 22)) (-3340 (((-112) $) NIL)) (-1765 (($ $) NIL)) (-4367 (($ $) NIL (|has| $ (-6 -4418)))) (-4387 (((-772) $) NIL)) (-4263 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-3444 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2260 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4127 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) 14 (|has| $ (-6 -4417))))) -(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2528 ($ (-645 |#1|))) (-15 -1783 ($ $ "unique")) (-15 -1783 ($ $ "sort")) (-15 -1783 ((-772) $ "count")))) (-851)) (T -245)) -((-2528 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851))))) -(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2528 ($ (-645 |#1|))) (-15 -1783 ($ $ "unique")) (-15 -1783 ($ $ "sort")) (-15 -1783 ((-772) $ "count")))) -((-2931 (((-3 (-772) "failed") |#1| |#1| (-772)) 43))) -(((-246 |#1|) (-10 -7 (-15 -2931 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246)) -((-2931 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -2931 ((-3 (-772) "failed") |#1| |#1| (-772)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-865 |#1|)) $) NIL)) (-2670 (((-1173 $) $ (-865 |#1|)) NIL) (((-1173 |#2|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1312 (($ $) NIL (|has| |#2| (-559)))) (-2318 (((-112) $) NIL (|has| |#2| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL (|has| |#2| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-3621 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2393 (($ $ (-645 (-567))) NIL)) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#2| (-910)))) (-2543 (($ $ |#2| (-240 (-2410 |#1|) (-772)) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#2|) (-865 |#1|)) NIL) (($ (-1173 $) (-865 |#1|)) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#2| (-240 (-2410 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-865 |#1|)) NIL)) (-2752 (((-240 (-2410 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3345 (($ (-1 (-240 (-2410 |#1|) (-772)) (-240 (-2410 |#1|) (-772))) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-3 (-865 |#1|) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#2| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4250 (-772))) "failed") $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#2| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-1999 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1621 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1813 (((-240 (-2410 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-240 (-2410 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-950 |#2| (-240 (-2410 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) (-645 (-1177)) (-1050)) (T -247)) -((-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1177))) (-4 *4 (-1050))))) -(-13 (-950 |#2| (-240 (-2410 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) -((-2399 (((-112) $ $) NIL)) (-1927 (((-1272) $) 17)) (-3952 (((-183 (-249)) $) 11)) (-2745 (($ (-183 (-249))) 12)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3221 (((-249) $) 7)) (-4127 (((-863) $) 9)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 15))) -(((-248) (-13 (-1101) (-10 -8 (-15 -3221 ((-249) $)) (-15 -3952 ((-183 (-249)) $)) (-15 -2745 ($ (-183 (-249)))) (-15 -1927 ((-1272) $))))) (T -248)) -((-3221 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-248))))) -(-13 (-1101) (-10 -8 (-15 -3221 ((-249) $)) (-15 -3952 ((-183 (-249)) $)) (-15 -2745 ($ (-183 (-249)))) (-15 -1927 ((-1272) $)))) -((-2399 (((-112) $ $) NIL)) (-3861 (((-645 (-866)) $) NIL)) (-1988 (((-509) $) NIL)) (-3739 (((-1159) $) NIL)) (-4161 (((-186) $) NIL)) (-1582 (((-112) $ (-509)) NIL)) (-3430 (((-1121) $) NIL)) (-2353 (((-334) $) 7)) (-4350 (((-645 (-112)) $) NIL)) (-4127 (((-863) $) NIL) (((-187) $) 8)) (-4104 (((-112) $ $) NIL)) (-1681 (((-55) $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -2353 ((-334) $))))) (T -249)) -((-2353 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(-13 (-185) (-614 (-187)) (-10 -8 (-15 -2353 ((-334) $)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1783 (((-1182) $ (-772)) 13)) (-4127 (((-863) $) 20)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 16)) (-2410 (((-772) $) 9))) -(((-250) (-13 (-1101) (-10 -8 (-15 -2410 ((-772) $)) (-15 -1783 ((-1182) $ (-772)))))) (T -250)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1182)) (-5 *1 (-250))))) -(-13 (-1101) (-10 -8 (-15 -2410 ((-772) $)) (-15 -1783 ((-1182) $ (-772))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3457 (($ (-922)) NIL (|has| |#4| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) NIL (|has| |#4| (-794)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#4| (-370)))) (-3449 (((-567) $) NIL (|has| |#4| (-849)))) (-4281 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1101))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1101))))) (-2033 ((|#4| $) NIL (|has| |#4| (-1101))) (((-567) $) NIL (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1101))))) (-1868 (((-2 (|:| -4138 (-690 |#4|)) (|:| |vec| (-1267 |#4|))) (-690 $) (-1267 $)) NIL (|has| |#4| (-1050))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1050))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))))) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))))) (-1378 (($) NIL (|has| |#4| (-370)))) (-3759 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#4| $ (-567)) NIL)) (-4357 (((-112) $) NIL (|has| |#4| (-849)))) (-3397 (((-645 |#4|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))))) (-2102 (((-112) $) NIL (|has| |#4| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2513 (((-645 |#4|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3751 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#4| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#4| (-370)))) (-3430 (((-1121) $) NIL)) (-2405 ((|#4| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#4|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3564 (((-645 |#4|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-3246 ((|#4| $ $) NIL (|has| |#4| (-1050)))) (-2746 (($ (-1267 |#4|)) NIL)) (-1635 (((-134)) NIL (|has| |#4| (-365)))) (-1621 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1050))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))))) (-3439 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1101))) (($ (-567)) NIL (-2797 (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1101))) (|has| |#4| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1101))))) (-1772 (((-772)) NIL (|has| |#4| (-1050)) CONST)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#4| (-849)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) CONST)) (-2636 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1050))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2952 (((-112) $ $) NIL (-2797 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3050 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050))))) (($ $ (-922)) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2797 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1177))) (|has| |#4| (-1050)))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) (-922) (-1050) (-1124 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-649 |#2|)) (T -251)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-2939 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -2939 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-291) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-718 #0#) . T) ((-727) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-4283 (($ $) 58)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-2582 (($ $ $) 54 (|has| $ (-6 -4419)))) (-3324 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3162 (($ $) 57)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3041 (($ $) 56)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 60)) (-2724 (($ $) 59)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2484 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-244 |#1|) (-140) (-1218)) (T -244)) +((-3257 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2582 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3324 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218))))) +(-13 (-1012 |t#1|) (-10 -8 (-15 -3257 (|t#1| $)) (-15 -2724 ($ $)) (-15 -4283 ($ $)) (-15 -3162 ($ $)) (-15 -3041 ($ $)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -2484 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -3324 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) NIL (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $) NIL) (($ $ (-772)) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) 7 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1905 (($ (-645 |#1|)) 22)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 14 (|has| $ (-6 -4418))))) +(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1905 ($ (-645 |#1|))) (-15 -1787 ($ $ "unique")) (-15 -1787 ($ $ "sort")) (-15 -1787 ((-772) $ "count")))) (-851)) (T -245)) +((-1905 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851))))) +(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1905 ($ (-645 |#1|))) (-15 -1787 ($ $ "unique")) (-15 -1787 ($ $ "sort")) (-15 -1787 ((-772) $ "count")))) +((-1988 (((-3 (-772) "failed") |#1| |#1| (-772)) 43))) +(((-246 |#1|) (-10 -7 (-15 -1988 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246)) +((-1988 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -1988 ((-3 (-772) "failed") |#1| |#1| (-772)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) NIL)) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-240 (-2414 |#1|) (-772)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-240 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-240 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-240 (-2414 |#1|) (-772)) (-240 (-2414 |#1|) (-772))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-240 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-240 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-951 |#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051)) (T -247)) +((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1178))) (-4 *4 (-1051))))) +(-13 (-951 |#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) +((-2403 (((-112) $ $) NIL)) (-1930 (((-1273) $) 17)) (-2338 (((-183 (-249)) $) 11)) (-3356 (($ (-183 (-249))) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3230 (((-249) $) 7)) (-4132 (((-863) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15))) +(((-248) (-13 (-1102) (-10 -8 (-15 -3230 ((-249) $)) (-15 -2338 ((-183 (-249)) $)) (-15 -3356 ($ (-183 (-249)))) (-15 -1930 ((-1273) $))))) (T -248)) +((-3230 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-248))))) +(-13 (-1102) (-10 -8 (-15 -3230 ((-249) $)) (-15 -2338 ((-183 (-249)) $)) (-15 -3356 ($ (-183 (-249)))) (-15 -1930 ((-1273) $)))) +((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-1626 (((-334) $) 7)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL) (((-187) $) 8)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -1626 ((-334) $))))) (T -249)) +((-1626 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(-13 (-185) (-614 (-187)) (-10 -8 (-15 -1626 ((-334) $)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 (((-1183) $ (-772)) 13)) (-4132 (((-863) $) 20)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 16)) (-2414 (((-772) $) 9))) +(((-250) (-13 (-1102) (-10 -8 (-15 -2414 ((-772) $)) (-15 -1787 ((-1183) $ (-772)))))) (T -250)) +((-2414 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-250))))) +(-13 (-1102) (-10 -8 (-15 -2414 ((-772) $)) (-15 -1787 ((-1183) $ (-772))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4387 (($ (-923)) NIL (|has| |#4| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#4| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#4| (-370)))) (-1750 (((-567) $) NIL (|has| |#4| (-849)))) (-4284 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2038 ((|#4| $) NIL (|has| |#4| (-1102))) (((-567) $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2630 (((-2 (|:| -2316 (-690 |#4|)) (|:| |vec| (-1268 |#4|))) (-690 $) (-1268 $)) NIL (|has| |#4| (-1051))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-1348 (($) NIL (|has| |#4| (-370)))) (-3741 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#4| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#4| (-849)))) (-2777 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-3494 (((-112) $) NIL (|has| |#4| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2279 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3731 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#4| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#4| (-370)))) (-3430 (((-1122) $) NIL)) (-2409 ((|#4| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#4|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2339 (((-645 |#4|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-3366 ((|#4| $ $) NIL (|has| |#4| (-1051)))) (-2749 (($ (-1268 |#4|)) NIL)) (-1879 (((-134)) NIL (|has| |#4| (-365)))) (-1593 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3439 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1102))) (($ (-567)) NIL (-2800 (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-4221 (((-772)) NIL (|has| |#4| (-1051)) CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#4| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) CONST)) (-2637 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2958 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3060 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) (-923) (-1051) (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-649 |#2|)) (T -251)) NIL (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3457 (($ (-922)) NIL (|has| |#3| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) NIL (|has| |#3| (-794)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#3| (-370)))) (-3449 (((-567) $) NIL (|has| |#3| (-849)))) (-4281 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1101))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101))))) (-2033 ((|#3| $) NIL (|has| |#3| (-1101))) (((-567) $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101))))) (-1868 (((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 $) (-1267 $)) NIL (|has| |#3| (-1050))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1050))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))))) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))))) (-1378 (($) NIL (|has| |#3| (-370)))) (-3759 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#3| $ (-567)) NIL)) (-4357 (((-112) $) NIL (|has| |#3| (-849)))) (-3397 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))))) (-2102 (((-112) $) NIL (|has| |#3| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2513 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#3| |#3|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#3| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#3| (-370)))) (-3430 (((-1121) $) NIL)) (-2405 ((|#3| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#3|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-3564 (((-645 |#3|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-3246 ((|#3| $ $) NIL (|has| |#3| (-1050)))) (-2746 (($ (-1267 |#3|)) NIL)) (-1635 (((-134)) NIL (|has| |#3| (-365)))) (-1621 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1101))) (($ (-567)) NIL (-2797 (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (|has| |#3| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101))))) (-1772 (((-772)) NIL (|has| |#3| (-1050)) CONST)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#3| (-849)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) CONST)) (-2636 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2952 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3050 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050))))) (($ $ (-922)) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2797 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-649 |#2|)) (-772) (-1050) (-649 |#2|)) (T -252)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4387 (($ (-923)) NIL (|has| |#3| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#3| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#3| (-370)))) (-1750 (((-567) $) NIL (|has| |#3| (-849)))) (-4284 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2038 ((|#3| $) NIL (|has| |#3| (-1102))) (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2630 (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-1348 (($) NIL (|has| |#3| (-370)))) (-3741 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#3| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#3| (-849)))) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-3494 (((-112) $) NIL (|has| |#3| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#3| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#3| (-370)))) (-3430 (((-1122) $) NIL)) (-2409 ((|#3| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#3|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2339 (((-645 |#3|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2749 (($ (-1268 |#3|)) NIL)) (-1879 (((-134)) NIL (|has| |#3| (-365)))) (-1593 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1102))) (($ (-567)) NIL (-2800 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-4221 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#3| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) CONST)) (-2637 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2958 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-649 |#2|)) (-772) (-1051) (-649 |#2|)) (T -252)) NIL (-13 (-238 |#1| |#3|) (-649 |#2|)) -((-2100 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-2415 (((-772) $) 58) (((-772) $ |#3|) 61)) (-2533 (($ $) 76)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2937 (((-772) $ |#3|) 43) (((-772) $) 38)) (-1518 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-3714 ((|#4| $) 69)) (-4162 (((-112) $) 67)) (-2339 (($ $) 75)) (-2631 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-1621 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1516 (((-645 |#3|) $) 86)) (-1813 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL))) -(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1518 ((-1 |#1| (-772)) |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -3714 (|#4| |#1|)) (-15 -4162 ((-112) |#1|)) (-15 -2415 ((-772) |#1| |#3|)) (-15 -2100 ((-645 (-772)) |#1| |#3|)) (-15 -2415 ((-772) |#1|)) (-15 -2100 ((-645 (-772)) |#1|)) (-15 -1813 ((-772) |#1| |#3|)) (-15 -2937 ((-772) |#1|)) (-15 -2937 ((-772) |#1| |#3|)) (-15 -1516 ((-645 |#3|) |#1|)) (-15 -1518 ((-1 |#1| (-772)) |#3|)) (-15 -4127 (|#1| |#3|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -1813 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -1813 ((-772) |#1| |#4|)) (-15 -4127 (|#1| |#4|)) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -1813 (|#5| |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -1621 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1621 (|#1| |#1| |#4| (-772))) (-15 -1621 (|#1| |#1| (-645 |#4|))) (-15 -1621 (|#1| |#1| |#4|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1050) (-851) (-267 |#3|) (-794)) (T -253)) -NIL -(-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1518 ((-1 |#1| (-772)) |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -3714 (|#4| |#1|)) (-15 -4162 ((-112) |#1|)) (-15 -2415 ((-772) |#1| |#3|)) (-15 -2100 ((-645 (-772)) |#1| |#3|)) (-15 -2415 ((-772) |#1|)) (-15 -2100 ((-645 (-772)) |#1|)) (-15 -1813 ((-772) |#1| |#3|)) (-15 -2937 ((-772) |#1|)) (-15 -2937 ((-772) |#1| |#3|)) (-15 -1516 ((-645 |#3|) |#1|)) (-15 -1518 ((-1 |#1| (-772)) |#3|)) (-15 -4127 (|#1| |#3|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -1813 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -1813 ((-772) |#1| |#4|)) (-15 -4127 (|#1| |#4|)) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -1813 (|#5| |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -1621 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1621 (|#1| |#1| |#4| (-772))) (-15 -1621 (|#1| |#1| (-645 |#4|))) (-15 -1621 (|#1| |#1| |#4|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2100 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-2415 (((-772) $) 215) (((-772) $ |#2|) 213)) (-2845 (((-645 |#3|) $) 112)) (-2670 (((-1173 $) $ |#3|) 127) (((-1173 |#1|) $) 126)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1312 (($ $) 90 (|has| |#1| (-559)))) (-2318 (((-112) $) 92 (|has| |#1| (-559)))) (-2350 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 102 (|has| |#1| (-910)))) (-3081 (($ $) 100 (|has| |#1| (-455)))) (-2833 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 105 (|has| |#1| (-910)))) (-2533 (($ $) 209)) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-2033 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-3621 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3006 (($ $) 156)) (-1868 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3153 (((-3 $ "failed") $) 37)) (-4334 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2992 (((-645 $) $) 111)) (-4341 (((-112) $) 98 (|has| |#1| (-910)))) (-2543 (($ $ |#1| |#4| $) 174)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ |#2|) 219) (((-772) $) 218)) (-2843 (((-112) $) 35)) (-4183 (((-772) $) 171)) (-2832 (($ (-1173 |#1|) |#3|) 119) (($ (-1173 $) |#3|) 118)) (-2604 (((-645 $) $) 128)) (-2014 (((-112) $) 154)) (-2821 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#3|) 122)) (-2752 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3345 (($ (-1 |#4| |#4|) $) 173)) (-3822 (($ (-1 |#1| |#1|) $) 153)) (-1518 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-1902 (((-3 |#3| "failed") $) 125)) (-2969 (($ $) 151)) (-2980 ((|#1| $) 150)) (-3714 ((|#3| $) 211)) (-2735 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3739 (((-1159) $) 10)) (-4162 (((-112) $) 212)) (-2662 (((-3 (-645 $) "failed") $) 116)) (-2432 (((-3 (-645 $) "failed") $) 117)) (-4026 (((-3 (-2 (|:| |var| |#3|) (|:| -4250 (-772))) "failed") $) 115)) (-2339 (($ $) 210)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 168)) (-2955 ((|#1| $) 169)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 97 (|has| |#1| (-455)))) (-2771 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 104 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 103 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 101 (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-1999 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1621 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1177)) 236 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 235 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 234 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 233 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1516 (((-645 |#2|) $) 220)) (-1813 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-3880 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 106 (-1664 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) 170)) (-2253 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1467 (((-3 $ "failed") $) 81 (-2797 (-1664 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 32 T CONST)) (-2079 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1177)) 232 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 231 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 230 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 229 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-254 |#1| |#2| |#3| |#4|) (-140) (-1050) (-851) (-267 |t#2|) (-794)) (T -254)) -((-1518 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-2937 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-1813 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-2100 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-2415 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-2339 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-2533 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1518 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))) -(-13 (-950 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1039 |t#2|) (-10 -8 (-15 -1518 ((-1 $ (-772)) |t#2|)) (-15 -1516 ((-645 |t#2|) $)) (-15 -2937 ((-772) $ |t#2|)) (-15 -2937 ((-772) $)) (-15 -1813 ((-772) $ |t#2|)) (-15 -2100 ((-645 (-772)) $)) (-15 -2415 ((-772) $)) (-15 -2100 ((-645 (-772)) $ |t#2|)) (-15 -2415 ((-772) $ |t#2|)) (-15 -4162 ((-112) $)) (-15 -3714 (|t#3| $)) (-15 -2339 ($ $)) (-15 -2533 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1518 ((-1 $ (-772)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-950 |#1| |#4| |#3|) . T) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#2|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) |has| |#1| (-910))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3094 ((|#1| $) 55)) (-2254 ((|#1| $) 45)) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3715 (($ $) 61)) (-3224 (($ $) 49)) (-3009 ((|#1| |#1| $) 47)) (-4214 ((|#1| $) 46)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-2334 (((-772) $) 62)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-4205 ((|#1| |#1| $) 53)) (-2711 ((|#1| |#1| $) 52)) (-1330 (($ |#1| $) 41)) (-4133 (((-772) $) 56)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2006 ((|#1| $) 63)) (-2029 ((|#1| $) 51)) (-4098 ((|#1| $) 50)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-4030 ((|#1| |#1| $) 59)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1818 ((|#1| $) 60)) (-4304 (($) 58) (($ (-645 |#1|)) 57)) (-3298 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1559 ((|#1| $) 54)) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2058 ((|#1| $) 64)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-255 |#1|) (-140) (-1217)) (T -255)) -((-4304 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-4304 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-255 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-1559 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-4205 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-2711 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) (-3224 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(-13 (-1122 |t#1|) (-996 |t#1|) (-10 -8 (-15 -4304 ($)) (-15 -4304 ($ (-645 |t#1|))) (-15 -4133 ((-772) $)) (-15 -3094 (|t#1| $)) (-15 -1559 (|t#1| $)) (-15 -4205 (|t#1| |t#1| $)) (-15 -2711 (|t#1| |t#1| $)) (-15 -2029 (|t#1| $)) (-15 -4098 (|t#1| $)) (-15 -3224 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-996 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1122 |#1|) . T) ((-1217) . T)) -((-3202 (((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3677 (((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381))) 173) (((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 171) (((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381))) 176) (((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 172) (((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381))) 164) (((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 163) (((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381))) 145) (((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264))) 143) (((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381))) 144) (((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264))) 141)) (-3632 (((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381))) 175) (((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 174) (((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381))) 178) (((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 177) (((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381))) 166) (((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264))) 165) (((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381))) 151) (((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264))) 150) (((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381))) 149) (((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264))) 148) (((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381))) 113) (((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264))) 112) (((-1268) (-1 (-225) (-225)) (-1095 (-381))) 107) (((-1268) (-1 (-225) (-225)) (-1095 (-381)) (-645 (-264))) 105))) -(((-256) (-10 -7 (-15 -3632 ((-1268) (-1 (-225) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-1 (-225) (-225)) (-1095 (-381)))) (-15 -3632 ((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3632 ((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3632 ((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)))) (-15 -3202 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) -((-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1095 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))) -(-10 -7 (-15 -3632 ((-1268) (-1 (-225) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-1 (-225) (-225)) (-1095 (-381)))) (-15 -3632 ((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-878 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3632 ((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-880 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-880 (-1 (-225) (-225))) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225)) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-381)) (-1095 (-381)))) (-15 -3632 ((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)))) (-15 -3677 ((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1095 (-381)) (-1095 (-381)))) (-15 -3202 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-3632 (((-1268) (-295 |#2|) (-1177) (-1177) (-645 (-264))) 101))) -(((-257 |#1| |#2|) (-10 -7 (-15 -3632 ((-1268) (-295 |#2|) (-1177) (-1177) (-645 (-264))))) (-13 (-559) (-851) (-1039 (-567))) (-433 |#1|)) (T -257)) -((-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1177)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1039 (-567)))) (-5 *2 (-1268)) (-5 *1 (-257 *6 *7))))) -(-10 -7 (-15 -3632 ((-1268) (-295 |#2|) (-1177) (-1177) (-645 (-264))))) -((-1325 (((-567) (-567)) 73)) (-2361 (((-567) (-567)) 74)) (-4305 (((-225) (-225)) 75)) (-3482 (((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225))) 72)) (-2119 (((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225)) (-112)) 70))) -(((-258) (-10 -7 (-15 -2119 ((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225)) (-112))) (-15 -3482 ((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225)))) (-15 -1325 ((-567) (-567))) (-15 -2361 ((-567) (-567))) (-15 -4305 ((-225) (-225))))) (T -258)) -((-4305 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-3482 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1095 (-225))) (-5 *2 (-1269)) (-5 *1 (-258)))) (-2119 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1095 (-225))) (-5 *5 (-112)) (-5 *2 (-1269)) (-5 *1 (-258))))) -(-10 -7 (-15 -2119 ((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225)) (-112))) (-15 -3482 ((-1269) (-1 (-169 (-225)) (-169 (-225))) (-1095 (-225)) (-1095 (-225)))) (-15 -1325 ((-567) (-567))) (-15 -2361 ((-567) (-567))) (-15 -4305 ((-225) (-225)))) -((-4127 (((-1093 (-381)) (-1093 (-317 |#1|))) 16))) -(((-259 |#1|) (-10 -7 (-15 -4127 ((-1093 (-381)) (-1093 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-1093 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1093 (-381))) (-5 *1 (-259 *4))))) -(-10 -7 (-15 -4127 ((-1093 (-381)) (-1093 (-317 |#1|))))) -((-3677 (((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381))) 75) (((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264))) 74) (((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381))) 65) (((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264))) 64) (((-1134 (-225)) (-880 |#1|) (-1093 (-381))) 56) (((-1134 (-225)) (-880 |#1|) (-1093 (-381)) (-645 (-264))) 55)) (-3632 (((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381))) 78) (((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264))) 77) (((-1269) |#1| (-1093 (-381)) (-1093 (-381))) 68) (((-1269) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264))) 67) (((-1269) (-880 |#1|) (-1093 (-381))) 60) (((-1269) (-880 |#1|) (-1093 (-381)) (-645 (-264))) 59) (((-1268) (-878 |#1|) (-1093 (-381))) 47) (((-1268) (-878 |#1|) (-1093 (-381)) (-645 (-264))) 46) (((-1268) |#1| (-1093 (-381))) 38) (((-1268) |#1| (-1093 (-381)) (-645 (-264))) 36))) -(((-260 |#1|) (-10 -7 (-15 -3632 ((-1268) |#1| (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) |#1| (-1093 (-381)))) (-15 -3632 ((-1268) (-878 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-878 |#1|) (-1093 (-381)))) (-15 -3632 ((-1269) (-880 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-880 |#1|) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) (-880 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-880 |#1|) (-1093 (-381)))) (-15 -3632 ((-1269) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) |#1| (-1093 (-381)) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381)))) (-15 -3632 ((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381))))) (-13 (-615 (-539)) (-1101))) (T -260)) -((-3677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1093 (-381))) (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *5)))) (-3677 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *6)))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1093 (-381))) (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) (-5 *1 (-260 *5)))) (-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) (-5 *1 (-260 *6)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) (-3677 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) (-3632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1093 (-381))) (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *5)))) (-3677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *6)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1093 (-381))) (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) (-5 *1 (-260 *5)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) (-5 *1 (-260 *6)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1093 (-381))) (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1268)) (-5 *1 (-260 *5)))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1268)) (-5 *1 (-260 *6)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1268)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) (-3632 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101)))))) -(-10 -7 (-15 -3632 ((-1268) |#1| (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) |#1| (-1093 (-381)))) (-15 -3632 ((-1268) (-878 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1268) (-878 |#1|) (-1093 (-381)))) (-15 -3632 ((-1269) (-880 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-880 |#1|) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) (-880 |#1|) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-880 |#1|) (-1093 (-381)))) (-15 -3632 ((-1269) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) |#1| (-1093 (-381)) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) |#1| (-1093 (-381)) (-1093 (-381)))) (-15 -3632 ((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3632 ((-1269) (-883 |#1|) (-1093 (-381)) (-1093 (-381)))) (-15 -3677 ((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381)) (-645 (-264)))) (-15 -3677 ((-1134 (-225)) (-883 |#1|) (-1093 (-381)) (-1093 (-381))))) -((-3632 (((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1268) (-645 (-944 (-225))) (-645 (-264))) 16) (((-1268) (-645 (-944 (-225)))) 17) (((-1268) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1268) (-645 (-225)) (-645 (-225))) 21))) -(((-261) (-10 -7 (-15 -3632 ((-1268) (-645 (-225)) (-645 (-225)))) (-15 -3632 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3632 ((-1268) (-645 (-944 (-225))))) (-15 -3632 ((-1268) (-645 (-944 (-225))) (-645 (-264)))) (-15 -3632 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3632 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261)) -((-3632 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3632 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-261)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *2 (-1268)) (-5 *1 (-261)))) (-3632 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-261)))) (-3632 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268)) (-5 *1 (-261))))) -(-10 -7 (-15 -3632 ((-1268) (-645 (-225)) (-645 (-225)))) (-15 -3632 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3632 ((-1268) (-645 (-944 (-225))))) (-15 -3632 ((-1268) (-645 (-944 (-225))) (-645 (-264)))) (-15 -3632 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3632 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))))) -((-1959 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2343 (((-922) (-645 (-264)) (-922)) 52)) (-1736 (((-922) (-645 (-264)) (-922)) 51)) (-1737 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3188 (((-381) (-645 (-264)) (-381)) 57)) (-4179 (((-922) (-645 (-264)) (-922)) 53)) (-4286 (((-112) (-645 (-264)) (-112)) 27)) (-3115 (((-1159) (-645 (-264)) (-1159)) 19)) (-2249 (((-1159) (-645 (-264)) (-1159)) 26)) (-2352 (((-1134 (-225)) (-645 (-264))) 46)) (-1551 (((-645 (-1095 (-381))) (-645 (-264)) (-645 (-1095 (-381)))) 40)) (-3285 (((-875) (-645 (-264)) (-875)) 32)) (-2250 (((-875) (-645 (-264)) (-875)) 33)) (-4059 (((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225)))) 63)) (-1390 (((-112) (-645 (-264)) (-112)) 14)) (-1832 (((-112) (-645 (-264)) (-112)) 13))) -(((-262) (-10 -7 (-15 -1832 ((-112) (-645 (-264)) (-112))) (-15 -1390 ((-112) (-645 (-264)) (-112))) (-15 -1959 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3115 ((-1159) (-645 (-264)) (-1159))) (-15 -2249 ((-1159) (-645 (-264)) (-1159))) (-15 -4286 ((-112) (-645 (-264)) (-112))) (-15 -3285 ((-875) (-645 (-264)) (-875))) (-15 -2250 ((-875) (-645 (-264)) (-875))) (-15 -1551 ((-645 (-1095 (-381))) (-645 (-264)) (-645 (-1095 (-381))))) (-15 -1736 ((-922) (-645 (-264)) (-922))) (-15 -2343 ((-922) (-645 (-264)) (-922))) (-15 -2352 ((-1134 (-225)) (-645 (-264)))) (-15 -4179 ((-922) (-645 (-264)) (-922))) (-15 -3188 ((-381) (-645 (-264)) (-381))) (-15 -4059 ((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225))))) (-15 -1737 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262)) -((-1737 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4059 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4179 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-262)))) (-2343 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1736 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1551 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2250 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3285 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3115 (*1 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1959 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1832 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(-10 -7 (-15 -1832 ((-112) (-645 (-264)) (-112))) (-15 -1390 ((-112) (-645 (-264)) (-112))) (-15 -1959 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3115 ((-1159) (-645 (-264)) (-1159))) (-15 -2249 ((-1159) (-645 (-264)) (-1159))) (-15 -4286 ((-112) (-645 (-264)) (-112))) (-15 -3285 ((-875) (-645 (-264)) (-875))) (-15 -2250 ((-875) (-645 (-264)) (-875))) (-15 -1551 ((-645 (-1095 (-381))) (-645 (-264)) (-645 (-1095 (-381))))) (-15 -1736 ((-922) (-645 (-264)) (-922))) (-15 -2343 ((-922) (-645 (-264)) (-922))) (-15 -2352 ((-1134 (-225)) (-645 (-264)))) (-15 -4179 ((-922) (-645 (-264)) (-922))) (-15 -3188 ((-381) (-645 (-264)) (-381))) (-15 -4059 ((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225))))) (-15 -1737 ((-645 (-381)) (-645 (-264)) (-645 (-381))))) -((-3235 (((-3 |#1| "failed") (-645 (-264)) (-1177)) 17))) -(((-263 |#1|) (-10 -7 (-15 -3235 ((-3 |#1| "failed") (-645 (-264)) (-1177)))) (-1217)) (T -263)) -((-3235 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) (-5 *1 (-263 *2)) (-4 *2 (-1217))))) -(-10 -7 (-15 -3235 ((-3 |#1| "failed") (-645 (-264)) (-1177)))) -((-2399 (((-112) $ $) NIL)) (-1959 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2343 (($ (-922)) 81)) (-1736 (($ (-922)) 80)) (-2720 (($ (-645 (-381))) 87)) (-3188 (($ (-381)) 66)) (-4179 (($ (-922)) 82)) (-4286 (($ (-112)) 33)) (-3115 (($ (-1159)) 28)) (-2249 (($ (-1159)) 29)) (-2352 (($ (-1134 (-225))) 76)) (-1551 (($ (-645 (-1095 (-381)))) 72)) (-2221 (($ (-645 (-1095 (-381)))) 68) (($ (-645 (-1095 (-410 (-567))))) 71)) (-1574 (($ (-381)) 38) (($ (-875)) 42)) (-2891 (((-112) (-645 $) (-1177)) 100)) (-3235 (((-3 (-52) "failed") (-645 $) (-1177)) 102)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2000 (($ (-381)) 43) (($ (-875)) 44)) (-2446 (($ (-1 (-944 (-225)) (-944 (-225)))) 65)) (-4059 (($ (-1 (-944 (-225)) (-944 (-225)))) 83)) (-3953 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4127 (((-863) $) 93)) (-2999 (($ (-112)) 34) (($ (-645 (-1095 (-381)))) 60)) (-4104 (((-112) $ $) NIL)) (-1832 (($ (-112)) 35)) (-2929 (((-112) $ $) 97))) -(((-264) (-13 (-1101) (-10 -8 (-15 -1832 ($ (-112))) (-15 -2999 ($ (-112))) (-15 -1959 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3115 ($ (-1159))) (-15 -2249 ($ (-1159))) (-15 -4286 ($ (-112))) (-15 -2999 ($ (-645 (-1095 (-381))))) (-15 -2446 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -1574 ($ (-381))) (-15 -1574 ($ (-875))) (-15 -2000 ($ (-381))) (-15 -2000 ($ (-875))) (-15 -3953 ($ (-1 (-225) (-225)))) (-15 -3953 ($ (-1 (-225) (-225) (-225)))) (-15 -3953 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3188 ($ (-381))) (-15 -2221 ($ (-645 (-1095 (-381))))) (-15 -2221 ($ (-645 (-1095 (-410 (-567)))))) (-15 -1551 ($ (-645 (-1095 (-381))))) (-15 -2352 ($ (-1134 (-225)))) (-15 -1736 ($ (-922))) (-15 -2343 ($ (-922))) (-15 -4179 ($ (-922))) (-15 -4059 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -2720 ($ (-645 (-381)))) (-15 -3235 ((-3 (-52) "failed") (-645 $) (-1177))) (-15 -2891 ((-112) (-645 $) (-1177)))))) (T -264)) -((-1832 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3115 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-264)))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-264)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264)))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-410 (-567))))) (-5 *1 (-264)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-264)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) (-2720 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-3235 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) (-5 *2 (-52)) (-5 *1 (-264)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) (-5 *2 (-112)) (-5 *1 (-264))))) -(-13 (-1101) (-10 -8 (-15 -1832 ($ (-112))) (-15 -2999 ($ (-112))) (-15 -1959 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3115 ($ (-1159))) (-15 -2249 ($ (-1159))) (-15 -4286 ($ (-112))) (-15 -2999 ($ (-645 (-1095 (-381))))) (-15 -2446 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -1574 ($ (-381))) (-15 -1574 ($ (-875))) (-15 -2000 ($ (-381))) (-15 -2000 ($ (-875))) (-15 -3953 ($ (-1 (-225) (-225)))) (-15 -3953 ($ (-1 (-225) (-225) (-225)))) (-15 -3953 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3188 ($ (-381))) (-15 -2221 ($ (-645 (-1095 (-381))))) (-15 -2221 ($ (-645 (-1095 (-410 (-567)))))) (-15 -1551 ($ (-645 (-1095 (-381))))) (-15 -2352 ($ (-1134 (-225)))) (-15 -1736 ($ (-922))) (-15 -2343 ($ (-922))) (-15 -4179 ($ (-922))) (-15 -4059 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -2720 ($ (-645 (-381)))) (-15 -3235 ((-3 (-52) "failed") (-645 $) (-1177))) (-15 -2891 ((-112) (-645 $) (-1177))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2100 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-2415 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-2845 (((-645 |#3|) $) NIL)) (-2670 (((-1173 $) $ |#3|) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2533 (($ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1126 |#1| |#2|) "failed") $) 23)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1126 |#1| |#2|) $) NIL)) (-3621 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-534 |#3|) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))))) (-2937 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#1|) |#3|) NIL) (($ (-1173 $) |#3|) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#3|) NIL)) (-2752 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-3345 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1518 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-1902 (((-3 |#3| "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3714 ((|#3| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-4162 (((-112) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| |#3|) (|:| -4250 (-772))) "failed") $) NIL)) (-2339 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-1999 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1621 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1516 (((-645 |#2|) $) NIL)) (-1813 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1126 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1039 (-1126 |#1| |#2|))) (-1050) (-851) (-267 |#2|)) (T -265)) -NIL -(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1039 (-1126 |#1| |#2|))) -((-2415 (((-772) $) 37)) (-3747 (((-3 |#2| "failed") $) 22)) (-2033 ((|#2| $) 33)) (-1621 (($ $) 14) (($ $ (-772)) 18)) (-4127 (((-863) $) 32) (($ |#2|) 11)) (-2929 (((-112) $ $) 26)) (-2952 (((-112) $ $) 36))) -(((-266 |#1| |#2|) (-10 -8 (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -2415 ((-772) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266)) -NIL -(-10 -8 (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -2415 ((-772) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2415 (((-772) $) 23)) (-3638 ((|#1| $) 24)) (-3747 (((-3 |#1| "failed") $) 28)) (-2033 ((|#1| $) 29)) (-2937 (((-772) $) 25)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-1518 (($ |#1| (-772)) 26)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1621 (($ $) 22) (($ $ (-772)) 21)) (-4127 (((-863) $) 12) (($ |#1|) 27)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19))) +((-3335 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-3729 (((-772) $) 58) (((-772) $ |#3|) 61)) (-3634 (($ $) 76)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-4384 (((-772) $ |#3|) 43) (((-772) $) 38)) (-1369 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-3151 ((|#4| $) 69)) (-1634 (((-112) $) 67)) (-2344 (($ $) 75)) (-2631 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-1593 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2395 (((-645 |#3|) $) 86)) (-3077 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL))) +(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -2344 (|#1| |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -3729 ((-772) |#1| |#3|)) (-15 -3335 ((-645 (-772)) |#1| |#3|)) (-15 -3729 ((-772) |#1|)) (-15 -3335 ((-645 (-772)) |#1|)) (-15 -3077 ((-772) |#1| |#3|)) (-15 -4384 ((-772) |#1|)) (-15 -4384 ((-772) |#1| |#3|)) (-15 -2395 ((-645 |#3|) |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#3|)) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3077 ((-772) |#1| |#4|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 (|#5| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#4| (-772))) (-15 -1593 (|#1| |#1| (-645 |#4|))) (-15 -1593 (|#1| |#1| |#4|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1051) (-851) (-267 |#3|) (-794)) (T -253)) +NIL +(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -2344 (|#1| |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -3729 ((-772) |#1| |#3|)) (-15 -3335 ((-645 (-772)) |#1| |#3|)) (-15 -3729 ((-772) |#1|)) (-15 -3335 ((-645 (-772)) |#1|)) (-15 -3077 ((-772) |#1| |#3|)) (-15 -4384 ((-772) |#1|)) (-15 -4384 ((-772) |#1| |#3|)) (-15 -2395 ((-645 |#3|) |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#3|)) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3077 ((-772) |#1| |#4|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 (|#5| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#4| (-772))) (-15 -1593 (|#1| |#1| (-645 |#4|))) (-15 -1593 (|#1| |#1| |#4|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3335 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-3729 (((-772) $) 215) (((-772) $ |#2|) 213)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-3634 (($ $) 209)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| |#4| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ |#2|) 219) (((-772) $) 218)) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-2656 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3273 (($ (-1 |#4| |#4|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-1369 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-3046 (((-3 |#3| "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-3151 ((|#3| $) 211)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-1634 (((-112) $) 212)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-2344 (($ $) 210)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1178)) 236 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 235 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 234 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 233 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2395 (((-645 |#2|) $) 220)) (-3077 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1178)) 232 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 231 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 230 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 229 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-254 |#1| |#2| |#3| |#4|) (-140) (-1051) (-851) (-267 |t#2|) (-794)) (T -254)) +((-1369 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-4384 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3729 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-2344 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-3634 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1369 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))) +(-13 (-951 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1040 |t#2|) (-10 -8 (-15 -1369 ((-1 $ (-772)) |t#2|)) (-15 -2395 ((-645 |t#2|) $)) (-15 -4384 ((-772) $ |t#2|)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $ |t#2|)) (-15 -3335 ((-645 (-772)) $)) (-15 -3729 ((-772) $)) (-15 -3335 ((-645 (-772)) $ |t#2|)) (-15 -3729 ((-772) $ |t#2|)) (-15 -1634 ((-112) $)) (-15 -3151 (|t#3| $)) (-15 -2344 ($ $)) (-15 -3634 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1369 ((-1 $ (-772)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#4| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#2|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1910 ((|#1| $) 55)) (-2262 ((|#1| $) 45)) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-3061 (($ $) 61)) (-1764 (($ $) 49)) (-2576 ((|#1| |#1| $) 47)) (-4338 ((|#1| $) 46)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1699 (((-772) $) 62)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-1567 ((|#1| |#1| $) 53)) (-1420 ((|#1| |#1| $) 52)) (-2531 (($ |#1| $) 41)) (-4138 (((-772) $) 56)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3303 ((|#1| $) 63)) (-1660 ((|#1| $) 51)) (-2524 ((|#1| $) 50)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3136 ((|#1| |#1| $) 59)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2234 ((|#1| $) 60)) (-4137 (($) 58) (($ (-645 |#1|)) 57)) (-3272 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4158 ((|#1| $) 54)) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-3090 ((|#1| $) 64)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-255 |#1|) (-140) (-1218)) (T -255)) +((-4137 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-255 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1567 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1420 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1764 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(-13 (-1123 |t#1|) (-997 |t#1|) (-10 -8 (-15 -4137 ($)) (-15 -4137 ($ (-645 |t#1|))) (-15 -4138 ((-772) $)) (-15 -1910 (|t#1| $)) (-15 -4158 (|t#1| $)) (-15 -1567 (|t#1| |t#1| $)) (-15 -1420 (|t#1| |t#1| $)) (-15 -1660 (|t#1| $)) (-15 -2524 (|t#1| $)) (-15 -1764 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-997 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1123 |#1|) . T) ((-1218) . T)) +((-2530 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3685 (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 173) (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 171) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 176) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 172) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 164) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 163) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 145) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 143) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381))) 144) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 141)) (-3638 (((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 175) (((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 174) (((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 178) (((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 177) (((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 166) (((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 165) (((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 151) (((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 150) (((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381))) 149) (((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 148) (((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381))) 113) (((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 112) (((-1269) (-1 (-225) (-225)) (-1096 (-381))) 107) (((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264))) 105))) +(((-256) (-10 -7 (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2530 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) +((-2530 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256))))) +(-10 -7 (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2530 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-3638 (((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264))) 101))) +(((-257 |#1| |#2|) (-10 -7 (-15 -3638 ((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264))))) (-13 (-559) (-851) (-1040 (-567))) (-433 |#1|)) (T -257)) +((-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1178)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) (-5 *2 (-1269)) (-5 *1 (-257 *6 *7))))) +(-10 -7 (-15 -3638 ((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264))))) +((-3132 (((-567) (-567)) 73)) (-4113 (((-567) (-567)) 74)) (-4245 (((-225) (-225)) 75)) (-1803 (((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225))) 72)) (-2929 (((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112)) 70))) +(((-258) (-10 -7 (-15 -2929 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -1803 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3132 ((-567) (-567))) (-15 -4113 ((-567) (-567))) (-15 -4245 ((-225) (-225))))) (T -258)) +((-4245 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-1803 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *2 (-1270)) (-5 *1 (-258)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *5 (-112)) (-5 *2 (-1270)) (-5 *1 (-258))))) +(-10 -7 (-15 -2929 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -1803 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3132 ((-567) (-567))) (-15 -4113 ((-567) (-567))) (-15 -4245 ((-225) (-225)))) +((-4132 (((-1094 (-381)) (-1094 (-317 |#1|))) 16))) +(((-259 |#1|) (-10 -7 (-15 -4132 ((-1094 (-381)) (-1094 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-1094 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) (-5 *1 (-259 *4))))) +(-10 -7 (-15 -4132 ((-1094 (-381)) (-1094 (-317 |#1|))))) +((-3685 (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 75) (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 74) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381))) 65) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 64) (((-1135 (-225)) (-881 |#1|) (-1094 (-381))) 56) (((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 55)) (-3638 (((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 78) (((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 77) (((-1270) |#1| (-1094 (-381)) (-1094 (-381))) 68) (((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 67) (((-1270) (-881 |#1|) (-1094 (-381))) 60) (((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 59) (((-1269) (-879 |#1|) (-1094 (-381))) 47) (((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264))) 46) (((-1269) |#1| (-1094 (-381))) 38) (((-1269) |#1| (-1094 (-381)) (-645 (-264))) 36))) +(((-260 |#1|) (-10 -7 (-15 -3638 ((-1269) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) |#1| (-1094 (-381)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) (-13 (-615 (-539)) (-1102))) (T -260)) +((-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102)))))) +(-10 -7 (-15 -3638 ((-1269) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) |#1| (-1094 (-381)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) +((-3638 (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1269) (-645 (-945 (-225))) (-645 (-264))) 16) (((-1269) (-645 (-945 (-225)))) 17) (((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1269) (-645 (-225)) (-645 (-225))) 21))) +(((-261) (-10 -7 (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3638 ((-1269) (-645 (-945 (-225))))) (-15 -3638 ((-1269) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261)) +((-3638 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261))))) +(-10 -7 (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3638 ((-1269) (-645 (-945 (-225))))) (-15 -3638 ((-1269) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))))) +((-2369 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2240 (((-923) (-645 (-264)) (-923)) 52)) (-3813 (((-923) (-645 (-264)) (-923)) 51)) (-1741 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3740 (((-381) (-645 (-264)) (-381)) 57)) (-3627 (((-923) (-645 (-264)) (-923)) 53)) (-2956 (((-112) (-645 (-264)) (-112)) 27)) (-3124 (((-1160) (-645 (-264)) (-1160)) 19)) (-1723 (((-1160) (-645 (-264)) (-1160)) 26)) (-1552 (((-1135 (-225)) (-645 (-264))) 46)) (-3320 (((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381)))) 40)) (-3442 (((-875) (-645 (-264)) (-875)) 32)) (-1865 (((-875) (-645 (-264)) (-875)) 33)) (-2225 (((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225)))) 63)) (-3196 (((-112) (-645 (-264)) (-112)) 14)) (-4307 (((-112) (-645 (-264)) (-112)) 13))) +(((-262) (-10 -7 (-15 -4307 ((-112) (-645 (-264)) (-112))) (-15 -3196 ((-112) (-645 (-264)) (-112))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ((-1160) (-645 (-264)) (-1160))) (-15 -1723 ((-1160) (-645 (-264)) (-1160))) (-15 -2956 ((-112) (-645 (-264)) (-112))) (-15 -3442 ((-875) (-645 (-264)) (-875))) (-15 -1865 ((-875) (-645 (-264)) (-875))) (-15 -3320 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3813 ((-923) (-645 (-264)) (-923))) (-15 -2240 ((-923) (-645 (-264)) (-923))) (-15 -1552 ((-1135 (-225)) (-645 (-264)))) (-15 -3627 ((-923) (-645 (-264)) (-923))) (-15 -3740 ((-381) (-645 (-264)) (-381))) (-15 -2225 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1741 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262)) +((-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2225 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3627 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) (-2240 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3320 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1865 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3442 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2956 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1723 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3124 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2369 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4307 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) +(-10 -7 (-15 -4307 ((-112) (-645 (-264)) (-112))) (-15 -3196 ((-112) (-645 (-264)) (-112))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ((-1160) (-645 (-264)) (-1160))) (-15 -1723 ((-1160) (-645 (-264)) (-1160))) (-15 -2956 ((-112) (-645 (-264)) (-112))) (-15 -3442 ((-875) (-645 (-264)) (-875))) (-15 -1865 ((-875) (-645 (-264)) (-875))) (-15 -3320 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3813 ((-923) (-645 (-264)) (-923))) (-15 -2240 ((-923) (-645 (-264)) (-923))) (-15 -1552 ((-1135 (-225)) (-645 (-264)))) (-15 -3627 ((-923) (-645 (-264)) (-923))) (-15 -3740 ((-381) (-645 (-264)) (-381))) (-15 -2225 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1741 ((-645 (-381)) (-645 (-264)) (-645 (-381))))) +((-3243 (((-3 |#1| "failed") (-645 (-264)) (-1178)) 17))) +(((-263 |#1|) (-10 -7 (-15 -3243 ((-3 |#1| "failed") (-645 (-264)) (-1178)))) (-1218)) (T -263)) +((-3243 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *1 (-263 *2)) (-4 *2 (-1218))))) +(-10 -7 (-15 -3243 ((-3 |#1| "failed") (-645 (-264)) (-1178)))) +((-2403 (((-112) $ $) NIL)) (-2369 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2240 (($ (-923)) 81)) (-3813 (($ (-923)) 80)) (-3951 (($ (-645 (-381))) 87)) (-3740 (($ (-381)) 66)) (-3627 (($ (-923)) 82)) (-2956 (($ (-112)) 33)) (-3124 (($ (-1160)) 28)) (-1723 (($ (-1160)) 29)) (-1552 (($ (-1135 (-225))) 76)) (-3320 (($ (-645 (-1096 (-381)))) 72)) (-1604 (($ (-645 (-1096 (-381)))) 68) (($ (-645 (-1096 (-410 (-567))))) 71)) (-2194 (($ (-381)) 38) (($ (-875)) 42)) (-3187 (((-112) (-645 $) (-1178)) 100)) (-3243 (((-3 (-52) "failed") (-645 $) (-1178)) 102)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3872 (($ (-381)) 43) (($ (-875)) 44)) (-2887 (($ (-1 (-945 (-225)) (-945 (-225)))) 65)) (-2225 (($ (-1 (-945 (-225)) (-945 (-225)))) 83)) (-2449 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4132 (((-863) $) 93)) (-4218 (($ (-112)) 34) (($ (-645 (-1096 (-381)))) 60)) (-1745 (((-112) $ $) NIL)) (-4307 (($ (-112)) 35)) (-2936 (((-112) $ $) 97))) +(((-264) (-13 (-1102) (-10 -8 (-15 -4307 ($ (-112))) (-15 -4218 ($ (-112))) (-15 -2369 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ($ (-1160))) (-15 -1723 ($ (-1160))) (-15 -2956 ($ (-112))) (-15 -4218 ($ (-645 (-1096 (-381))))) (-15 -2887 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -2194 ($ (-381))) (-15 -2194 ($ (-875))) (-15 -3872 ($ (-381))) (-15 -3872 ($ (-875))) (-15 -2449 ($ (-1 (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3740 ($ (-381))) (-15 -1604 ($ (-645 (-1096 (-381))))) (-15 -1604 ($ (-645 (-1096 (-410 (-567)))))) (-15 -3320 ($ (-645 (-1096 (-381))))) (-15 -1552 ($ (-1135 (-225)))) (-15 -3813 ($ (-923))) (-15 -2240 ($ (-923))) (-15 -3627 ($ (-923))) (-15 -2225 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3951 ($ (-645 (-381)))) (-15 -3243 ((-3 (-52) "failed") (-645 $) (-1178))) (-15 -3187 ((-112) (-645 $) (-1178)))))) (T -264)) +((-4307 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2225 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-3243 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-112)) (-5 *1 (-264))))) +(-13 (-1102) (-10 -8 (-15 -4307 ($ (-112))) (-15 -4218 ($ (-112))) (-15 -2369 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ($ (-1160))) (-15 -1723 ($ (-1160))) (-15 -2956 ($ (-112))) (-15 -4218 ($ (-645 (-1096 (-381))))) (-15 -2887 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -2194 ($ (-381))) (-15 -2194 ($ (-875))) (-15 -3872 ($ (-381))) (-15 -3872 ($ (-875))) (-15 -2449 ($ (-1 (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3740 ($ (-381))) (-15 -1604 ($ (-645 (-1096 (-381))))) (-15 -1604 ($ (-645 (-1096 (-410 (-567)))))) (-15 -3320 ($ (-645 (-1096 (-381))))) (-15 -1552 ($ (-1135 (-225)))) (-15 -3813 ($ (-923))) (-15 -2240 ($ (-923))) (-15 -3627 ($ (-923))) (-15 -2225 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3951 ($ (-645 (-381)))) (-15 -3243 ((-3 (-52) "failed") (-645 $) (-1178))) (-15 -3187 ((-112) (-645 $) (-1178))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-3729 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-2847 (((-645 |#3|) $) NIL)) (-2675 (((-1174 $) $ |#3|) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1127 |#1| |#2|) "failed") $) 23)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1127 |#1| |#2|) $) NIL)) (-2951 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 |#3|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))))) (-4384 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) |#3|) NIL) (($ (-1174 $) |#3|) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) NIL)) (-2656 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-3273 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 |#3| "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 |#2|) $) NIL)) (-3077 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1127 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851) (-267 |#2|)) (T -265)) +NIL +(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|))) +((-3729 (((-772) $) 37)) (-3753 (((-3 |#2| "failed") $) 22)) (-2038 ((|#2| $) 33)) (-1593 (($ $) 14) (($ $ (-772)) 18)) (-4132 (((-863) $) 32) (($ |#2|) 11)) (-2936 (((-112) $ $) 26)) (-2958 (((-112) $ $) 36))) +(((-266 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3729 ((-772) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266)) +NIL +(-10 -8 (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3729 ((-772) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-3729 (((-772) $) 23)) (-3644 ((|#1| $) 24)) (-3753 (((-3 |#1| "failed") $) 28)) (-2038 ((|#1| $) 29)) (-4384 (((-772) $) 25)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1369 (($ |#1| (-772)) 26)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $) 22) (($ $ (-772)) 21)) (-4132 (((-863) $) 12) (($ |#1|) 27)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19))) (((-267 |#1|) (-140) (-851)) (T -267)) -((-4127 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1621 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1039 |t#1|) (-10 -8 (-15 -1518 ($ |t#1| (-772))) (-15 -2937 ((-772) $)) (-15 -3638 (|t#1| $)) (-15 -2415 ((-772) $)) (-15 -1621 ($ $)) (-15 -1621 ($ $ (-772))) (-15 -4127 ($ |t#1|)))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-851) . T) ((-1039 |#1|) . T) ((-1101) . T)) -((-2845 (((-645 (-1177)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 54)) (-3259 (((-645 (-1177)) (-317 (-225)) (-772)) 96)) (-1302 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-3934 (((-317 (-225)) (-317 (-225))) 82)) (-2572 (((-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-2734 (((-112) (-645 (-317 (-225)))) 106)) (-1846 (((-112) (-317 (-225))) 37)) (-2874 (((-645 (-1159)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))) 134)) (-2778 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-3721 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-2378 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-3576 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-1490 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-2020 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 128)) (-3147 (((-1036) (-1177) (-1036)) 47))) -(((-268) (-10 -7 (-15 -1490 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2572 ((-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -1302 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3934 ((-317 (-225)) (-317 (-225)))) (-15 -2734 ((-112) (-645 (-317 (-225))))) (-15 -3576 ((-112) (-645 (-317 (-225))))) (-15 -3576 ((-112) (-317 (-225)))) (-15 -2378 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -3721 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2778 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1846 ((-112) (-317 (-225)))) (-15 -2845 ((-645 (-1177)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -3259 ((-645 (-1177)) (-317 (-225)) (-772))) (-15 -3147 ((-1036) (-1177) (-1036))) (-15 -2020 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -2874 ((-645 (-1159)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))))))) (T -268)) -((-2874 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))) (-5 *2 (-645 (-1159))) (-5 *1 (-268)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1177)) (-5 *1 (-268)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1177))) (-5 *1 (-268)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) (-5 *2 (-645 (-1177))) (-5 *1 (-268)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-1302 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268))))) -(-10 -7 (-15 -1490 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2572 ((-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -1302 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3934 ((-317 (-225)) (-317 (-225)))) (-15 -2734 ((-112) (-645 (-317 (-225))))) (-15 -3576 ((-112) (-645 (-317 (-225))))) (-15 -3576 ((-112) (-317 (-225)))) (-15 -2378 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -3721 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2778 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1846 ((-112) (-317 (-225)))) (-15 -2845 ((-645 (-1177)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -3259 ((-645 (-1177)) (-317 (-225)) (-772))) (-15 -3147 ((-1036) (-1177) (-1036))) (-15 -2020 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -2874 ((-645 (-1159)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))))) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-4132 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1369 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1593 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851))))) +(-13 (-851) (-1040 |t#1|) (-10 -8 (-15 -1369 ($ |t#1| (-772))) (-15 -4384 ((-772) $)) (-15 -3644 (|t#1| $)) (-15 -3729 ((-772) $)) (-15 -1593 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -4132 ($ |t#1|)))) +(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-851) . T) ((-1040 |#1|) . T) ((-1102) . T)) +((-2847 (((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 54)) (-3267 (((-645 (-1178)) (-317 (-225)) (-772)) 96)) (-3903 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-1966 (((-317 (-225)) (-317 (-225))) 82)) (-2268 (((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-3790 (((-112) (-645 (-317 (-225)))) 106)) (-3172 (((-112) (-317 (-225))) 37)) (-1614 (((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) 134)) (-1710 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-2390 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-2827 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-4119 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-1718 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-2202 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 128)) (-2811 (((-1037) (-1178) (-1037)) 47))) +(((-268) (-10 -7 (-15 -1718 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2268 ((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3903 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1966 ((-317 (-225)) (-317 (-225)))) (-15 -3790 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2827 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2390 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1710 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3172 ((-112) (-317 (-225)))) (-15 -2847 ((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3267 ((-645 (-1178)) (-317 (-225)) (-772))) (-15 -2811 ((-1037) (-1178) (-1037))) (-15 -2202 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -1614 ((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))))) (T -268)) +((-1614 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *2 (-645 (-1160))) (-5 *1 (-268)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-2811 (*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-268)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3903 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268))))) +(-10 -7 (-15 -1718 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2268 ((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3903 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1966 ((-317 (-225)) (-317 (-225)))) (-15 -3790 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2827 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2390 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1710 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3172 ((-112) (-317 (-225)))) (-15 -2847 ((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3267 ((-645 (-1178)) (-317 (-225)) (-772))) (-15 -2811 ((-1037) (-1178) (-1037))) (-15 -2202 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -1614 ((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-269) (-840)) (T -269)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 72) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 43)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 72) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-270) (-840)) (T -270)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 65)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 65)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-271) (-840)) (T -271)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-272) (-840)) (T -272)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-273) (-840)) (T -273)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-274) (-840)) (T -274)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) (((-275) (-840)) (T -275)) NIL (-840) -((-2399 (((-112) $ $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2526 (((-645 (-567)) $) 29)) (-1813 (((-772) $) 27)) (-4127 (((-863) $) 36) (($ (-645 (-567))) 23)) (-4104 (((-112) $ $) NIL)) (-2739 (($ (-772)) 33)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 17))) -(((-276) (-13 (-851) (-10 -8 (-15 -4127 ($ (-645 (-567)))) (-15 -1813 ((-772) $)) (-15 -2526 ((-645 (-567)) $)) (-15 -2739 ($ (-772)))))) (T -276)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) -(-13 (-851) (-10 -8 (-15 -4127 ($ (-645 (-567)))) (-15 -1813 ((-772) $)) (-15 -2526 ((-645 (-567)) $)) (-15 -2739 ($ (-772))))) -((-3165 ((|#2| |#2|) 77)) (-3039 ((|#2| |#2|) 65)) (-2320 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3148 ((|#2| |#2|) 75)) (-3015 ((|#2| |#2|) 63)) (-3184 ((|#2| |#2|) 79)) (-3065 ((|#2| |#2|) 67)) (-1480 ((|#2|) 46)) (-2652 (((-114) (-114)) 100)) (-3053 ((|#2| |#2|) 61)) (-2113 (((-112) |#2|) 147)) (-3522 ((|#2| |#2|) 195)) (-2628 ((|#2| |#2|) 171)) (-3817 ((|#2|) 59)) (-4246 ((|#2|) 58)) (-3247 ((|#2| |#2|) 191)) (-2117 ((|#2| |#2|) 167)) (-3946 ((|#2| |#2|) 199)) (-3404 ((|#2| |#2|) 175)) (-2433 ((|#2| |#2|) 163)) (-2828 ((|#2| |#2|) 165)) (-2229 ((|#2| |#2|) 201)) (-1716 ((|#2| |#2|) 177)) (-3314 ((|#2| |#2|) 197)) (-3837 ((|#2| |#2|) 173)) (-3793 ((|#2| |#2|) 193)) (-3173 ((|#2| |#2|) 169)) (-3510 ((|#2| |#2|) 207)) (-2277 ((|#2| |#2|) 183)) (-1357 ((|#2| |#2|) 203)) (-1523 ((|#2| |#2|) 179)) (-1888 ((|#2| |#2|) 211)) (-1673 ((|#2| |#2|) 187)) (-4241 ((|#2| |#2|) 213)) (-3079 ((|#2| |#2|) 189)) (-3033 ((|#2| |#2|) 209)) (-2817 ((|#2| |#2|) 185)) (-2562 ((|#2| |#2|) 205)) (-4068 ((|#2| |#2|) 181)) (-3927 ((|#2| |#2|) 62)) (-3192 ((|#2| |#2|) 80)) (-3076 ((|#2| |#2|) 68)) (-3174 ((|#2| |#2|) 78)) (-3052 ((|#2| |#2|) 66)) (-3157 ((|#2| |#2|) 76)) (-3026 ((|#2| |#2|) 64)) (-2134 (((-112) (-114)) 98)) (-3220 ((|#2| |#2|) 83)) (-3109 ((|#2| |#2|) 71)) (-3201 ((|#2| |#2|) 81)) (-3087 ((|#2| |#2|) 69)) (-3241 ((|#2| |#2|) 85)) (-3128 ((|#2| |#2|) 73)) (-3807 ((|#2| |#2|) 86)) (-3137 ((|#2| |#2|) 74)) (-3228 ((|#2| |#2|) 84)) (-3119 ((|#2| |#2|) 72)) (-3210 ((|#2| |#2|) 82)) (-3098 ((|#2| |#2|) 70))) -(((-277 |#1| |#2|) (-10 -7 (-15 -3927 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3098 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3148 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3174 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1480 (|#2|)) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -4246 (|#2|)) (-15 -3817 (|#2|)) (-15 -2828 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2628 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -1716 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2817 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -2562 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2320 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2113 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1003))) (T -277)) -((-2113 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1003))))) (-2320 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1003))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1888 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3314 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3247 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2817 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1716 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2628 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2828 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3817 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-4246 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1003))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003))))) (-1480 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3220 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3174 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3015 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003)))))) -(-10 -7 (-15 -3927 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3098 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3148 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3174 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1480 (|#2|)) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -4246 (|#2|)) (-15 -3817 (|#2|)) (-15 -2828 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2628 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -1716 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2817 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -2562 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2320 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2113 ((-112) |#2|))) -((-3088 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1177)) 153)) (-2642 ((|#2| (-410 (-567)) |#2|) 49)) (-2884 ((|#2| |#2| (-613 |#2|)) 146)) (-3429 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1177)) 145)) (-1443 ((|#2| |#2| (-1177)) 20) ((|#2| |#2|) 23)) (-3004 ((|#2| |#2| (-1177)) 159) ((|#2| |#2|) 157))) -(((-278 |#1| |#2|) (-10 -7 (-15 -3004 (|#2| |#2|)) (-15 -3004 (|#2| |#2| (-1177))) (-15 -3429 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1177))) (-15 -1443 (|#2| |#2|)) (-15 -1443 (|#2| |#2| (-1177))) (-15 -3088 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1177))) (-15 -2884 (|#2| |#2| (-613 |#2|))) (-15 -2642 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -278)) -((-2642 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-2884 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-3088 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1177)) (-4 *2 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-1443 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) (-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-3004 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-3004 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3)))))) -(-10 -7 (-15 -3004 (|#2| |#2|)) (-15 -3004 (|#2| |#2| (-1177))) (-15 -3429 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1177))) (-15 -1443 (|#2| |#2|)) (-15 -1443 (|#2| |#2| (-1177))) (-15 -3088 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1177))) (-15 -2884 (|#2| |#2| (-613 |#2|))) (-15 -2642 (|#2| (-410 (-567)) |#2|))) -((-3358 (((-3 |#3| "failed") |#3|) 120)) (-3165 ((|#3| |#3|) 142)) (-1669 (((-3 |#3| "failed") |#3|) 89)) (-3039 ((|#3| |#3|) 132)) (-4103 (((-3 |#3| "failed") |#3|) 65)) (-3148 ((|#3| |#3|) 140)) (-4156 (((-3 |#3| "failed") |#3|) 53)) (-3015 ((|#3| |#3|) 130)) (-1945 (((-3 |#3| "failed") |#3|) 122)) (-3184 ((|#3| |#3|) 144)) (-2386 (((-3 |#3| "failed") |#3|) 91)) (-3065 ((|#3| |#3|) 134)) (-1583 (((-3 |#3| "failed") |#3| (-772)) 41)) (-4066 (((-3 |#3| "failed") |#3|) 81)) (-3053 ((|#3| |#3|) 129)) (-2900 (((-3 |#3| "failed") |#3|) 51)) (-3927 ((|#3| |#3|) 128)) (-3364 (((-3 |#3| "failed") |#3|) 123)) (-3192 ((|#3| |#3|) 145)) (-1843 (((-3 |#3| "failed") |#3|) 92)) (-3076 ((|#3| |#3|) 135)) (-2213 (((-3 |#3| "failed") |#3|) 121)) (-3174 ((|#3| |#3|) 143)) (-3086 (((-3 |#3| "failed") |#3|) 90)) (-3052 ((|#3| |#3|) 133)) (-3049 (((-3 |#3| "failed") |#3|) 67)) (-3157 ((|#3| |#3|) 141)) (-3198 (((-3 |#3| "failed") |#3|) 55)) (-3026 ((|#3| |#3|) 131)) (-1799 (((-3 |#3| "failed") |#3|) 73)) (-3220 ((|#3| |#3|) 148)) (-2453 (((-3 |#3| "failed") |#3|) 114)) (-3109 ((|#3| |#3|) 154)) (-3239 (((-3 |#3| "failed") |#3|) 69)) (-3201 ((|#3| |#3|) 146)) (-2632 (((-3 |#3| "failed") |#3|) 57)) (-3087 ((|#3| |#3|) 136)) (-1571 (((-3 |#3| "failed") |#3|) 77)) (-3241 ((|#3| |#3|) 150)) (-3141 (((-3 |#3| "failed") |#3|) 61)) (-3128 ((|#3| |#3|) 138)) (-1841 (((-3 |#3| "failed") |#3|) 79)) (-3807 ((|#3| |#3|) 151)) (-1565 (((-3 |#3| "failed") |#3|) 63)) (-3137 ((|#3| |#3|) 139)) (-3362 (((-3 |#3| "failed") |#3|) 75)) (-3228 ((|#3| |#3|) 149)) (-2945 (((-3 |#3| "failed") |#3|) 117)) (-3119 ((|#3| |#3|) 155)) (-2022 (((-3 |#3| "failed") |#3|) 71)) (-3210 ((|#3| |#3|) 147)) (-3951 (((-3 |#3| "failed") |#3|) 59)) (-3098 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365))))) -(((-279 |#1| |#2| |#3|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3053 (|#3| |#3|)) (-15 -3015 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3109 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)) (-15 -3174 (|#3| |#3|)) (-15 -3184 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3220 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3241 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)))) (-38 (-410 (-567))) (-1258 |#1|) (-1229 |#1| |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1258 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1229 *4 *5)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3015 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3174 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3220 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4))))) -(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3053 (|#3| |#3|)) (-15 -3015 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3109 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)) (-15 -3174 (|#3| |#3|)) (-15 -3184 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3220 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3241 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)))) -((-3358 (((-3 |#3| "failed") |#3|) 70)) (-3165 ((|#3| |#3|) 137)) (-1669 (((-3 |#3| "failed") |#3|) 54)) (-3039 ((|#3| |#3|) 125)) (-4103 (((-3 |#3| "failed") |#3|) 66)) (-3148 ((|#3| |#3|) 135)) (-4156 (((-3 |#3| "failed") |#3|) 50)) (-3015 ((|#3| |#3|) 123)) (-1945 (((-3 |#3| "failed") |#3|) 74)) (-3184 ((|#3| |#3|) 139)) (-2386 (((-3 |#3| "failed") |#3|) 58)) (-3065 ((|#3| |#3|) 127)) (-1583 (((-3 |#3| "failed") |#3| (-772)) 38)) (-4066 (((-3 |#3| "failed") |#3|) 48)) (-3053 ((|#3| |#3|) 111)) (-2900 (((-3 |#3| "failed") |#3|) 46)) (-3927 ((|#3| |#3|) 122)) (-3364 (((-3 |#3| "failed") |#3|) 76)) (-3192 ((|#3| |#3|) 140)) (-1843 (((-3 |#3| "failed") |#3|) 60)) (-3076 ((|#3| |#3|) 128)) (-2213 (((-3 |#3| "failed") |#3|) 72)) (-3174 ((|#3| |#3|) 138)) (-3086 (((-3 |#3| "failed") |#3|) 56)) (-3052 ((|#3| |#3|) 126)) (-3049 (((-3 |#3| "failed") |#3|) 68)) (-3157 ((|#3| |#3|) 136)) (-3198 (((-3 |#3| "failed") |#3|) 52)) (-3026 ((|#3| |#3|) 124)) (-1799 (((-3 |#3| "failed") |#3|) 78)) (-3220 ((|#3| |#3|) 143)) (-2453 (((-3 |#3| "failed") |#3|) 62)) (-3109 ((|#3| |#3|) 131)) (-3239 (((-3 |#3| "failed") |#3|) 112)) (-3201 ((|#3| |#3|) 141)) (-2632 (((-3 |#3| "failed") |#3|) 100)) (-3087 ((|#3| |#3|) 129)) (-1571 (((-3 |#3| "failed") |#3|) 116)) (-3241 ((|#3| |#3|) 145)) (-3141 (((-3 |#3| "failed") |#3|) 107)) (-3128 ((|#3| |#3|) 133)) (-1841 (((-3 |#3| "failed") |#3|) 117)) (-3807 ((|#3| |#3|) 146)) (-1565 (((-3 |#3| "failed") |#3|) 109)) (-3137 ((|#3| |#3|) 134)) (-3362 (((-3 |#3| "failed") |#3|) 80)) (-3228 ((|#3| |#3|) 144)) (-2945 (((-3 |#3| "failed") |#3|) 64)) (-3119 ((|#3| |#3|) 132)) (-2022 (((-3 |#3| "failed") |#3|) 113)) (-3210 ((|#3| |#3|) 142)) (-3951 (((-3 |#3| "failed") |#3|) 103)) (-3098 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365))))) -(((-280 |#1| |#2| |#3| |#4|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3053 (|#3| |#3|)) (-15 -3015 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3109 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)) (-15 -3174 (|#3| |#3|)) (-15 -3184 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3220 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3241 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)))) (-38 (-410 (-567))) (-1227 |#1|) (-1250 |#1| |#2|) (-984 |#2|)) (T -280)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1227 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1250 *4 *5)) (-4 *6 (-984 *5)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3015 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3174 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3220 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4))))) -(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3053 (|#3| |#3|)) (-15 -3015 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3109 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)) (-15 -3174 (|#3| |#3|)) (-15 -3184 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3220 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3241 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)))) -((-3477 (((-112) $) 20)) (-2382 (((-1182) $) 7)) (-4117 (((-3 (-509) "failed") $) 14)) (-1540 (((-3 (-645 $) "failed") $) NIL)) (-2459 (((-3 (-509) "failed") $) 21)) (-3456 (((-3 (-1105) "failed") $) 18)) (-3976 (((-112) $) 16)) (-4127 (((-863) $) NIL)) (-4199 (((-112) $) 9))) -(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2382 ((-1182) $)) (-15 -3976 ((-112) $)) (-15 -3456 ((-3 (-1105) "failed") $)) (-15 -3477 ((-112) $)) (-15 -2459 ((-3 (-509) "failed") $)) (-15 -4199 ((-112) $)) (-15 -4117 ((-3 (-509) "failed") $)) (-15 -1540 ((-3 (-645 $) "failed") $))))) (T -281)) -((-2382 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-281)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3456 (*1 *2 *1) (|partial| -12 (-5 *2 (-1105)) (-5 *1 (-281)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2459 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4117 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-1540 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2382 ((-1182) $)) (-15 -3976 ((-112) $)) (-15 -3456 ((-3 (-1105) "failed") $)) (-15 -3477 ((-112) $)) (-15 -2459 ((-3 (-509) "failed") $)) (-15 -4199 ((-112) $)) (-15 -4117 ((-3 (-509) "failed") $)) (-15 -1540 ((-3 (-645 $) "failed") $)))) -((-3338 (($ (-1 (-112) |#2|) $) 24)) (-2440 (($ $) 38)) (-2774 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3230 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1812 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2842 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-1558 (($ $ (-567)) 11) (($ $ (-1234 (-567))) 14)) (-3444 (($ $ |#2|) 32) (($ $ $) NIL)) (-2260 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL))) -(((-282 |#1| |#2|) (-10 -8 (-15 -1812 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -1812 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1| |#2|)) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -3230 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3338 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3230 (|#1| |#2| |#1|)) (-15 -2440 (|#1| |#1|))) (-283 |#2|) (-1217)) (T -282)) -NIL -(-10 -8 (-15 -1812 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -1812 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1| |#2|)) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -3230 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3338 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3230 (|#1| |#2| |#1|)) (-15 -2440 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) 86)) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2300 (($ $) 84 (|has| |#1| (-1101)))) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1101)))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-1812 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1330 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-2115 (($ $ (-567)) 92) (($ $ (-1234 (-567))) 91)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 71)) (-3444 (($ $ |#1|) 94) (($ $ $) 93)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-283 |#1|) (-140) (-1217)) (T -283)) -((-3444 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)))) (-3444 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-2774 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-1330 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1217)))) (-1330 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-1812 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-3502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) (-2774 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-1101)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-1101)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-851))))) -(-13 (-652 |t#1|) (-10 -8 (-6 -4418) (-15 -3444 ($ $ |t#1|)) (-15 -3444 ($ $ $)) (-15 -2115 ($ $ (-567))) (-15 -2115 ($ $ (-1234 (-567)))) (-15 -2774 ($ (-1 (-112) |t#1|) $)) (-15 -1330 ($ |t#1| $ (-567))) (-15 -1330 ($ $ $ (-567))) (-15 -1812 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3502 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1101)) (PROGN (-15 -2774 ($ |t#1| $)) (-15 -2300 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -1812 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) +((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4239 (((-645 (-567)) $) 29)) (-3077 (((-772) $) 27)) (-4132 (((-863) $) 36) (($ (-645 (-567))) 23)) (-1745 (((-112) $ $) NIL)) (-4124 (($ (-772)) 33)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 17))) +(((-276) (-13 (-851) (-10 -8 (-15 -4132 ($ (-645 (-567)))) (-15 -3077 ((-772) $)) (-15 -4239 ((-645 (-567)) $)) (-15 -4124 ($ (-772)))))) (T -276)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) +(-13 (-851) (-10 -8 (-15 -4132 ($ (-645 (-567)))) (-15 -3077 ((-772) $)) (-15 -4239 ((-645 (-567)) $)) (-15 -4124 ($ (-772))))) +((-3146 ((|#2| |#2|) 77)) (-3012 ((|#2| |#2|) 65)) (-4064 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3128 ((|#2| |#2|) 75)) (-2987 ((|#2| |#2|) 63)) (-3166 ((|#2| |#2|) 79)) (-3035 ((|#2| |#2|) 67)) (-1482 ((|#2|) 46)) (-2654 (((-114) (-114)) 100)) (-3063 ((|#2| |#2|) 61)) (-3537 (((-112) |#2|) 147)) (-3985 ((|#2| |#2|) 195)) (-2174 ((|#2| |#2|) 171)) (-3495 ((|#2|) 59)) (-4324 ((|#2|) 58)) (-3455 ((|#2| |#2|) 191)) (-2737 ((|#2| |#2|) 167)) (-2895 ((|#2| |#2|) 199)) (-2736 ((|#2| |#2|) 175)) (-2602 ((|#2| |#2|) 163)) (-2546 ((|#2| |#2|) 165)) (-3486 ((|#2| |#2|) 201)) (-3190 ((|#2| |#2|) 177)) (-3449 ((|#2| |#2|) 197)) (-1622 ((|#2| |#2|) 173)) (-1417 ((|#2| |#2|) 193)) (-3841 ((|#2| |#2|) 169)) (-2294 ((|#2| |#2|) 207)) (-1628 ((|#2| |#2|) 183)) (-2261 ((|#2| |#2|) 203)) (-1887 ((|#2| |#2|) 179)) (-4228 ((|#2| |#2|) 211)) (-2751 ((|#2| |#2|) 187)) (-1926 ((|#2| |#2|) 213)) (-3022 ((|#2| |#2|) 189)) (-3437 ((|#2| |#2|) 209)) (-1976 ((|#2| |#2|) 185)) (-3756 ((|#2| |#2|) 205)) (-1758 ((|#2| |#2|) 181)) (-3946 ((|#2| |#2|) 62)) (-3175 ((|#2| |#2|) 80)) (-3049 ((|#2| |#2|) 68)) (-3156 ((|#2| |#2|) 78)) (-3023 ((|#2| |#2|) 66)) (-3137 ((|#2| |#2|) 76)) (-2999 ((|#2| |#2|) 64)) (-3797 (((-112) (-114)) 98)) (-3200 ((|#2| |#2|) 83)) (-3084 ((|#2| |#2|) 71)) (-3183 ((|#2| |#2|) 81)) (-3062 ((|#2| |#2|) 69)) (-3221 ((|#2| |#2|) 85)) (-3106 ((|#2| |#2|) 73)) (-3785 ((|#2| |#2|) 86)) (-3118 ((|#2| |#2|) 74)) (-3211 ((|#2| |#2|) 84)) (-3095 ((|#2| |#2|) 72)) (-3193 ((|#2| |#2|) 82)) (-3074 ((|#2| |#2|) 70))) +(((-277 |#1| |#2|) (-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3193 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -3211 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1482 (|#2|)) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -4324 (|#2|)) (-15 -3495 (|#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -4064 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3537 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1004))) (T -277)) +((-3537 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1004))))) (-4064 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4228 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2736 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3495 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-4324 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004))))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) (-1482 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004)))))) +(-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3193 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -3211 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1482 (|#2|)) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -4324 (|#2|)) (-15 -3495 (|#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -4064 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3537 ((-112) |#2|))) +((-1458 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178)) 153)) (-3796 ((|#2| (-410 (-567)) |#2|) 49)) (-3278 ((|#2| |#2| (-613 |#2|)) 146)) (-3330 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178)) 145)) (-3641 ((|#2| |#2| (-1178)) 20) ((|#2| |#2|) 23)) (-3321 ((|#2| |#2| (-1178)) 159) ((|#2| |#2|) 157))) +(((-278 |#1| |#2|) (-10 -7 (-15 -3321 (|#2| |#2|)) (-15 -3321 (|#2| |#2| (-1178))) (-15 -3330 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1178))) (-15 -1458 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178))) (-15 -3278 (|#2| |#2| (-613 |#2|))) (-15 -3796 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -278)) +((-3796 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3278 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-1458 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1178)) (-4 *2 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-3330 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3321 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))) +(-10 -7 (-15 -3321 (|#2| |#2|)) (-15 -3321 (|#2| |#2| (-1178))) (-15 -3330 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1178))) (-15 -1458 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178))) (-15 -3278 (|#2| |#2| (-613 |#2|))) (-15 -3796 (|#2| (-410 (-567)) |#2|))) +((-2376 (((-3 |#3| "failed") |#3|) 120)) (-3146 ((|#3| |#3|) 142)) (-3599 (((-3 |#3| "failed") |#3|) 89)) (-3012 ((|#3| |#3|) 132)) (-1649 (((-3 |#3| "failed") |#3|) 65)) (-3128 ((|#3| |#3|) 140)) (-4350 (((-3 |#3| "failed") |#3|) 53)) (-2987 ((|#3| |#3|) 130)) (-1349 (((-3 |#3| "failed") |#3|) 122)) (-3166 ((|#3| |#3|) 144)) (-2305 (((-3 |#3| "failed") |#3|) 91)) (-3035 ((|#3| |#3|) 134)) (-3769 (((-3 |#3| "failed") |#3| (-772)) 41)) (-1557 (((-3 |#3| "failed") |#3|) 81)) (-3063 ((|#3| |#3|) 129)) (-1632 (((-3 |#3| "failed") |#3|) 51)) (-3946 ((|#3| |#3|) 128)) (-1872 (((-3 |#3| "failed") |#3|) 123)) (-3175 ((|#3| |#3|) 145)) (-2874 (((-3 |#3| "failed") |#3|) 92)) (-3049 ((|#3| |#3|) 135)) (-3114 (((-3 |#3| "failed") |#3|) 121)) (-3156 ((|#3| |#3|) 143)) (-2579 (((-3 |#3| "failed") |#3|) 90)) (-3023 ((|#3| |#3|) 133)) (-2136 (((-3 |#3| "failed") |#3|) 67)) (-3137 ((|#3| |#3|) 141)) (-2247 (((-3 |#3| "failed") |#3|) 55)) (-2999 ((|#3| |#3|) 131)) (-4213 (((-3 |#3| "failed") |#3|) 73)) (-3200 ((|#3| |#3|) 148)) (-2363 (((-3 |#3| "failed") |#3|) 114)) (-3084 ((|#3| |#3|) 154)) (-3484 (((-3 |#3| "failed") |#3|) 69)) (-3183 ((|#3| |#3|) 146)) (-2440 (((-3 |#3| "failed") |#3|) 57)) (-3062 ((|#3| |#3|) 136)) (-1886 (((-3 |#3| "failed") |#3|) 77)) (-3221 ((|#3| |#3|) 150)) (-3391 (((-3 |#3| "failed") |#3|) 61)) (-3106 ((|#3| |#3|) 138)) (-2682 (((-3 |#3| "failed") |#3|) 79)) (-3785 ((|#3| |#3|) 151)) (-4109 (((-3 |#3| "failed") |#3|) 63)) (-3118 ((|#3| |#3|) 139)) (-1625 (((-3 |#3| "failed") |#3|) 75)) (-3211 ((|#3| |#3|) 149)) (-1812 (((-3 |#3| "failed") |#3|) 117)) (-3095 ((|#3| |#3|) 155)) (-2287 (((-3 |#3| "failed") |#3|) 71)) (-3193 ((|#3| |#3|) 147)) (-2224 (((-3 |#3| "failed") |#3|) 59)) (-3074 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365))))) +(((-279 |#1| |#2| |#3|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) (-38 (-410 (-567))) (-1259 |#1|) (-1230 |#1| |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1230 *4 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))) +(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) +((-2376 (((-3 |#3| "failed") |#3|) 70)) (-3146 ((|#3| |#3|) 137)) (-3599 (((-3 |#3| "failed") |#3|) 54)) (-3012 ((|#3| |#3|) 125)) (-1649 (((-3 |#3| "failed") |#3|) 66)) (-3128 ((|#3| |#3|) 135)) (-4350 (((-3 |#3| "failed") |#3|) 50)) (-2987 ((|#3| |#3|) 123)) (-1349 (((-3 |#3| "failed") |#3|) 74)) (-3166 ((|#3| |#3|) 139)) (-2305 (((-3 |#3| "failed") |#3|) 58)) (-3035 ((|#3| |#3|) 127)) (-3769 (((-3 |#3| "failed") |#3| (-772)) 38)) (-1557 (((-3 |#3| "failed") |#3|) 48)) (-3063 ((|#3| |#3|) 111)) (-1632 (((-3 |#3| "failed") |#3|) 46)) (-3946 ((|#3| |#3|) 122)) (-1872 (((-3 |#3| "failed") |#3|) 76)) (-3175 ((|#3| |#3|) 140)) (-2874 (((-3 |#3| "failed") |#3|) 60)) (-3049 ((|#3| |#3|) 128)) (-3114 (((-3 |#3| "failed") |#3|) 72)) (-3156 ((|#3| |#3|) 138)) (-2579 (((-3 |#3| "failed") |#3|) 56)) (-3023 ((|#3| |#3|) 126)) (-2136 (((-3 |#3| "failed") |#3|) 68)) (-3137 ((|#3| |#3|) 136)) (-2247 (((-3 |#3| "failed") |#3|) 52)) (-2999 ((|#3| |#3|) 124)) (-4213 (((-3 |#3| "failed") |#3|) 78)) (-3200 ((|#3| |#3|) 143)) (-2363 (((-3 |#3| "failed") |#3|) 62)) (-3084 ((|#3| |#3|) 131)) (-3484 (((-3 |#3| "failed") |#3|) 112)) (-3183 ((|#3| |#3|) 141)) (-2440 (((-3 |#3| "failed") |#3|) 100)) (-3062 ((|#3| |#3|) 129)) (-1886 (((-3 |#3| "failed") |#3|) 116)) (-3221 ((|#3| |#3|) 145)) (-3391 (((-3 |#3| "failed") |#3|) 107)) (-3106 ((|#3| |#3|) 133)) (-2682 (((-3 |#3| "failed") |#3|) 117)) (-3785 ((|#3| |#3|) 146)) (-4109 (((-3 |#3| "failed") |#3|) 109)) (-3118 ((|#3| |#3|) 134)) (-1625 (((-3 |#3| "failed") |#3|) 80)) (-3211 ((|#3| |#3|) 144)) (-1812 (((-3 |#3| "failed") |#3|) 64)) (-3095 ((|#3| |#3|) 132)) (-2287 (((-3 |#3| "failed") |#3|) 113)) (-3193 ((|#3| |#3|) 142)) (-2224 (((-3 |#3| "failed") |#3|) 103)) (-3074 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365))))) +(((-280 |#1| |#2| |#3| |#4|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) (-38 (-410 (-567))) (-1228 |#1|) (-1251 |#1| |#2|) (-985 |#2|)) (T -280)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1228 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1251 *4 *5)) (-4 *6 (-985 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))) +(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) +((-1365 (((-112) $) 20)) (-2386 (((-1183) $) 7)) (-3428 (((-3 (-509) "failed") $) 14)) (-2916 (((-3 (-645 $) "failed") $) NIL)) (-1640 (((-3 (-509) "failed") $) 21)) (-4286 (((-3 (-1106) "failed") $) 18)) (-1935 (((-112) $) 16)) (-4132 (((-863) $) NIL)) (-2175 (((-112) $) 9))) +(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2386 ((-1183) $)) (-15 -1935 ((-112) $)) (-15 -4286 ((-3 (-1106) "failed") $)) (-15 -1365 ((-112) $)) (-15 -1640 ((-3 (-509) "failed") $)) (-15 -2175 ((-112) $)) (-15 -3428 ((-3 (-509) "failed") $)) (-15 -2916 ((-3 (-645 $) "failed") $))))) (T -281)) +((-2386 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-281)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4286 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1640 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3428 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2916 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))) +(-13 (-614 (-863)) (-10 -8 (-15 -2386 ((-1183) $)) (-15 -1935 ((-112) $)) (-15 -4286 ((-3 (-1106) "failed") $)) (-15 -1365 ((-112) $)) (-15 -1640 ((-3 (-509) "failed") $)) (-15 -2175 ((-112) $)) (-15 -3428 ((-3 (-509) "failed") $)) (-15 -2916 ((-3 (-645 $) "failed") $)))) +((-3350 (($ (-1 (-112) |#2|) $) 24)) (-2444 (($ $) 38)) (-2539 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3238 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2966 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2845 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-1560 (($ $ (-567)) 11) (($ $ (-1235 (-567))) 14)) (-2484 (($ $ |#2|) 32) (($ $ $) NIL)) (-2269 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL))) +(((-282 |#1| |#2|) (-10 -8 (-15 -2966 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2444 (|#1| |#1|))) (-283 |#2|) (-1218)) (T -282)) +NIL +(-10 -8 (-15 -2966 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2444 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 86)) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 84 (|has| |#1| (-1102)))) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1102)))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-2966 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2531 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3670 (($ $ (-567)) 92) (($ $ (-1235 (-567))) 91)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2484 (($ $ |#1|) 94) (($ $ $) 93)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-283 |#1|) (-140) (-1218)) (T -283)) +((-2484 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-2531 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2966 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2539 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2966 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-851))))) +(-13 (-652 |t#1|) (-10 -8 (-6 -4419) (-15 -2484 ($ $ |t#1|)) (-15 -2484 ($ $ $)) (-15 -3670 ($ $ (-567))) (-15 -3670 ($ $ (-1235 (-567)))) (-15 -2539 ($ (-1 (-112) |t#1|) $)) (-15 -2531 ($ |t#1| $ (-567))) (-15 -2531 ($ $ $ (-567))) (-15 -2966 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2839 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2539 ($ |t#1| $)) (-15 -2133 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -2966 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) ((** (($ $ $) 10))) (((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3053 (($ $) 6)) (-3927 (($ $) 7)) (** (($ $ $) 8))) +((-3063 (($ $) 6)) (-3946 (($ $) 7)) (** (($ $ $) 8))) (((-285) (-140)) (T -285)) -((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3927 (*1 *1 *1) (-4 *1 (-285))) (-3053 (*1 *1 *1) (-4 *1 (-285)))) -(-13 (-10 -8 (-15 -3053 ($ $)) (-15 -3927 ($ $)) (-15 ** ($ $ $)))) -((-2322 (((-645 (-1157 |#1|)) (-1157 |#1|) |#1|) 35)) (-3797 ((|#2| |#2| |#1|) 39)) (-1862 ((|#2| |#2| |#1|) 41)) (-1802 ((|#2| |#2| |#1|) 40))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3797 (|#2| |#2| |#1|)) (-15 -1802 (|#2| |#2| |#1|)) (-15 -1862 (|#2| |#2| |#1|)) (-15 -2322 ((-645 (-1157 |#1|)) (-1157 |#1|) |#1|))) (-365) (-1258 |#1|)) (T -286)) -((-2322 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1157 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1157 *4)) (-4 *5 (-1258 *4)))) (-1862 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3)))) (-1802 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3)))) (-3797 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3))))) -(-10 -7 (-15 -3797 (|#2| |#2| |#1|)) (-15 -1802 (|#2| |#2| |#1|)) (-15 -1862 (|#2| |#2| |#1|)) (-15 -2322 ((-645 (-1157 |#1|)) (-1157 |#1|) |#1|))) -((-1783 ((|#2| $ |#1|) 6))) -(((-287 |#1| |#2|) (-140) (-1101) (-1217)) (T -287)) -((-1783 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217))))) -(-13 (-10 -8 (-15 -1783 (|t#2| $ |t#1|)))) -((-3759 ((|#3| $ |#2| |#3|) 12)) (-3702 ((|#3| $ |#2|) 10))) -(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3759 (|#3| |#1| |#2| |#3|)) (-15 -3702 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1101) (-1217)) (T -288)) -NIL -(-10 -8 (-15 -3759 (|#3| |#1| |#2| |#3|)) (-15 -3702 (|#3| |#1| |#2|))) -((-4281 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4418)))) (-3759 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) 11)) (-1783 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-289 |#1| |#2|) (-140) (-1101) (-1217)) (T -289)) -((-1783 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) (-3702 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) (-4281 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) (-3759 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217))))) -(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1783 (|t#2| $ |t#1| |t#2|)) (-15 -3702 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -4281 (|t#2| $ |t#1| |t#2|)) (-15 -3759 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3946 (*1 *1 *1) (-4 *1 (-285))) (-3063 (*1 *1 *1) (-4 *1 (-285)))) +(-13 (-10 -8 (-15 -3063 ($ $)) (-15 -3946 ($ $)) (-15 ** ($ $ $)))) +((-4296 (((-645 (-1158 |#1|)) (-1158 |#1|) |#1|) 35)) (-3776 ((|#2| |#2| |#1|) 39)) (-3526 ((|#2| |#2| |#1|) 41)) (-1806 ((|#2| |#2| |#1|) 40))) +(((-286 |#1| |#2|) (-10 -7 (-15 -3776 (|#2| |#2| |#1|)) (-15 -1806 (|#2| |#2| |#1|)) (-15 -3526 (|#2| |#2| |#1|)) (-15 -4296 ((-645 (-1158 |#1|)) (-1158 |#1|) |#1|))) (-365) (-1259 |#1|)) (T -286)) +((-4296 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1158 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1158 *4)) (-4 *5 (-1259 *4)))) (-3526 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))) (-1806 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))) (-3776 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -3776 (|#2| |#2| |#1|)) (-15 -1806 (|#2| |#2| |#1|)) (-15 -3526 (|#2| |#2| |#1|)) (-15 -4296 ((-645 (-1158 |#1|)) (-1158 |#1|) |#1|))) +((-1787 ((|#2| $ |#1|) 6))) +(((-287 |#1| |#2|) (-140) (-1102) (-1218)) (T -287)) +((-1787 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218))))) +(-13 (-10 -8 (-15 -1787 (|t#2| $ |t#1|)))) +((-3741 ((|#3| $ |#2| |#3|) 12)) (-3680 ((|#3| $ |#2|) 10))) +(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3741 (|#3| |#1| |#2| |#3|)) (-15 -3680 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1102) (-1218)) (T -288)) +NIL +(-10 -8 (-15 -3741 (|#3| |#1| |#2| |#3|)) (-15 -3680 (|#3| |#1| |#2|))) +((-4284 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4419)))) (-3741 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 11)) (-1787 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-289 |#1| |#2|) (-140) (-1102) (-1218)) (T -289)) +((-1787 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-3741 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218))))) +(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1787 (|t#2| $ |t#1| |t#2|)) (-15 -3680 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -4284 (|t#2| $ |t#1| |t#2|)) (-15 -3741 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-287 |#1| |#2|) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 37)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 44)) (-1312 (($ $) 41)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) 35)) (-2499 (($ |#2| |#3|) 18)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2542 ((|#3| $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 19)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4207 (((-3 $ "failed") $ $) NIL)) (-4197 (((-772) $) 36)) (-1783 ((|#2| $ |#2|) 46)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 23)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 31 T CONST)) (-1722 (($) 39 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40))) -(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -2542 (|#3| $)) (-15 -4127 (|#2| $)) (-15 -2499 ($ |#2| |#3|)) (-15 -4207 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 $ "failed") $)) (-15 -2933 ($ $)) (-15 -1783 (|#2| $ |#2|)))) (-172) (-1243 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) -((-3153 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2542 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1243 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4127 (*1 *2 *1) (-12 (-4 *2 (-1243 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2499 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1243 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4207 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2933 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1783 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1243 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-308) (-10 -8 (-15 -2542 (|#3| $)) (-15 -4127 (|#2| $)) (-15 -2499 ($ |#2| |#3|)) (-15 -4207 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 $ "failed") $)) (-15 -2933 ($ $)) (-15 -1783 (|#2| $ |#2|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 37)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 44)) (-4381 (($ $) 41)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) 35)) (-2477 (($ |#2| |#3|) 18)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 ((|#3| $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 19)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1771 (((-3 $ "failed") $ $) NIL)) (-1990 (((-772) $) 36)) (-1787 ((|#2| $ |#2|) 46)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 23)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 31 T CONST)) (-1728 (($) 39 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40))) +(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -2211 (|#3| $)) (-15 -4132 (|#2| $)) (-15 -2477 ($ |#2| |#3|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)) (-15 -1787 (|#2| $ |#2|)))) (-172) (-1244 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) +((-2109 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2211 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1244 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2477 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1244 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2939 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1787 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1244 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-308) (-10 -8 (-15 -2211 (|#3| $)) (-15 -4132 (|#2| $)) (-15 -2477 ($ |#2| |#3|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)) (-15 -1787 (|#2| $ |#2|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-291) (-140)) (T -291)) NIL -(-13 (-1050) (-111 $ $) (-10 -7 (-6 -4410))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2261 (($ (-509) (-509) (-1105) $) 19)) (-4382 (($ (-509) (-645 (-966)) $) 23)) (-4312 (((-645 (-1086)) $) 10)) (-2717 (($) 25)) (-2684 (((-692 (-1105)) (-509) (-509) $) 18)) (-2124 (((-645 (-966)) (-509) $) 22)) (-3347 (($) 7)) (-3653 (($) 24)) (-4127 (((-863) $) 29)) (-2727 (($) 26))) -(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -4312 ((-645 (-1086)) $)) (-15 -2684 ((-692 (-1105)) (-509) (-509) $)) (-15 -2261 ($ (-509) (-509) (-1105) $)) (-15 -2124 ((-645 (-966)) (-509) $)) (-15 -4382 ($ (-509) (-645 (-966)) $)) (-15 -3653 ($)) (-15 -2717 ($)) (-15 -2727 ($))))) (T -292)) -((-3347 (*1 *1) (-5 *1 (-292))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-645 (-1086))) (-5 *1 (-292)))) (-2684 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1105))) (-5 *1 (-292)))) (-2261 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1105)) (-5 *1 (-292)))) (-2124 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-966))) (-5 *1 (-292)))) (-4382 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-292)))) (-3653 (*1 *1) (-5 *1 (-292))) (-2717 (*1 *1) (-5 *1 (-292))) (-2727 (*1 *1) (-5 *1 (-292)))) -(-13 (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -4312 ((-645 (-1086)) $)) (-15 -2684 ((-692 (-1105)) (-509) (-509) $)) (-15 -2261 ($ (-509) (-509) (-1105) $)) (-15 -2124 ((-645 (-966)) (-509) $)) (-15 -4382 ($ (-509) (-645 (-966)) $)) (-15 -3653 ($)) (-15 -2717 ($)) (-15 -2727 ($)))) -((-2203 (((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))) 105)) (-3500 (((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|)))) 100) (((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772)) 41)) (-2291 (((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))) 102)) (-2133 (((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|)))) 77)) (-1478 (((-645 (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (-690 (-410 (-953 |#1|)))) 76)) (-3116 (((-953 |#1|) (-690 (-410 (-953 |#1|)))) 57) (((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1177)) 58))) -(((-293 |#1|) (-10 -7 (-15 -3116 ((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1177))) (-15 -3116 ((-953 |#1|) (-690 (-410 (-953 |#1|))))) (-15 -1478 ((-645 (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (-690 (-410 (-953 |#1|))))) (-15 -2133 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|))))) (-15 -3500 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772))) (-15 -3500 ((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|))))) (-15 -2203 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|))))) (-15 -2291 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))))) (-455)) (T -293)) -((-2291 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))) (-2203 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))) (-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-953 *5)) (-1166 (-1177) (-953 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))) (-3500 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-953 *6)) (-1166 (-1177) (-953 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-953 *6)))))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-953 *5)) (-1166 (-1177) (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4))))) (-5 *1 (-293 *4)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-5 *2 (-953 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-953 *5)))) (-5 *4 (-1177)) (-5 *2 (-953 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))) -(-10 -7 (-15 -3116 ((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1177))) (-15 -3116 ((-953 |#1|) (-690 (-410 (-953 |#1|))))) (-15 -1478 ((-645 (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (-690 (-410 (-953 |#1|))))) (-15 -2133 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|))))) (-15 -3500 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772))) (-15 -3500 ((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|))))) (-15 -2203 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|))))) (-15 -2291 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1166 (-1177) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))))) -((-3822 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) -(((-294 |#1| |#2|) (-10 -7 (-15 -3822 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1217) (-1217)) (T -294)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) -(-10 -7 (-15 -3822 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2840 (((-112) $) NIL (|has| |#1| (-21)))) (-3001 (($ $) 12)) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2989 (($ $ $) 95 (|has| |#1| (-303)))) (-2245 (($) NIL (-2797 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-3207 (($ $) 51 (|has| |#1| (-21)))) (-1579 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-4100 ((|#1| $) 11)) (-3153 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-2843 (((-112) $) NIL (|has| |#1| (-727)))) (-3822 (($ (-1 |#1| |#1|) $) 14)) (-4084 ((|#1| $) 10)) (-2584 (($ $) 50 (|has| |#1| (-21)))) (-1746 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2933 (($ $) 64 (-2797 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2587 (((-645 $) $) 85 (|has| |#1| (-559)))) (-2631 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-1177) |#1|) 17 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1177) |#1|)))) (-2534 (($ |#1| |#1|) 9)) (-1635 (((-134)) 90 (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) 87 (|has| |#1| (-901 (-1177))))) (-2073 (($ $ $) NIL (|has| |#1| (-476)))) (-3387 (($ $ $) NIL (|has| |#1| (-476)))) (-4127 (($ (-567)) NIL (|has| |#1| (-1050))) (((-112) $) 37 (|has| |#1| (-1101))) (((-863) $) 36 (|has| |#1| (-1101)))) (-1772 (((-772)) 67 (|has| |#1| (-1050)) CONST)) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1710 (($) 47 (|has| |#1| (-21)) CONST)) (-1722 (($) 57 (|has| |#1| (-727)) CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177))))) (-2929 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1101)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2797 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3037 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3024 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-922)) NIL (|has| |#1| (-1113)))) (* (($ $ |#1|) 55 (|has| |#1| (-1113))) (($ |#1| $) 54 (|has| |#1| (-1113))) (($ $ $) 53 (|has| |#1| (-1113))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-25))))) -(((-295 |#1|) (-13 (-1217) (-10 -8 (-15 -2929 ($ |#1| |#1|)) (-15 -2534 ($ |#1| |#1|)) (-15 -3001 ($ $)) (-15 -4084 (|#1| $)) (-15 -4100 (|#1| $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1177) |#1|)) (-6 (-517 (-1177) |#1|)) |%noBranch|) (IF (|has| |#1| (-1101)) (PROGN (-6 (-1101)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2584 ($ $)) (-15 -3207 ($ $)) (-15 -3037 ($ |#1| $)) (-15 -3037 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -1746 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1746 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2587 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-901 (-1177))) (-6 (-901 (-1177))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1274 |#1|)) (-15 -3050 ($ $ $)) (-15 -2933 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2989 ($ $ $)) |%noBranch|))) (-1217)) (T -295)) -((-2929 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) (-2534 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) (-3001 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) (-4084 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) (-4100 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-295 *3)))) (-2631 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1101)) (-4 *2 (-1217)) (-5 *1 (-295 *2)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1101)) (-4 *3 (-1217)) (-5 *1 (-295 *3)))) (-3024 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1217)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1217)))) (-2584 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) (-3207 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) (-3037 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) (-3037 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) (-1746 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1217)))) (-1579 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1217)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1217)))) (-2989 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1217)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1113)) (-4 *2 (-1217)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1113)) (-4 *2 (-1217)))) (-3050 (*1 *1 *1 *1) (-2797 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1217))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1217))))) (-2933 (*1 *1 *1) (-2797 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1217))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1217)))))) -(-13 (-1217) (-10 -8 (-15 -2929 ($ |#1| |#1|)) (-15 -2534 ($ |#1| |#1|)) (-15 -3001 ($ $)) (-15 -4084 (|#1| $)) (-15 -4100 (|#1| $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1177) |#1|)) (-6 (-517 (-1177) |#1|)) |%noBranch|) (IF (|has| |#1| (-1101)) (PROGN (-6 (-1101)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2584 ($ $)) (-15 -3207 ($ $)) (-15 -3037 ($ |#1| $)) (-15 -3037 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -1746 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1746 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2587 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-901 (-1177))) (-6 (-901 (-1177))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1274 |#1|)) (-15 -3050 ($ $ $)) (-15 -2933 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2989 ($ $ $)) |%noBranch|))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) NIL)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-296 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) (-1101) (-1101)) (T -296)) -NIL -(-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) -((-2053 (((-313) (-1159) (-645 (-1159))) 17) (((-313) (-1159) (-1159)) 16) (((-313) (-645 (-1159))) 15) (((-313) (-1159)) 14))) -(((-297) (-10 -7 (-15 -2053 ((-313) (-1159))) (-15 -2053 ((-313) (-645 (-1159)))) (-15 -2053 ((-313) (-1159) (-1159))) (-15 -2053 ((-313) (-1159) (-645 (-1159)))))) (T -297)) -((-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1159))) (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2053 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-313)) (-5 *1 (-297)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-297))))) -(-10 -7 (-15 -2053 ((-313) (-1159))) (-15 -2053 ((-313) (-645 (-1159)))) (-15 -2053 ((-313) (-1159) (-1159))) (-15 -2053 ((-313) (-1159) (-645 (-1159))))) -((-3822 ((|#2| (-1 |#2| |#1|) (-1159) (-613 |#1|)) 18))) -(((-298 |#1| |#2|) (-10 -7 (-15 -3822 (|#2| (-1 |#2| |#1|) (-1159) (-613 |#1|)))) (-303) (-1217)) (T -298)) -((-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1159)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1217)) (-5 *1 (-298 *6 *2))))) -(-10 -7 (-15 -3822 (|#2| (-1 |#2| |#1|) (-1159) (-613 |#1|)))) -((-3822 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17))) -(((-299 |#1| |#2|) (-10 -7 (-15 -3822 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) -(-10 -7 (-15 -3822 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) -((-3617 (((-112) (-225)) 12))) -(((-300 |#1| |#2|) (-10 -7 (-15 -3617 ((-112) (-225)))) (-225) (-225)) (T -300)) -((-3617 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3617 ((-112) (-225)))) -((-3689 (((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225)))) 118)) (-2708 (((-1157 (-225)) (-1267 (-317 (-225))) (-645 (-1177)) (-1095 (-844 (-225)))) 135) (((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225)))) 72)) (-4370 (((-645 (-1159)) (-1157 (-225))) NIL)) (-2252 (((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225)))) 69)) (-3562 (((-645 (-225)) (-953 (-410 (-567))) (-1177) (-1095 (-844 (-225)))) 59)) (-3236 (((-645 (-1159)) (-645 (-225))) NIL)) (-1489 (((-225) (-1095 (-844 (-225)))) 29)) (-3595 (((-225) (-1095 (-844 (-225)))) 30)) (-2369 (((-112) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3672 (((-1159) (-225)) NIL))) -(((-301) (-10 -7 (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2369 ((-112) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2252 ((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225))))) (-15 -3689 ((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-1267 (-317 (-225))) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -3562 ((-645 (-225)) (-953 (-410 (-567))) (-1177) (-1095 (-844 (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225)))))) (T -301)) -((-4370 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-301)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-301)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-301)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *4 (-1177)) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-2708 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *4 (-645 (-1177))) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301)))) (-2708 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1177))) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301)))) (-3689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1177))) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301)))) (-2252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1177)) (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) -(-10 -7 (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2369 ((-112) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2252 ((-645 (-225)) (-317 (-225)) (-1177) (-1095 (-844 (-225))))) (-15 -3689 ((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-317 (-225)) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -2708 ((-1157 (-225)) (-1267 (-317 (-225))) (-645 (-1177)) (-1095 (-844 (-225))))) (-15 -3562 ((-645 (-225)) (-953 (-410 (-567))) (-1177) (-1095 (-844 (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225))))) -((-2564 (((-645 (-613 $)) $) 27)) (-2989 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3747 (((-3 (-613 $) "failed") $) 127)) (-2033 (((-613 $) $) 126)) (-2482 (($ $) 17) (($ (-645 $)) 54)) (-3921 (((-645 (-114)) $) 35)) (-2652 (((-114) (-114)) 88)) (-2904 (((-112) $) 150)) (-3822 (($ (-1 $ $) (-613 $)) 86)) (-1622 (((-3 (-613 $) "failed") $) 94)) (-3627 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-1582 (((-112) $ (-114)) 132) (((-112) $ (-1177)) 131)) (-4133 (((-772) $) 44)) (-3211 (((-112) $ $) 57) (((-112) $ (-1177)) 49)) (-2799 (((-112) $) 148)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1177) (-1 $ (-645 $))) 67) (($ $ (-1177) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1783 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-1612 (($ $) 51) (($ $ $) 135)) (-1331 (($ $) 15) (($ (-645 $)) 53)) (-2134 (((-112) (-114)) 21))) -(((-302 |#1|) (-10 -8 (-15 -2904 ((-112) |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| |#1|)))) (-15 -3211 ((-112) |#1| (-1177))) (-15 -3211 ((-112) |#1| |#1|)) (-15 -3822 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3627 (|#1| (-114) (-645 |#1|))) (-15 -3627 (|#1| (-114) |#1|)) (-15 -1582 ((-112) |#1| (-1177))) (-15 -1582 ((-112) |#1| (-114))) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -3921 ((-645 (-114)) |#1|)) (-15 -2564 ((-645 (-613 |#1|)) |#1|)) (-15 -1622 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4133 ((-772) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -2482 (|#1| (-645 |#1|))) (-15 -2482 (|#1| |#1|)) (-15 -1331 (|#1| (-645 |#1|))) (-15 -1331 (|#1| |#1|)) (-15 -2989 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2989 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2989 (|#1| |#1| (-295 |#1|))) (-15 -1783 (|#1| (-114) (-645 |#1|))) (-15 -1783 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3747 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2033 ((-613 |#1|) |#1|))) (-303)) (T -302)) -((-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) -(-10 -8 (-15 -2904 ((-112) |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| |#1|)))) (-15 -3211 ((-112) |#1| (-1177))) (-15 -3211 ((-112) |#1| |#1|)) (-15 -3822 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3627 (|#1| (-114) (-645 |#1|))) (-15 -3627 (|#1| (-114) |#1|)) (-15 -1582 ((-112) |#1| (-1177))) (-15 -1582 ((-112) |#1| (-114))) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -3921 ((-645 (-114)) |#1|)) (-15 -2564 ((-645 (-613 |#1|)) |#1|)) (-15 -1622 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4133 ((-772) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -2482 (|#1| (-645 |#1|))) (-15 -2482 (|#1| |#1|)) (-15 -1331 (|#1| (-645 |#1|))) (-15 -1331 (|#1| |#1|)) (-15 -2989 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2989 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2989 (|#1| |#1| (-295 |#1|))) (-15 -1783 (|#1| (-114) (-645 |#1|))) (-15 -1783 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3747 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2033 ((-613 |#1|) |#1|))) -((-2399 (((-112) $ $) 7)) (-2564 (((-645 (-613 $)) $) 39)) (-2989 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3747 (((-3 (-613 $) "failed") $) 64)) (-2033 (((-613 $) $) 65)) (-2482 (($ $) 46) (($ (-645 $)) 45)) (-3921 (((-645 (-114)) $) 38)) (-2652 (((-114) (-114)) 37)) (-2904 (((-112) $) 17 (|has| $ (-1039 (-567))))) (-4275 (((-1173 $) (-613 $)) 20 (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) 31)) (-1622 (((-3 (-613 $) "failed") $) 41)) (-3739 (((-1159) $) 10)) (-2640 (((-645 (-613 $)) $) 40)) (-3627 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-1582 (((-112) $ (-114)) 35) (((-112) $ (-1177)) 34)) (-4133 (((-772) $) 42)) (-3430 (((-1121) $) 11)) (-3211 (((-112) $ $) 30) (((-112) $ (-1177)) 29)) (-2799 (((-112) $) 18 (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1177)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1177) (-1 $ (-645 $))) 26) (($ $ (-1177) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1783 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-1612 (($ $) 44) (($ $ $) 43)) (-2530 (($ $) 19 (|has| $ (-1050)))) (-4127 (((-863) $) 12) (($ (-613 $)) 63)) (-1331 (($ $) 48) (($ (-645 $)) 47)) (-2134 (((-112) (-114)) 36)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +(-13 (-1051) (-111 $ $) (-10 -7 (-6 -4411))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3637 (($ (-509) (-509) (-1106) $) 19)) (-4038 (($ (-509) (-645 (-967)) $) 23)) (-3679 (((-645 (-1087)) $) 10)) (-1834 (($) 25)) (-4343 (((-692 (-1106)) (-509) (-509) $) 18)) (-2195 (((-645 (-967)) (-509) $) 22)) (-3498 (($) 7)) (-3659 (($) 24)) (-4132 (((-863) $) 29)) (-1383 (($) 26))) +(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3679 ((-645 (-1087)) $)) (-15 -4343 ((-692 (-1106)) (-509) (-509) $)) (-15 -3637 ($ (-509) (-509) (-1106) $)) (-15 -2195 ((-645 (-967)) (-509) $)) (-15 -4038 ($ (-509) (-645 (-967)) $)) (-15 -3659 ($)) (-15 -1834 ($)) (-15 -1383 ($))))) (T -292)) +((-3498 (*1 *1) (-5 *1 (-292))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))) (-4343 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))) (-3637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-2195 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))) (-4038 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))) (-3659 (*1 *1) (-5 *1 (-292))) (-1834 (*1 *1) (-5 *1 (-292))) (-1383 (*1 *1) (-5 *1 (-292)))) +(-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3679 ((-645 (-1087)) $)) (-15 -4343 ((-692 (-1106)) (-509) (-509) $)) (-15 -3637 ($ (-509) (-509) (-1106) $)) (-15 -2195 ((-645 (-967)) (-509) $)) (-15 -4038 ($ (-509) (-645 (-967)) $)) (-15 -3659 ($)) (-15 -1834 ($)) (-15 -1383 ($)))) +((-3180 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 105)) (-2634 (((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|)))) 100) (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772)) 41)) (-3429 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 102)) (-1899 (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|)))) 77)) (-1550 (((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|)))) 76)) (-2155 (((-954 |#1|) (-690 (-410 (-954 |#1|)))) 57) (((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178)) 58))) +(((-293 |#1|) (-10 -7 (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178))) (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -1550 ((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1899 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3180 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3429 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) (-455)) (T -293)) +((-3429 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-3180 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-2634 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1167 (-1178) (-954 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) (-1899 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4))))) (-5 *1 (-293 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1178)) (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))) +(-10 -7 (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178))) (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -1550 ((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1899 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3180 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3429 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) +((-3829 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) +(((-294 |#1| |#2|) (-10 -7 (-15 -3829 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1218) (-1218)) (T -294)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) +(-10 -7 (-15 -3829 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3226 (($ $) 12)) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2960 (($ $ $) 95 (|has| |#1| (-303)))) (-2585 (($) NIL (-2800 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-1807 (($ $) 51 (|has| |#1| (-21)))) (-1513 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-4104 ((|#1| $) 11)) (-2109 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-1433 (((-112) $) NIL (|has| |#1| (-727)))) (-3829 (($ (-1 |#1| |#1|) $) 14)) (-4089 ((|#1| $) 10)) (-4330 (($ $) 50 (|has| |#1| (-21)))) (-3438 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2939 (($ $) 64 (-2800 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3464 (((-645 $) $) 85 (|has| |#1| (-559)))) (-2631 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-1178) |#1|) 17 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1178) |#1|)))) (-2537 (($ |#1| |#1|) 9)) (-1879 (((-134)) 90 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 87 (|has| |#1| (-902 (-1178))))) (-1823 (($ $ $) NIL (|has| |#1| (-476)))) (-1485 (($ $ $) NIL (|has| |#1| (-476)))) (-4132 (($ (-567)) NIL (|has| |#1| (-1051))) (((-112) $) 37 (|has| |#1| (-1102))) (((-863) $) 36 (|has| |#1| (-1102)))) (-4221 (((-772)) 67 (|has| |#1| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1716 (($) 47 (|has| |#1| (-21)) CONST)) (-1728 (($) 57 (|has| |#1| (-727)) CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178))))) (-2936 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2800 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3045 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3033 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-923)) NIL (|has| |#1| (-1114)))) (* (($ $ |#1|) 55 (|has| |#1| (-1114))) (($ |#1| $) 54 (|has| |#1| (-1114))) (($ $ $) 53 (|has| |#1| (-1114))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-25))))) +(((-295 |#1|) (-13 (-1218) (-10 -8 (-15 -2936 ($ |#1| |#1|)) (-15 -2537 ($ |#1| |#1|)) (-15 -3226 ($ $)) (-15 -4089 (|#1| $)) (-15 -4104 (|#1| $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1178) |#1|)) (-6 (-517 (-1178) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3033 ($ |#1| $)) (-15 -3033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4330 ($ $)) (-15 -1807 ($ $)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3464 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1275 |#1|)) (-15 -3060 ($ $ $)) (-15 -2939 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2960 ($ $ $)) |%noBranch|))) (-1218)) (T -295)) +((-2936 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-2537 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-3226 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-4089 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-4104 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-295 *3)))) (-2631 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)) (-5 *1 (-295 *2)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)) (-5 *1 (-295 *3)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) (-3033 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) (-4330 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-1807 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3438 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))) (-1513 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1218)))) (-2960 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1218)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) (-3060 (*1 *1 *1 *1) (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218))))) (-2939 (*1 *1 *1) (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218)))))) +(-13 (-1218) (-10 -8 (-15 -2936 ($ |#1| |#1|)) (-15 -2537 ($ |#1| |#1|)) (-15 -3226 ($ $)) (-15 -4089 (|#1| $)) (-15 -4104 (|#1| $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1178) |#1|)) (-6 (-517 (-1178) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3033 ($ |#1| $)) (-15 -3033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4330 ($ $)) (-15 -1807 ($ $)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3464 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1275 |#1|)) (-15 -3060 ($ $ $)) (-15 -2939 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2960 ($ $ $)) |%noBranch|))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-296 |#1| |#2|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102)) (T -296)) +NIL +(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) +((-2058 (((-313) (-1160) (-645 (-1160))) 17) (((-313) (-1160) (-1160)) 16) (((-313) (-645 (-1160))) 15) (((-313) (-1160)) 14))) +(((-297) (-10 -7 (-15 -2058 ((-313) (-1160))) (-15 -2058 ((-313) (-645 (-1160)))) (-15 -2058 ((-313) (-1160) (-1160))) (-15 -2058 ((-313) (-1160) (-645 (-1160)))))) (T -297)) +((-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1160))) (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297))))) +(-10 -7 (-15 -2058 ((-313) (-1160))) (-15 -2058 ((-313) (-645 (-1160)))) (-15 -2058 ((-313) (-1160) (-1160))) (-15 -2058 ((-313) (-1160) (-645 (-1160))))) +((-3829 ((|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|)) 18))) +(((-298 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|)))) (-303) (-1218)) (T -298)) +((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1160)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1218)) (-5 *1 (-298 *6 *2))))) +(-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|)))) +((-3829 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17))) +(((-299 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) +(-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) +((-2642 (((-112) (-225)) 12))) +(((-300 |#1| |#2|) (-10 -7 (-15 -2642 ((-112) (-225)))) (-225) (-225)) (T -300)) +((-2642 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2642 ((-112) (-225)))) +((-3224 (((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225)))) 118)) (-2364 (((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225)))) 135) (((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225)))) 72)) (-2308 (((-645 (-1160)) (-1158 (-225))) NIL)) (-3947 (((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225)))) 69)) (-2154 (((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225)))) 59)) (-3258 (((-645 (-1160)) (-645 (-225))) NIL)) (-1594 (((-225) (-1096 (-844 (-225)))) 29)) (-2158 (((-225) (-1096 (-844 (-225)))) 30)) (-3336 (((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3905 (((-1160) (-225)) NIL))) +(((-301) (-10 -7 (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3336 ((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -3224 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2154 ((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))))) (T -301)) +((-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-301)))) (-2154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-3224 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) +(-10 -7 (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3336 ((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -3224 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2154 ((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225))))) +((-2566 (((-645 (-613 $)) $) 27)) (-2960 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) 127)) (-2038 (((-613 $) $) 126)) (-2068 (($ $) 17) (($ (-645 $)) 54)) (-2034 (((-645 (-114)) $) 35)) (-2654 (((-114) (-114)) 88)) (-3837 (((-112) $) 150)) (-3829 (($ (-1 $ $) (-613 $)) 86)) (-2700 (((-3 (-613 $) "failed") $) 94)) (-3632 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-1854 (((-112) $ (-114)) 132) (((-112) $ (-1178)) 131)) (-4138 (((-772) $) 44)) (-3922 (((-112) $ $) 57) (((-112) $ (-1178)) 49)) (-2757 (((-112) $) 148)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) 67) (($ $ (-1178) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1787 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-3241 (($ $) 51) (($ $ $) 135)) (-1334 (($ $) 15) (($ (-645 $)) 53)) (-3797 (((-112) (-114)) 21))) +(((-302 |#1|) (-10 -8 (-15 -3837 ((-112) |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3922 ((-112) |#1| (-1178))) (-15 -3922 ((-112) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3632 (|#1| (-114) (-645 |#1|))) (-15 -3632 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1178))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2034 ((-645 (-114)) |#1|)) (-15 -2566 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4138 ((-772) |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -2068 (|#1| (-645 |#1|))) (-15 -2068 (|#1| |#1|)) (-15 -1334 (|#1| (-645 |#1|))) (-15 -1334 (|#1| |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|))) (-303)) (T -302)) +((-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) +(-10 -8 (-15 -3837 ((-112) |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3922 ((-112) |#1| (-1178))) (-15 -3922 ((-112) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3632 (|#1| (-114) (-645 |#1|))) (-15 -3632 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1178))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2034 ((-645 (-114)) |#1|)) (-15 -2566 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4138 ((-772) |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -2068 (|#1| (-645 |#1|))) (-15 -2068 (|#1| |#1|)) (-15 -1334 (|#1| (-645 |#1|))) (-15 -1334 (|#1| |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|))) +((-2403 (((-112) $ $) 7)) (-2566 (((-645 (-613 $)) $) 39)) (-2960 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3753 (((-3 (-613 $) "failed") $) 64)) (-2038 (((-613 $) $) 65)) (-2068 (($ $) 46) (($ (-645 $)) 45)) (-2034 (((-645 (-114)) $) 38)) (-2654 (((-114) (-114)) 37)) (-3837 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-3263 (((-1174 $) (-613 $)) 20 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 31)) (-2700 (((-3 (-613 $) "failed") $) 41)) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 40)) (-3632 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-1854 (((-112) $ (-114)) 35) (((-112) $ (-1178)) 34)) (-4138 (((-772) $) 42)) (-3430 (((-1122) $) 11)) (-3922 (((-112) $ $) 30) (((-112) $ (-1178)) 29)) (-2757 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1178) (-1 $ (-645 $))) 26) (($ $ (-1178) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1787 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-3241 (($ $) 44) (($ $ $) 43)) (-3341 (($ $) 19 (|has| $ (-1051)))) (-4132 (((-863) $) 12) (($ (-613 $)) 63)) (-1334 (($ $) 48) (($ (-645 $)) 47)) (-3797 (((-112) (-114)) 36)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-303) (-140)) (T -303)) -((-1783 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1783 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1783 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1783 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-2989 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-1331 (*1 *1 *1) (-4 *1 (-303))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-2482 (*1 *1 *1) (-4 *1 (-303))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-1612 (*1 *1 *1) (-4 *1 (-303))) (-1612 (*1 *1 *1 *1) (-4 *1 (-303))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-1622 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-2652 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2134 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1582 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1582 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1177)) (-5 *2 (-112)))) (-3627 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3822 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-3211 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3211 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1177)) (-5 *2 (-112)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1050)) (-4 *1 (-303)) (-5 *2 (-1173 *1)))) (-2530 (*1 *1 *1) (-12 (-4 *1 (-1050)) (-4 *1 (-303)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))) -(-13 (-1101) (-1039 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1783 ($ (-114) $)) (-15 -1783 ($ (-114) $ $)) (-15 -1783 ($ (-114) $ $ $)) (-15 -1783 ($ (-114) $ $ $ $)) (-15 -1783 ($ (-114) (-645 $))) (-15 -2989 ($ $ (-295 $))) (-15 -2989 ($ $ (-645 (-295 $)))) (-15 -2989 ($ $ (-645 (-613 $)) (-645 $))) (-15 -1331 ($ $)) (-15 -1331 ($ (-645 $))) (-15 -2482 ($ $)) (-15 -2482 ($ (-645 $))) (-15 -1612 ($ $)) (-15 -1612 ($ $ $)) (-15 -4133 ((-772) $)) (-15 -1622 ((-3 (-613 $) "failed") $)) (-15 -2640 ((-645 (-613 $)) $)) (-15 -2564 ((-645 (-613 $)) $)) (-15 -3921 ((-645 (-114)) $)) (-15 -2652 ((-114) (-114))) (-15 -2134 ((-112) (-114))) (-15 -1582 ((-112) $ (-114))) (-15 -1582 ((-112) $ (-1177))) (-15 -3627 ($ (-114) $)) (-15 -3627 ($ (-114) (-645 $))) (-15 -3822 ($ (-1 $ $) (-613 $))) (-15 -3211 ((-112) $ $)) (-15 -3211 ((-112) $ (-1177))) (-15 -2631 ($ $ (-645 (-1177)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1177)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1177) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1177) (-1 $ $))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-114) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1050)) (PROGN (-15 -4275 ((-1173 $) (-613 $))) (-15 -2530 ($ $))) |%noBranch|) (IF (|has| $ (-1039 (-567))) (PROGN (-15 -2799 ((-112) $)) (-15 -2904 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-617 #0=(-613 $)) . T) ((-614 (-863)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1039 #0#) . T) ((-1101) . T)) -((-3292 (((-645 |#1|) (-645 |#1|)) 10))) -(((-304 |#1|) (-10 -7 (-15 -3292 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304)) -((-3292 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) -(-10 -7 (-15 -3292 ((-645 |#1|) (-645 |#1|)))) -((-3822 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17))) -(((-305 |#1| |#2|) (-10 -7 (-15 -3822 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1050) (-1050)) (T -305)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6))))) -(-10 -7 (-15 -3822 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) -((-4287 (((-1267 (-317 (-381))) (-1267 (-317 (-225)))) 112)) (-4221 (((-1095 (-844 (-225))) (-1095 (-844 (-381)))) 45)) (-4370 (((-645 (-1159)) (-1157 (-225))) 94)) (-3461 (((-317 (-381)) (-953 (-225))) 55)) (-3405 (((-225) (-953 (-225))) 51)) (-1811 (((-1159) (-381)) 197)) (-1481 (((-844 (-225)) (-844 (-381))) 39)) (-3805 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1267 (-317 (-225)))) 165)) (-1965 (((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) 209) (((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) 207)) (-4138 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-3913 (((-1267 (-700)) (-645 (-225))) 101)) (-3236 (((-645 (-1159)) (-645 (-225))) 81)) (-4061 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-3617 (((-112) (-225) (-1095 (-844 (-225)))) 119)) (-2103 (((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-1489 (((-225) (-1095 (-844 (-225)))) 114)) (-3595 (((-225) (-1095 (-844 (-225)))) 115)) (-3835 (((-225) (-410 (-567))) 33)) (-4055 (((-1159) (-381)) 79)) (-2824 (((-225) (-381)) 24)) (-2020 (((-381) (-1267 (-317 (-225)))) 179)) (-3775 (((-317 (-225)) (-317 (-381))) 30)) (-2581 (((-410 (-567)) (-317 (-225))) 58)) (-4229 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-2755 (((-317 (-381)) (-317 (-225))) 105)) (-1866 (((-225) (-317 (-225))) 59)) (-1757 (((-645 (-225)) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) 70)) (-3370 (((-1095 (-844 (-225))) (-1095 (-844 (-225)))) 67)) (-3672 (((-1159) (-225)) 78)) (-1871 (((-700) (-225)) 97)) (-1434 (((-410 (-567)) (-225)) 60)) (-2472 (((-317 (-381)) (-225)) 54)) (-3880 (((-645 (-1095 (-844 (-225)))) (-645 (-1095 (-844 (-381))))) 48)) (-2260 (((-1036) (-645 (-1036))) 193) (((-1036) (-1036) (-1036)) 187)) (-1335 (((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-306) (-10 -7 (-15 -2824 ((-225) (-381))) (-15 -3775 ((-317 (-225)) (-317 (-381)))) (-15 -1481 ((-844 (-225)) (-844 (-381)))) (-15 -4221 ((-1095 (-844 (-225))) (-1095 (-844 (-381))))) (-15 -3880 ((-645 (-1095 (-844 (-225)))) (-645 (-1095 (-844 (-381)))))) (-15 -1434 ((-410 (-567)) (-225))) (-15 -2581 ((-410 (-567)) (-317 (-225)))) (-15 -1866 ((-225) (-317 (-225)))) (-15 -4061 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2020 ((-381) (-1267 (-317 (-225))))) (-15 -3805 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1267 (-317 (-225))))) (-15 -4229 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3370 ((-1095 (-844 (-225))) (-1095 (-844 (-225))))) (-15 -1757 ((-645 (-225)) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) (-15 -1871 ((-700) (-225))) (-15 -3913 ((-1267 (-700)) (-645 (-225)))) (-15 -2755 ((-317 (-381)) (-317 (-225)))) (-15 -4287 ((-1267 (-317 (-381))) (-1267 (-317 (-225))))) (-15 -3617 ((-112) (-225) (-1095 (-844 (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -4055 ((-1159) (-381))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225)))) (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2260 ((-1036) (-1036) (-1036))) (-15 -2260 ((-1036) (-645 (-1036)))) (-15 -1811 ((-1159) (-381))) (-15 -1965 ((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))))) (-15 -1965 ((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))))) (-15 -1335 ((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2103 ((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3461 ((-317 (-381)) (-953 (-225)))) (-15 -3405 ((-225) (-953 (-225)))) (-15 -2472 ((-317 (-381)) (-225))) (-15 -3835 ((-225) (-410 (-567)))) (-15 -4138 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306)) -((-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1159)) (-5 *1 (-306)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-645 (-1036))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-2260 (*1 *2 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-306)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-306)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-306)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1159)) (-5 *1 (-306)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-306)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *2 (-1267 (-317 (-381)))) (-5 *1 (-306)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1267 (-700))) (-5 *1 (-306)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-1095 (-844 (-225)))) (-5 *1 (-306)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-4061 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-645 (-1095 (-844 (-381))))) (-5 *2 (-645 (-1095 (-844 (-225))))) (-5 *1 (-306)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-1095 (-844 (-381)))) (-5 *2 (-1095 (-844 (-225)))) (-5 *1 (-306)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(-10 -7 (-15 -2824 ((-225) (-381))) (-15 -3775 ((-317 (-225)) (-317 (-381)))) (-15 -1481 ((-844 (-225)) (-844 (-381)))) (-15 -4221 ((-1095 (-844 (-225))) (-1095 (-844 (-381))))) (-15 -3880 ((-645 (-1095 (-844 (-225)))) (-645 (-1095 (-844 (-381)))))) (-15 -1434 ((-410 (-567)) (-225))) (-15 -2581 ((-410 (-567)) (-317 (-225)))) (-15 -1866 ((-225) (-317 (-225)))) (-15 -4061 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2020 ((-381) (-1267 (-317 (-225))))) (-15 -3805 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1267 (-317 (-225))))) (-15 -4229 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3370 ((-1095 (-844 (-225))) (-1095 (-844 (-225))))) (-15 -1757 ((-645 (-225)) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) (-15 -1871 ((-700) (-225))) (-15 -3913 ((-1267 (-700)) (-645 (-225)))) (-15 -2755 ((-317 (-381)) (-317 (-225)))) (-15 -4287 ((-1267 (-317 (-381))) (-1267 (-317 (-225))))) (-15 -3617 ((-112) (-225) (-1095 (-844 (-225))))) (-15 -3672 ((-1159) (-225))) (-15 -4055 ((-1159) (-381))) (-15 -3236 ((-645 (-1159)) (-645 (-225)))) (-15 -4370 ((-645 (-1159)) (-1157 (-225)))) (-15 -1489 ((-225) (-1095 (-844 (-225))))) (-15 -3595 ((-225) (-1095 (-844 (-225))))) (-15 -2260 ((-1036) (-1036) (-1036))) (-15 -2260 ((-1036) (-645 (-1036)))) (-15 -1811 ((-1159) (-381))) (-15 -1965 ((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))))) (-15 -1965 ((-1036) (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))))) (-15 -1335 ((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2103 ((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3461 ((-317 (-381)) (-953 (-225)))) (-15 -3405 ((-225) (-953 (-225)))) (-15 -2472 ((-317 (-381)) (-225))) (-15 -3835 ((-225) (-410 (-567)))) (-15 -4138 ((-690 (-225)) (-645 (-225)) (-772)))) -((-2373 (((-112) $ $) 14)) (-2344 (($ $ $) 18)) (-2355 (($ $ $) 17)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 50)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-2771 (($ $ $) 25) (($ (-645 $)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2387 (((-3 $ "failed") $ $) 21)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 53))) -(((-307 |#1|) (-10 -8 (-15 -1691 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -1414 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1414 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -2344 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3407 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -2239 ((-2 (|:| -3686 (-645 |#1|)) (|:| -1394 |#1|)) (-645 |#1|))) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) -NIL -(-10 -8 (-15 -1691 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -1414 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1414 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -2344 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3407 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -2239 ((-2 (|:| -3686 (-645 |#1|)) (|:| -1394 |#1|)) (-645 |#1|))) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-2843 (((-112) $) 35)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-1787 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-1334 (*1 *1 *1) (-4 *1 (-303))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-2068 (*1 *1 *1) (-4 *1 (-303))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-3241 (*1 *1 *1) (-4 *1 (-303))) (-3241 (*1 *1 *1 *1) (-4 *1 (-303))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-2700 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-2654 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3797 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) (-3632 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3632 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3829 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) (-5 *2 (-1174 *1)))) (-3341 (*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))) +(-13 (-1102) (-1040 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1787 ($ (-114) $)) (-15 -1787 ($ (-114) $ $)) (-15 -1787 ($ (-114) $ $ $)) (-15 -1787 ($ (-114) $ $ $ $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -2960 ($ $ (-295 $))) (-15 -2960 ($ $ (-645 (-295 $)))) (-15 -2960 ($ $ (-645 (-613 $)) (-645 $))) (-15 -1334 ($ $)) (-15 -1334 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3241 ($ $)) (-15 -3241 ($ $ $)) (-15 -4138 ((-772) $)) (-15 -2700 ((-3 (-613 $) "failed") $)) (-15 -2641 ((-645 (-613 $)) $)) (-15 -2566 ((-645 (-613 $)) $)) (-15 -2034 ((-645 (-114)) $)) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (-15 -3632 ($ (-114) $)) (-15 -3632 ($ (-114) (-645 $))) (-15 -3829 ($ (-1 $ $) (-613 $))) (-15 -3922 ((-112) $ $)) (-15 -3922 ((-112) $ (-1178))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1178) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1178) (-1 $ $))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-114) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1051)) (PROGN (-15 -3263 ((-1174 $) (-613 $))) (-15 -3341 ($ $))) |%noBranch|) (IF (|has| $ (-1040 (-567))) (PROGN (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-617 #0=(-613 $)) . T) ((-614 (-863)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1040 #0#) . T) ((-1102) . T)) +((-2925 (((-645 |#1|) (-645 |#1|)) 10))) +(((-304 |#1|) (-10 -7 (-15 -2925 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304)) +((-2925 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) +(-10 -7 (-15 -2925 ((-645 |#1|) (-645 |#1|)))) +((-3829 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17))) +(((-305 |#1| |#2|) (-10 -7 (-15 -3829 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1051) (-1051)) (T -305)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6))))) +(-10 -7 (-15 -3829 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) +((-3091 (((-1268 (-317 (-381))) (-1268 (-317 (-225)))) 112)) (-2618 (((-1096 (-844 (-225))) (-1096 (-844 (-381)))) 45)) (-2308 (((-645 (-1160)) (-1158 (-225))) 94)) (-3552 (((-317 (-381)) (-954 (-225))) 55)) (-2856 (((-225) (-954 (-225))) 51)) (-2868 (((-1160) (-381)) 197)) (-1753 (((-844 (-225)) (-844 (-381))) 39)) (-4046 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225)))) 165)) (-1805 (((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) 209) (((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) 207)) (-2316 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-3726 (((-1268 (-700)) (-645 (-225))) 101)) (-3258 (((-645 (-1160)) (-645 (-225))) 81)) (-4068 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-2642 (((-112) (-225) (-1096 (-844 (-225)))) 119)) (-3562 (((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-1594 (((-225) (-1096 (-844 (-225)))) 114)) (-2158 (((-225) (-1096 (-844 (-225)))) 115)) (-1432 (((-225) (-410 (-567))) 33)) (-4086 (((-1160) (-381)) 79)) (-2575 (((-225) (-381)) 24)) (-2202 (((-381) (-1268 (-317 (-225)))) 179)) (-3596 (((-317 (-225)) (-317 (-381))) 30)) (-3886 (((-410 (-567)) (-317 (-225))) 58)) (-2180 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-2886 (((-317 (-381)) (-317 (-225))) 105)) (-4028 (((-225) (-317 (-225))) 59)) (-2095 (((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) 70)) (-3404 (((-1096 (-844 (-225))) (-1096 (-844 (-225)))) 67)) (-3905 (((-1160) (-225)) 78)) (-2918 (((-700) (-225)) 97)) (-1317 (((-410 (-567)) (-225)) 60)) (-3490 (((-317 (-381)) (-225)) 54)) (-3893 (((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381))))) 48)) (-2269 (((-1037) (-645 (-1037))) 193) (((-1037) (-1037) (-1037)) 187)) (-1696 (((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-306) (-10 -7 (-15 -2575 ((-225) (-381))) (-15 -3596 ((-317 (-225)) (-317 (-381)))) (-15 -1753 ((-844 (-225)) (-844 (-381)))) (-15 -2618 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3893 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1317 ((-410 (-567)) (-225))) (-15 -3886 ((-410 (-567)) (-317 (-225)))) (-15 -4028 ((-225) (-317 (-225)))) (-15 -4068 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2202 ((-381) (-1268 (-317 (-225))))) (-15 -4046 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225))))) (-15 -2180 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3404 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -2095 ((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-15 -2918 ((-700) (-225))) (-15 -3726 ((-1268 (-700)) (-645 (-225)))) (-15 -2886 ((-317 (-381)) (-317 (-225)))) (-15 -3091 ((-1268 (-317 (-381))) (-1268 (-317 (-225))))) (-15 -2642 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -4086 ((-1160) (-381))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -2269 ((-1037) (-1037) (-1037))) (-15 -2269 ((-1037) (-645 (-1037)))) (-15 -2868 ((-1160) (-381))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))) (-15 -1696 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3562 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3552 ((-317 (-381)) (-954 (-225)))) (-15 -2856 ((-225) (-954 (-225)))) (-15 -3490 ((-317 (-381)) (-225))) (-15 -1432 ((-225) (-410 (-567)))) (-15 -2316 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306)) +((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2269 (*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-1268 (-317 (-381)))) (-5 *1 (-306)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268 (-700))) (-5 *1 (-306)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-4068 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(-10 -7 (-15 -2575 ((-225) (-381))) (-15 -3596 ((-317 (-225)) (-317 (-381)))) (-15 -1753 ((-844 (-225)) (-844 (-381)))) (-15 -2618 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3893 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1317 ((-410 (-567)) (-225))) (-15 -3886 ((-410 (-567)) (-317 (-225)))) (-15 -4028 ((-225) (-317 (-225)))) (-15 -4068 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2202 ((-381) (-1268 (-317 (-225))))) (-15 -4046 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225))))) (-15 -2180 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3404 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -2095 ((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-15 -2918 ((-700) (-225))) (-15 -3726 ((-1268 (-700)) (-645 (-225)))) (-15 -2886 ((-317 (-381)) (-317 (-225)))) (-15 -3091 ((-1268 (-317 (-381))) (-1268 (-317 (-225))))) (-15 -2642 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -4086 ((-1160) (-381))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -2269 ((-1037) (-1037) (-1037))) (-15 -2269 ((-1037) (-645 (-1037)))) (-15 -2868 ((-1160) (-381))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))) (-15 -1696 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3562 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3552 ((-317 (-381)) (-954 (-225)))) (-15 -2856 ((-225) (-954 (-225)))) (-15 -3490 ((-317 (-381)) (-225))) (-15 -1432 ((-225) (-410 (-567)))) (-15 -2316 ((-690 (-225)) (-645 (-225)) (-772)))) +((-3609 (((-112) $ $) 14)) (-2349 (($ $ $) 18)) (-2360 (($ $ $) 17)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 50)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-2774 (($ $ $) 25) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2391 (((-3 $ "failed") $ $) 21)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 53))) +(((-307 |#1|) (-10 -8 (-15 -1725 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3402 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3402 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3609 ((-112) |#1| |#1|)) (-15 -3117 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3179 ((-2 (|:| -3694 (-645 |#1|)) (|:| -1398 |#1|)) (-645 |#1|))) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +(-10 -8 (-15 -1725 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3402 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3402 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3609 ((-112) |#1| |#1|)) (-15 -3117 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3179 ((-2 (|:| -3694 (-645 |#1|)) (|:| -1398 |#1|)) (-645 |#1|))) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-308) (-140)) (T -308)) -((-2373 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2573 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-308)))) (-2355 (*1 *1 *1 *1) (-4 *1 (-308))) (-2344 (*1 *1 *1 *1) (-4 *1 (-308))) (-1414 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) (-4 *1 (-308)))) (-1414 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1691 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) -(-13 (-921) (-10 -8 (-15 -2373 ((-112) $ $)) (-15 -4197 ((-772) $)) (-15 -2573 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -2355 ($ $ $)) (-15 -2344 ($ $ $)) (-15 -1414 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $)) (-15 -1414 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1691 ((-3 (-645 $) "failed") (-645 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) +((-3609 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-1990 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-308)))) (-2360 (*1 *1 *1 *1) (-4 *1 (-308))) (-2349 (*1 *1 *1 *1) (-4 *1 (-308))) (-3402 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-308)))) (-3402 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1725 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) +(-13 (-922) (-10 -8 (-15 -3609 ((-112) $ $)) (-15 -1990 ((-772) $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -3402 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -3402 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1725 ((-3 (-645 $) "failed") (-645 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) ((-2631 (($ $ (-645 |#2|) (-645 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-645 (-295 |#2|))) NIL))) -(((-309 |#1| |#2|) (-10 -8 (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1101)) (T -309)) +(((-309 |#1| |#2|) (-10 -8 (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1102)) (T -309)) NIL (-10 -8 (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) ((-2631 (($ $ (-645 |#1|) (-645 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-645 (-295 |#1|))) 10))) -(((-310 |#1|) (-140) (-1101)) (T -310)) -((-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1101)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1101))))) +(((-310 |#1|) (-140) (-1102)) (T -310)) +((-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102))))) (-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -2631 ($ $ (-295 |t#1|))) (-15 -2631 ($ $ (-645 (-295 |t#1|)))))) (((-517 |#1| |#1|) . T)) -((-2631 ((|#1| (-1 |#1| (-567)) (-1179 (-410 (-567)))) 25))) -(((-311 |#1|) (-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1179 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311)) -((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1179 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567))))))) -(-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1179 (-410 (-567)))))) -((-2399 (((-112) $ $) NIL)) (-2679 (((-567) $) 12)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 9)) (-4127 (((-863) $) 19) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-312) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -2679 ((-567) $))))) (T -312)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-312)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -2679 ((-567) $)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 7)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9))) -(((-313) (-1101)) (T -313)) -NIL -(-1101) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 60)) (-2660 (((-1253 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-1253 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-1252 |#2| |#3| |#4|) "failed") $) 26)) (-2033 (((-1253 |#1| |#2| |#3| |#4|) $) NIL) (((-1177) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-567) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-1252 |#2| |#3| |#4|) $) NIL)) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-1253 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1267 (-1253 |#1| |#2| |#3| |#4|)))) (-690 $) (-1267 $)) NIL) (((-690 (-1253 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-1253 |#1| |#2| |#3| |#4|) $) 22)) (-3641 (((-3 $ "failed") $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1152)))) (-2102 (((-112) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-2998 (($ $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-3822 (($ (-1 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|)) $) NIL)) (-3566 (((-3 (-844 |#2|) "failed") $) 80)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-308)))) (-1842 (((-1253 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-1253 |#1| |#2| |#3| |#4|)) (-645 (-1253 |#1| |#2| |#3| |#4|))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-310 (-1253 |#1| |#2| |#3| |#4|)))) (($ $ (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-310 (-1253 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1253 |#1| |#2| |#3| |#4|))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-310 (-1253 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1253 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-310 (-1253 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1177)) (-645 (-1253 |#1| |#2| |#3| |#4|))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-517 (-1177) (-1253 |#1| |#2| |#3| |#4|)))) (($ $ (-1177) (-1253 |#1| |#2| |#3| |#4|)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-517 (-1177) (-1253 |#1| |#2| |#3| |#4|))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-1253 |#1| |#2| |#3| |#4|)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-287 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1177)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-1 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-1253 |#1| |#2| |#3| |#4|) $) 19)) (-3880 (((-893 (-567)) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1023))) (((-225) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1253 |#1| |#2| |#3| |#4|) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1253 |#1| |#2| |#3| |#4|)) 30) (($ (-1177)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-1039 (-1177)))) (($ (-1252 |#2| |#3| |#4|)) 37)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-1253 |#1| |#2| |#3| |#4|) (-910))) (|has| (-1253 |#1| |#2| |#3| |#4|) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-1253 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1177)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-901 (-1177)))) (($ $ (-1 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-1253 |#1| |#2| |#3| |#4|) (-851)))) (-3050 (($ $ $) 35) (($ (-1253 |#1| |#2| |#3| |#4|) (-1253 |#1| |#2| |#3| |#4|)) 32)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1253 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1253 |#1| |#2| |#3| |#4|)) NIL))) -(((-314 |#1| |#2| |#3| |#4|) (-13 (-993 (-1253 |#1| |#2| |#3| |#4|)) (-1039 (-1252 |#2| |#3| |#4|)) (-10 -8 (-15 -3566 ((-3 (-844 |#2|) "failed") $)) (-15 -4127 ($ (-1252 |#2| |#3| |#4|))))) (-13 (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1202) (-433 |#1|)) (-1177) |#2|) (T -314)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1252 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) (-14 *6 *4) (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-3566 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) (-14 *6 *4)))) -(-13 (-993 (-1253 |#1| |#2| |#3| |#4|)) (-1039 (-1252 |#2| |#3| |#4|)) (-10 -8 (-15 -3566 ((-3 (-844 |#2|) "failed") $)) (-15 -4127 ($ (-1252 |#2| |#3| |#4|))))) -((-3822 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) -(((-315 |#1| |#2|) (-10 -7 (-15 -3822 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1101) (-1101)) (T -315)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) -(-10 -7 (-15 -3822 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) -((-2892 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1177)) 26)) (-1970 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1177)) 55)) (-2913 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1177)) 50)) (-2903 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1177)) 43))) -(((-316 |#1| |#2|) (-10 -7 (-15 -2892 ((-52) (-1177))) (-15 -2892 ((-52) |#2|)) (-15 -2892 ((-52) |#2| (-772))) (-15 -2892 ((-52) |#2| (-295 |#2|))) (-15 -2892 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2903 ((-52) (-1177))) (-15 -2903 ((-52) |#2|)) (-15 -2903 ((-52) |#2| (-567))) (-15 -2903 ((-52) |#2| (-295 |#2|))) (-15 -2903 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2913 ((-52) (-1177))) (-15 -2913 ((-52) |#2|)) (-15 -2913 ((-52) |#2| (-410 (-567)))) (-15 -2913 ((-52) |#2| (-295 |#2|))) (-15 -2913 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1970 ((-52) (-1177))) (-15 -1970 ((-52) |#2|)) (-15 -1970 ((-52) |#2| (-410 (-567)))) (-15 -1970 ((-52) |#2| (-295 |#2|))) (-15 -1970 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -316)) -((-1970 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-1970 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) (-2913 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-1039 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1039 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) (-2892 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-2892 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4)))))) -(-10 -7 (-15 -2892 ((-52) (-1177))) (-15 -2892 ((-52) |#2|)) (-15 -2892 ((-52) |#2| (-772))) (-15 -2892 ((-52) |#2| (-295 |#2|))) (-15 -2892 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2903 ((-52) (-1177))) (-15 -2903 ((-52) |#2|)) (-15 -2903 ((-52) |#2| (-567))) (-15 -2903 ((-52) |#2| (-295 |#2|))) (-15 -2903 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2913 ((-52) (-1177))) (-15 -2913 ((-52) |#2|)) (-15 -2913 ((-52) |#2| (-410 (-567)))) (-15 -2913 ((-52) |#2| (-295 |#2|))) (-15 -2913 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1970 ((-52) (-1177))) (-15 -1970 ((-52) |#2|)) (-15 -1970 ((-52) |#2| (-410 (-567)))) (-15 -1970 ((-52) |#2| (-295 |#2|))) (-15 -1970 ((-52) |#2| (-295 |#2|) (-410 (-567))))) -((-2399 (((-112) $ $) NIL)) (-3689 (((-645 $) $ (-1177)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1173 $) (-1177)) NIL (|has| |#1| (-559))) (((-645 $) (-1173 $)) NIL (|has| |#1| (-559))) (((-645 $) (-953 $)) NIL (|has| |#1| (-559)))) (-2002 (($ $ (-1177)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1173 $) (-1177)) NIL (|has| |#1| (-559))) (($ (-1173 $)) NIL (|has| |#1| (-559))) (($ (-953 $)) NIL (|has| |#1| (-559)))) (-2840 (((-112) $) 27 (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-2845 (((-645 (-1177)) $) 368)) (-2670 (((-410 (-1173 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2564 (((-645 (-613 $)) $) NIL)) (-3165 (($ $) 171 (|has| |#1| (-559)))) (-3039 (($ $) 147 (|has| |#1| (-559)))) (-4369 (($ $ (-1093 $)) 232 (|has| |#1| (-559))) (($ $ (-1177)) 228 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) NIL (-2797 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-2989 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-1431 (((-421 (-1173 $)) (-1173 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3081 (($ $) NIL (|has| |#1| (-559)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2714 (($ $) NIL (|has| |#1| (-559)))) (-2373 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3148 (($ $) 167 (|has| |#1| (-559)))) (-3015 (($ $) 143 (|has| |#1| (-559)))) (-2600 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-3184 (($ $) 175 (|has| |#1| (-559)))) (-3065 (($ $) 151 (|has| |#1| (-559)))) (-2245 (($) NIL (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113))) CONST)) (-1599 (((-645 $) $ (-1177)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1173 $) (-1177)) NIL (|has| |#1| (-559))) (((-645 $) (-1173 $)) NIL (|has| |#1| (-559))) (((-645 $) (-953 $)) NIL (|has| |#1| (-559)))) (-3070 (($ $ (-1177)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1173 $) (-1177)) 134 (|has| |#1| (-559))) (($ (-1173 $)) NIL (|has| |#1| (-559))) (($ (-953 $)) NIL (|has| |#1| (-559)))) (-3747 (((-3 (-613 $) "failed") $) 18) (((-3 (-1177) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-953 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-953 |#1|) "failed") $) NIL (|has| |#1| (-1050))) (((-3 (-410 (-567)) "failed") $) 46 (-2797 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2033 (((-613 $) $) 12) (((-1177) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-953 |#1|)) $) NIL (|has| |#1| (-559))) (((-953 |#1|) $) NIL (|has| |#1| (-1050))) (((-410 (-567)) $) 319 (-2797 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2344 (($ $ $) NIL (|has| |#1| (-559)))) (-1868 (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 125 (|has| |#1| (-1050))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1050))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (-2499 (($ $) 96 (|has| |#1| (-559)))) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113))))) (-2355 (($ $ $) NIL (|has| |#1| (-559)))) (-3963 (($ $ (-1093 $)) 236 (|has| |#1| (-559))) (($ $ (-1177)) 234 (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-4341 (((-112) $) NIL (|has| |#1| (-559)))) (-2217 (($ $ $) 202 (|has| |#1| (-559)))) (-1480 (($) 137 (|has| |#1| (-559)))) (-2057 (($ $ $) 222 (|has| |#1| (-559)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 392 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 399 (|has| |#1| (-887 (-381))))) (-2482 (($ $) NIL) (($ (-645 $)) NIL)) (-3921 (((-645 (-114)) $) NIL)) (-2652 (((-114) (-114)) 276)) (-2843 (((-112) $) 25 (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113))))) (-2904 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-1747 (($ $) 72 (|has| |#1| (-1050)))) (-1441 (((-1126 |#1| (-613 $)) $) 91 (|has| |#1| (-1050)))) (-3399 (((-112) $) 62 (|has| |#1| (-559)))) (-1709 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-4275 (((-1173 $) (-613 $)) 277 (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) 426)) (-1622 (((-3 (-613 $) "failed") $) NIL)) (-3053 (($ $) 141 (|has| |#1| (-559)))) (-1898 (($ $) 247 (|has| |#1| (-559)))) (-2735 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3739 (((-1159) $) NIL)) (-2640 (((-645 (-613 $)) $) 49)) (-3627 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-2662 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1113)))) (-2641 (((-3 (-2 (|:| |val| $) (|:| -4250 (-567))) "failed") $) NIL (|has| |#1| (-1050)))) (-2432 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-1440 (((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-4026 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $) NIL (|has| |#1| (-1113))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-1177)) NIL (|has| |#1| (-1050)))) (-1582 (((-112) $ (-114)) NIL) (((-112) $ (-1177)) 51)) (-2933 (($ $) NIL (-2797 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-2508 (($ $ (-1177)) 251 (|has| |#1| (-559))) (($ $ (-1093 $)) 253 (|has| |#1| (-559)))) (-4133 (((-772) $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) 43)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 301 (|has| |#1| (-559)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3211 (((-112) $ $) NIL) (((-112) $ (-1177)) NIL)) (-2958 (($ $ (-1177)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-1520 (($ $) 218 (|has| |#1| (-559)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-2703 (((-421 $) $) NIL (|has| |#1| (-559)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-559)))) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3927 (($ $) 139 (|has| |#1| (-559)))) (-2799 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1177) (-1 $ (-645 $))) NIL) (($ $ (-1177) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1177)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1177)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1177)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1050))) (($ $ (-1177) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1050))) (($ $ (-1177) (-772) (-1 $ $)) NIL (|has| |#1| (-1050)))) (-4197 (((-772) $) NIL (|has| |#1| (-559)))) (-2967 (($ $) 239 (|has| |#1| (-559)))) (-1783 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $) 249 (|has| |#1| (-559)))) (-3214 (($ $) 200 (|has| |#1| (-559)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-1050))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-1050))) (($ $ (-1177)) NIL (|has| |#1| (-1050)))) (-3168 (($ $) 74 (|has| |#1| (-559)))) (-1455 (((-1126 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-2530 (($ $) 317 (|has| $ (-1050)))) (-3192 (($ $) 177 (|has| |#1| (-559)))) (-3076 (($ $) 153 (|has| |#1| (-559)))) (-3174 (($ $) 173 (|has| |#1| (-559)))) (-3052 (($ $) 149 (|has| |#1| (-559)))) (-3157 (($ $) 169 (|has| |#1| (-559)))) (-3026 (($ $) 145 (|has| |#1| (-559)))) (-3880 (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-2073 (($ $ $) NIL (|has| |#1| (-476)))) (-3387 (($ $ $) NIL (|has| |#1| (-476)))) (-4127 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1177)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (($ (-1126 |#1| (-613 $))) 95 (|has| |#1| (-1050))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-953 |#1|))) NIL (|has| |#1| (-559))) (($ (-953 |#1|)) NIL (|has| |#1| (-1050))) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-559)) (|has| |#1| (-1039 (-410 (-567)))))) (($ (-567)) 34 (-2797 (|has| |#1| (-1039 (-567))) (|has| |#1| (-1050))))) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL (|has| |#1| (-1050)) CONST)) (-1331 (($ $) NIL) (($ (-645 $)) NIL)) (-2092 (($ $ $) 220 (|has| |#1| (-559)))) (-3975 (($ $ $) 206 (|has| |#1| (-559)))) (-3749 (($ $ $) 210 (|has| |#1| (-559)))) (-2136 (($ $ $) 204 (|has| |#1| (-559)))) (-2889 (($ $ $) 208 (|has| |#1| (-559)))) (-2134 (((-112) (-114)) 10)) (-4104 (((-112) $ $) 86)) (-3220 (($ $) 183 (|has| |#1| (-559)))) (-3109 (($ $) 159 (|has| |#1| (-559)))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 179 (|has| |#1| (-559)))) (-3087 (($ $) 155 (|has| |#1| (-559)))) (-3241 (($ $) 187 (|has| |#1| (-559)))) (-3128 (($ $) 163 (|has| |#1| (-559)))) (-2075 (($ (-1177) $) NIL) (($ (-1177) $ $) NIL) (($ (-1177) $ $ $) NIL) (($ (-1177) $ $ $ $) NIL) (($ (-1177) (-645 $)) NIL)) (-4079 (($ $) 214 (|has| |#1| (-559)))) (-2622 (($ $) 212 (|has| |#1| (-559)))) (-3807 (($ $) 189 (|has| |#1| (-559)))) (-3137 (($ $) 165 (|has| |#1| (-559)))) (-3228 (($ $) 185 (|has| |#1| (-559)))) (-3119 (($ $) 161 (|has| |#1| (-559)))) (-3210 (($ $) 181 (|has| |#1| (-559)))) (-3098 (($ $) 157 (|has| |#1| (-559)))) (-4137 (($ $) 192 (|has| |#1| (-559)))) (-1710 (($) 21 (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) CONST)) (-3788 (($ $) 243 (|has| |#1| (-559)))) (-1722 (($) 23 (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113))) CONST)) (-4148 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-3597 (($ $) 241 (|has| |#1| (-559)))) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-1050))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-1050))) (($ $ (-1177)) NIL (|has| |#1| (-1050)))) (-3567 (($ $) 245 (|has| |#1| (-559)))) (-2947 (($ $ $) 198 (|has| |#1| (-559)))) (-2929 (((-112) $ $) 88)) (-3050 (($ (-1126 |#1| (-613 $)) (-1126 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2797 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3037 (($ $ $) 40 (-2797 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ $) 29 (-2797 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-3024 (($ $ $) 38 (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2797 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113)))) (($ $ (-922)) 84 (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2797 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1113)))) (($ (-567) $) 32 (-2797 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ (-772) $) NIL (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ (-922) $) NIL (-2797 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))))) -(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1202)) (-6 (-160)) (-6 (-630)) (-6 (-1140)) (-15 -2499 ($ $)) (-15 -3399 ((-112) $)) (-15 -2600 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3871 ((-421 (-1173 $)) (-1173 $))) (-15 -1431 ((-421 (-1173 $)) (-1173 $)))) |%noBranch|) (IF (|has| |#1| (-1039 (-567))) (-6 (-1039 (-48))) |%noBranch|)) |%noBranch|))) (-1101)) (T -317)) -((-2499 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1101)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1101)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1101)))) (-3871 (*1 *2 *3) (-12 (-5 *2 (-421 (-1173 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1101)))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-421 (-1173 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1101))))) -(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1202)) (-6 (-160)) (-6 (-630)) (-6 (-1140)) (-15 -2499 ($ $)) (-15 -3399 ((-112) $)) (-15 -2600 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3871 ((-421 (-1173 $)) (-1173 $))) (-15 -1431 ((-421 (-1173 $)) (-1173 $)))) |%noBranch|) (IF (|has| |#1| (-1039 (-567))) (-6 (-1039 (-48))) |%noBranch|)) |%noBranch|))) -((-3746 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) -(((-318 |#1| |#2|) (-10 -7 (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3746 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318)) -((-3746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-3746 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3746 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3746 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-3746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3746 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3746 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3746 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3746 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) -(-10 -7 (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3746 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3746 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3746 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3746 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) -((-4180 (((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567) (-1159)) 67) (((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567)) 68) (((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567) (-1159)) 64) (((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-4107 (((-1 (-225) (-225)) (-225)) 66))) -(((-319) (-10 -7 (-15 -4107 ((-1 (-225) (-225)) (-225))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567) (-1159))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567) (-1159))))) (T -319)) -((-4180 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1095 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1159)) (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) (-4180 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1095 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) (-4180 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1095 (-225))) (-5 *6 (-567)) (-5 *7 (-1159)) (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) (-4180 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1095 (-225))) (-5 *6 (-567)) (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) (-4107 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(-10 -7 (-15 -4107 ((-1 (-225) (-225)) (-225))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-1 (-225) (-225)) (-567) (-1159))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567))) (-15 -4180 ((-1212 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-225) (-567) (-1159)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 26)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) 36)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-410 (-567))) NIL) (($ $ (-1083) (-410 (-567))) NIL) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202)))))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3525 (((-410 (-567)) $) 17)) (-1728 (($ (-1252 |#1| |#2| |#3|)) 11)) (-4250 (((-1252 |#1| |#2| |#3|) $) 12)) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-1813 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 10)) (-4127 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) 34)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) NIL)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 28)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 37)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-320 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-793) (-10 -8 (-15 -1728 ($ (-1252 |#1| |#2| |#3|))) (-15 -4250 ((-1252 |#1| |#2| |#3|) $)) (-15 -3525 ((-410 (-567)) $)))) (-365) (-1177) |#1|) (T -320)) -((-1728 (*1 *1 *2) (-12 (-5 *2 (-1252 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1177)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1177)) (-14 *5 *3))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1177)) (-14 *5 *3)))) -(-13 (-1248 |#1|) (-793) (-10 -8 (-15 -1728 ($ (-1252 |#1| |#2| |#3|))) (-15 -4250 ((-1252 |#1| |#2| |#3|) $)) (-15 -3525 ((-410 (-567)) $)))) -((-1709 (((-2 (|:| -4250 (-772)) (|:| -3686 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-3053 (((-645 (-2 (|:| -3686 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40))) -(((-321 |#1|) (-10 -7 (-15 -1709 ((-2 (|:| -4250 (-772)) (|:| -3686 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3053 ((-645 (-2 (|:| -3686 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321)) -((-3053 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -3686 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772))))) -(-10 -7 (-15 -1709 ((-2 (|:| -4250 (-772)) (|:| -3686 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3053 ((-645 (-2 (|:| -3686 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) -((-2845 (((-645 |#2|) (-1173 |#4|)) 44)) (-3422 ((|#3| (-567)) 47)) (-3923 (((-1173 |#4|) (-1173 |#3|)) 30)) (-2481 (((-1173 |#4|) (-1173 |#4|) (-567)) 66)) (-1916 (((-1173 |#3|) (-1173 |#4|)) 21)) (-1813 (((-645 (-772)) (-1173 |#4|) (-645 |#2|)) 41)) (-3478 (((-1173 |#3|) (-1173 |#4|) (-645 |#2|) (-645 |#3|)) 35))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-1173 |#3|) (-1173 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -1813 ((-645 (-772)) (-1173 |#4|) (-645 |#2|))) (-15 -2845 ((-645 |#2|) (-1173 |#4|))) (-15 -1916 ((-1173 |#3|) (-1173 |#4|))) (-15 -3923 ((-1173 |#4|) (-1173 |#3|))) (-15 -2481 ((-1173 |#4|) (-1173 |#4|) (-567))) (-15 -3422 (|#3| (-567)))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|)) (T -322)) -((-3422 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1050)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *7)) (-5 *3 (-567)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-1173 *6)) (-4 *6 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1173 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-1173 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-1173 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-1173 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1050)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-3478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1173 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(-10 -7 (-15 -3478 ((-1173 |#3|) (-1173 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -1813 ((-645 (-772)) (-1173 |#4|) (-645 |#2|))) (-15 -2845 ((-645 |#2|) (-1173 |#4|))) (-15 -1916 ((-1173 |#3|) (-1173 |#4|))) (-15 -3923 ((-1173 |#4|) (-1173 |#3|))) (-15 -2481 ((-1173 |#4|) (-1173 |#4|) (-567))) (-15 -3422 (|#3| (-567)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 19)) (-4268 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-567)))) $) 21)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772) $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-1771 ((|#1| $ (-567)) NIL)) (-1427 (((-567) $ (-567)) NIL)) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3371 (($ (-1 |#1| |#1|) $) NIL)) (-2621 (($ (-1 (-567) (-567)) $) 11)) (-3739 (((-1159) $) NIL)) (-4016 (($ $ $) NIL (|has| (-567) (-793)))) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ |#1|) NIL)) (-2253 (((-567) |#1| $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3037 (($ $) 12) (($ $ $) 28)) (-3024 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27))) -(((-323 |#1|) (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1101)) (T -323)) +((-2631 ((|#1| (-1 |#1| (-567)) (-1180 (-410 (-567)))) 25))) +(((-311 |#1|) (-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1180 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311)) +((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1180 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567))))))) +(-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1180 (-410 (-567)))))) +((-2403 (((-112) $ $) NIL)) (-2684 (((-567) $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-312) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -2684 ((-567) $))))) (T -312)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -2684 ((-567) $)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9))) +(((-313) (-1102)) (T -313)) +NIL +(-1102) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 60)) (-3093 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1254 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-1253 |#2| |#3| |#4|) "failed") $) 26)) (-2038 (((-1254 |#1| |#2| |#3| |#4|) $) NIL) (((-1178) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-567) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-1254 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1268 (-1254 |#1| |#2| |#3| |#4|)))) (-690 $) (-1268 $)) NIL) (((-690 (-1254 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-1254 |#1| |#2| |#3| |#4|) $) 22)) (-3972 (((-3 $ "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2981 (($ $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-3829 (($ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) $) NIL)) (-1347 (((-3 (-844 |#2|) "failed") $) 80)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-308)))) (-2780 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-1254 |#1| |#2| |#3| |#4|)) (-645 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1254 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1178)) (-645 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-517 (-1178) (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-1178) (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-517 (-1178) (-1254 |#1| |#2| |#3| |#4|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-287 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-1254 |#1| |#2| |#3| |#4|) $) 19)) (-3893 (((-894 (-567)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1024))) (((-225) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3| |#4|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1254 |#1| |#2| |#3| |#4|)) 30) (($ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (($ (-1253 |#2| |#3| |#4|)) 37)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3| |#4|) (-911))) (|has| (-1254 |#1| |#2| |#3| |#4|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-3060 (($ $ $) 35) (($ (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) 32)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1254 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1254 |#1| |#2| |#3| |#4|)) NIL))) +(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1254 |#1| |#2| |#3| |#4|)) (-1040 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -4132 ($ (-1253 |#2| |#3| |#4|))))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -314)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4) (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-1347 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4)))) +(-13 (-994 (-1254 |#1| |#2| |#3| |#4|)) (-1040 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -4132 ($ (-1253 |#2| |#3| |#4|))))) +((-3829 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) +(((-315 |#1| |#2|) (-10 -7 (-15 -3829 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1102) (-1102)) (T -315)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) +(-10 -7 (-15 -3829 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) +((-2896 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1178)) 26)) (-1306 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1178)) 55)) (-2919 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1178)) 50)) (-2907 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1178)) 43))) +(((-316 |#1| |#2|) (-10 -7 (-15 -2896 ((-52) (-1178))) (-15 -2896 ((-52) |#2|)) (-15 -2896 ((-52) |#2| (-772))) (-15 -2896 ((-52) |#2| (-295 |#2|))) (-15 -2896 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2907 ((-52) (-1178))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-567))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2919 ((-52) (-1178))) (-15 -2919 ((-52) |#2|)) (-15 -2919 ((-52) |#2| (-410 (-567)))) (-15 -2919 ((-52) |#2| (-295 |#2|))) (-15 -2919 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1306 ((-52) (-1178))) (-15 -1306 ((-52) |#2|)) (-15 -1306 ((-52) |#2| (-410 (-567)))) (-15 -1306 ((-52) |#2| (-295 |#2|))) (-15 -1306 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -316)) +((-1306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2919 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2896 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4)))))) +(-10 -7 (-15 -2896 ((-52) (-1178))) (-15 -2896 ((-52) |#2|)) (-15 -2896 ((-52) |#2| (-772))) (-15 -2896 ((-52) |#2| (-295 |#2|))) (-15 -2896 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2907 ((-52) (-1178))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-567))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2919 ((-52) (-1178))) (-15 -2919 ((-52) |#2|)) (-15 -2919 ((-52) |#2| (-410 (-567)))) (-15 -2919 ((-52) |#2| (-295 |#2|))) (-15 -2919 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1306 ((-52) (-1178))) (-15 -1306 ((-52) |#2|)) (-15 -1306 ((-52) |#2| (-410 (-567)))) (-15 -1306 ((-52) |#2| (-295 |#2|))) (-15 -1306 ((-52) |#2| (-295 |#2|) (-410 (-567))))) +((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) $ (-1178)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-4103 (($ $ (-1178)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (($ (-1174 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-2460 (((-112) $) 27 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2847 (((-645 (-1178)) $) 368)) (-2675 (((-410 (-1174 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-2566 (((-645 (-613 $)) $) NIL)) (-3146 (($ $) 171 (|has| |#1| (-559)))) (-3012 (($ $) 147 (|has| |#1| (-559)))) (-3220 (($ $ (-1094 $)) 232 (|has| |#1| (-559))) (($ $ (-1178)) 228 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-4226 (((-421 (-1174 $)) (-1174 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3248 (($ $) NIL (|has| |#1| (-559)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2716 (($ $) NIL (|has| |#1| (-559)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3128 (($ $) 167 (|has| |#1| (-559)))) (-2987 (($ $) 143 (|has| |#1| (-559)))) (-2499 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-3166 (($ $) 175 (|has| |#1| (-559)))) (-3035 (($ $) 151 (|has| |#1| (-559)))) (-2585 (($) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-2005 (((-645 $) $ (-1178)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-3483 (($ $ (-1178)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1174 $) (-1178)) 134 (|has| |#1| (-559))) (($ (-1174 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-3753 (((-3 (-613 $) "failed") $) 18) (((-3 (-1178) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-954 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) NIL (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 46 (-2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-613 $) $) 12) (((-1178) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-954 |#1|)) $) NIL (|has| |#1| (-559))) (((-954 |#1|) $) NIL (|has| |#1| (-1051))) (((-410 (-567)) $) 319 (-2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) NIL (|has| |#1| (-559)))) (-2630 (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 125 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (-2477 (($ $) 96 (|has| |#1| (-559)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-2360 (($ $ $) NIL (|has| |#1| (-559)))) (-4207 (($ $ (-1094 $)) 236 (|has| |#1| (-559))) (($ $ (-1178)) 234 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-3184 (((-112) $) NIL (|has| |#1| (-559)))) (-2387 (($ $ $) 202 (|has| |#1| (-559)))) (-1482 (($) 137 (|has| |#1| (-559)))) (-2967 (($ $ $) 222 (|has| |#1| (-559)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 392 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 399 (|has| |#1| (-888 (-381))))) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) 276)) (-1433 (((-112) $) 25 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-3530 (($ $) 72 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 91 (|has| |#1| (-1051)))) (-3423 (((-112) $) 62 (|has| |#1| (-559)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3263 (((-1174 $) (-613 $)) 277 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 426)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-3063 (($ $) 141 (|has| |#1| (-559)))) (-1902 (($ $) 247 (|has| |#1| (-559)))) (-2740 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) 49)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-2056 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) NIL (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) NIL (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) NIL (|has| |#1| (-1051)))) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) 51)) (-2939 (($ $) NIL (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-2940 (($ $ (-1178)) 251 (|has| |#1| (-559))) (($ $ (-1094 $)) 253 (|has| |#1| (-559)))) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 43)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 301 (|has| |#1| (-559)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-1830 (($ $ (-1178)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-1576 (($ $) 218 (|has| |#1| (-559)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3946 (($ $) 139 (|has| |#1| (-559)))) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1178)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1178)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ $)) NIL (|has| |#1| (-1051)))) (-1990 (((-772) $) NIL (|has| |#1| (-559)))) (-2937 (($ $) 239 (|has| |#1| (-559)))) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3241 (($ $) NIL) (($ $ $) NIL)) (-2973 (($ $) 249 (|has| |#1| (-559)))) (-4275 (($ $) 200 (|has| |#1| (-559)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-1051))) (($ $ (-1178)) NIL (|has| |#1| (-1051)))) (-1967 (($ $) 74 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-3341 (($ $) 317 (|has| $ (-1051)))) (-3175 (($ $) 177 (|has| |#1| (-559)))) (-3049 (($ $) 153 (|has| |#1| (-559)))) (-3156 (($ $) 173 (|has| |#1| (-559)))) (-3023 (($ $) 149 (|has| |#1| (-559)))) (-3137 (($ $) 169 (|has| |#1| (-559)))) (-2999 (($ $) 145 (|has| |#1| (-559)))) (-3893 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-1823 (($ $ $) NIL (|has| |#1| (-476)))) (-1485 (($ $ $) NIL (|has| |#1| (-476)))) (-4132 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1178)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (($ (-1127 |#1| (-613 $))) 95 (|has| |#1| (-1051))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) NIL (|has| |#1| (-559))) (($ (-954 |#1|)) NIL (|has| |#1| (-1051))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 34 (-2800 (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL (|has| |#1| (-1051)) CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3881 (($ $ $) 220 (|has| |#1| (-559)))) (-3031 (($ $ $) 206 (|has| |#1| (-559)))) (-2030 (($ $ $) 210 (|has| |#1| (-559)))) (-3913 (($ $ $) 204 (|has| |#1| (-559)))) (-2944 (($ $ $) 208 (|has| |#1| (-559)))) (-3797 (((-112) (-114)) 10)) (-1745 (((-112) $ $) 86)) (-3200 (($ $) 183 (|has| |#1| (-559)))) (-3084 (($ $) 159 (|has| |#1| (-559)))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 179 (|has| |#1| (-559)))) (-3062 (($ $) 155 (|has| |#1| (-559)))) (-3221 (($ $) 187 (|has| |#1| (-559)))) (-3106 (($ $) 163 (|has| |#1| (-559)))) (-3247 (($ (-1178) $) NIL) (($ (-1178) $ $) NIL) (($ (-1178) $ $ $) NIL) (($ (-1178) $ $ $ $) NIL) (($ (-1178) (-645 $)) NIL)) (-3382 (($ $) 214 (|has| |#1| (-559)))) (-4023 (($ $) 212 (|has| |#1| (-559)))) (-3785 (($ $) 189 (|has| |#1| (-559)))) (-3118 (($ $) 165 (|has| |#1| (-559)))) (-3211 (($ $) 185 (|has| |#1| (-559)))) (-3095 (($ $) 161 (|has| |#1| (-559)))) (-3193 (($ $) 181 (|has| |#1| (-559)))) (-3074 (($ $) 157 (|has| |#1| (-559)))) (-2219 (($ $) 192 (|has| |#1| (-559)))) (-1716 (($) 21 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) CONST)) (-2299 (($ $) 243 (|has| |#1| (-559)))) (-1728 (($) 23 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-1890 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-2367 (($ $) 241 (|has| |#1| (-559)))) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-1051))) (($ $ (-1178)) NIL (|has| |#1| (-1051)))) (-1450 (($ $) 245 (|has| |#1| (-559)))) (-3944 (($ $ $) 198 (|has| |#1| (-559)))) (-2936 (((-112) $ $) 88)) (-3060 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3045 (($ $ $) 40 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ $) 29 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3033 (($ $ $) 38 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ $ (-923)) 84 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ (-567) $) 32 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-772) $) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-923) $) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))))) +(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1203)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2477 ($ $)) (-15 -3423 ((-112) $)) (-15 -2499 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -4226 ((-421 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) (-1102)) (T -317)) +((-2477 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) (-4226 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))) +(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1203)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2477 ($ $)) (-15 -3423 ((-112) $)) (-15 -2499 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -4226 ((-421 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) +((-4009 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) +(((-318 |#1| |#2|) (-10 -7 (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318)) +((-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-4009 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) +(-10 -7 (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) +((-3690 (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160)) 67) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567)) 68) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160)) 64) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-1947 (((-1 (-225) (-225)) (-225)) 66))) +(((-319) (-10 -7 (-15 -1947 ((-1 (-225) (-225)) (-225))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160))))) (T -319)) +((-3690 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1160)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1160)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-1947 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(-10 -7 (-15 -1947 ((-1 (-225) (-225)) (-225))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 26)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 36)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4339 (((-410 (-567)) $) 17)) (-1617 (($ (-1253 |#1| |#2| |#3|)) 11)) (-3458 (((-1253 |#1| |#2| |#3|) $) 12)) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 10)) (-4132 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 34)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 28)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 37)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-320 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-793) (-10 -8 (-15 -1617 ($ (-1253 |#1| |#2| |#3|))) (-15 -3458 ((-1253 |#1| |#2| |#3|) $)) (-15 -4339 ((-410 (-567)) $)))) (-365) (-1178) |#1|) (T -320)) +((-1617 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3)))) +(-13 (-1249 |#1|) (-793) (-10 -8 (-15 -1617 ($ (-1253 |#1| |#2| |#3|))) (-15 -3458 ((-1253 |#1| |#2| |#3|) $)) (-15 -4339 ((-410 (-567)) $)))) +((-2651 (((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-3063 (((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40))) +(((-321 |#1|) (-10 -7 (-15 -2651 ((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3063 ((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321)) +((-3063 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -3694 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772))))) +(-10 -7 (-15 -2651 ((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3063 ((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) +((-2847 (((-645 |#2|) (-1174 |#4|)) 44)) (-3884 ((|#3| (-567)) 47)) (-2221 (((-1174 |#4|) (-1174 |#3|)) 30)) (-3181 (((-1174 |#4|) (-1174 |#4|) (-567)) 66)) (-3260 (((-1174 |#3|) (-1174 |#4|)) 21)) (-3077 (((-645 (-772)) (-1174 |#4|) (-645 |#2|)) 41)) (-1439 (((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|)) 35))) +(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1439 ((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3077 ((-645 (-772)) (-1174 |#4|) (-645 |#2|))) (-15 -2847 ((-645 |#2|) (-1174 |#4|))) (-15 -3260 ((-1174 |#3|) (-1174 |#4|))) (-15 -2221 ((-1174 |#4|) (-1174 |#3|))) (-15 -3181 ((-1174 |#4|) (-1174 |#4|) (-567))) (-15 -3884 (|#3| (-567)))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|)) (T -322)) +((-3884 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-1439 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(-10 -7 (-15 -1439 ((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3077 ((-645 (-772)) (-1174 |#4|) (-645 |#2|))) (-15 -2847 ((-645 |#2|) (-1174 |#4|))) (-15 -3260 ((-1174 |#3|) (-1174 |#4|))) (-15 -2221 ((-1174 |#4|) (-1174 |#3|))) (-15 -3181 ((-1174 |#4|) (-1174 |#4|) (-567))) (-15 -3884 (|#3| (-567)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 19)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $) 21)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-1936 (((-567) $ (-567)) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-3870 (($ (-1 (-567) (-567)) $) 11)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) NIL (|has| (-567) (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-4136 (((-567) |#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3045 (($ $) 12) (($ $ $) 28)) (-3033 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27))) +(((-323 |#1|) (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1102)) (T -323)) NIL (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-4268 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 28)) (-3460 (((-3 $ "failed") $ $) 20)) (-2371 (((-772) $) 29)) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 33)) (-2033 ((|#1| $) 34)) (-1771 ((|#1| $ (-567)) 26)) (-1427 ((|#2| $ (-567)) 27)) (-3371 (($ (-1 |#1| |#1|) $) 23)) (-2621 (($ (-1 |#2| |#2|) $) 24)) (-3739 (((-1159) $) 10)) (-4016 (($ $ $) 22 (|has| |#2| (-793)))) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ |#1|) 32)) (-2253 ((|#2| |#1| $) 25)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30))) -(((-324 |#1| |#2|) (-140) (-1101) (-131)) (T -324)) -((-3024 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-131)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)) (-5 *2 (-772)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))))) (-1427 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1101)) (-4 *2 (-131)))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1101)))) (-2253 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-131)))) (-2621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)))) (-3371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)))) (-4016 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-131)) (-4 *3 (-793))))) -(-13 (-131) (-1039 |t#1|) (-10 -8 (-15 -3024 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2371 ((-772) $)) (-15 -4268 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3927 |t#2|))) $)) (-15 -1427 (|t#2| $ (-567))) (-15 -1771 (|t#1| $ (-567))) (-15 -2253 (|t#2| |t#1| $)) (-15 -2621 ($ (-1 |t#2| |t#2|) $)) (-15 -3371 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -4016 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-1039 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-4268 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-772)))) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772) $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-1771 ((|#1| $ (-567)) NIL)) (-1427 (((-772) $ (-567)) NIL)) (-3371 (($ (-1 |#1| |#1|) $) NIL)) (-2621 (($ (-1 (-772) (-772)) $) NIL)) (-3739 (((-1159) $) NIL)) (-4016 (($ $ $) NIL (|has| (-772) (-793)))) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ |#1|) NIL)) (-2253 (((-772) |#1| $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL))) -(((-325 |#1|) (-324 |#1| (-772)) (-1101)) (T -325)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 28)) (-3472 (((-3 $ "failed") $ $) 20)) (-2375 (((-772) $) 29)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 33)) (-2038 ((|#1| $) 34)) (-4108 ((|#1| $ (-567)) 26)) (-1936 ((|#2| $ (-567)) 27)) (-3496 (($ (-1 |#1| |#1|) $) 23)) (-3870 (($ (-1 |#2| |#2|) $) 24)) (-1419 (((-1160) $) 10)) (-1993 (($ $ $) 22 (|has| |#2| (-793)))) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ |#1|) 32)) (-4136 ((|#2| |#1| $) 25)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30))) +(((-324 |#1| |#2|) (-140) (-1102) (-131)) (T -324)) +((-3033 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-772)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) (-4 *2 (-131)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1102)))) (-4136 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-3870 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-1993 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) (-4 *3 (-793))))) +(-13 (-131) (-1040 |t#1|) (-10 -8 (-15 -3033 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2375 ((-772) $)) (-15 -1843 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3946 |t#2|))) $)) (-15 -1936 (|t#2| $ (-567))) (-15 -4108 (|t#1| $ (-567))) (-15 -4136 (|t#2| |t#1| $)) (-15 -3870 ($ (-1 |t#2| |t#2|) $)) (-15 -3496 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -1993 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-1040 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-1936 (((-772) $ (-567)) NIL)) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-3870 (($ (-1 (-772) (-772)) $) NIL)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) NIL (|has| (-772) (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-4136 (((-772) |#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL))) +(((-325 |#1|) (-324 |#1| (-772)) (-1102)) (T -325)) NIL (-324 |#1| (-772)) -((-4334 (($ $) 72)) (-2543 (($ $ |#2| |#3| $) 14)) (-3345 (($ (-1 |#3| |#3|) $) 51)) (-2943 (((-112) $) 42)) (-2955 ((|#2| $) 44)) (-2387 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4385 ((|#2| $) 68)) (-3468 (((-645 |#2|) $) 56)) (-2079 (($ $ $ (-772)) 37)) (-3050 (($ $ |#2|) 60))) -(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -4334 (|#1| |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2079 (|#1| |#1| |#1| (-772))) (-15 -2543 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -2955 (|#2| |#1|)) (-15 -2943 ((-112) |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3050 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1050) (-793)) (T -326)) -NIL -(-10 -8 (-15 -4334 (|#1| |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2079 (|#1| |#1| |#1| (-772))) (-15 -2543 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -2955 (|#2| |#1|)) (-15 -2943 ((-112) |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3050 (|#1| |#1| |#2|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-2033 (((-567) $) 99 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 96)) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-4334 (($ $) 84 (|has| |#1| (-455)))) (-2543 (($ $ |#1| |#2| $) 88)) (-2843 (((-112) $) 35)) (-4183 (((-772) $) 91)) (-2014 (((-112) $) 74)) (-2821 (($ |#1| |#2|) 73)) (-2752 ((|#2| $) 90)) (-3345 (($ (-1 |#2| |#2|) $) 89)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 94)) (-2955 ((|#1| $) 93)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-1813 ((|#2| $) 76)) (-4385 ((|#1| $) 85 (|has| |#1| (-455)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3468 (((-645 |#1|) $) 92)) (-2253 ((|#1| $ |#2|) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2079 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-327 |#1| |#2|) (-140) (-1050) (-793)) (T -327)) -((-2943 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-772)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-3345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-2543 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-2079 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2387 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-559)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-4334 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-455))))) -(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -2943 ((-112) $)) (-15 -2955 (|t#1| $)) (-15 -3468 ((-645 |t#1|) $)) (-15 -4183 ((-772) $)) (-15 -2752 (|t#2| $)) (-15 -3345 ($ (-1 |t#2| |t#2|) $)) (-15 -2543 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2079 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2387 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4385 (|t#1| $)) (-15 -4334 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-1748 (((-112) (-112)) NIL)) (-4281 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) NIL)) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-1101)))) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) NIL (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) NIL)) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-2951 (($ $ (-567)) NIL)) (-2966 (((-772) $) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-1812 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1330 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-1631 (($ (-645 |#1|)) NIL)) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-2115 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-3444 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -1631 ($ (-645 |#1|))) (-15 -2966 ((-772) $)) (-15 -2951 ($ $ (-567))) (-15 -1748 ((-112) (-112))))) (-1217)) (T -328)) -((-1631 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-328 *3)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1217)))) (-2951 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1217)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1217))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -1631 ($ (-645 |#1|))) (-15 -2966 ((-772) $)) (-15 -2951 ($ $ (-567))) (-15 -1748 ((-112) (-112))))) -((-1552 (((-112) $) 50)) (-2463 (((-772)) 26)) (-4290 ((|#2| $) 54) (($ $ (-922)) 124)) (-2371 (((-772)) 125)) (-4025 (($ (-1267 |#2|)) 23)) (-3601 (((-112) $) 138)) (-2896 ((|#2| $) 56) (($ $ (-922)) 121)) (-2612 (((-1173 |#2|) $) NIL) (((-1173 $) $ (-922)) 112)) (-4091 (((-1173 |#2|) $) 98)) (-2772 (((-1173 |#2|) $) 94) (((-3 (-1173 |#2|) "failed") $ $) 91)) (-2157 (($ $ (-1173 |#2|)) 62)) (-1768 (((-834 (-922))) 33) (((-922)) 51)) (-1635 (((-134)) 30)) (-1813 (((-834 (-922)) $) 35) (((-922) $) 141)) (-3914 (($) 131)) (-2446 (((-1267 |#2|) $) NIL) (((-690 |#2|) (-1267 $)) 45)) (-1467 (($ $) NIL) (((-3 $ "failed") $) 101)) (-3113 (((-112) $) 48))) -(((-329 |#1| |#2|) (-10 -8 (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -2371 ((-772))) (-15 -1467 (|#1| |#1|)) (-15 -2772 ((-3 (-1173 |#2|) "failed") |#1| |#1|)) (-15 -2772 ((-1173 |#2|) |#1|)) (-15 -4091 ((-1173 |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1173 |#2|))) (-15 -3601 ((-112) |#1|)) (-15 -3914 (|#1|)) (-15 -4290 (|#1| |#1| (-922))) (-15 -2896 (|#1| |#1| (-922))) (-15 -2612 ((-1173 |#1|) |#1| (-922))) (-15 -4290 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -1813 ((-922) |#1|)) (-15 -1768 ((-922))) (-15 -2612 ((-1173 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2463 ((-772))) (-15 -1768 ((-834 (-922)))) (-15 -1813 ((-834 (-922)) |#1|)) (-15 -1552 ((-112) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -1635 ((-134)))) (-330 |#2|) (-365)) (T -329)) -((-1635 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1768 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2463 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1768 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2371 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) -(-10 -8 (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -2371 ((-772))) (-15 -1467 (|#1| |#1|)) (-15 -2772 ((-3 (-1173 |#2|) "failed") |#1| |#1|)) (-15 -2772 ((-1173 |#2|) |#1|)) (-15 -4091 ((-1173 |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1173 |#2|))) (-15 -3601 ((-112) |#1|)) (-15 -3914 (|#1|)) (-15 -4290 (|#1| |#1| (-922))) (-15 -2896 (|#1| |#1| (-922))) (-15 -2612 ((-1173 |#1|) |#1| (-922))) (-15 -4290 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -1813 ((-922) |#1|)) (-15 -1768 ((-922))) (-15 -2612 ((-1173 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2463 ((-772))) (-15 -1768 ((-834 (-922)))) (-15 -1813 ((-834 (-922)) |#1|)) (-15 -1552 ((-112) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -1635 ((-134)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-1552 (((-112) $) 104)) (-2463 (((-772)) 100)) (-4290 ((|#1| $) 150) (($ $ (-922)) 147 (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2373 (((-112) $ $) 65)) (-2371 (((-772)) 122 (|has| |#1| (-370)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 111)) (-2033 ((|#1| $) 112)) (-4025 (($ (-1267 |#1|)) 156)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-1378 (($) 119 (|has| |#1| (-370)))) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-3005 (($) 134 (|has| |#1| (-370)))) (-4284 (((-112) $) 135 (|has| |#1| (-370)))) (-4112 (($ $ (-772)) 97 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) 79)) (-2937 (((-922) $) 137 (|has| |#1| (-370))) (((-834 (-922)) $) 94 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) 35)) (-2794 (($) 145 (|has| |#1| (-370)))) (-3601 (((-112) $) 144 (|has| |#1| (-370)))) (-2896 ((|#1| $) 151) (($ $ (-922)) 148 (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2612 (((-1173 |#1|) $) 155) (((-1173 $) $ (-922)) 149 (|has| |#1| (-370)))) (-3425 (((-922) $) 120 (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) 141 (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) 142 (|has| |#1| (-370)))) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-2701 (($) 124 (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) 121 (|has| |#1| (-370)))) (-1816 (((-112) $) 103)) (-3430 (((-1121) $) 11)) (-1394 (($) 143 (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 131 (|has| |#1| (-370)))) (-2703 (((-421 $) $) 82)) (-1768 (((-834 (-922))) 101) (((-922)) 153)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3942 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) 109)) (-1621 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) 102) (((-922) $) 152)) (-2530 (((-1173 |#1|)) 154)) (-3057 (($) 133 (|has| |#1| (-370)))) (-3914 (($) 146 (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) 158) (((-690 |#1|) (-1267 $)) 157)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1467 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 160) (((-1267 $) (-922)) 159)) (-4380 (((-112) $ $) 45)) (-3113 (((-112) $) 105)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2529 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2636 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73) (($ $ |#1|) 108)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-3501 (($ $) 72)) (-2320 (($ $ |#2| |#3| $) 14)) (-3273 (($ (-1 |#3| |#3|) $) 51)) (-2949 (((-112) $) 42)) (-2962 ((|#2| $) 44)) (-2391 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4358 ((|#2| $) 68)) (-3032 (((-645 |#2|) $) 56)) (-4176 (($ $ $ (-772)) 37)) (-3060 (($ $ |#2|) 60))) +(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4176 (|#1| |#1| |#1| (-772))) (-15 -2320 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3273 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3060 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1051) (-793)) (T -326)) +NIL +(-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4176 (|#1| |#1| |#1| (-772))) (-15 -2320 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3273 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3060 (|#1| |#1| |#2|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-2038 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 96)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 84 (|has| |#1| (-455)))) (-2320 (($ $ |#1| |#2| $) 88)) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 91)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73)) (-2656 ((|#2| $) 90)) (-3273 (($ (-1 |#2| |#2|) $) 89)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 94)) (-2962 ((|#1| $) 93)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-4358 ((|#1| $) 85 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 92)) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-327 |#1| |#2|) (-140) (-1051) (-793)) (T -327)) +((-2949 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-2320 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-4176 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-559)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-455))))) +(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -2949 ((-112) $)) (-15 -2962 (|t#1| $)) (-15 -3032 ((-645 |t#1|) $)) (-15 -2695 ((-772) $)) (-15 -2656 (|t#2| $)) (-15 -3273 ($ (-1 |t#2| |t#2|) $)) (-15 -2320 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -4176 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4358 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-3600 (((-112) (-112)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3459 (($ $ (-567)) NIL)) (-2572 (((-772) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2558 (($ (-645 |#1|)) NIL)) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) (-1218)) (T -328)) +((-2558 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-328 *3)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1218))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) +((-3419 (((-112) $) 50)) (-3862 (((-772)) 26)) (-4293 ((|#2| $) 54) (($ $ (-923)) 124)) (-2375 (((-772)) 125)) (-3658 (($ (-1268 |#2|)) 23)) (-1426 (((-112) $) 138)) (-2475 ((|#2| $) 56) (($ $ (-923)) 121)) (-4206 (((-1174 |#2|) $) NIL) (((-1174 $) $ (-923)) 112)) (-2016 (((-1174 |#2|) $) 98)) (-2280 (((-1174 |#2|) $) 94) (((-3 (-1174 |#2|) "failed") $ $) 91)) (-2286 (($ $ (-1174 |#2|)) 62)) (-1953 (((-834 (-923))) 33) (((-923)) 51)) (-1879 (((-134)) 30)) (-3077 (((-834 (-923)) $) 35) (((-923) $) 141)) (-2661 (($) 131)) (-2887 (((-1268 |#2|) $) NIL) (((-690 |#2|) (-1268 $)) 45)) (-1903 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2012 (((-112) $) 48))) +(((-329 |#1| |#2|) (-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-772))) (-15 -1903 (|#1| |#1|)) (-15 -2280 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -2280 ((-1174 |#2|) |#1|)) (-15 -2016 ((-1174 |#2|) |#1|)) (-15 -2286 (|#1| |#1| (-1174 |#2|))) (-15 -1426 ((-112) |#1|)) (-15 -2661 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2475 (|#1| |#1| (-923))) (-15 -4206 ((-1174 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -3077 ((-923) |#1|)) (-15 -1953 ((-923))) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3862 ((-772))) (-15 -1953 ((-834 (-923)))) (-15 -3077 ((-834 (-923)) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -1879 ((-134)))) (-330 |#2|) (-365)) (T -329)) +((-1879 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1953 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3862 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1953 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2375 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) +(-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-772))) (-15 -1903 (|#1| |#1|)) (-15 -2280 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -2280 ((-1174 |#2|) |#1|)) (-15 -2016 ((-1174 |#2|) |#1|)) (-15 -2286 (|#1| |#1| (-1174 |#2|))) (-15 -1426 ((-112) |#1|)) (-15 -2661 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2475 (|#1| |#1| (-923))) (-15 -4206 ((-1174 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -3077 ((-923) |#1|)) (-15 -1953 ((-923))) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3862 ((-772))) (-15 -1953 ((-834 (-923)))) (-15 -3077 ((-834 (-923)) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -1879 ((-134)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3419 (((-112) $) 104)) (-3862 (((-772)) 100)) (-4293 ((|#1| $) 150) (($ $ (-923)) 147 (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2375 (((-772)) 122 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 111)) (-2038 ((|#1| $) 112)) (-3658 (($ (-1268 |#1|)) 156)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 119 (|has| |#1| (-370)))) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3431 (($) 134 (|has| |#1| (-370)))) (-2722 (((-112) $) 135 (|has| |#1| (-370)))) (-4225 (($ $ (-772)) 97 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) 79)) (-4384 (((-923) $) 137 (|has| |#1| (-370))) (((-834 (-923)) $) 94 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 35)) (-3559 (($) 145 (|has| |#1| (-370)))) (-1426 (((-112) $) 144 (|has| |#1| (-370)))) (-2475 ((|#1| $) 151) (($ $ (-923)) 148 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4206 (((-1174 |#1|) $) 155) (((-1174 $) $ (-923)) 149 (|has| |#1| (-370)))) (-4249 (((-923) $) 120 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) 141 (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) 142 (|has| |#1| (-370)))) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 124 (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 121 (|has| |#1| (-370)))) (-2051 (((-112) $) 103)) (-3430 (((-1122) $) 11)) (-1398 (($) 143 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 131 (|has| |#1| (-370)))) (-2706 (((-421 $) $) 82)) (-1953 (((-834 (-923))) 101) (((-923)) 153)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) 109)) (-1593 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) 102) (((-923) $) 152)) (-3341 (((-1174 |#1|)) 154)) (-1527 (($) 133 (|has| |#1| (-370)))) (-2661 (($) 146 (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 158) (((-690 |#1|) (-1268 $)) 157)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1903 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 160) (((-1268 $) (-923)) 159)) (-3816 (((-112) $ $) 45)) (-2012 (((-112) $) 105)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-3253 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2637 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ $ |#1|) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-330 |#1|) (-140) (-365)) (T -330)) -((-1975 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1267 *1)) (-4 *1 (-330 *3)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1267 *1)) (-4 *1 (-330 *4)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1267 *3)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1173 *3)))) (-2530 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1173 *3)))) (-1768 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1173 *1)) (-4 *1 (-330 *4)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3914 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2794 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-1394 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1173 *3)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1173 *3)))) (-2772 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1173 *3))))) -(-13 (-1286 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -1975 ((-1267 $))) (-15 -1975 ((-1267 $) (-922))) (-15 -2446 ((-1267 |t#1|) $)) (-15 -2446 ((-690 |t#1|) (-1267 $))) (-15 -4025 ($ (-1267 |t#1|))) (-15 -2612 ((-1173 |t#1|) $)) (-15 -2530 ((-1173 |t#1|))) (-15 -1768 ((-922))) (-15 -1813 ((-922) $)) (-15 -2896 (|t#1| $)) (-15 -4290 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -2612 ((-1173 $) $ (-922))) (-15 -2896 ($ $ (-922))) (-15 -4290 ($ $ (-922))) (-15 -3914 ($)) (-15 -2794 ($)) (-15 -3601 ((-112) $)) (-15 -1394 ($)) (-15 -2157 ($ $ (-1173 |t#1|))) (-15 -4091 ((-1173 |t#1|) $)) (-15 -2772 ((-1173 |t#1|) $)) (-15 -2772 ((-3 (-1173 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2797 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1286 |#1|) . T) ((-365) . T) ((-405) -2797 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| |#1| (-370)) ((-1221) . T) ((-1274 |#1|) . T)) -((-2399 (((-112) $ $) NIL)) (-3217 (($ (-1176) $) 104)) (-2081 (($) 93)) (-3962 (((-1121) (-1121)) 9)) (-1347 (($) 94)) (-1969 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-1535 (($ (-1176) $) 105)) (-2271 (($ (-645 (-863))) 95)) (-4123 (((-1272) $) 91)) (-3414 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2001 (($ (-1121)) 60)) (-1732 (((-1105) $) 32)) (-2748 (($ (-1093 (-953 (-567))) $) 101) (($ (-1093 (-953 (-567))) (-953 (-567)) $) 102)) (-2546 (($ (-1121)) 103)) (-2317 (($ (-1176) $) 133) (($ (-1176) $ $) 134)) (-2316 (($ (-1177) (-645 (-1177))) 92)) (-1614 (($ (-1159)) 98) (($ (-645 (-1159))) 96)) (-4127 (((-863) $) 136)) (-1796 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1177)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1177)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1176)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3240 (-112)) (|:| -3794 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1159))) (|:| |callBranch| (-1159)) (|:| |forBranch| (-2 (|:| -2221 (-1093 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1998 $))) (|:| |labelBranch| (-1121)) (|:| |loopBranch| (-2 (|:| |switch| (-1176)) (|:| -1998 $))) (|:| |commonBranch| (-2 (|:| -1988 (-1177)) (|:| |contents| (-645 (-1177))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-4278 (($ (-1159)) 205)) (-4223 (($ (-645 $)) 132)) (-4104 (((-112) $ $) NIL)) (-3408 (($ (-1177) (-1159)) 138) (($ (-1177) (-317 (-702))) 178) (($ (-1177) (-317 (-700))) 179) (($ (-1177) (-317 (-695))) 180) (($ (-1177) (-690 (-702))) 141) (($ (-1177) (-690 (-700))) 144) (($ (-1177) (-690 (-695))) 147) (($ (-1177) (-1267 (-702))) 150) (($ (-1177) (-1267 (-700))) 153) (($ (-1177) (-1267 (-695))) 156) (($ (-1177) (-690 (-317 (-702)))) 159) (($ (-1177) (-690 (-317 (-700)))) 162) (($ (-1177) (-690 (-317 (-695)))) 165) (($ (-1177) (-1267 (-317 (-702)))) 168) (($ (-1177) (-1267 (-317 (-700)))) 171) (($ (-1177) (-1267 (-317 (-695)))) 174) (($ (-1177) (-645 (-953 (-567))) (-317 (-702))) 175) (($ (-1177) (-645 (-953 (-567))) (-317 (-700))) 176) (($ (-1177) (-645 (-953 (-567))) (-317 (-695))) 177) (($ (-1177) (-317 (-567))) 202) (($ (-1177) (-317 (-381))) 203) (($ (-1177) (-317 (-169 (-381)))) 204) (($ (-1177) (-690 (-317 (-567)))) 183) (($ (-1177) (-690 (-317 (-381)))) 186) (($ (-1177) (-690 (-317 (-169 (-381))))) 189) (($ (-1177) (-1267 (-317 (-567)))) 192) (($ (-1177) (-1267 (-317 (-381)))) 195) (($ (-1177) (-1267 (-317 (-169 (-381))))) 198) (($ (-1177) (-645 (-953 (-567))) (-317 (-567))) 199) (($ (-1177) (-645 (-953 (-567))) (-317 (-381))) 200) (($ (-1177) (-645 (-953 (-567))) (-317 (-169 (-381)))) 201)) (-2929 (((-112) $ $) NIL))) -(((-331) (-13 (-1101) (-10 -8 (-15 -2748 ($ (-1093 (-953 (-567))) $)) (-15 -2748 ($ (-1093 (-953 (-567))) (-953 (-567)) $)) (-15 -3217 ($ (-1176) $)) (-15 -1535 ($ (-1176) $)) (-15 -2001 ($ (-1121))) (-15 -2546 ($ (-1121))) (-15 -1614 ($ (-1159))) (-15 -1614 ($ (-645 (-1159)))) (-15 -4278 ($ (-1159))) (-15 -1969 ($)) (-15 -1969 ($ (-317 (-700)))) (-15 -1969 ($ (-317 (-702)))) (-15 -1969 ($ (-317 (-695)))) (-15 -1969 ($ (-317 (-381)))) (-15 -1969 ($ (-317 (-567)))) (-15 -1969 ($ (-317 (-169 (-381))))) (-15 -2317 ($ (-1176) $)) (-15 -2317 ($ (-1176) $ $)) (-15 -3408 ($ (-1177) (-1159))) (-15 -3408 ($ (-1177) (-317 (-702)))) (-15 -3408 ($ (-1177) (-317 (-700)))) (-15 -3408 ($ (-1177) (-317 (-695)))) (-15 -3408 ($ (-1177) (-690 (-702)))) (-15 -3408 ($ (-1177) (-690 (-700)))) (-15 -3408 ($ (-1177) (-690 (-695)))) (-15 -3408 ($ (-1177) (-1267 (-702)))) (-15 -3408 ($ (-1177) (-1267 (-700)))) (-15 -3408 ($ (-1177) (-1267 (-695)))) (-15 -3408 ($ (-1177) (-690 (-317 (-702))))) (-15 -3408 ($ (-1177) (-690 (-317 (-700))))) (-15 -3408 ($ (-1177) (-690 (-317 (-695))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-702))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-700))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-695))))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-702)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-700)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-695)))) (-15 -3408 ($ (-1177) (-317 (-567)))) (-15 -3408 ($ (-1177) (-317 (-381)))) (-15 -3408 ($ (-1177) (-317 (-169 (-381))))) (-15 -3408 ($ (-1177) (-690 (-317 (-567))))) (-15 -3408 ($ (-1177) (-690 (-317 (-381))))) (-15 -3408 ($ (-1177) (-690 (-317 (-169 (-381)))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-567))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-381))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-169 (-381)))))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-567)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-381)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-169 (-381))))) (-15 -4223 ($ (-645 $))) (-15 -2081 ($)) (-15 -1347 ($)) (-15 -2271 ($ (-645 (-863)))) (-15 -2316 ($ (-1177) (-645 (-1177)))) (-15 -3414 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1796 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1177)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1177)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1176)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3240 (-112)) (|:| -3794 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1159))) (|:| |callBranch| (-1159)) (|:| |forBranch| (-2 (|:| -2221 (-1093 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1998 $))) (|:| |labelBranch| (-1121)) (|:| |loopBranch| (-2 (|:| |switch| (-1176)) (|:| -1998 $))) (|:| |commonBranch| (-2 (|:| -1988 (-1177)) (|:| |contents| (-645 (-1177))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -4123 ((-1272) $)) (-15 -1732 ((-1105) $)) (-15 -3962 ((-1121) (-1121)))))) (T -331)) -((-2748 (*1 *1 *2 *1) (-12 (-5 *2 (-1093 (-953 (-567)))) (-5 *1 (-331)))) (-2748 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1093 (-953 (-567)))) (-5 *3 (-953 (-567))) (-5 *1 (-331)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331)))) (-1535 (*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331)))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331)))) (-2546 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-331)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-331)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-331)))) (-1969 (*1 *1) (-5 *1 (-331))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331)))) (-2317 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1159)) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-702))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-700))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-695))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-702)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-700)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-695)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-567)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-381)))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-3408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-4223 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-2081 (*1 *1) (-5 *1 (-331))) (-1347 (*1 *1) (-5 *1 (-331))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-2316 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1177)) (-5 *1 (-331)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1177)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1177)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1176)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3240 (-112)) (|:| -3794 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1159))) (|:| |callBranch| (-1159)) (|:| |forBranch| (-2 (|:| -2221 (-1093 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1998 (-331)))) (|:| |labelBranch| (-1121)) (|:| |loopBranch| (-2 (|:| |switch| (-1176)) (|:| -1998 (-331)))) (|:| |commonBranch| (-2 (|:| -1988 (-1177)) (|:| |contents| (-645 (-1177))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-331)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-331)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331))))) -(-13 (-1101) (-10 -8 (-15 -2748 ($ (-1093 (-953 (-567))) $)) (-15 -2748 ($ (-1093 (-953 (-567))) (-953 (-567)) $)) (-15 -3217 ($ (-1176) $)) (-15 -1535 ($ (-1176) $)) (-15 -2001 ($ (-1121))) (-15 -2546 ($ (-1121))) (-15 -1614 ($ (-1159))) (-15 -1614 ($ (-645 (-1159)))) (-15 -4278 ($ (-1159))) (-15 -1969 ($)) (-15 -1969 ($ (-317 (-700)))) (-15 -1969 ($ (-317 (-702)))) (-15 -1969 ($ (-317 (-695)))) (-15 -1969 ($ (-317 (-381)))) (-15 -1969 ($ (-317 (-567)))) (-15 -1969 ($ (-317 (-169 (-381))))) (-15 -2317 ($ (-1176) $)) (-15 -2317 ($ (-1176) $ $)) (-15 -3408 ($ (-1177) (-1159))) (-15 -3408 ($ (-1177) (-317 (-702)))) (-15 -3408 ($ (-1177) (-317 (-700)))) (-15 -3408 ($ (-1177) (-317 (-695)))) (-15 -3408 ($ (-1177) (-690 (-702)))) (-15 -3408 ($ (-1177) (-690 (-700)))) (-15 -3408 ($ (-1177) (-690 (-695)))) (-15 -3408 ($ (-1177) (-1267 (-702)))) (-15 -3408 ($ (-1177) (-1267 (-700)))) (-15 -3408 ($ (-1177) (-1267 (-695)))) (-15 -3408 ($ (-1177) (-690 (-317 (-702))))) (-15 -3408 ($ (-1177) (-690 (-317 (-700))))) (-15 -3408 ($ (-1177) (-690 (-317 (-695))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-702))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-700))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-695))))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-702)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-700)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-695)))) (-15 -3408 ($ (-1177) (-317 (-567)))) (-15 -3408 ($ (-1177) (-317 (-381)))) (-15 -3408 ($ (-1177) (-317 (-169 (-381))))) (-15 -3408 ($ (-1177) (-690 (-317 (-567))))) (-15 -3408 ($ (-1177) (-690 (-317 (-381))))) (-15 -3408 ($ (-1177) (-690 (-317 (-169 (-381)))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-567))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-381))))) (-15 -3408 ($ (-1177) (-1267 (-317 (-169 (-381)))))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-567)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-381)))) (-15 -3408 ($ (-1177) (-645 (-953 (-567))) (-317 (-169 (-381))))) (-15 -4223 ($ (-645 $))) (-15 -2081 ($)) (-15 -1347 ($)) (-15 -2271 ($ (-645 (-863)))) (-15 -2316 ($ (-1177) (-645 (-1177)))) (-15 -3414 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1796 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1177)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1177)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1176)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3240 (-112)) (|:| -3794 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1159))) (|:| |callBranch| (-1159)) (|:| |forBranch| (-2 (|:| -2221 (-1093 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1998 $))) (|:| |labelBranch| (-1121)) (|:| |loopBranch| (-2 (|:| |switch| (-1176)) (|:| -1998 $))) (|:| |commonBranch| (-2 (|:| -1988 (-1177)) (|:| |contents| (-645 (-1177))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -4123 ((-1272) $)) (-15 -1732 ((-1105) $)) (-15 -3962 ((-1121) (-1121))))) -((-2399 (((-112) $ $) NIL)) (-3654 (((-112) $) 13)) (-3015 (($ |#1|) 10)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3026 (($ |#1|) 12)) (-4127 (((-863) $) 19)) (-4104 (((-112) $ $) NIL)) (-3011 ((|#1| $) 14)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 21))) -(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -3015 ($ |#1|)) (-15 -3026 ($ |#1|)) (-15 -3654 ((-112) $)) (-15 -3011 (|#1| $)))) (-851)) (T -332)) -((-3015 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-3026 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-3011 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))) -(-13 (-851) (-10 -8 (-15 -3015 ($ |#1|)) (-15 -3026 ($ |#1|)) (-15 -3654 ((-112) $)) (-15 -3011 (|#1| $)))) -((-3697 (((-331) (-1177) (-953 (-567))) 23)) (-1857 (((-331) (-1177) (-953 (-567))) 27)) (-2402 (((-331) (-1177) (-1093 (-953 (-567))) (-1093 (-953 (-567)))) 26) (((-331) (-1177) (-953 (-567)) (-953 (-567))) 24)) (-2247 (((-331) (-1177) (-953 (-567))) 31))) -(((-333) (-10 -7 (-15 -3697 ((-331) (-1177) (-953 (-567)))) (-15 -2402 ((-331) (-1177) (-953 (-567)) (-953 (-567)))) (-15 -2402 ((-331) (-1177) (-1093 (-953 (-567))) (-1093 (-953 (-567))))) (-15 -1857 ((-331) (-1177) (-953 (-567)))) (-15 -2247 ((-331) (-1177) (-953 (-567)))))) (T -333)) -((-2247 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2402 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-1093 (-953 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2402 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333))))) -(-10 -7 (-15 -3697 ((-331) (-1177) (-953 (-567)))) (-15 -2402 ((-331) (-1177) (-953 (-567)) (-953 (-567)))) (-15 -2402 ((-331) (-1177) (-1093 (-953 (-567))) (-1093 (-953 (-567))))) (-15 -1857 ((-331) (-1177) (-953 (-567)))) (-15 -2247 ((-331) (-1177) (-953 (-567))))) -((-2399 (((-112) $ $) NIL)) (-3125 (((-509) $) 20)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3233 (((-959 (-772)) $) 18)) (-4362 (((-250) $) 7)) (-4127 (((-863) $) 26)) (-1536 (((-959 (-183 (-139))) $) 16)) (-4104 (((-112) $ $) NIL)) (-3675 (((-645 (-874 (-1182) (-772))) $) 12)) (-2929 (((-112) $ $) 22))) -(((-334) (-13 (-1101) (-10 -8 (-15 -4362 ((-250) $)) (-15 -3675 ((-645 (-874 (-1182) (-772))) $)) (-15 -3233 ((-959 (-772)) $)) (-15 -1536 ((-959 (-183 (-139))) $)) (-15 -3125 ((-509) $))))) (T -334)) -((-4362 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1182) (-772)))) (-5 *1 (-334)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-959 (-772))) (-5 *1 (-334)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-959 (-183 (-139)))) (-5 *1 (-334)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) -(-13 (-1101) (-10 -8 (-15 -4362 ((-250) $)) (-15 -3675 ((-645 (-874 (-1182) (-772))) $)) (-15 -3233 ((-959 (-772)) $)) (-15 -1536 ((-959 (-183 (-139))) $)) (-15 -3125 ((-509) $)))) -((-3822 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) -(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3822 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1243 |#5|) (-1243 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1243 *9)) (-4 *11 (-1243 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) -(-10 -7 (-15 -3822 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) -((-2812 (((-112) $) 14))) -(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2812 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1243 |#2|) (-1243 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) -NIL -(-10 -8 (-15 -2812 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-2499 (($ $) 29)) (-2812 (((-112) $) 28)) (-3739 (((-1159) $) 10)) (-1821 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3430 (((-1121) $) 11)) (-1394 (((-3 |#4| "failed") $) 27)) (-1616 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3349 (((-2 (|:| -3970 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) -(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1243 |t#1|) (-1243 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337)) -((-1821 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-1616 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-1616 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1243 *2)) (-4 *4 (-1243 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-1616 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1243 *2)) (-4 *5 (-1243 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -3970 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1243 *2)) (-4 *4 (-1243 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-1394 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-1616 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1821 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -1616 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -1616 ($ |t#4|)) (-15 -1616 ($ |t#1| |t#1|)) (-15 -1616 ($ |t#1| |t#1| (-567))) (-15 -3349 ((-2 (|:| -3970 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2499 ($ $)) (-15 -2812 ((-112) $)) (-15 -1394 ((-3 |t#4| "failed") $)) (-15 -1616 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2499 (($ $) 33)) (-2812 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-2876 (((-1267 |#4|) $) 135)) (-1821 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3430 (((-1121) $) NIL)) (-1394 (((-3 |#4| "failed") $) 36)) (-4047 (((-1267 |#4|) $) 127)) (-1616 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3349 (((-2 (|:| -3970 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4127 (((-863) $) 17)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 14 T CONST)) (-2929 (((-112) $ $) 20)) (-3037 (($ $) 27) (($ $ $) NIL)) (-3024 (($ $ $) 25)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23))) -(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4047 ((-1267 |#4|) $)) (-15 -2876 ((-1267 |#4|) $)))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) -((-4047 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-1267 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-2876 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-1267 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) -(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4047 ((-1267 |#4|) $)) (-15 -2876 ((-1267 |#4|) $)))) -((-2631 (($ $ (-1177) |#2|) NIL) (($ $ (-645 (-1177)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1783 (($ $ |#2|) 11))) -(((-339 |#1| |#2|) (-10 -8 (-15 -1783 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1177) |#2|))) (-340 |#2|) (-1101)) (T -339)) -NIL -(-10 -8 (-15 -1783 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1177) |#2|))) -((-3822 (($ (-1 |#1| |#1|) $) 6)) (-2631 (($ $ (-1177) |#1|) 17 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1783 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) -(((-340 |#1|) (-140) (-1101)) (T -340)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1101))))) -(-13 (-10 -8 (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1177) |t#1|)) (-6 (-517 (-1177) |t#1|)) |%noBranch|))) -(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1177)) $) NIL)) (-4152 (((-112)) 99) (((-112) (-112)) 100)) (-2564 (((-645 (-613 $)) $) NIL)) (-3165 (($ $) NIL)) (-3039 (($ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2989 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-2714 (($ $) NIL)) (-3148 (($ $) NIL)) (-3015 (($ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1177)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-410 (-953 (-567)))) 73 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-953 (-567))) 68 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1039 (-381)))) (((-3 $ "failed") (-410 (-953 (-381)))) 91 (|has| |#3| (-1039 (-381)))) (((-3 $ "failed") (-953 (-381))) 86 (|has| |#3| (-1039 (-381))))) (-2033 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1177)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1039 (-567)))) (($ (-410 (-953 (-567)))) 74 (|has| |#3| (-1039 (-567)))) (($ (-953 (-567))) 70 (|has| |#3| (-1039 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1039 (-381)))) (($ (-410 (-953 (-381)))) 92 (|has| |#3| (-1039 (-381)))) (($ (-953 (-381))) 88 (|has| |#3| (-1039 (-381))))) (-3153 (((-3 $ "failed") $) NIL)) (-1480 (($) 10)) (-2482 (($ $) NIL) (($ (-645 $)) NIL)) (-3921 (((-645 (-114)) $) NIL)) (-2652 (((-114) (-114)) NIL)) (-2843 (((-112) $) NIL)) (-2904 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-4275 (((-1173 $) (-613 $)) NIL (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) NIL)) (-1622 (((-3 (-613 $) "failed") $) NIL)) (-1700 (($ $) 102)) (-3053 (($ $) NIL)) (-3739 (((-1159) $) NIL)) (-2640 (((-645 (-613 $)) $) NIL)) (-3627 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-1582 (((-112) $ (-114)) NIL) (((-112) $ (-1177)) NIL)) (-4133 (((-772) $) NIL)) (-3430 (((-1121) $) NIL)) (-3211 (((-112) $ $) NIL) (((-112) $ (-1177)) NIL)) (-3927 (($ $) NIL)) (-2799 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1177) (-1 $ (-645 $))) NIL) (($ $ (-1177) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1783 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL)) (-2530 (($ $) NIL (|has| $ (-1050)))) (-3157 (($ $) NIL)) (-3026 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-1772 (((-772)) NIL T CONST)) (-1331 (($ $) NIL) (($ (-645 $)) NIL)) (-2134 (((-112) (-114)) NIL)) (-4104 (((-112) $ $) NIL)) (-3109 (($ $) NIL)) (-3087 (($ $) NIL)) (-3098 (($ $) NIL)) (-4137 (($ $) NIL)) (-1710 (($) 103 T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL))) -(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1039 |#3|) (-901 (-1177)) (-10 -8 (-15 -2033 ($ (-317 |#3|))) (-15 -3747 ((-3 $ "failed") (-317 |#3|))) (-15 -2033 ($ (-1177))) (-15 -3747 ((-3 $ "failed") (-1177))) (-15 -4127 ((-317 |#3|) $)) (IF (|has| |#3| (-1039 (-567))) (PROGN (-15 -2033 ($ (-317 (-567)))) (-15 -3747 ((-3 $ "failed") (-317 (-567)))) (-15 -2033 ($ (-410 (-953 (-567))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-567))))) (-15 -2033 ($ (-953 (-567)))) (-15 -3747 ((-3 $ "failed") (-953 (-567))))) |%noBranch|) (IF (|has| |#3| (-1039 (-381))) (PROGN (-15 -2033 ($ (-317 (-381)))) (-15 -3747 ((-3 $ "failed") (-317 (-381)))) (-15 -2033 ($ (-410 (-953 (-381))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -2033 ($ (-953 (-381)))) (-15 -3747 ((-3 $ "failed") (-953 (-381))))) |%noBranch|) (-15 -4137 ($ $)) (-15 -2714 ($ $)) (-15 -3927 ($ $)) (-15 -3053 ($ $)) (-15 -1700 ($ $)) (-15 -3015 ($ $)) (-15 -3026 ($ $)) (-15 -3039 ($ $)) (-15 -3087 ($ $)) (-15 -3098 ($ $)) (-15 -3109 ($ $)) (-15 -3148 ($ $)) (-15 -3157 ($ $)) (-15 -3165 ($ $)) (-15 -1480 ($)) (-15 -2845 ((-645 (-1177)) $)) (-15 -4152 ((-112))) (-15 -4152 ((-112) (-112))))) (-645 (-1177)) (-645 (-1177)) (-390)) (T -341)) -((-2033 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3927 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3015 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3026 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3039 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3087 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3109 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3148 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-3165 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-1480 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-4152 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390))))) -(-13 (-303) (-38 |#3|) (-1039 |#3|) (-901 (-1177)) (-10 -8 (-15 -2033 ($ (-317 |#3|))) (-15 -3747 ((-3 $ "failed") (-317 |#3|))) (-15 -2033 ($ (-1177))) (-15 -3747 ((-3 $ "failed") (-1177))) (-15 -4127 ((-317 |#3|) $)) (IF (|has| |#3| (-1039 (-567))) (PROGN (-15 -2033 ($ (-317 (-567)))) (-15 -3747 ((-3 $ "failed") (-317 (-567)))) (-15 -2033 ($ (-410 (-953 (-567))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-567))))) (-15 -2033 ($ (-953 (-567)))) (-15 -3747 ((-3 $ "failed") (-953 (-567))))) |%noBranch|) (IF (|has| |#3| (-1039 (-381))) (PROGN (-15 -2033 ($ (-317 (-381)))) (-15 -3747 ((-3 $ "failed") (-317 (-381)))) (-15 -2033 ($ (-410 (-953 (-381))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -2033 ($ (-953 (-381)))) (-15 -3747 ((-3 $ "failed") (-953 (-381))))) |%noBranch|) (-15 -4137 ($ $)) (-15 -2714 ($ $)) (-15 -3927 ($ $)) (-15 -3053 ($ $)) (-15 -1700 ($ $)) (-15 -3015 ($ $)) (-15 -3026 ($ $)) (-15 -3039 ($ $)) (-15 -3087 ($ $)) (-15 -3098 ($ $)) (-15 -3109 ($ $)) (-15 -3148 ($ $)) (-15 -3157 ($ $)) (-15 -3165 ($ $)) (-15 -1480 ($)) (-15 -2845 ((-645 (-1177)) $)) (-15 -4152 ((-112))) (-15 -4152 ((-112) (-112))))) -((-3822 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3822 (|#8| (-1 |#5| |#1|) |#4|))) (-1221) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1221) (-1243 |#5|) (-1243 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1221)) (-4 *8 (-1221)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *9 (-1243 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1243 (-410 *9)))))) -(-10 -7 (-15 -3822 (|#8| (-1 |#5| |#1|) |#4|))) -((-1485 (((-2 (|:| |num| (-1267 |#3|)) (|:| |den| |#3|)) $) 40)) (-4025 (($ (-1267 (-410 |#3|)) (-1267 $)) NIL) (($ (-1267 (-410 |#3|))) NIL) (($ (-1267 |#3|) |#3|) 177)) (-2963 (((-1267 $) (-1267 $)) 161)) (-2084 (((-645 (-645 |#2|))) 130)) (-1589 (((-112) |#2| |#2|) 77)) (-4334 (($ $) 152)) (-1921 (((-772)) 33)) (-3487 (((-1267 $) (-1267 $)) 222)) (-3178 (((-645 (-953 |#2|)) (-1177)) 119)) (-2606 (((-112) $) 174)) (-1789 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3615 (((-3 |#3| "failed")) 53)) (-1445 (((-772)) 188)) (-1783 ((|#2| $ |#2| |#2|) 144)) (-3237 (((-3 |#3| "failed")) 72)) (-1621 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1370 (((-1267 $) (-1267 $)) 167)) (-3596 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3222 (((-112)) 35))) -(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2084 ((-645 (-645 |#2|)))) (-15 -3178 ((-645 (-953 |#2|)) (-1177))) (-15 -3596 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3615 ((-3 |#3| "failed"))) (-15 -3237 ((-3 |#3| "failed"))) (-15 -1783 (|#2| |#1| |#2| |#2|)) (-15 -4334 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1789 ((-112) |#1| |#3|)) (-15 -1789 ((-112) |#1| |#2|)) (-15 -4025 (|#1| (-1267 |#3|) |#3|)) (-15 -1485 ((-2 (|:| |num| (-1267 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2963 ((-1267 |#1|) (-1267 |#1|))) (-15 -3487 ((-1267 |#1|) (-1267 |#1|))) (-15 -1370 ((-1267 |#1|) (-1267 |#1|))) (-15 -1789 ((-112) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1589 ((-112) |#2| |#2|)) (-15 -3222 ((-112))) (-15 -1445 ((-772))) (-15 -1921 ((-772))) (-15 -1621 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1621 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -4025 (|#1| (-1267 (-410 |#3|)))) (-15 -4025 (|#1| (-1267 (-410 |#3|)) (-1267 |#1|)))) (-344 |#2| |#3| |#4|) (-1221) (-1243 |#2|) (-1243 (-410 |#3|))) (T -343)) -((-1921 (*1 *2) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1445 (*1 *2) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3222 (*1 *2) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *3 (-1221)) (-4 *5 (-1243 *3)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3237 (*1 *2) (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 (-410 *2))) (-4 *2 (-1243 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-3615 (*1 *2) (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 (-410 *2))) (-4 *2 (-1243 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *5 (-1221)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-5 *2 (-645 (-953 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-2084 (*1 *2) (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) -(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -2084 ((-645 (-645 |#2|)))) (-15 -3178 ((-645 (-953 |#2|)) (-1177))) (-15 -3596 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3615 ((-3 |#3| "failed"))) (-15 -3237 ((-3 |#3| "failed"))) (-15 -1783 (|#2| |#1| |#2| |#2|)) (-15 -4334 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1789 ((-112) |#1| |#3|)) (-15 -1789 ((-112) |#1| |#2|)) (-15 -4025 (|#1| (-1267 |#3|) |#3|)) (-15 -1485 ((-2 (|:| |num| (-1267 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2963 ((-1267 |#1|) (-1267 |#1|))) (-15 -3487 ((-1267 |#1|) (-1267 |#1|))) (-15 -1370 ((-1267 |#1|) (-1267 |#1|))) (-15 -1789 ((-112) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1589 ((-112) |#2| |#2|)) (-15 -3222 ((-112))) (-15 -1445 ((-772))) (-15 -1921 ((-772))) (-15 -1621 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1621 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -4025 (|#1| (-1267 (-410 |#3|)))) (-15 -4025 (|#1| (-1267 (-410 |#3|)) (-1267 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-1485 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) 204)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-1312 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-2318 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-2981 (((-690 (-410 |#2|)) (-1267 $)) 53) (((-690 (-410 |#2|))) 68)) (-4290 (((-410 |#2|) $) 59)) (-3581 (((-1190 (-922) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-2833 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-2373 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-2371 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-2456 (((-112)) 221)) (-1778 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-2033 (((-567) $) 177 (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) 174)) (-4025 (($ (-1267 (-410 |#2|)) (-1267 $)) 55) (($ (-1267 (-410 |#2|))) 71) (($ (-1267 |#2|) |#2|) 203)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2344 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-1937 (((-690 (-410 |#2|)) $ (-1267 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-1868 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-410 |#2|))) (|:| |vec| (-1267 (-410 |#2|)))) (-690 $) (-1267 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-2963 (((-1267 $) (-1267 $)) 209)) (-2499 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-3153 (((-3 $ "failed") $) 37)) (-2084 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-1589 (((-112) |#1| |#1|) 225)) (-1979 (((-922)) 61)) (-1378 (($) 99 (|has| (-410 |#2|) (-370)))) (-3062 (((-112)) 218)) (-3495 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2355 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-4334 (($ $) 196)) (-3005 (($) 157 (|has| (-410 |#2|) (-351)))) (-4284 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-4112 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-4341 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-2937 (((-922) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) 146 (|has| (-410 |#2|) (-351)))) (-2843 (((-112) $) 35)) (-1921 (((-772)) 228)) (-3487 (((-1267 $) (-1267 $)) 210)) (-2896 (((-410 |#2|) $) 58)) (-3178 (((-645 (-953 |#1|)) (-1177)) 191 (|has| |#1| (-365)))) (-3641 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-2612 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-3425 (((-922) $) 98 (|has| (-410 |#2|) (-370)))) (-2488 ((|#3| $) 164)) (-2735 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-3739 (((-1159) $) 10)) (-4366 (((-690 (-410 |#2|))) 205)) (-2325 (((-690 (-410 |#2|))) 207)) (-2933 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-1913 (($ (-1267 |#2|) |#2|) 201)) (-3764 (((-690 (-410 |#2|))) 206)) (-3186 (((-690 (-410 |#2|))) 208)) (-4154 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-3030 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) 202)) (-2879 (((-1267 $)) 214)) (-1593 (((-1267 $)) 215)) (-2606 (((-112) $) 213)) (-1789 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2701 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-3763 (($ (-922)) 97 (|has| (-410 |#2|) (-370)))) (-3615 (((-3 |#2| "failed")) 193)) (-3430 (((-1121) $) 11)) (-1445 (((-772)) 227)) (-1394 (($) 168)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 110 (|has| (-410 |#2|) (-365)))) (-2771 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-2703 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2387 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-4197 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1783 ((|#1| $ |#1| |#1|) 195)) (-3237 (((-3 |#2| "failed")) 194)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-1999 (((-410 |#2|) (-1267 $)) 54) (((-410 |#2|)) 67)) (-3942 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-1621 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1177)) (-645 (-772))) 138 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-1177) (-772)) 139 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1177))) 140 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-1177)) 141 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1664 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1664 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3337 (((-690 (-410 |#2|)) (-1267 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-2530 ((|#3|) 167)) (-3057 (($) 156 (|has| (-410 |#2|) (-351)))) (-2446 (((-1267 (-410 |#2|)) $ (-1267 $)) 57) (((-690 (-410 |#2|)) (-1267 $) (-1267 $)) 56) (((-1267 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1267 $)) 72)) (-3880 (((-1267 (-410 |#2|)) $) 70) (($ (-1267 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-1370 (((-1267 $) (-1267 $)) 211)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2797 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1039 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-1467 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-3116 ((|#3| $) 52)) (-1772 (((-772)) 32 T CONST)) (-3750 (((-112)) 224)) (-2861 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 74)) (-4380 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-3596 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-3222 (((-112)) 226)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1177)) (-645 (-772))) 134 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-1177) (-772)) 135 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1177))) 136 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-1177)) 137 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) (-1664 (|has| (-410 |#2|) (-901 (-1177))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1664 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2797 (-1664 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1664 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365))))) -(((-344 |#1| |#2| |#3|) (-140) (-1221) (-1243 |t#1|) (-1243 (-410 |t#2|))) (T -344)) -((-1921 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-772)))) (-1445 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-772)))) (-3222 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-3750 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-2861 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-2861 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) (-2456 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) (-3062 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-3495 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-3495 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) (-1593 (*1 *2) (-12 (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2879 (*1 *2) (-12 (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))))) (-2963 (*1 *2 *2) (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))))) (-3186 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-2325 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3764 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-4366 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1267 *4)) (|:| |den| *4))))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1243 *4)) (-4 *4 (-1221)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1243 (-410 *3))))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1267 *4)) (|:| |den| *4))))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1243 *4)) (-4 *4 (-1221)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1243 (-410 *3))))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-1789 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) (-1789 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))))) (-4334 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1221)) (-4 *3 (-1243 *2)) (-4 *4 (-1243 (-410 *3))))) (-1783 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1221)) (-4 *3 (-1243 *2)) (-4 *4 (-1243 (-410 *3))))) (-3237 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1221)) (-4 *4 (-1243 (-410 *2))) (-4 *2 (-1243 *3)))) (-3615 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1221)) (-4 *4 (-1243 (-410 *2))) (-4 *2 (-1243 *3)))) (-3596 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-1221)) (-4 *6 (-1243 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-953 *4))))) (-2084 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) -(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -1921 ((-772))) (-15 -1445 ((-772))) (-15 -3222 ((-112))) (-15 -1589 ((-112) |t#1| |t#1|)) (-15 -3750 ((-112))) (-15 -2861 ((-112) |t#1|)) (-15 -2861 ((-112) |t#2|)) (-15 -2456 ((-112))) (-15 -1778 ((-112) |t#1|)) (-15 -1778 ((-112) |t#2|)) (-15 -3062 ((-112))) (-15 -3495 ((-112) |t#1|)) (-15 -3495 ((-112) |t#2|)) (-15 -1593 ((-1267 $))) (-15 -2879 ((-1267 $))) (-15 -2606 ((-112) $)) (-15 -1789 ((-112) $)) (-15 -1370 ((-1267 $) (-1267 $))) (-15 -3487 ((-1267 $) (-1267 $))) (-15 -2963 ((-1267 $) (-1267 $))) (-15 -3186 ((-690 (-410 |t#2|)))) (-15 -2325 ((-690 (-410 |t#2|)))) (-15 -3764 ((-690 (-410 |t#2|)))) (-15 -4366 ((-690 (-410 |t#2|)))) (-15 -1485 ((-2 (|:| |num| (-1267 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4025 ($ (-1267 |t#2|) |t#2|)) (-15 -3030 ((-2 (|:| |num| (-1267 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1913 ($ (-1267 |t#2|) |t#2|)) (-15 -4154 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1789 ((-112) $ |t#1|)) (-15 -1789 ((-112) $ |t#2|)) (-15 -1621 ($ $ (-1 |t#2| |t#2|))) (-15 -4334 ($ $)) (-15 -1783 (|t#1| $ |t#1| |t#1|)) (-15 -3237 ((-3 |t#2| "failed"))) (-15 -3615 ((-3 |t#2| "failed"))) (-15 -3596 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -3178 ((-645 (-953 |t#1|)) (-1177))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -2084 ((-645 (-645 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2797 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2797 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2797 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-901 (-1177)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177)))) ((-921) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1039 (-410 (-567))) |has| (-410 |#2|) (-1039 (-410 (-567)))) ((-1039 #1#) . T) ((-1039 (-567)) |has| (-410 |#2|) (-1039 (-567))) ((-1052 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1057 #0#) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1057 #1#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| (-410 |#2|) (-351)) ((-1221) -2797 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-911 |#1|) "failed") $) NIL)) (-2033 (((-911 |#1|) $) NIL)) (-4025 (($ (-1267 (-911 |#1|))) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-911 |#1|) (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| (-911 |#1|) (-370)))) (-4284 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| (-911 |#1|) (-370)))) (-3601 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2896 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 (-911 |#1|)) $) NIL) (((-1173 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3425 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-4091 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-2772 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1173 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2157 (($ $ (-1173 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-3330 (((-959 (-1121))) NIL)) (-1394 (($) NIL (|has| (-911 |#1|) (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 (-911 |#1|))) NIL)) (-3057 (($) NIL (|has| (-911 |#1|) (-370)))) (-3914 (($) NIL (|has| (-911 |#1|) (-370)))) (-2446 (((-1267 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-1467 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2636 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-330 (-911 |#1|)) (-10 -7 (-15 -3330 ((-959 (-1121)))))) (-922) (-922)) (T -345)) -((-3330 (*1 *2) (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-345 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) -(-13 (-330 (-911 |#1|)) (-10 -7 (-15 -3330 ((-959 (-1121)))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 58)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 144)) (-2033 ((|#1| $) 115)) (-4025 (($ (-1267 |#1|)) 132)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) 126 (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) 162 (|has| |#1| (-370)))) (-4284 (((-112) $) 66 (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) 60 (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) 62)) (-2794 (($) 164 (|has| |#1| (-370)))) (-3601 (((-112) $) NIL (|has| |#1| (-370)))) (-2896 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) 119) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) 173 (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) NIL (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) NIL (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 180)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) 98 (|has| |#1| (-370)))) (-1816 (((-112) $) 149)) (-3430 (((-1121) $) NIL)) (-3330 (((-959 (-1121))) 57)) (-1394 (($) 160 (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 121 (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) 92) (((-922)) 93)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 |#1|)) 124)) (-3057 (($) 161 (|has| |#1| (-370)))) (-3914 (($) 169 (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) 77) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) 157 T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 146) (((-1267 $) (-922)) 100)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) 67 T CONST)) (-1722 (($) 105 T CONST)) (-2529 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) 65)) (-3050 (($ $ $) 178) (($ $ |#1|) 179)) (-3037 (($ $) 159) (($ $ $) NIL)) (-3024 (($ $ $) 86)) (** (($ $ (-922)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) -(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3330 ((-959 (-1121)))))) (-351) (-1173 |#1|)) (T -346)) -((-3330 (*1 *2) (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1173 *3))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3330 ((-959 (-1121)))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-4025 (($ (-1267 |#1|)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| |#1| (-370)))) (-4284 (((-112) $) NIL (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| |#1| (-370)))) (-3601 (((-112) $) NIL (|has| |#1| (-370)))) (-2896 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) NIL) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) NIL (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) NIL (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-3330 (((-959 (-1121))) NIL)) (-1394 (($) NIL (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 |#1|)) NIL)) (-3057 (($) NIL (|has| |#1| (-370)))) (-3914 (($) NIL (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) NIL) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3330 ((-959 (-1121)))))) (-351) (-922)) (T -347)) -((-3330 (*1 *2) (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3330 ((-959 (-1121)))))) -((-1462 (((-772) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) 61)) (-2418 (((-959 (-1121)) (-1173 |#1|)) 113)) (-3501 (((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) (-1173 |#1|)) 105)) (-1618 (((-690 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) 115)) (-2983 (((-3 (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) "failed") (-922)) 13)) (-2855 (((-3 (-1173 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) (-922)) 18))) -(((-348 |#1|) (-10 -7 (-15 -2418 ((-959 (-1121)) (-1173 |#1|))) (-15 -3501 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) (-1173 |#1|))) (-15 -1618 ((-690 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -1462 ((-772) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -2983 ((-3 (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) "failed") (-922))) (-15 -2855 ((-3 (-1173 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) (-922)))) (-351)) (T -348)) -((-2855 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-3 (-1173 *4) (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2983 (*1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-5 *2 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-1462 (*1 *2 *3) (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) (-5 *1 (-348 *4)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-959 (-1121))) (-5 *1 (-348 *4))))) -(-10 -7 (-15 -2418 ((-959 (-1121)) (-1173 |#1|))) (-15 -3501 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) (-1173 |#1|))) (-15 -1618 ((-690 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -1462 ((-772) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -2983 ((-3 (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) "failed") (-922))) (-15 -2855 ((-3 (-1173 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) (-922)))) -((-4127 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) -(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4127 (|#3| |#1|)) (-15 -4127 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) -((-4127 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) -(-10 -7 (-15 -4127 (|#3| |#1|)) (-15 -4127 (|#1| |#3|))) -((-4284 (((-112) $) 60)) (-2937 (((-834 (-922)) $) 23) (((-922) $) 66)) (-3641 (((-3 $ "failed") $) 18)) (-2701 (($) 9)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 116)) (-3942 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-1621 (($ $ (-772)) NIL) (($ $) 8)) (-3057 (($) 53)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 38)) (-1467 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-350 |#1|) (-10 -8 (-15 -2937 ((-922) |#1|)) (-15 -3942 ((-772) |#1|)) (-15 -4284 ((-112) |#1|)) (-15 -3057 (|#1|)) (-15 -1735 ((-3 (-1267 |#1|) "failed") (-690 |#1|))) (-15 -1467 (|#1| |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3942 ((-3 (-772) "failed") |#1| |#1|)) (-15 -2937 ((-834 (-922)) |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)))) (-351)) (T -350)) -NIL -(-10 -8 (-15 -2937 ((-922) |#1|)) (-15 -3942 ((-772) |#1|)) (-15 -4284 ((-112) |#1|)) (-15 -3057 (|#1|)) (-15 -1735 ((-3 (-1267 |#1|) "failed") (-690 |#1|))) (-15 -1467 (|#1| |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3942 ((-3 (-772) "failed") |#1| |#1|)) (-15 -2937 ((-834 (-922)) |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3581 (((-1190 (-922) (-772)) (-567)) 101)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2373 (((-112) $ $) 65)) (-2371 (((-772)) 111)) (-2245 (($) 18 T CONST)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-1378 (($) 114)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-3005 (($) 99)) (-4284 (((-112) $) 98)) (-4112 (($ $) 87) (($ $ (-772)) 86)) (-4341 (((-112) $) 79)) (-2937 (((-834 (-922)) $) 89) (((-922) $) 96)) (-2843 (((-112) $) 35)) (-3641 (((-3 $ "failed") $) 110)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3425 (((-922) $) 113)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-2701 (($) 109 T CONST)) (-3763 (($ (-922)) 112)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 102)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3942 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-1621 (($ $ (-772)) 107) (($ $) 105)) (-3057 (($) 100)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 103)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1467 (((-3 $ "failed") $) 90) (($ $) 104)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-772)) 108) (($ $) 106)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-2623 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *3)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-3341 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-1953 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) (-4 *1 (-330 *4)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2661 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3559 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-1398 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-2280 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) +(-13 (-1287 |t#1|) (-1040 |t#1|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2623 ((-1268 $) (-923))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -4206 ((-1174 |t#1|) $)) (-15 -3341 ((-1174 |t#1|))) (-15 -1953 ((-923))) (-15 -3077 ((-923) $)) (-15 -2475 (|t#1| $)) (-15 -4293 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -4206 ((-1174 $) $ (-923))) (-15 -2475 ($ $ (-923))) (-15 -4293 ($ $ (-923))) (-15 -2661 ($)) (-15 -3559 ($)) (-15 -1426 ((-112) $)) (-15 -1398 ($)) (-15 -2286 ($ $ (-1174 |t#1|))) (-15 -2016 ((-1174 |t#1|) $)) (-15 -2280 ((-1174 |t#1|) $)) (-15 -2280 ((-3 (-1174 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1287 |#1|) . T) ((-365) . T) ((-405) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-370)) ((-1222) . T) ((-1275 |#1|) . T)) +((-2403 (((-112) $ $) NIL)) (-1371 (($ (-1177) $) 104)) (-2065 (($) 93)) (-4012 (((-1122) (-1122)) 9)) (-1351 (($) 94)) (-4073 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-3696 (($ (-1177) $) 105)) (-2312 (($ (-645 (-863))) 95)) (-3630 (((-1273) $) 91)) (-2183 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3987 (($ (-1122)) 60)) (-1606 (((-1106) $) 32)) (-3502 (($ (-1094 (-954 (-567))) $) 101) (($ (-1094 (-954 (-567))) (-954 (-567)) $) 102)) (-2549 (($ (-1122)) 103)) (-2325 (($ (-1177) $) 133) (($ (-1177) $ $) 134)) (-2324 (($ (-1178) (-645 (-1178))) 92)) (-1586 (($ (-1160)) 98) (($ (-645 (-1160))) 96)) (-4132 (((-863) $) 136)) (-1800 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-4281 (($ (-1160)) 205)) (-2812 (($ (-645 $)) 132)) (-1745 (((-112) $ $) NIL)) (-3209 (($ (-1178) (-1160)) 138) (($ (-1178) (-317 (-702))) 178) (($ (-1178) (-317 (-700))) 179) (($ (-1178) (-317 (-695))) 180) (($ (-1178) (-690 (-702))) 141) (($ (-1178) (-690 (-700))) 144) (($ (-1178) (-690 (-695))) 147) (($ (-1178) (-1268 (-702))) 150) (($ (-1178) (-1268 (-700))) 153) (($ (-1178) (-1268 (-695))) 156) (($ (-1178) (-690 (-317 (-702)))) 159) (($ (-1178) (-690 (-317 (-700)))) 162) (($ (-1178) (-690 (-317 (-695)))) 165) (($ (-1178) (-1268 (-317 (-702)))) 168) (($ (-1178) (-1268 (-317 (-700)))) 171) (($ (-1178) (-1268 (-317 (-695)))) 174) (($ (-1178) (-645 (-954 (-567))) (-317 (-702))) 175) (($ (-1178) (-645 (-954 (-567))) (-317 (-700))) 176) (($ (-1178) (-645 (-954 (-567))) (-317 (-695))) 177) (($ (-1178) (-317 (-567))) 202) (($ (-1178) (-317 (-381))) 203) (($ (-1178) (-317 (-169 (-381)))) 204) (($ (-1178) (-690 (-317 (-567)))) 183) (($ (-1178) (-690 (-317 (-381)))) 186) (($ (-1178) (-690 (-317 (-169 (-381))))) 189) (($ (-1178) (-1268 (-317 (-567)))) 192) (($ (-1178) (-1268 (-317 (-381)))) 195) (($ (-1178) (-1268 (-317 (-169 (-381))))) 198) (($ (-1178) (-645 (-954 (-567))) (-317 (-567))) 199) (($ (-1178) (-645 (-954 (-567))) (-317 (-381))) 200) (($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381)))) 201)) (-2936 (((-112) $ $) NIL))) +(((-331) (-13 (-1102) (-10 -8 (-15 -3502 ($ (-1094 (-954 (-567))) $)) (-15 -3502 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -1371 ($ (-1177) $)) (-15 -3696 ($ (-1177) $)) (-15 -3987 ($ (-1122))) (-15 -2549 ($ (-1122))) (-15 -1586 ($ (-1160))) (-15 -1586 ($ (-645 (-1160)))) (-15 -4281 ($ (-1160))) (-15 -4073 ($)) (-15 -4073 ($ (-317 (-700)))) (-15 -4073 ($ (-317 (-702)))) (-15 -4073 ($ (-317 (-695)))) (-15 -4073 ($ (-317 (-381)))) (-15 -4073 ($ (-317 (-567)))) (-15 -4073 ($ (-317 (-169 (-381))))) (-15 -2325 ($ (-1177) $)) (-15 -2325 ($ (-1177) $ $)) (-15 -3209 ($ (-1178) (-1160))) (-15 -3209 ($ (-1178) (-317 (-702)))) (-15 -3209 ($ (-1178) (-317 (-700)))) (-15 -3209 ($ (-1178) (-317 (-695)))) (-15 -3209 ($ (-1178) (-690 (-702)))) (-15 -3209 ($ (-1178) (-690 (-700)))) (-15 -3209 ($ (-1178) (-690 (-695)))) (-15 -3209 ($ (-1178) (-1268 (-702)))) (-15 -3209 ($ (-1178) (-1268 (-700)))) (-15 -3209 ($ (-1178) (-1268 (-695)))) (-15 -3209 ($ (-1178) (-690 (-317 (-702))))) (-15 -3209 ($ (-1178) (-690 (-317 (-700))))) (-15 -3209 ($ (-1178) (-690 (-317 (-695))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-702))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-700))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-695))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3209 ($ (-1178) (-317 (-567)))) (-15 -3209 ($ (-1178) (-317 (-381)))) (-15 -3209 ($ (-1178) (-317 (-169 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-567))))) (-15 -3209 ($ (-1178) (-690 (-317 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-567))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-381))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2812 ($ (-645 $))) (-15 -2065 ($)) (-15 -1351 ($)) (-15 -2312 ($ (-645 (-863)))) (-15 -2324 ($ (-1178) (-645 (-1178)))) (-15 -2183 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1800 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3630 ((-1273) $)) (-15 -1606 ((-1106) $)) (-15 -4012 ((-1122) (-1122)))))) (T -331)) +((-3502 (*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))) (-3502 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) (-5 *1 (-331)))) (-1371 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3696 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-331)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))) (-4073 (*1 *1) (-5 *1 (-331))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-2325 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-702)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-700)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-695)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-567)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-2065 (*1 *1) (-5 *1 (-331))) (-1351 (*1 *1) (-5 *1 (-331))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-2324 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-331)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 (-331)))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 (-331)))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-331)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) +(-13 (-1102) (-10 -8 (-15 -3502 ($ (-1094 (-954 (-567))) $)) (-15 -3502 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -1371 ($ (-1177) $)) (-15 -3696 ($ (-1177) $)) (-15 -3987 ($ (-1122))) (-15 -2549 ($ (-1122))) (-15 -1586 ($ (-1160))) (-15 -1586 ($ (-645 (-1160)))) (-15 -4281 ($ (-1160))) (-15 -4073 ($)) (-15 -4073 ($ (-317 (-700)))) (-15 -4073 ($ (-317 (-702)))) (-15 -4073 ($ (-317 (-695)))) (-15 -4073 ($ (-317 (-381)))) (-15 -4073 ($ (-317 (-567)))) (-15 -4073 ($ (-317 (-169 (-381))))) (-15 -2325 ($ (-1177) $)) (-15 -2325 ($ (-1177) $ $)) (-15 -3209 ($ (-1178) (-1160))) (-15 -3209 ($ (-1178) (-317 (-702)))) (-15 -3209 ($ (-1178) (-317 (-700)))) (-15 -3209 ($ (-1178) (-317 (-695)))) (-15 -3209 ($ (-1178) (-690 (-702)))) (-15 -3209 ($ (-1178) (-690 (-700)))) (-15 -3209 ($ (-1178) (-690 (-695)))) (-15 -3209 ($ (-1178) (-1268 (-702)))) (-15 -3209 ($ (-1178) (-1268 (-700)))) (-15 -3209 ($ (-1178) (-1268 (-695)))) (-15 -3209 ($ (-1178) (-690 (-317 (-702))))) (-15 -3209 ($ (-1178) (-690 (-317 (-700))))) (-15 -3209 ($ (-1178) (-690 (-317 (-695))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-702))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-700))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-695))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3209 ($ (-1178) (-317 (-567)))) (-15 -3209 ($ (-1178) (-317 (-381)))) (-15 -3209 ($ (-1178) (-317 (-169 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-567))))) (-15 -3209 ($ (-1178) (-690 (-317 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-567))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-381))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2812 ($ (-645 $))) (-15 -2065 ($)) (-15 -1351 ($)) (-15 -2312 ($ (-645 (-863)))) (-15 -2324 ($ (-1178) (-645 (-1178)))) (-15 -2183 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1800 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3630 ((-1273) $)) (-15 -1606 ((-1106) $)) (-15 -4012 ((-1122) (-1122))))) +((-2403 (((-112) $ $) NIL)) (-2701 (((-112) $) 13)) (-2987 (($ |#1|) 10)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2999 (($ |#1|) 12)) (-4132 (((-863) $) 19)) (-1745 (((-112) $ $) NIL)) (-2799 ((|#1| $) 14)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 21))) +(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -2987 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -2701 ((-112) $)) (-15 -2799 (|#1| $)))) (-851)) (T -332)) +((-2987 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2999 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-2799 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))) +(-13 (-851) (-10 -8 (-15 -2987 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -2701 ((-112) $)) (-15 -2799 (|#1| $)))) +((-1821 (((-331) (-1178) (-954 (-567))) 23)) (-1844 (((-331) (-1178) (-954 (-567))) 27)) (-4117 (((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567)))) 26) (((-331) (-1178) (-954 (-567)) (-954 (-567))) 24)) (-1588 (((-331) (-1178) (-954 (-567))) 31))) +(((-333) (-10 -7 (-15 -1821 ((-331) (-1178) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-954 (-567)) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -1844 ((-331) (-1178) (-954 (-567)))) (-15 -1588 ((-331) (-1178) (-954 (-567)))))) (T -333)) +((-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333))))) +(-10 -7 (-15 -1821 ((-331) (-1178) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-954 (-567)) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -1844 ((-331) (-1178) (-954 (-567)))) (-15 -1588 ((-331) (-1178) (-954 (-567))))) +((-2403 (((-112) $ $) NIL)) (-1568 (((-509) $) 20)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4300 (((-960 (-772)) $) 18)) (-1782 (((-250) $) 7)) (-4132 (((-863) $) 26)) (-1538 (((-960 (-183 (-139))) $) 16)) (-1745 (((-112) $ $) NIL)) (-4111 (((-645 (-874 (-1183) (-772))) $) 12)) (-2936 (((-112) $ $) 22))) +(((-334) (-13 (-1102) (-10 -8 (-15 -1782 ((-250) $)) (-15 -4111 ((-645 (-874 (-1183) (-772))) $)) (-15 -4300 ((-960 (-772)) $)) (-15 -1538 ((-960 (-183 (-139))) $)) (-15 -1568 ((-509) $))))) (T -334)) +((-1782 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1183) (-772)))) (-5 *1 (-334)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) +(-13 (-1102) (-10 -8 (-15 -1782 ((-250) $)) (-15 -4111 ((-645 (-874 (-1183) (-772))) $)) (-15 -4300 ((-960 (-772)) $)) (-15 -1538 ((-960 (-183 (-139))) $)) (-15 -1568 ((-509) $)))) +((-3829 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) +(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1244 |#5|) (-1244 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1244 *9)) (-4 *11 (-1244 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) +(-10 -7 (-15 -3829 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) +((-1500 (((-112) $) 14))) +(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1500 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) +NIL +(-10 -8 (-15 -1500 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2477 (($ $) 29)) (-1500 (((-112) $) 28)) (-1419 (((-1160) $) 10)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3430 (((-1122) $) 11)) (-1398 (((-3 |#4| "failed") $) 27)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) +(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1244 |t#1|) (-1244 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337)) +((-1321 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-3477 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-3477 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-3477 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1244 *2)) (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -3979 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-2477 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-1398 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-3477 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1321 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -3477 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -3477 ($ |t#4|)) (-15 -3477 ($ |t#1| |t#1|)) (-15 -3477 ($ |t#1| |t#1| (-567))) (-15 -2532 ((-2 (|:| -3979 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2477 ($ $)) (-15 -1500 ((-112) $)) (-15 -1398 ((-3 |t#4| "failed") $)) (-15 -3477 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ $) 33)) (-1500 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-1881 (((-1268 |#4|) $) 135)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3430 (((-1122) $) NIL)) (-1398 (((-3 |#4| "failed") $) 36)) (-4374 (((-1268 |#4|) $) 127)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4132 (((-863) $) 17)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 14 T CONST)) (-2936 (((-112) $ $) 20)) (-3045 (($ $) 27) (($ $ $) NIL)) (-3033 (($ $ $) 25)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23))) +(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4374 ((-1268 |#4|) $)) (-15 -1881 ((-1268 |#4|) $)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) +((-4374 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1881 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4374 ((-1268 |#4|) $)) (-15 -1881 ((-1268 |#4|) $)))) +((-2631 (($ $ (-1178) |#2|) NIL) (($ $ (-645 (-1178)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1787 (($ $ |#2|) 11))) +(((-339 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1178) |#2|))) (-340 |#2|) (-1102)) (T -339)) +NIL +(-10 -8 (-15 -1787 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1178) |#2|))) +((-3829 (($ (-1 |#1| |#1|) $) 6)) (-2631 (($ $ (-1178) |#1|) 17 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1787 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) +(((-340 |#1|) (-140) (-1102)) (T -340)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102))))) +(-13 (-10 -8 (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1178) |t#1|)) (-6 (-517 (-1178) |t#1|)) |%noBranch|))) +(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) NIL)) (-4015 (((-112)) 99) (((-112) (-112)) 100)) (-2566 (((-645 (-613 $)) $) NIL)) (-3146 (($ $) NIL)) (-3012 (($ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-2716 (($ $) NIL)) (-3128 (($ $) NIL)) (-2987 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1178)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-410 (-954 (-567)))) 73 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-954 (-567))) 68 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-410 (-954 (-381)))) 91 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-954 (-381))) 86 (|has| |#3| (-1040 (-381))))) (-2038 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1178)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1040 (-567)))) (($ (-410 (-954 (-567)))) 74 (|has| |#3| (-1040 (-567)))) (($ (-954 (-567))) 70 (|has| |#3| (-1040 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1040 (-381)))) (($ (-410 (-954 (-381)))) 92 (|has| |#3| (-1040 (-381)))) (($ (-954 (-381))) 88 (|has| |#3| (-1040 (-381))))) (-2109 (((-3 $ "failed") $) NIL)) (-1482 (($) 10)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-3263 (((-1174 $) (-613 $)) NIL (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-1703 (($ $) 102)) (-3063 (($ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-3946 (($ $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3137 (($ $) NIL)) (-2999 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) NIL)) (-1745 (((-112) $ $) NIL)) (-3084 (($ $) NIL)) (-3062 (($ $) NIL)) (-3074 (($ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) 103 T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) +(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1178)) (-10 -8 (-15 -2038 ($ (-317 |#3|))) (-15 -3753 ((-3 $ "failed") (-317 |#3|))) (-15 -2038 ($ (-1178))) (-15 -3753 ((-3 $ "failed") (-1178))) (-15 -4132 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -2219 ($ $)) (-15 -2716 ($ $)) (-15 -3946 ($ $)) (-15 -3063 ($ $)) (-15 -1703 ($ $)) (-15 -2987 ($ $)) (-15 -2999 ($ $)) (-15 -3012 ($ $)) (-15 -3062 ($ $)) (-15 -3074 ($ $)) (-15 -3084 ($ $)) (-15 -3128 ($ $)) (-15 -3137 ($ $)) (-15 -3146 ($ $)) (-15 -1482 ($)) (-15 -2847 ((-645 (-1178)) $)) (-15 -4015 ((-112))) (-15 -4015 ((-112) (-112))))) (-645 (-1178)) (-645 (-1178)) (-390)) (T -341)) +((-2038 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2716 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3946 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-1703 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2999 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3012 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3074 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3084 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3146 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-1482 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-4015 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390))))) +(-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1178)) (-10 -8 (-15 -2038 ($ (-317 |#3|))) (-15 -3753 ((-3 $ "failed") (-317 |#3|))) (-15 -2038 ($ (-1178))) (-15 -3753 ((-3 $ "failed") (-1178))) (-15 -4132 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -2219 ($ $)) (-15 -2716 ($ $)) (-15 -3946 ($ $)) (-15 -3063 ($ $)) (-15 -1703 ($ $)) (-15 -2987 ($ $)) (-15 -2999 ($ $)) (-15 -3012 ($ $)) (-15 -3062 ($ $)) (-15 -3074 ($ $)) (-15 -3084 ($ $)) (-15 -3128 ($ $)) (-15 -3137 ($ $)) (-15 -3146 ($ $)) (-15 -1482 ($)) (-15 -2847 ((-645 (-1178)) $)) (-15 -4015 ((-112))) (-15 -4015 ((-112) (-112))))) +((-3829 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|))) (-1222) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1222) (-1244 |#5|) (-1244 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1222)) (-4 *8 (-1222)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *9 (-1244 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1244 (-410 *9)))))) +(-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|))) +((-3852 (((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) $) 40)) (-3658 (($ (-1268 (-410 |#3|)) (-1268 $)) NIL) (($ (-1268 (-410 |#3|))) NIL) (($ (-1268 |#3|) |#3|) 177)) (-1639 (((-1268 $) (-1268 $)) 161)) (-1381 (((-645 (-645 |#2|))) 130)) (-3282 (((-112) |#2| |#2|) 77)) (-3501 (($ $) 152)) (-3663 (((-772)) 33)) (-4126 (((-1268 $) (-1268 $)) 222)) (-4334 (((-645 (-954 |#2|)) (-1178)) 119)) (-1928 (((-112) $) 174)) (-4255 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-4050 (((-3 |#3| "failed")) 53)) (-2666 (((-772)) 188)) (-1787 ((|#2| $ |#2| |#2|) 144)) (-3346 (((-3 |#3| "failed")) 72)) (-1593 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4000 (((-1268 $) (-1268 $)) 167)) (-2250 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1562 (((-112)) 35))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1381 ((-645 (-645 |#2|)))) (-15 -4334 ((-645 (-954 |#2|)) (-1178))) (-15 -2250 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4050 ((-3 |#3| "failed"))) (-15 -3346 ((-3 |#3| "failed"))) (-15 -1787 (|#2| |#1| |#2| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4255 ((-112) |#1| |#3|)) (-15 -4255 ((-112) |#1| |#2|)) (-15 -3658 (|#1| (-1268 |#3|) |#3|)) (-15 -3852 ((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1639 ((-1268 |#1|) (-1268 |#1|))) (-15 -4126 ((-1268 |#1|) (-1268 |#1|))) (-15 -4000 ((-1268 |#1|) (-1268 |#1|))) (-15 -4255 ((-112) |#1|)) (-15 -1928 ((-112) |#1|)) (-15 -3282 ((-112) |#2| |#2|)) (-15 -1562 ((-112))) (-15 -2666 ((-772))) (-15 -3663 ((-772))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3658 (|#1| (-1268 (-410 |#3|)))) (-15 -3658 (|#1| (-1268 (-410 |#3|)) (-1268 |#1|)))) (-344 |#2| |#3| |#4|) (-1222) (-1244 |#2|) (-1244 (-410 |#3|))) (T -343)) +((-3663 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-2666 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1562 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *3 (-1222)) (-4 *5 (-1244 *3)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3346 (*1 *2) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4050 (*1 *2) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-645 (-954 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1381 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) +(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1381 ((-645 (-645 |#2|)))) (-15 -4334 ((-645 (-954 |#2|)) (-1178))) (-15 -2250 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4050 ((-3 |#3| "failed"))) (-15 -3346 ((-3 |#3| "failed"))) (-15 -1787 (|#2| |#1| |#2| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4255 ((-112) |#1| |#3|)) (-15 -4255 ((-112) |#1| |#2|)) (-15 -3658 (|#1| (-1268 |#3|) |#3|)) (-15 -3852 ((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1639 ((-1268 |#1|) (-1268 |#1|))) (-15 -4126 ((-1268 |#1|) (-1268 |#1|))) (-15 -4000 ((-1268 |#1|) (-1268 |#1|))) (-15 -4255 ((-112) |#1|)) (-15 -1928 ((-112) |#1|)) (-15 -3282 ((-112) |#2| |#2|)) (-15 -1562 ((-112))) (-15 -2666 ((-772))) (-15 -3663 ((-772))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3658 (|#1| (-1268 (-410 |#3|)))) (-15 -3658 (|#1| (-1268 (-410 |#3|)) (-1268 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 204)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-4381 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) 53) (((-690 (-410 |#2|))) 68)) (-4293 (((-410 |#2|) $) 59)) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) 221)) (-1404 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-2038 (((-567) $) 177 (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) 174)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) 55) (($ (-1268 (-410 |#2|))) 71) (($ (-1268 |#2|) |#2|) 203)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-1639 (((-1268 $) (-1268 $)) 209)) (-2477 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-1381 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) 225)) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) 218)) (-3347 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2360 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-3501 (($ $) 196)) (-3431 (($) 157 (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) 146 (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) 35)) (-3663 (((-772)) 228)) (-4126 (((-1268 $) (-1268 $)) 210)) (-2475 (((-410 |#2|) $) 58)) (-4334 (((-645 (-954 |#1|)) (-1178)) 191 (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) 98 (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) 164)) (-2740 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) 10)) (-4143 (((-690 (-410 |#2|))) 205)) (-3264 (((-690 (-410 |#2|))) 207)) (-2939 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 201)) (-1900 (((-690 (-410 |#2|))) 206)) (-3564 (((-690 (-410 |#2|))) 208)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 202)) (-3992 (((-1268 $)) 214)) (-3675 (((-1268 $)) 215)) (-1928 (((-112) $) 213)) (-4255 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2672 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) 193)) (-3430 (((-1122) $) 11)) (-2666 (((-772)) 227)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) 195)) (-3346 (((-3 |#2| "failed")) 194)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) 54) (((-410 |#2|)) 67)) (-2491 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1178)) (-645 (-772))) 138 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178) (-772)) 139 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1178))) 140 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178)) 141 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 167)) (-1527 (($) 156 (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) 57) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) 56) (((-1268 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1268 $)) 72)) (-3893 (((-1268 (-410 |#2|)) $) 70) (($ (-1268 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) 211)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2800 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1040 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-1903 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) 52)) (-4221 (((-772)) 32 T CONST)) (-2104 (((-112)) 224)) (-2542 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3816 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1562 (((-112)) 226)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) 134 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178) (-772)) 135 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1178))) 136 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178)) 137 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365))))) +(((-344 |#1| |#2| |#3|) (-140) (-1222) (-1244 |t#1|) (-1244 (-410 |t#2|))) (T -344)) +((-3663 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))) (-2666 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))) (-1562 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2104 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2542 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2542 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-1331 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-1404 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-1404 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-3863 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3347 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3347 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-3675 (*1 *2) (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3992 (*1 *2) (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-3564 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3264 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1900 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-4143 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-4255 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4255 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))))) (-1787 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))))) (-3346 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))) (-4050 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))) (-2250 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1222)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-954 *4))))) (-1381 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) +(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -3663 ((-772))) (-15 -2666 ((-772))) (-15 -1562 ((-112))) (-15 -3282 ((-112) |t#1| |t#1|)) (-15 -2104 ((-112))) (-15 -2542 ((-112) |t#1|)) (-15 -2542 ((-112) |t#2|)) (-15 -1331 ((-112))) (-15 -1404 ((-112) |t#1|)) (-15 -1404 ((-112) |t#2|)) (-15 -3863 ((-112))) (-15 -3347 ((-112) |t#1|)) (-15 -3347 ((-112) |t#2|)) (-15 -3675 ((-1268 $))) (-15 -3992 ((-1268 $))) (-15 -1928 ((-112) $)) (-15 -4255 ((-112) $)) (-15 -4000 ((-1268 $) (-1268 $))) (-15 -4126 ((-1268 $) (-1268 $))) (-15 -1639 ((-1268 $) (-1268 $))) (-15 -3564 ((-690 (-410 |t#2|)))) (-15 -3264 ((-690 (-410 |t#2|)))) (-15 -1900 ((-690 (-410 |t#2|)))) (-15 -4143 ((-690 (-410 |t#2|)))) (-15 -3852 ((-2 (|:| |num| (-1268 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3658 ($ (-1268 |t#2|) |t#2|)) (-15 -3270 ((-2 (|:| |num| (-1268 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4236 ($ (-1268 |t#2|) |t#2|)) (-15 -4253 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4255 ((-112) $ |t#1|)) (-15 -4255 ((-112) $ |t#2|)) (-15 -1593 ($ $ (-1 |t#2| |t#2|))) (-15 -3501 ($ $)) (-15 -1787 (|t#1| $ |t#1| |t#1|)) (-15 -3346 ((-3 |t#2| "failed"))) (-15 -4050 ((-3 |t#2| "failed"))) (-15 -2250 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -4334 ((-645 (-954 |t#1|)) (-1178))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1381 ((-645 (-645 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2800 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2800 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-902 (-1178)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) ((-922) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1040 (-410 (-567))) |has| (-410 |#2|) (-1040 (-410 (-567)))) ((-1040 #1#) . T) ((-1040 (-567)) |has| (-410 |#2|) (-1040 (-567))) ((-1053 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| (-410 |#2|) (-351)) ((-1222) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-923) (-923)) (T -345)) +((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) +(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2326 ((-960 (-1122)))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 58)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 144)) (-2038 ((|#1| $) 115)) (-3658 (($ (-1268 |#1|)) 132)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 126 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 162 (|has| |#1| (-370)))) (-2722 (((-112) $) 66 (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) 60 (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 62)) (-3559 (($) 164 (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 119) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 173 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 180)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 98 (|has| |#1| (-370)))) (-2051 (((-112) $) 149)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) 57)) (-1398 (($) 160 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 121 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) 92) (((-923)) 93)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) 124)) (-1527 (($) 161 (|has| |#1| (-370)))) (-2661 (($) 169 (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 77) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 157 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 146) (((-1268 $) (-923)) 100)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 67 T CONST)) (-1728 (($) 105 T CONST)) (-3253 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 65)) (-3060 (($ $ $) 178) (($ $ |#1|) 179)) (-3045 (($ $) 159) (($ $ $) NIL)) (-3033 (($ $ $) 86)) (** (($ $ (-923)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) +(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-351) (-1174 |#1|)) (T -346)) +((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1174 *3))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-351) (-923)) (T -347)) +((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) +((-1592 (((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 61)) (-3916 (((-960 (-1122)) (-1174 |#1|)) 113)) (-2730 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|)) 105)) (-3610 (((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 115)) (-2361 (((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923)) 13)) (-3198 (((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923)) 18))) +(((-348 |#1|) (-10 -7 (-15 -3916 ((-960 (-1122)) (-1174 |#1|))) (-15 -2730 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|))) (-15 -3610 ((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -1592 ((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2361 ((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923))) (-15 -3198 ((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923)))) (-351)) (T -348)) +((-3198 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-3 (-1174 *4) (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2361 (*1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-5 *1 (-348 *4)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) (-5 *1 (-348 *4))))) +(-10 -7 (-15 -3916 ((-960 (-1122)) (-1174 |#1|))) (-15 -2730 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|))) (-15 -3610 ((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -1592 ((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2361 ((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923))) (-15 -3198 ((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923)))) +((-4132 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4132 (|#3| |#1|)) (-15 -4132 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) +((-4132 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4132 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) +(-10 -7 (-15 -4132 (|#3| |#1|)) (-15 -4132 (|#1| |#3|))) +((-2722 (((-112) $) 60)) (-4384 (((-834 (-923)) $) 23) (((-923) $) 66)) (-3972 (((-3 $ "failed") $) 18)) (-2672 (($) 9)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 116)) (-2491 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-1593 (($ $ (-772)) NIL) (($ $) 8)) (-1527 (($) 53)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 38)) (-1903 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-350 |#1|) (-10 -8 (-15 -4384 ((-923) |#1|)) (-15 -2491 ((-772) |#1|)) (-15 -2722 ((-112) |#1|)) (-15 -1527 (|#1|)) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -1903 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -2491 ((-3 (-772) "failed") |#1| |#1|)) (-15 -4384 ((-834 (-923)) |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-351)) (T -350)) +NIL +(-10 -8 (-15 -4384 ((-923) |#1|)) (-15 -2491 ((-772) |#1|)) (-15 -2722 ((-112) |#1|)) (-15 -1527 (|#1|)) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -1903 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -2491 ((-3 (-772) "failed") |#1| |#1|)) (-15 -4384 ((-834 (-923)) |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3400 (((-1191 (-923) (-772)) (-567)) 101)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2375 (((-772)) 111)) (-2585 (($) 18 T CONST)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 114)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3431 (($) 99)) (-2722 (((-112) $) 98)) (-4225 (($ $) 87) (($ $ (-772)) 86)) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 89) (((-923) $) 96)) (-1433 (((-112) $) 35)) (-3972 (((-3 $ "failed") $) 110)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4249 (((-923) $) 113)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 109 T CONST)) (-3768 (($ (-923)) 112)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 102)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-1593 (($ $ (-772)) 107) (($ $) 105)) (-1527 (($) 100)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 103)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1903 (((-3 $ "failed") $) 90) (($ $) 104)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-772)) 108) (($ $) 106)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) (((-351) (-140)) (T -351)) -((-1467 (*1 *1 *1) (-4 *1 (-351))) (-1735 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1267 *1)))) (-3762 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))))) (-3581 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1190 (-922) (-772))))) (-3057 (*1 *1) (-4 *1 (-351))) (-3005 (*1 *1) (-4 *1 (-351))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-922)))) (-4008 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-405) (-370) (-1152) (-233) (-10 -8 (-15 -1467 ($ $)) (-15 -1735 ((-3 (-1267 $) "failed") (-690 $))) (-15 -3762 ((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567)))))) (-15 -3581 ((-1190 (-922) (-772)) (-567))) (-15 -3057 ($)) (-15 -3005 ($)) (-15 -4284 ((-112) $)) (-15 -3942 ((-772) $)) (-15 -2937 ((-922) $)) (-15 -4008 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) . T) ((-1221) . T)) -((-2910 (((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-1593 (((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $)))) (-1243 |#1|) (-412 |#1| |#2|)) (T -352)) -((-2910 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-1593 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1462 (((-772)) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-911 |#1|) "failed") $) NIL)) (-2033 (((-911 |#1|) $) NIL)) (-4025 (($ (-1267 (-911 |#1|))) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-911 |#1|) (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| (-911 |#1|) (-370)))) (-4284 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| (-911 |#1|) (-370)))) (-3601 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2896 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 (-911 |#1|)) $) NIL) (((-1173 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3425 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-4091 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-2772 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1173 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2157 (($ $ (-1173 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-2629 (((-1267 (-645 (-2 (|:| -3794 (-911 |#1|)) (|:| -3763 (-1121)))))) NIL)) (-3353 (((-690 (-911 |#1|))) NIL)) (-1394 (($) NIL (|has| (-911 |#1|) (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 (-911 |#1|))) NIL)) (-3057 (($) NIL (|has| (-911 |#1|) (-370)))) (-3914 (($) NIL (|has| (-911 |#1|) (-370)))) (-2446 (((-1267 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-1467 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2636 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL))) -(((-353 |#1| |#2|) (-13 (-330 (-911 |#1|)) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 (-911 |#1|)) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 (-911 |#1|)))) (-15 -1462 ((-772))))) (-922) (-922)) (T -353)) -((-2629 (*1 *2) (-12 (-5 *2 (-1267 (-645 (-2 (|:| -3794 (-911 *3)) (|:| -3763 (-1121)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3353 (*1 *2) (-12 (-5 *2 (-690 (-911 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1462 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) -(-13 (-330 (-911 |#1|)) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 (-911 |#1|)) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 (-911 |#1|)))) (-15 -1462 ((-772))))) -((-2399 (((-112) $ $) 76)) (-2840 (((-112) $) 90)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) 108) (($ $ (-922)) 106 (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1462 (((-772)) 105)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) 193 (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 130)) (-2033 ((|#1| $) 107)) (-4025 (($ (-1267 |#1|)) 74)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) 189 (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) 178 (|has| |#1| (-370)))) (-4284 (((-112) $) NIL (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) 116 (|has| |#1| (-370)))) (-3601 (((-112) $) 206 (|has| |#1| (-370)))) (-2896 ((|#1| $) 110) (($ $ (-922)) 109 (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) 220) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) 154 (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) 89 (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) 85 (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 224)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) 157 (|has| |#1| (-370)))) (-1816 (((-112) $) 126)) (-3430 (((-1121) $) NIL)) (-2629 (((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) 99)) (-3353 (((-690 |#1|)) 103)) (-1394 (($) 112 (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 180 (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) 181)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) 78)) (-2530 (((-1173 |#1|)) 182)) (-3057 (($) 153 (|has| |#1| (-370)))) (-3914 (($) NIL (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) 124) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) 187 T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 203) (((-1267 $) (-922)) 119)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) 140 T CONST)) (-1722 (($) 44 T CONST)) (-2529 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) 214)) (-3050 (($ $ $) 122) (($ $ |#1|) 123)) (-3037 (($ $) 208) (($ $ $) 212)) (-3024 (($ $ $) 210)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 |#1|))) (-15 -1462 ((-772))))) (-351) (-3 (-1173 |#1|) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (T -354)) -((-2629 (*1 *2) (-12 (-5 *2 (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1173 *3) *2)))) (-3353 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1173 *3) (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121))))))))) (-1462 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1173 *3) (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121)))))))))) -(-13 (-330 |#1|) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 |#1|))) (-15 -1462 ((-772))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1462 (((-772)) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-4025 (($ (-1267 |#1|)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| |#1| (-370)))) (-4284 (((-112) $) NIL (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| |#1| (-370)))) (-3601 (((-112) $) NIL (|has| |#1| (-370)))) (-2896 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) NIL) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) NIL (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) NIL (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-2629 (((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121)))))) NIL)) (-3353 (((-690 |#1|)) NIL)) (-1394 (($) NIL (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 |#1|)) NIL)) (-3057 (($) NIL (|has| |#1| (-370)))) (-3914 (($) NIL (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) NIL) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 |#1|))) (-15 -1462 ((-772))))) (-351) (-922)) (T -355)) -((-2629 (*1 *2) (-12 (-5 *2 (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))) (-3353 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))) (-1462 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922))))) -(-13 (-330 |#1|) (-10 -7 (-15 -2629 ((-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))))) (-15 -3353 ((-690 |#1|))) (-15 -1462 ((-772))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-911 |#1|) "failed") $) NIL)) (-2033 (((-911 |#1|) $) NIL)) (-4025 (($ (-1267 (-911 |#1|))) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-911 |#1|) (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| (-911 |#1|) (-370)))) (-4284 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| (-911 |#1|) (-370)))) (-3601 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2896 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 (-911 |#1|)) $) NIL) (((-1173 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3425 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-4091 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-2772 (((-1173 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1173 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2157 (($ $ (-1173 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL (|has| (-911 |#1|) (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 (-911 |#1|))) NIL)) (-3057 (($) NIL (|has| (-911 |#1|) (-370)))) (-3914 (($) NIL (|has| (-911 |#1|) (-370)))) (-2446 (((-1267 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-1467 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2636 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL))) -(((-356 |#1| |#2|) (-330 (-911 |#1|)) (-922) (-922)) (T -356)) -NIL -(-330 (-911 |#1|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) 165 (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 109)) (-2033 ((|#1| $) 106)) (-4025 (($ (-1267 |#1|)) 101)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) 98 (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) 51 (|has| |#1| (-370)))) (-4284 (((-112) $) NIL (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) 136 (|has| |#1| (-370)))) (-3601 (((-112) $) 90 (|has| |#1| (-370)))) (-2896 ((|#1| $) 47) (($ $ (-922)) 52 (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) 79) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) 113 (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) NIL (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) NIL (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) 111 (|has| |#1| (-370)))) (-1816 (((-112) $) 167)) (-3430 (((-1121) $) NIL)) (-1394 (($) 44 (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 130 (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) 164)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) 71)) (-2530 (((-1173 |#1|)) 104)) (-3057 (($) 141 (|has| |#1| (-370)))) (-3914 (($) NIL (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) 66) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) 169 T CONST)) (-4104 (((-112) $ $) 171)) (-1975 (((-1267 $)) 125) (((-1267 $) (-922)) 60)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) 127 T CONST)) (-1722 (($) 40 T CONST)) (-2529 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) 123)) (-3050 (($ $ $) 115) (($ $ |#1|) 116)) (-3037 (($ $) 96) (($ $ $) 121)) (-3024 (($ $ $) 119)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) -(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1173 |#1|)) (T -357)) +((-1903 (*1 *1 *1) (-4 *1 (-351))) (-1895 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1268 *1)))) (-1796 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))))) (-3400 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1191 (-923) (-772))))) (-1527 (*1 *1) (-4 *1 (-351))) (-3431 (*1 *1) (-4 *1 (-351))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) (-2443 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-405) (-370) (-1153) (-233) (-10 -8 (-15 -1903 ($ $)) (-15 -1895 ((-3 (-1268 $) "failed") (-690 $))) (-15 -1796 ((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567)))))) (-15 -3400 ((-1191 (-923) (-772)) (-567))) (-15 -1527 ($)) (-15 -3431 ($)) (-15 -2722 ((-112) $)) (-15 -2491 ((-772) $)) (-15 -4384 ((-923) $)) (-15 -2443 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) . T) ((-1222) . T)) +((-3454 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-3675 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))) (-1244 |#1|) (-412 |#1| |#2|)) (T -352)) +((-3454 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3675 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) +(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122)))))) NIL)) (-2969 (((-690 (-912 |#1|))) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) +(((-353 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 (-912 |#1|)))) (-15 -1592 ((-772))))) (-923) (-923)) (T -353)) +((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 (-912 *3)) (|:| -3768 (-1122)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) +(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 (-912 |#1|)))) (-15 -1592 ((-772))))) +((-2403 (((-112) $ $) 76)) (-2460 (((-112) $) 90)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) 108) (($ $ (-923)) 106 (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) 105)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 193 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 130)) (-2038 ((|#1| $) 107)) (-3658 (($ (-1268 |#1|)) 74)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 189 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 178 (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) 116 (|has| |#1| (-370)))) (-1426 (((-112) $) 206 (|has| |#1| (-370)))) (-2475 ((|#1| $) 110) (($ $ (-923)) 109 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 220) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 154 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) 89 (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) 85 (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 224)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 157 (|has| |#1| (-370)))) (-2051 (((-112) $) 126)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 99)) (-2969 (((-690 |#1|)) 103)) (-1398 (($) 112 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 180 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) 181)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) 78)) (-3341 (((-1174 |#1|)) 182)) (-1527 (($) 153 (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 124) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 187 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 203) (((-1268 $) (-923)) 119)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 140 T CONST)) (-1728 (($) 44 T CONST)) (-3253 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 214)) (-3060 (($ $ $) 122) (($ $ |#1|) 123)) (-3045 (($ $) 208) (($ $ $) 212)) (-3033 (($ $ $) 210)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) +(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) (-351) (-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (T -354)) +((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) *2)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) NIL)) (-2969 (((-690 |#1|)) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) (-351) (-923)) (T -355)) +((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) +(((-356 |#1| |#2|) (-330 (-912 |#1|)) (-923) (-923)) (T -356)) +NIL +(-330 (-912 |#1|)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 165 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 109)) (-2038 ((|#1| $) 106)) (-3658 (($ (-1268 |#1|)) 101)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 98 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 51 (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) 136 (|has| |#1| (-370)))) (-1426 (((-112) $) 90 (|has| |#1| (-370)))) (-2475 ((|#1| $) 47) (($ $ (-923)) 52 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 79) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 113 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 111 (|has| |#1| (-370)))) (-2051 (((-112) $) 167)) (-3430 (((-1122) $) NIL)) (-1398 (($) 44 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 130 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) 164)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) 71)) (-3341 (((-1174 |#1|)) 104)) (-1527 (($) 141 (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 66) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 169 T CONST)) (-1745 (((-112) $ $) 171)) (-2623 (((-1268 $)) 125) (((-1268 $) (-923)) 60)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 127 T CONST)) (-1728 (($) 40 T CONST)) (-3253 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 123)) (-3060 (($ $ $) 115) (($ $ |#1|) 116)) (-3045 (($ $) 96) (($ $ $) 121)) (-3033 (($ $ $) 119)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) +(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1174 |#1|)) (T -357)) NIL (-330 |#1|) -((-4110 ((|#1| (-1173 |#2|)) 63))) -(((-358 |#1| |#2|) (-10 -7 (-15 -4110 (|#1| (-1173 |#2|)))) (-13 (-405) (-10 -7 (-15 -4127 (|#1| |#2|)) (-15 -3425 ((-922) |#1|)) (-15 -1975 ((-1267 |#1|) (-922))) (-15 -2529 (|#1| |#1|)))) (-351)) (T -358)) -((-4110 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4127 (*2 *4)) (-15 -3425 ((-922) *2)) (-15 -1975 ((-1267 *2) (-922))) (-15 -2529 (*2 *2))))) (-5 *1 (-358 *2 *4))))) -(-10 -7 (-15 -4110 (|#1| (-1173 |#2|)))) -((-2959 (((-959 (-1173 |#1|)) (-1173 |#1|)) 53)) (-1378 (((-1173 |#1|) (-922) (-922)) 168) (((-1173 |#1|) (-922)) 164)) (-4284 (((-112) (-1173 |#1|)) 120)) (-2391 (((-922) (-922)) 98)) (-3958 (((-922) (-922)) 105)) (-1825 (((-922) (-922)) 96)) (-3601 (((-112) (-1173 |#1|)) 124)) (-4062 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 149)) (-2039 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 154)) (-2975 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 153)) (-4108 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 152)) (-3493 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 144)) (-2284 (((-1173 |#1|) (-1173 |#1|)) 84)) (-4169 (((-1173 |#1|) (-922)) 159)) (-3847 (((-1173 |#1|) (-922)) 162)) (-3315 (((-1173 |#1|) (-922)) 161)) (-3550 (((-1173 |#1|) (-922)) 160)) (-2268 (((-1173 |#1|) (-922)) 157))) -(((-359 |#1|) (-10 -7 (-15 -4284 ((-112) (-1173 |#1|))) (-15 -3601 ((-112) (-1173 |#1|))) (-15 -1825 ((-922) (-922))) (-15 -2391 ((-922) (-922))) (-15 -3958 ((-922) (-922))) (-15 -2268 ((-1173 |#1|) (-922))) (-15 -4169 ((-1173 |#1|) (-922))) (-15 -3550 ((-1173 |#1|) (-922))) (-15 -3315 ((-1173 |#1|) (-922))) (-15 -3847 ((-1173 |#1|) (-922))) (-15 -3493 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -4062 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -4108 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -2975 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -2039 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -1378 ((-1173 |#1|) (-922))) (-15 -1378 ((-1173 |#1|) (-922) (-922))) (-15 -2284 ((-1173 |#1|) (-1173 |#1|))) (-15 -2959 ((-959 (-1173 |#1|)) (-1173 |#1|)))) (-351)) (T -359)) -((-2959 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-959 (-1173 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1173 *4)))) (-2284 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1378 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2039 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2975 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4108 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4062 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3493 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) -(-10 -7 (-15 -4284 ((-112) (-1173 |#1|))) (-15 -3601 ((-112) (-1173 |#1|))) (-15 -1825 ((-922) (-922))) (-15 -2391 ((-922) (-922))) (-15 -3958 ((-922) (-922))) (-15 -2268 ((-1173 |#1|) (-922))) (-15 -4169 ((-1173 |#1|) (-922))) (-15 -3550 ((-1173 |#1|) (-922))) (-15 -3315 ((-1173 |#1|) (-922))) (-15 -3847 ((-1173 |#1|) (-922))) (-15 -3493 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -4062 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -4108 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -2975 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -2039 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -1378 ((-1173 |#1|) (-922))) (-15 -1378 ((-1173 |#1|) (-922) (-922))) (-15 -2284 ((-1173 |#1|) (-1173 |#1|))) (-15 -2959 ((-959 (-1173 |#1|)) (-1173 |#1|)))) -((-1885 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38))) -(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1243 |#1|) (-1243 |#2|)) (T -360)) -((-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) -(-10 -7 (-15 -1885 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-4025 (($ (-1267 |#1|)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| |#1| (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| |#1| (-370)))) (-4284 (((-112) $) NIL (|has| |#1| (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| |#1| (-370)))) (-3601 (((-112) $) NIL (|has| |#1| (-370)))) (-2896 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 |#1|) $) NIL) (((-1173 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-4091 (((-1173 |#1|) $) NIL (|has| |#1| (-370)))) (-2772 (((-1173 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1173 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2157 (($ $ (-1173 |#1|)) NIL (|has| |#1| (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| |#1| (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL (|has| |#1| (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| |#1| (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 |#1|)) NIL)) (-3057 (($) NIL (|has| |#1| (-370)))) (-3914 (($) NIL (|has| |#1| (-370)))) (-2446 (((-1267 |#1|) $) NIL) (((-690 |#1|) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1467 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2636 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-361 |#1| |#2|) (-330 |#1|) (-351) (-922)) (T -361)) +((-4018 ((|#1| (-1174 |#2|)) 63))) +(((-358 |#1| |#2|) (-10 -7 (-15 -4018 (|#1| (-1174 |#2|)))) (-13 (-405) (-10 -7 (-15 -4132 (|#1| |#2|)) (-15 -4249 ((-923) |#1|)) (-15 -2623 ((-1268 |#1|) (-923))) (-15 -3253 (|#1| |#1|)))) (-351)) (T -358)) +((-4018 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4132 (*2 *4)) (-15 -4249 ((-923) *2)) (-15 -2623 ((-1268 *2) (-923))) (-15 -3253 (*2 *2))))) (-5 *1 (-358 *2 *4))))) +(-10 -7 (-15 -4018 (|#1| (-1174 |#2|)))) +((-3843 (((-960 (-1174 |#1|)) (-1174 |#1|)) 53)) (-1348 (((-1174 |#1|) (-923) (-923)) 168) (((-1174 |#1|) (-923)) 164)) (-2722 (((-112) (-1174 |#1|)) 120)) (-2495 (((-923) (-923)) 98)) (-1770 (((-923) (-923)) 105)) (-1737 (((-923) (-923)) 96)) (-1426 (((-112) (-1174 |#1|)) 124)) (-2405 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 149)) (-3882 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 154)) (-2928 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 153)) (-3821 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 152)) (-4382 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 144)) (-4010 (((-1174 |#1|) (-1174 |#1|)) 84)) (-4191 (((-1174 |#1|) (-923)) 159)) (-4200 (((-1174 |#1|) (-923)) 162)) (-2482 (((-1174 |#1|) (-923)) 161)) (-3405 (((-1174 |#1|) (-923)) 160)) (-3199 (((-1174 |#1|) (-923)) 157))) +(((-359 |#1|) (-10 -7 (-15 -2722 ((-112) (-1174 |#1|))) (-15 -1426 ((-112) (-1174 |#1|))) (-15 -1737 ((-923) (-923))) (-15 -2495 ((-923) (-923))) (-15 -1770 ((-923) (-923))) (-15 -3199 ((-1174 |#1|) (-923))) (-15 -4191 ((-1174 |#1|) (-923))) (-15 -3405 ((-1174 |#1|) (-923))) (-15 -2482 ((-1174 |#1|) (-923))) (-15 -4200 ((-1174 |#1|) (-923))) (-15 -4382 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2405 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3821 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2928 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3882 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1348 ((-1174 |#1|) (-923))) (-15 -1348 ((-1174 |#1|) (-923) (-923))) (-15 -4010 ((-1174 |#1|) (-1174 |#1|))) (-15 -3843 ((-960 (-1174 |#1|)) (-1174 |#1|)))) (-351)) (T -359)) +((-3843 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1174 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1174 *4)))) (-4010 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1348 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3882 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2928 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3821 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2405 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4382 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) +(-10 -7 (-15 -2722 ((-112) (-1174 |#1|))) (-15 -1426 ((-112) (-1174 |#1|))) (-15 -1737 ((-923) (-923))) (-15 -2495 ((-923) (-923))) (-15 -1770 ((-923) (-923))) (-15 -3199 ((-1174 |#1|) (-923))) (-15 -4191 ((-1174 |#1|) (-923))) (-15 -3405 ((-1174 |#1|) (-923))) (-15 -2482 ((-1174 |#1|) (-923))) (-15 -4200 ((-1174 |#1|) (-923))) (-15 -4382 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2405 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3821 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2928 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3882 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1348 ((-1174 |#1|) (-923))) (-15 -1348 ((-1174 |#1|) (-923) (-923))) (-15 -4010 ((-1174 |#1|) (-1174 |#1|))) (-15 -3843 ((-960 (-1174 |#1|)) (-1174 |#1|)))) +((-3815 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3815 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1244 |#1|) (-1244 |#2|)) (T -360)) +((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) +(-10 -7 (-15 -3815 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-361 |#1| |#2|) (-330 |#1|) (-351) (-923)) (T -361)) NIL (-330 |#1|) -((-3357 (((-112) (-645 (-953 |#1|))) 41)) (-2147 (((-645 (-953 |#1|)) (-645 (-953 |#1|))) 53)) (-3114 (((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|))) 48))) -(((-362 |#1| |#2|) (-10 -7 (-15 -3357 ((-112) (-645 (-953 |#1|)))) (-15 -3114 ((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|)))) (-15 -2147 ((-645 (-953 |#1|)) (-645 (-953 |#1|))))) (-455) (-645 (-1177))) (T -362)) -((-2147 (*1 *2 *2) (-12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1177))))) (-3114 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1177))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1177)))))) -(-10 -7 (-15 -3357 ((-112) (-645 (-953 |#1|)))) (-15 -3114 ((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|)))) (-15 -2147 ((-645 (-953 |#1|)) (-645 (-953 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772) $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) 17)) (-1771 ((|#1| $ (-567)) NIL)) (-3866 (((-567) $ (-567)) NIL)) (-3371 (($ (-1 |#1| |#1|) $) 34)) (-2753 (($ (-1 (-567) (-567)) $) 26)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 28)) (-3430 (((-1121) $) NIL)) (-2166 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-567)))) $) 30)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) 40) (($ |#1|) NIL)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 11 T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-363 |#1|) (-13 (-476) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2371 ((-772) $)) (-15 -3866 ((-567) $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -2753 ($ (-1 (-567) (-567)) $)) (-15 -3371 ($ (-1 |#1| |#1|) $)) (-15 -2166 ((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-567)))) $)))) (-1101)) (T -363)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1101)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1101)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1101)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) (-3866 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1101)))) (-2753 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) (-3371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-363 *3)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1101))))) -(-13 (-476) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2371 ((-772) $)) (-15 -3866 ((-567) $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -2753 ($ (-1 (-567) (-567)) $)) (-15 -3371 ($ (-1 |#1| |#1|) $)) (-15 -2166 ((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-567)))) $)))) -((-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 13)) (-1312 (($ $) 14)) (-2833 (((-421 $) $) 34)) (-4341 (((-112) $) 30)) (-2933 (($ $) 19)) (-2771 (($ $ $) 25) (($ (-645 $)) NIL)) (-2703 (((-421 $) $) 35)) (-2387 (((-3 $ "failed") $ $) 24)) (-4197 (((-772) $) 28)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 39)) (-4380 (((-112) $ $) 16)) (-3050 (($ $ $) 37))) -(((-364 |#1|) (-10 -8 (-15 -3050 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -4341 ((-112) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -4197 ((-772) |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|)) (-15 -4380 ((-112) |#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -4341 ((-112) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -4197 ((-772) |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|)) (-15 -4380 ((-112) |#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-2843 (((-112) $) 35)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-2251 (((-112) (-645 (-954 |#1|))) 41)) (-3716 (((-645 (-954 |#1|)) (-645 (-954 |#1|))) 53)) (-2083 (((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|))) 48))) +(((-362 |#1| |#2|) (-10 -7 (-15 -2251 ((-112) (-645 (-954 |#1|)))) (-15 -2083 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3716 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) (-455) (-645 (-1178))) (T -362)) +((-3716 (*1 *2 *2) (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178))))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1178)))))) +(-10 -7 (-15 -2251 ((-112) (-645 (-954 |#1|)))) (-15 -2083 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3716 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) 17)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-567) $ (-567)) NIL)) (-3496 (($ (-1 |#1| |#1|) $) 34)) (-2728 (($ (-1 (-567) (-567)) $) 26)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 28)) (-3430 (((-1122) $) NIL)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $) 30)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 40) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-363 |#1|) (-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2375 ((-772) $)) (-15 -3202 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2728 ($ (-1 (-567) (-567)) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $)))) (-1102)) (T -363)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3202 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1102))))) +(-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2375 ((-772) $)) (-15 -3202 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2728 ($ (-1 (-567) (-567)) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $)))) +((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 13)) (-4381 (($ $) 14)) (-2908 (((-421 $) $) 34)) (-3184 (((-112) $) 30)) (-2939 (($ $) 19)) (-2774 (($ $ $) 25) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) 35)) (-2391 (((-3 $ "failed") $ $) 24)) (-1990 (((-772) $) 28)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 39)) (-3816 (((-112) $ $) 16)) (-3060 (($ $ $) 37))) +(((-364 |#1|) (-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) +NIL +(-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) (((-365) (-140)) (T -365)) -((-3050 (*1 *1 *1 *1) (-4 *1 (-365)))) -(-13 (-308) (-1221) (-243) (-10 -8 (-15 -3050 ($ $ $)) (-6 -4415) (-6 -4409))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-2399 (((-112) $ $) 7)) (-3673 ((|#2| $ |#2|) 14)) (-2888 (($ $ (-1159)) 19)) (-2209 ((|#2| $) 15)) (-3815 (($ |#1|) 21) (($ |#1| (-1159)) 20)) (-1988 ((|#1| $) 17)) (-3739 (((-1159) $) 10)) (-3857 (((-1159) $) 16)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-2990 (($ $) 18)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-366 |#1| |#2|) (-140) (-1101) (-1101)) (T -366)) -((-3815 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-3815 (*1 *1 *2 *3) (-12 (-5 *3 (-1159)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1101)) (-4 *4 (-1101)))) (-2888 (*1 *1 *1 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-2990 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1101)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-5 *2 (-1159)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) (-3673 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -3815 ($ |t#1|)) (-15 -3815 ($ |t#1| (-1159))) (-15 -2888 ($ $ (-1159))) (-15 -2990 ($ $)) (-15 -1988 (|t#1| $)) (-15 -3857 ((-1159) $)) (-15 -2209 (|t#2| $)) (-15 -3673 (|t#2| $ |t#2|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3673 ((|#1| $ |#1|) 31)) (-2888 (($ $ (-1159)) 23)) (-3974 (((-3 |#1| "failed") $) 30)) (-2209 ((|#1| $) 28)) (-3815 (($ (-391)) 22) (($ (-391) (-1159)) 21)) (-1988 (((-391) $) 25)) (-3739 (((-1159) $) NIL)) (-3857 (((-1159) $) 26)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 20)) (-2990 (($ $) 24)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 19))) -(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -3974 ((-3 |#1| "failed") $)))) (-1101)) (T -367)) -((-3974 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1101))))) -(-13 (-366 (-391) |#1|) (-10 -8 (-15 -3974 ((-3 |#1| "failed") $)))) -((-3316 (((-1267 (-690 |#2|)) (-1267 $)) 70)) (-2942 (((-690 |#2|) (-1267 $)) 141)) (-2442 ((|#2| $) 39)) (-1668 (((-690 |#2|) $ (-1267 $)) 144)) (-2385 (((-3 $ "failed") $) 91)) (-2675 ((|#2| $) 42)) (-3090 (((-1173 |#2|) $) 99)) (-1809 ((|#2| (-1267 $)) 124)) (-3798 (((-1173 |#2|) $) 34)) (-4037 (((-112)) 118)) (-4025 (($ (-1267 |#2|) (-1267 $)) 134)) (-3153 (((-3 $ "failed") $) 95)) (-3809 (((-112)) 112)) (-2427 (((-112)) 107)) (-3151 (((-112)) 61)) (-3356 (((-690 |#2|) (-1267 $)) 139)) (-2506 ((|#2| $) 38)) (-2013 (((-690 |#2|) $ (-1267 $)) 143)) (-2539 (((-3 $ "failed") $) 89)) (-3660 ((|#2| $) 41)) (-2464 (((-1173 |#2|) $) 98)) (-2152 ((|#2| (-1267 $)) 122)) (-1837 (((-1173 |#2|) $) 32)) (-2690 (((-112)) 117)) (-2972 (((-112)) 109)) (-3657 (((-112)) 59)) (-1790 (((-112)) 104)) (-3630 (((-112)) 119)) (-2446 (((-1267 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) (-1267 $) (-1267 $)) 130)) (-4348 (((-112)) 115)) (-2925 (((-645 (-1267 |#2|))) 103)) (-3947 (((-112)) 116)) (-4237 (((-112)) 113)) (-3571 (((-112)) 54)) (-2950 (((-112)) 120))) -(((-368 |#1| |#2|) (-10 -8 (-15 -3090 ((-1173 |#2|) |#1|)) (-15 -2464 ((-1173 |#2|) |#1|)) (-15 -2925 ((-645 (-1267 |#2|)))) (-15 -2385 ((-3 |#1| "failed") |#1|)) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 -2427 ((-112))) (-15 -2972 ((-112))) (-15 -3809 ((-112))) (-15 -3657 ((-112))) (-15 -3151 ((-112))) (-15 -1790 ((-112))) (-15 -2950 ((-112))) (-15 -3630 ((-112))) (-15 -4037 ((-112))) (-15 -2690 ((-112))) (-15 -3571 ((-112))) (-15 -3947 ((-112))) (-15 -4237 ((-112))) (-15 -4348 ((-112))) (-15 -3798 ((-1173 |#2|) |#1|)) (-15 -1837 ((-1173 |#2|) |#1|)) (-15 -2942 ((-690 |#2|) (-1267 |#1|))) (-15 -3356 ((-690 |#2|) (-1267 |#1|))) (-15 -1809 (|#2| (-1267 |#1|))) (-15 -2152 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -2675 (|#2| |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -2506 (|#2| |#1|)) (-15 -1668 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -2013 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -3316 ((-1267 (-690 |#2|)) (-1267 |#1|)))) (-369 |#2|) (-172)) (T -368)) -((-4348 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4237 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3947 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3571 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2690 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4037 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3630 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2950 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1790 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3151 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3657 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3809 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2972 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2427 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2925 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1267 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -(-10 -8 (-15 -3090 ((-1173 |#2|) |#1|)) (-15 -2464 ((-1173 |#2|) |#1|)) (-15 -2925 ((-645 (-1267 |#2|)))) (-15 -2385 ((-3 |#1| "failed") |#1|)) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 -2427 ((-112))) (-15 -2972 ((-112))) (-15 -3809 ((-112))) (-15 -3657 ((-112))) (-15 -3151 ((-112))) (-15 -1790 ((-112))) (-15 -2950 ((-112))) (-15 -3630 ((-112))) (-15 -4037 ((-112))) (-15 -2690 ((-112))) (-15 -3571 ((-112))) (-15 -3947 ((-112))) (-15 -4237 ((-112))) (-15 -4348 ((-112))) (-15 -3798 ((-1173 |#2|) |#1|)) (-15 -1837 ((-1173 |#2|) |#1|)) (-15 -2942 ((-690 |#2|) (-1267 |#1|))) (-15 -3356 ((-690 |#2|) (-1267 |#1|))) (-15 -1809 (|#2| (-1267 |#1|))) (-15 -2152 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -2675 (|#2| |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -2506 (|#2| |#1|)) (-15 -1668 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -2013 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -3316 ((-1267 (-690 |#2|)) (-1267 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2720 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) 20)) (-3316 (((-1267 (-690 |#1|)) (-1267 $)) 83)) (-4308 (((-1267 $)) 86)) (-2245 (($) 18 T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3650 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-2942 (((-690 |#1|) (-1267 $)) 70)) (-2442 ((|#1| $) 79)) (-1668 (((-690 |#1|) $ (-1267 $)) 81)) (-2385 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-2968 (($ $ (-922)) 31)) (-2675 ((|#1| $) 77)) (-3090 (((-1173 |#1|) $) 47 (|has| |#1| (-559)))) (-1809 ((|#1| (-1267 $)) 72)) (-3798 (((-1173 |#1|) $) 68)) (-4037 (((-112)) 62)) (-4025 (($ (-1267 |#1|) (-1267 $)) 74)) (-3153 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1979 (((-922)) 85)) (-2128 (((-112)) 59)) (-3709 (($ $ (-922)) 38)) (-3809 (((-112)) 55)) (-2427 (((-112)) 53)) (-3151 (((-112)) 57)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-1946 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-3356 (((-690 |#1|) (-1267 $)) 71)) (-2506 ((|#1| $) 80)) (-2013 (((-690 |#1|) $ (-1267 $)) 82)) (-2539 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-2941 (($ $ (-922)) 32)) (-3660 ((|#1| $) 78)) (-2464 (((-1173 |#1|) $) 48 (|has| |#1| (-559)))) (-2152 ((|#1| (-1267 $)) 73)) (-1837 (((-1173 |#1|) $) 69)) (-2690 (((-112)) 63)) (-3739 (((-1159) $) 10)) (-2972 (((-112)) 54)) (-3657 (((-112)) 56)) (-1790 (((-112)) 58)) (-3430 (((-1121) $) 11)) (-3630 (((-112)) 61)) (-2446 (((-1267 |#1|) $ (-1267 $)) 76) (((-690 |#1|) (-1267 $) (-1267 $)) 75)) (-1526 (((-645 (-953 |#1|)) (-1267 $)) 84)) (-3387 (($ $ $) 28)) (-4348 (((-112)) 67)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2925 (((-645 (-1267 |#1|))) 49 (|has| |#1| (-559)))) (-1875 (($ $ $ $) 29)) (-3947 (((-112)) 65)) (-3411 (($ $ $) 27)) (-4237 (((-112)) 66)) (-3571 (((-112)) 64)) (-2950 (((-112)) 60)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3060 (*1 *1 *1 *1) (-4 *1 (-365)))) +(-13 (-308) (-1222) (-243) (-10 -8 (-15 -3060 ($ $ $)) (-6 -4416) (-6 -4410))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-2403 (((-112) $ $) 7)) (-4032 ((|#2| $ |#2|) 14)) (-2828 (($ $ (-1160)) 19)) (-2636 ((|#2| $) 15)) (-3823 (($ |#1|) 21) (($ |#1| (-1160)) 20)) (-1996 ((|#1| $) 17)) (-1419 (((-1160) $) 10)) (-1892 (((-1160) $) 16)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1675 (($ $) 18)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-366 |#1| |#2|) (-140) (-1102) (-1102)) (T -366)) +((-3823 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3823 (*1 *1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) (-4 *4 (-1102)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1675 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-1160)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4032 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -3823 ($ |t#1|)) (-15 -3823 ($ |t#1| (-1160))) (-15 -2828 ($ $ (-1160))) (-15 -1675 ($ $)) (-15 -1996 (|t#1| $)) (-15 -1892 ((-1160) $)) (-15 -2636 (|t#2| $)) (-15 -4032 (|t#2| $ |t#2|)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-4032 ((|#1| $ |#1|) 31)) (-2828 (($ $ (-1160)) 23)) (-2901 (((-3 |#1| "failed") $) 30)) (-2636 ((|#1| $) 28)) (-3823 (($ (-391)) 22) (($ (-391) (-1160)) 21)) (-1996 (((-391) $) 25)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) 26)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20)) (-1675 (($ $) 24)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 19))) +(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -2901 ((-3 |#1| "failed") $)))) (-1102)) (T -367)) +((-2901 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102))))) +(-13 (-366 (-391) |#1|) (-10 -8 (-15 -2901 ((-3 |#1| "failed") $)))) +((-2189 (((-1268 (-690 |#2|)) (-1268 $)) 70)) (-1735 (((-690 |#2|) (-1268 $)) 141)) (-2583 ((|#2| $) 39)) (-3528 (((-690 |#2|) $ (-1268 $)) 144)) (-2209 (((-3 $ "failed") $) 91)) (-1883 ((|#2| $) 42)) (-1575 (((-1174 |#2|) $) 99)) (-2676 ((|#2| (-1268 $)) 124)) (-1682 (((-1174 |#2|) $) 34)) (-1444 (((-112)) 118)) (-3658 (($ (-1268 |#2|) (-1268 $)) 134)) (-2109 (((-3 $ "failed") $) 95)) (-4353 (((-112)) 112)) (-3375 (((-112)) 107)) (-3154 (((-112)) 61)) (-2119 (((-690 |#2|) (-1268 $)) 139)) (-2726 ((|#2| $) 38)) (-2702 (((-690 |#2|) $ (-1268 $)) 143)) (-3080 (((-3 $ "failed") $) 89)) (-2200 ((|#2| $) 41)) (-3960 (((-1174 |#2|) $) 98)) (-3042 ((|#2| (-1268 $)) 122)) (-3567 (((-1174 |#2|) $) 32)) (-3396 (((-112)) 117)) (-2609 (((-112)) 109)) (-3070 (((-112)) 59)) (-4341 (((-112)) 104)) (-4356 (((-112)) 119)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) 130)) (-1502 (((-112)) 115)) (-2652 (((-645 (-1268 |#2|))) 103)) (-3013 (((-112)) 116)) (-1636 (((-112)) 113)) (-1749 (((-112)) 54)) (-2059 (((-112)) 120))) +(((-368 |#1| |#2|) (-10 -8 (-15 -1575 ((-1174 |#2|) |#1|)) (-15 -3960 ((-1174 |#2|) |#1|)) (-15 -2652 ((-645 (-1268 |#2|)))) (-15 -2209 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2609 ((-112))) (-15 -4353 ((-112))) (-15 -3070 ((-112))) (-15 -3154 ((-112))) (-15 -4341 ((-112))) (-15 -2059 ((-112))) (-15 -4356 ((-112))) (-15 -1444 ((-112))) (-15 -3396 ((-112))) (-15 -1749 ((-112))) (-15 -3013 ((-112))) (-15 -1636 ((-112))) (-15 -1502 ((-112))) (-15 -1682 ((-1174 |#2|) |#1|)) (-15 -3567 ((-1174 |#2|) |#1|)) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1883 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|)))) (-369 |#2|) (-172)) (T -368)) +((-1502 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1636 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3013 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1749 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3396 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1444 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4356 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2059 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4341 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3154 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3070 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4353 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2609 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3375 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2652 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1268 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +(-10 -8 (-15 -1575 ((-1174 |#2|) |#1|)) (-15 -3960 ((-1174 |#2|) |#1|)) (-15 -2652 ((-645 (-1268 |#2|)))) (-15 -2209 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2609 ((-112))) (-15 -4353 ((-112))) (-15 -3070 ((-112))) (-15 -3154 ((-112))) (-15 -4341 ((-112))) (-15 -2059 ((-112))) (-15 -4356 ((-112))) (-15 -1444 ((-112))) (-15 -3396 ((-112))) (-15 -1749 ((-112))) (-15 -3013 ((-112))) (-15 -1636 ((-112))) (-15 -1502 ((-112))) (-15 -1682 ((-1174 |#2|) |#1|)) (-15 -3567 ((-1174 |#2|) |#1|)) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1883 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3951 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) 83)) (-3337 (((-1268 $)) 86)) (-2585 (($) 18 T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) 70)) (-2583 ((|#1| $) 79)) (-3528 (((-690 |#1|) $ (-1268 $)) 81)) (-2209 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-2586 (($ $ (-923)) 31)) (-1883 ((|#1| $) 77)) (-1575 (((-1174 |#1|) $) 47 (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) 72)) (-1682 (((-1174 |#1|) $) 68)) (-1444 (((-112)) 62)) (-3658 (($ (-1268 |#1|) (-1268 $)) 74)) (-2109 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1954 (((-923)) 85)) (-1379 (((-112)) 59)) (-3719 (($ $ (-923)) 38)) (-4353 (((-112)) 55)) (-3375 (((-112)) 53)) (-3154 (((-112)) 57)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) 71)) (-2726 ((|#1| $) 80)) (-2702 (((-690 |#1|) $ (-1268 $)) 82)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-3450 (($ $ (-923)) 32)) (-2200 ((|#1| $) 78)) (-3960 (((-1174 |#1|) $) 48 (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) 73)) (-3567 (((-1174 |#1|) $) 69)) (-3396 (((-112)) 63)) (-1419 (((-1160) $) 10)) (-2609 (((-112)) 54)) (-3070 (((-112)) 56)) (-4341 (((-112)) 58)) (-3430 (((-1122) $) 11)) (-4356 (((-112)) 61)) (-2887 (((-1268 |#1|) $ (-1268 $)) 76) (((-690 |#1|) (-1268 $) (-1268 $)) 75)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) 84)) (-1485 (($ $ $) 28)) (-1502 (((-112)) 67)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2652 (((-645 (-1268 |#1|))) 49 (|has| |#1| (-559)))) (-2153 (($ $ $ $) 29)) (-3013 (((-112)) 65)) (-2214 (($ $ $) 27)) (-1636 (((-112)) 66)) (-1749 (((-112)) 64)) (-2059 (((-112)) 60)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-369 |#1|) (-140) (-172)) (T -369)) -((-4308 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1267 *1)) (-4 *1 (-369 *3)))) (-1979 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1267 (-690 *4))))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1668 (*1 *2 *1 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1267 *4)))) (-2446 (*1 *2 *3 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1267 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1173 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1173 *3)))) (-4348 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4237 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3947 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3571 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2690 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4037 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3630 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2950 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2128 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1790 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3151 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3657 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3809 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2972 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2427 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3153 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2539 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2385 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2925 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1267 *3))))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1173 *3)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1173 *3)))) (-2651 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1975 (-645 *1)))) (-4 *1 (-369 *3)))) (-2747 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1975 (-645 *1)))) (-4 *1 (-369 *3)))) (-1946 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3650 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-2720 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(-13 (-745 |t#1|) (-10 -8 (-15 -4308 ((-1267 $))) (-15 -1979 ((-922))) (-15 -1526 ((-645 (-953 |t#1|)) (-1267 $))) (-15 -3316 ((-1267 (-690 |t#1|)) (-1267 $))) (-15 -2013 ((-690 |t#1|) $ (-1267 $))) (-15 -1668 ((-690 |t#1|) $ (-1267 $))) (-15 -2506 (|t#1| $)) (-15 -2442 (|t#1| $)) (-15 -3660 (|t#1| $)) (-15 -2675 (|t#1| $)) (-15 -2446 ((-1267 |t#1|) $ (-1267 $))) (-15 -2446 ((-690 |t#1|) (-1267 $) (-1267 $))) (-15 -4025 ($ (-1267 |t#1|) (-1267 $))) (-15 -2152 (|t#1| (-1267 $))) (-15 -1809 (|t#1| (-1267 $))) (-15 -3356 ((-690 |t#1|) (-1267 $))) (-15 -2942 ((-690 |t#1|) (-1267 $))) (-15 -1837 ((-1173 |t#1|) $)) (-15 -3798 ((-1173 |t#1|) $)) (-15 -4348 ((-112))) (-15 -4237 ((-112))) (-15 -3947 ((-112))) (-15 -3571 ((-112))) (-15 -2690 ((-112))) (-15 -4037 ((-112))) (-15 -3630 ((-112))) (-15 -2950 ((-112))) (-15 -2128 ((-112))) (-15 -1790 ((-112))) (-15 -3151 ((-112))) (-15 -3657 ((-112))) (-15 -3809 ((-112))) (-15 -2972 ((-112))) (-15 -2427 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -3153 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $)) (-15 -2385 ((-3 $ "failed") $)) (-15 -2925 ((-645 (-1267 |t#1|)))) (-15 -2464 ((-1173 |t#1|) $)) (-15 -3090 ((-1173 |t#1|) $)) (-15 -2651 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -2747 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -1946 ((-3 $ "failed"))) (-15 -3650 ((-3 $ "failed"))) (-15 -2720 ((-3 $ "failed"))) (-6 -4414)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2371 (((-772)) 17)) (-1378 (($) 14)) (-3425 (((-922) $) 15)) (-3739 (((-1159) $) 10)) (-3763 (($ (-922)) 16)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-3337 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-369 *3)))) (-1954 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3528 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1268 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1502 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1636 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3013 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1749 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3396 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1444 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4356 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2059 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1379 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4341 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3154 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3070 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4353 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2609 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3375 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2109 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3080 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2209 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2652 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1268 *3))))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1174 *3)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1174 *3)))) (-3412 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) (-4 *1 (-369 *3)))) (-3425 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) (-4 *1 (-369 *3)))) (-3345 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3645 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3951 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) +(-13 (-745 |t#1|) (-10 -8 (-15 -3337 ((-1268 $))) (-15 -1954 ((-923))) (-15 -4013 ((-645 (-954 |t#1|)) (-1268 $))) (-15 -2189 ((-1268 (-690 |t#1|)) (-1268 $))) (-15 -2702 ((-690 |t#1|) $ (-1268 $))) (-15 -3528 ((-690 |t#1|) $ (-1268 $))) (-15 -2726 (|t#1| $)) (-15 -2583 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -1883 (|t#1| $)) (-15 -2887 ((-1268 |t#1|) $ (-1268 $))) (-15 -2887 ((-690 |t#1|) (-1268 $) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|) (-1268 $))) (-15 -3042 (|t#1| (-1268 $))) (-15 -2676 (|t#1| (-1268 $))) (-15 -2119 ((-690 |t#1|) (-1268 $))) (-15 -1735 ((-690 |t#1|) (-1268 $))) (-15 -3567 ((-1174 |t#1|) $)) (-15 -1682 ((-1174 |t#1|) $)) (-15 -1502 ((-112))) (-15 -1636 ((-112))) (-15 -3013 ((-112))) (-15 -1749 ((-112))) (-15 -3396 ((-112))) (-15 -1444 ((-112))) (-15 -4356 ((-112))) (-15 -2059 ((-112))) (-15 -1379 ((-112))) (-15 -4341 ((-112))) (-15 -3154 ((-112))) (-15 -3070 ((-112))) (-15 -4353 ((-112))) (-15 -2609 ((-112))) (-15 -3375 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -2109 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2209 ((-3 $ "failed") $)) (-15 -2652 ((-645 (-1268 |t#1|)))) (-15 -3960 ((-1174 |t#1|) $)) (-15 -1575 ((-1174 |t#1|) $)) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3345 ((-3 $ "failed"))) (-15 -3645 ((-3 $ "failed"))) (-15 -3951 ((-3 $ "failed"))) (-6 -4415)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2375 (((-772)) 17)) (-1348 (($) 14)) (-4249 (((-923) $) 15)) (-1419 (((-1160) $) 10)) (-3768 (($ (-923)) 16)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-370) (-140)) (T -370)) -((-2371 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) (-1378 (*1 *1) (-4 *1 (-370)))) -(-13 (-1101) (-10 -8 (-15 -2371 ((-772))) (-15 -3763 ($ (-922))) (-15 -3425 ((-922) $)) (-15 -1378 ($)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2981 (((-690 |#2|) (-1267 $)) 47)) (-4025 (($ (-1267 |#2|) (-1267 $)) 41)) (-1937 (((-690 |#2|) $ (-1267 $)) 49)) (-1999 ((|#2| (-1267 $)) 13)) (-2446 (((-1267 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) (-1267 $) (-1267 $)) 27))) -(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -2981 ((-690 |#2|) (-1267 |#1|))) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1937 ((-690 |#2|) |#1| (-1267 |#1|)))) (-372 |#2| |#3|) (-172) (-1243 |#2|)) (T -371)) -NIL -(-10 -8 (-15 -2981 ((-690 |#2|) (-1267 |#1|))) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1937 ((-690 |#2|) |#1| (-1267 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2981 (((-690 |#1|) (-1267 $)) 53)) (-4290 ((|#1| $) 59)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-4025 (($ (-1267 |#1|) (-1267 $)) 55)) (-1937 (((-690 |#1|) $ (-1267 $)) 60)) (-3153 (((-3 $ "failed") $) 37)) (-1979 (((-922)) 61)) (-2843 (((-112) $) 35)) (-2896 ((|#1| $) 58)) (-2612 ((|#2| $) 51 (|has| |#1| (-365)))) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1999 ((|#1| (-1267 $)) 54)) (-2446 (((-1267 |#1|) $ (-1267 $)) 57) (((-690 |#1|) (-1267 $) (-1267 $)) 56)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1467 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3116 ((|#2| $) 52)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-372 |#1| |#2|) (-140) (-172) (-1243 |t#1|)) (T -372)) -((-1979 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-922)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-1267 *4)))) (-2446 (*1 *2 *3 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1267 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1243 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1243 *2)) (-4 *2 (-172)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1243 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -1979 ((-922))) (-15 -1937 ((-690 |t#1|) $ (-1267 $))) (-15 -4290 (|t#1| $)) (-15 -2896 (|t#1| $)) (-15 -2446 ((-1267 |t#1|) $ (-1267 $))) (-15 -2446 ((-690 |t#1|) (-1267 $) (-1267 $))) (-15 -4025 ($ (-1267 |t#1|) (-1267 $))) (-15 -1999 (|t#1| (-1267 $))) (-15 -2981 ((-690 |t#1|) (-1267 $))) (-15 -3116 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -2612 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2565 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2499 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3822 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2499 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2565 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1217) (-375 |#1|) (-1217) (-375 |#3|)) (T -373)) -((-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1217)) (-4 *5 (-1217)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2499 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2565 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2871 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3161 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1332 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3583 (($ $) 25)) (-2567 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-3523 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-374 |#1| |#2|) (-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3583 (|#1| |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1217)) (T -374)) -NIL -(-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3583 (|#1| |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-2567 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 71)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-375 |#1|) (-140) (-1217)) (T -375)) -((-3523 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) (-3583 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) (-2871 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1217)) (-5 *2 (-112)))) (-2567 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1217)) (-5 *2 (-567)))) (-2567 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-567)))) (-2567 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)))) (-3523 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)) (-4 *2 (-851)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)) (-4 *2 (-851)))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1217)) (-4 *3 (-851)) (-5 *2 (-112)))) (-2811 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) (-3224 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1217)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) (-3161 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1217)) (-4 *2 (-851))))) -(-13 (-652 |t#1|) (-10 -8 (-6 -4417) (-15 -3523 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3583 ($ $)) (-15 -1332 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2871 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2567 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1101)) (PROGN (-15 -2567 ((-567) |t#1| $)) (-15 -2567 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -3523 ($ $ $)) (-15 -1332 ($ $)) (-15 -2871 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -2811 ($ $ $ (-567))) (-15 -3224 ($ $)) (-15 -3161 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -3161 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1101) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-1217) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3259 (((-645 |#1|) $) 37)) (-3376 (($ $ (-772)) 38)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3323 (((-1291 |#1| |#2|) (-1291 |#1| |#2|) $) 41)) (-3818 (($ $) 39)) (-3626 (((-1291 |#1| |#2|) (-1291 |#1| |#2|) $) 42)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2631 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-1813 (((-772) $) 43)) (-4142 (($ $ $) 34)) (-4127 (((-863) $) 12) (($ |#1|) 46) (((-1282 |#1| |#2|) $) 45) (((-1291 |#1| |#2|) $) 44)) (-3686 ((|#2| (-1291 |#1| |#2|) $) 47)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1611 (($ (-673 |#1|)) 40)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-2375 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) (-1348 (*1 *1) (-4 *1 (-370)))) +(-13 (-1102) (-10 -8 (-15 -2375 ((-772))) (-15 -3768 ($ (-923))) (-15 -4249 ((-923) $)) (-15 -1348 ($)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2141 (((-690 |#2|) (-1268 $)) 47)) (-3658 (($ (-1268 |#2|) (-1268 $)) 41)) (-1811 (((-690 |#2|) $ (-1268 $)) 49)) (-3788 ((|#2| (-1268 $)) 13)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) 27))) +(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) (-372 |#2| |#3|) (-172) (-1244 |#2|)) (T -371)) +NIL +(-10 -8 (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2141 (((-690 |#1|) (-1268 $)) 53)) (-4293 ((|#1| $) 59)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55)) (-1811 (((-690 |#1|) $ (-1268 $)) 60)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3788 ((|#1| (-1268 $)) 54)) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1903 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-372 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -372)) +((-1954 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-923)))) (-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1244 *4)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1244 *2)) (-4 *2 (-172)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1244 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -1954 ((-923))) (-15 -1811 ((-690 |t#1|) $ (-1268 $))) (-15 -4293 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -2887 ((-1268 |t#1|) $ (-1268 $))) (-15 -2887 ((-690 |t#1|) (-1268 $) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|) (-1268 $))) (-15 -3788 (|t#1| (-1268 $))) (-15 -2141 ((-690 |t#1|) (-1268 $))) (-15 -2155 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -4206 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2788 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2477 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3829 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1218) (-375 |#1|) (-1218) (-375 |#3|)) (T -373)) +((-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2496 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1394 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-4396 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3584 (($ $) 25)) (-2569 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-4135 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-374 |#1| |#2|) (-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4396 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1218)) (T -374)) +NIL +(-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4396 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-375 |#1|) (-140) (-1218)) (T -375)) +((-4135 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-3584 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)))) (-4396 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-2496 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-2569 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) (-4396 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-851)) (-5 *2 (-112)))) (-1395 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-1764 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-1394 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851))))) +(-13 (-652 |t#1|) (-10 -8 (-6 -4418) (-15 -4135 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3584 ($ $)) (-15 -4396 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2496 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2569 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2569 ((-567) |t#1| $)) (-15 -2569 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -4135 ($ $ $)) (-15 -4396 ($ $)) (-15 -2496 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -1395 ($ $ $ (-567))) (-15 -1764 ($ $)) (-15 -1394 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -1394 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 37)) (-2721 (($ $ (-772)) 38)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2885 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 41)) (-3592 (($ $) 39)) (-2173 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 42)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2631 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-3077 (((-772) $) 43)) (-4147 (($ $ $) 34)) (-4132 (((-863) $) 12) (($ |#1|) 46) (((-1283 |#1| |#2|) $) 45) (((-1292 |#1| |#2|) $) 44)) (-3694 ((|#2| (-1292 |#1| |#2|) $) 47)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-4363 (($ (-673 |#1|)) 40)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-376 |#1| |#2|) (-140) (-851) (-172)) (T -376)) -((-3686 (*1 *2 *3 *1) (-12 (-5 *3 (-1291 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-4127 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1282 *3 *4)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1291 *3 *4)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-3626 (*1 *2 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3323 (*1 *2 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-2631 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172))))) -(-13 (-635 |t#2|) (-10 -8 (-15 -3686 (|t#2| (-1291 |t#1| |t#2|) $)) (-15 -4127 ($ |t#1|)) (-15 -4127 ((-1282 |t#1| |t#2|) $)) (-15 -4127 ((-1291 |t#1| |t#2|) $)) (-15 -1813 ((-772) $)) (-15 -3626 ((-1291 |t#1| |t#2|) (-1291 |t#1| |t#2|) $)) (-15 -3323 ((-1291 |t#1| |t#2|) (-1291 |t#1| |t#2|) $)) (-15 -1611 ($ (-673 |t#1|))) (-15 -3818 ($ $)) (-15 -3376 ($ $ (-772))) (-15 -3259 ((-645 |t#1|) $)) (-15 -2631 ($ $ |t#1| $)) (-15 -2631 ($ $ (-645 |t#1|) (-645 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-649 |#2|) . T) ((-635 |#2|) . T) ((-641 |#2|) . T) ((-718 |#2|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1101) . T)) -((-3569 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2030 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1954 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-377 |#1| |#2|) (-10 -7 (-15 -2030 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1954 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3569 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1217) (-13 (-375 |#1|) (-10 -7 (-6 -4418)))) (T -377)) -((-3569 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-1954 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-2030 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) -(-10 -7 (-15 -2030 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1954 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3569 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-1868 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 22) (((-690 (-567)) (-690 $)) 14))) -(((-378 |#1| |#2|) (-10 -8 (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1050)) (T -378)) -NIL -(-10 -8 (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 |#2|) (-690 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-1868 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 39) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-379 |#1|) (-140) (-1050)) (T -379)) +((-3694 (*1 *2 *3 *1) (-12 (-5 *3 (-1292 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-4132 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1292 *3 *4)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-2173 (*1 *2 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2885 (*1 *2 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4363 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-2631 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172))))) +(-13 (-635 |t#2|) (-10 -8 (-15 -3694 (|t#2| (-1292 |t#1| |t#2|) $)) (-15 -4132 ($ |t#1|)) (-15 -4132 ((-1283 |t#1| |t#2|) $)) (-15 -4132 ((-1292 |t#1| |t#2|) $)) (-15 -3077 ((-772) $)) (-15 -2173 ((-1292 |t#1| |t#2|) (-1292 |t#1| |t#2|) $)) (-15 -2885 ((-1292 |t#1| |t#2|) (-1292 |t#1| |t#2|) $)) (-15 -4363 ($ (-673 |t#1|))) (-15 -3592 ($ $)) (-15 -2721 ($ $ (-772))) (-15 -3267 ((-645 |t#1|) $)) (-15 -2631 ($ $ |t#1| $)) (-15 -2631 ($ $ (-645 |t#1|) (-645 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-649 |#2|) . T) ((-635 |#2|) . T) ((-641 |#2|) . T) ((-718 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T)) +((-1546 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1766 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3029 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-377 |#1| |#2|) (-10 -7 (-15 -1766 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3029 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1546 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1218) (-13 (-375 |#1|) (-10 -7 (-6 -4419)))) (T -377)) +((-1546 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))) (-3029 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))) (-1766 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419))))))) +(-10 -7 (-15 -1766 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3029 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1546 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2630 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 22) (((-690 (-567)) (-690 $)) 14))) +(((-378 |#1| |#2|) (-10 -8 (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1051)) (T -378)) +NIL +(-10 -8 (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 |#2|) (-690 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2630 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 39) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-379 |#1|) (-140) (-1051)) (T -379)) NIL (-13 (-640 |t#1|) (-10 -7 (IF (|has| |t#1| (-640 (-567))) (-6 (-640 (-567))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3326 (((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|) 41)) (-3859 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1177)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|) 18))) -(((-380 |#1|) (-10 -7 (-15 -3326 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3326 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|)) (-15 -3326 ((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3326 ((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3859 ((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3859 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1177)) |#1|))) (-13 (-365) (-849))) (T -380)) -((-3859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) (-5 *4 (-645 (-1177))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 (-169 (-567)))))) (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3326 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3326 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|)) (-15 -3326 ((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3326 ((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3859 ((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3859 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1177)) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 35)) (-2660 (((-567) $) 62)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1873 (($ $) 144)) (-3165 (($ $) 107)) (-3039 (($ $) 94)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) 47)) (-2373 (((-112) $ $) NIL)) (-3148 (($ $) 105)) (-3015 (($ $) 88)) (-3449 (((-567) $) 81)) (-4125 (($ $ (-567)) 76)) (-3184 (($ $) NIL)) (-3065 (($ $) NIL)) (-2245 (($) NIL T CONST)) (-2273 (($ $) 146)) (-3747 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-2033 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2344 (($ $ $) NIL)) (-1677 (((-567) $ $) 133)) (-3153 (((-3 $ "failed") $) 149)) (-2839 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3735 (((-922)) 96) (((-922) (-922)) 129 (|has| $ (-6 -4408)))) (-4357 (((-112) $) 138)) (-1480 (($) 41)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-3600 (((-1272) (-772)) 201)) (-4317 (((-1272)) 206) (((-1272) (-772)) 207)) (-1333 (((-1272)) 208) (((-1272) (-772)) 209)) (-1674 (((-1272)) 204) (((-1272) (-772)) 205)) (-2937 (((-567) $) 69)) (-2843 (((-112) $) 40)) (-1709 (($ $ (-567)) NIL)) (-3004 (($ $) 51)) (-2896 (($ $) NIL)) (-2102 (((-112) $) 37)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL) (($) NIL (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2998 (($ $ $) NIL) (($) 130 (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2145 (((-567) $) 17)) (-1770 (($) 115) (($ $) 121)) (-1700 (($) 120) (($ $) 122)) (-3053 (($ $) 110)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 151)) (-3507 (((-922) (-567)) 46 (|has| $ (-6 -4408)))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) 60)) (-1842 (($ $) 143)) (-2319 (($ (-567) (-567)) 139) (($ (-567) (-567) (-922)) 140)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4250 (((-567) $) 19)) (-2788 (($) 123)) (-3927 (($ $) 104)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3435 (((-922)) 131) (((-922) (-922)) 132 (|has| $ (-6 -4408)))) (-1621 (($ $ (-772)) NIL) (($ $) 150)) (-3676 (((-922) (-567)) 50 (|has| $ (-6 -4408)))) (-3192 (($ $) NIL)) (-3076 (($ $) NIL)) (-3174 (($ $) NIL)) (-3052 (($ $) NIL)) (-3157 (($ $) 106)) (-3026 (($ $) 93)) (-3880 (((-381) $) 229) (((-225) $) 230) (((-893 (-381)) $) NIL) (((-1159) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-4127 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-1772 (((-772)) NIL T CONST)) (-1687 (($ $) 145)) (-4009 (((-922)) 61) (((-922) (-922)) 83 (|has| $ (-6 -4408)))) (-4104 (((-112) $ $) NIL)) (-3074 (((-922)) 134)) (-3220 (($ $) 113)) (-3109 (($ $) 49) (($ $ $) 59)) (-4380 (((-112) $ $) NIL)) (-3201 (($ $) 111)) (-3087 (($ $) 39)) (-3241 (($ $) NIL)) (-3128 (($ $) NIL)) (-3807 (($ $) NIL)) (-3137 (($ $) NIL)) (-3228 (($ $) NIL)) (-3119 (($ $) NIL)) (-3210 (($ $) 112)) (-3098 (($ $) 52)) (-4137 (($ $) 58)) (-1710 (($) 36 T CONST)) (-1722 (($) 43 T CONST)) (-4224 (((-1159) $) 27) (((-1159) $ (-112)) 29) (((-1272) (-823) $) 30) (((-1272) (-823) $ (-112)) 31)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2988 (((-112) $ $) 213)) (-2964 (((-112) $ $) 45)) (-2929 (((-112) $ $) 56)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 57)) (-3050 (($ $ $) 48) (($ $ (-567)) 42)) (-3037 (($ $) 38) (($ $ $) 53)) (-3024 (($ $ $) 75)) (** (($ $ (-922)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-922) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-381) (-13 (-407) (-233) (-615 (-1159)) (-829) (-614 (-225)) (-1202) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3050 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3004 ($ $)) (-15 -1677 ((-567) $ $)) (-15 -4125 ($ $ (-567))) (-15 -2839 ((-410 (-567)) $ (-772))) (-15 -2839 ((-410 (-567)) $ (-772) (-772))) (-15 -1770 ($)) (-15 -1700 ($)) (-15 -2788 ($)) (-15 -3109 ($ $ $)) (-15 -1770 ($ $)) (-15 -1700 ($ $)) (-15 -1333 ((-1272))) (-15 -1333 ((-1272) (-772))) (-15 -1674 ((-1272))) (-15 -1674 ((-1272) (-772))) (-15 -4317 ((-1272))) (-15 -4317 ((-1272) (-772))) (-15 -3600 ((-1272) (-772))) (-6 -4408) (-6 -4400)))) (T -381)) -((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3004 (*1 *1 *1) (-5 *1 (-381))) (-1677 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-2839 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-2839 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-1770 (*1 *1) (-5 *1 (-381))) (-1700 (*1 *1) (-5 *1 (-381))) (-2788 (*1 *1) (-5 *1 (-381))) (-3109 (*1 *1 *1 *1) (-5 *1 (-381))) (-1770 (*1 *1 *1) (-5 *1 (-381))) (-1700 (*1 *1 *1) (-5 *1 (-381))) (-1333 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) (-1674 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) (-4317 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381))))) -(-13 (-407) (-233) (-615 (-1159)) (-829) (-614 (-225)) (-1202) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3050 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3004 ($ $)) (-15 -1677 ((-567) $ $)) (-15 -4125 ($ $ (-567))) (-15 -2839 ((-410 (-567)) $ (-772))) (-15 -2839 ((-410 (-567)) $ (-772) (-772))) (-15 -1770 ($)) (-15 -1700 ($)) (-15 -2788 ($)) (-15 -3109 ($ $ $)) (-15 -1770 ($ $)) (-15 -1700 ($ $)) (-15 -1333 ((-1272))) (-15 -1333 ((-1272) (-772))) (-15 -1674 ((-1272))) (-15 -1674 ((-1272) (-772))) (-15 -4317 ((-1272))) (-15 -4317 ((-1272) (-772))) (-15 -3600 ((-1272) (-772))) (-6 -4408) (-6 -4400))) -((-1754 (((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|) 46) (((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|) 45) (((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|) 36)) (-3302 (((-645 |#1|) (-410 (-953 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1177)) |#1|) 30))) -(((-382 |#1|) (-10 -7 (-15 -1754 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|)) (-15 -1754 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|)) (-15 -1754 ((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|)) (-15 -1754 ((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|)) (-15 -3302 ((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1177)) |#1|)) (-15 -3302 ((-645 |#1|) (-410 (-953 (-567))) |#1|))) (-13 (-849) (-365))) (T -382)) -((-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *4 (-645 (-1177))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 (-567))))) (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 (-567)))))) (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))) -(-10 -7 (-15 -1754 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|)) (-15 -1754 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|)) (-15 -1754 ((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|)) (-15 -1754 ((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|)) (-15 -3302 ((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1177)) |#1|)) (-15 -3302 ((-645 |#1|) (-410 (-953 (-567))) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) 30)) (-2033 ((|#2| $) 32)) (-3006 (($ $) NIL)) (-4183 (((-772) $) 11)) (-2604 (((-645 $) $) 23)) (-2014 (((-112) $) NIL)) (-2282 (($ |#2| |#1|) 21)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2165 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2969 ((|#2| $) 18)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 51) (($ |#2|) 31)) (-3468 (((-645 |#1|) $) 20)) (-2253 ((|#1| $ |#2|) 55)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 33 T CONST)) (-1568 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1050) (-851)) (T -383)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2000 (((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|) 41)) (-3892 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|) 18))) +(((-380 |#1|) (-10 -7 (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3892 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3892 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|))) (-13 (-365) (-849))) (T -380)) +((-3892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))) +(-10 -7 (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3892 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3892 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 35)) (-3093 (((-567) $) 62)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) 144)) (-3146 (($ $) 107)) (-3012 (($ $) 94)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) 47)) (-3609 (((-112) $ $) NIL)) (-3128 (($ $) 105)) (-2987 (($ $) 88)) (-1750 (((-567) $) 81)) (-4130 (($ $ (-567)) 76)) (-3166 (($ $) NIL)) (-3035 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-2535 (($ $) 146)) (-3753 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-2038 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2349 (($ $ $) NIL)) (-3015 (((-567) $ $) 133)) (-2109 (((-3 $ "failed") $) 149)) (-2350 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 96) (((-923) (-923)) 129 (|has| $ (-6 -4409)))) (-4336 (((-112) $) 138)) (-1482 (($) 41)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-2553 (((-1273) (-772)) 201)) (-2117 (((-1273)) 206) (((-1273) (-772)) 207)) (-1434 (((-1273)) 208) (((-1273) (-772)) 209)) (-2815 (((-1273)) 204) (((-1273) (-772)) 205)) (-4384 (((-567) $) 69)) (-1433 (((-112) $) 40)) (-2651 (($ $ (-567)) NIL)) (-3321 (($ $) 51)) (-2475 (($ $) NIL)) (-3494 (((-112) $) 37)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2981 (($ $ $) NIL) (($) 130 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 17)) (-3971 (($) 115) (($ $) 121)) (-1703 (($) 120) (($ $) 122)) (-3063 (($ $) 110)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 151)) (-3214 (((-923) (-567)) 46 (|has| $ (-6 -4409)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) 60)) (-2780 (($ $) 143)) (-2327 (($ (-567) (-567)) 139) (($ (-567) (-567) (-923)) 140)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 19)) (-4297 (($) 123)) (-3946 (($ $) 104)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-923)) 131) (((-923) (-923)) 132 (|has| $ (-6 -4409)))) (-1593 (($ $ (-772)) NIL) (($ $) 150)) (-4223 (((-923) (-567)) 50 (|has| $ (-6 -4409)))) (-3175 (($ $) NIL)) (-3049 (($ $) NIL)) (-3156 (($ $) NIL)) (-3023 (($ $) NIL)) (-3137 (($ $) 106)) (-2999 (($ $) 93)) (-3893 (((-381) $) 229) (((-225) $) 230) (((-894 (-381)) $) NIL) (((-1160) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-4132 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-4221 (((-772)) NIL T CONST)) (-1423 (($ $) 145)) (-2547 (((-923)) 61) (((-923) (-923)) 83 (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 134)) (-3200 (($ $) 113)) (-3084 (($ $) 49) (($ $ $) 59)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 111)) (-3062 (($ $) 39)) (-3221 (($ $) NIL)) (-3106 (($ $) NIL)) (-3785 (($ $) NIL)) (-3118 (($ $) NIL)) (-3211 (($ $) NIL)) (-3095 (($ $) NIL)) (-3193 (($ $) 112)) (-3074 (($ $) 52)) (-2219 (($ $) 58)) (-1716 (($) 36 T CONST)) (-1728 (($) 43 T CONST)) (-2904 (((-1160) $) 27) (((-1160) $ (-112)) 29) (((-1273) (-823) $) 30) (((-1273) (-823) $ (-112)) 31)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) 213)) (-2971 (((-112) $ $) 45)) (-2936 (((-112) $ $) 56)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 57)) (-3060 (($ $ $) 48) (($ $ (-567)) 42)) (-3045 (($ $) 38) (($ $ $) 53)) (-3033 (($ $ $) 75)) (** (($ $ (-923)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-923) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-381) (-13 (-407) (-233) (-615 (-1160)) (-829) (-614 (-225)) (-1203) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3321 ($ $)) (-15 -3015 ((-567) $ $)) (-15 -4130 ($ $ (-567))) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772))) (-15 -3971 ($)) (-15 -1703 ($)) (-15 -4297 ($)) (-15 -3084 ($ $ $)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -1434 ((-1273))) (-15 -1434 ((-1273) (-772))) (-15 -2815 ((-1273))) (-15 -2815 ((-1273) (-772))) (-15 -2117 ((-1273))) (-15 -2117 ((-1273) (-772))) (-15 -2553 ((-1273) (-772))) (-6 -4409) (-6 -4401)))) (T -381)) +((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3321 (*1 *1 *1) (-5 *1 (-381))) (-3015 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-2350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-3971 (*1 *1) (-5 *1 (-381))) (-1703 (*1 *1) (-5 *1 (-381))) (-4297 (*1 *1) (-5 *1 (-381))) (-3084 (*1 *1 *1 *1) (-5 *1 (-381))) (-3971 (*1 *1 *1) (-5 *1 (-381))) (-1703 (*1 *1 *1) (-5 *1 (-381))) (-1434 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2815 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2117 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381))))) +(-13 (-407) (-233) (-615 (-1160)) (-829) (-614 (-225)) (-1203) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3321 ($ $)) (-15 -3015 ((-567) $ $)) (-15 -4130 ($ $ (-567))) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772))) (-15 -3971 ($)) (-15 -1703 ($)) (-15 -4297 ($)) (-15 -3084 ($ $ $)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -1434 ((-1273))) (-15 -1434 ((-1273) (-772))) (-15 -2815 ((-1273))) (-15 -2815 ((-1273) (-772))) (-15 -2117 ((-1273))) (-15 -2117 ((-1273) (-772))) (-15 -2553 ((-1273) (-772))) (-6 -4409) (-6 -4401))) +((-3018 (((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|) 46) (((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|) 45) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|) 36)) (-2514 (((-645 |#1|) (-410 (-954 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|) 30))) +(((-382 |#1|) (-10 -7 (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2514 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|)) (-15 -2514 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) (-13 (-849) (-365))) (T -382)) +((-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-567))))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))) +(-10 -7 (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2514 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|)) (-15 -2514 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 30)) (-2038 ((|#2| $) 32)) (-3014 (($ $) NIL)) (-2695 (((-772) $) 11)) (-1709 (((-645 $) $) 23)) (-2843 (((-112) $) NIL)) (-2290 (($ |#2| |#1|) 21)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2976 ((|#2| $) 18)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 51) (($ |#2|) 31)) (-3032 (((-645 |#1|) $) 20)) (-4136 ((|#1| $ |#2|) 55)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 33 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1051) (-851)) (T -383)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851))))) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#2| "failed") $) 49)) (-2033 ((|#2| $) 50)) (-3006 (($ $) 35)) (-4183 (((-772) $) 39)) (-2604 (((-645 $) $) 40)) (-2014 (((-112) $) 43)) (-2282 (($ |#2| |#1|) 44)) (-3822 (($ (-1 |#1| |#1|) $) 45)) (-2165 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2969 ((|#2| $) 38)) (-2980 ((|#1| $) 37)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ |#2|) 48)) (-3468 (((-645 |#1|) $) 41)) (-2253 ((|#1| $ |#2|) 46)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1568 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-384 |#1| |#2|) (-140) (-1050) (-1101)) (T -384)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1101)))) (-2253 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1050)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)))) (-2282 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1101)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-112)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-645 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-772)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1101)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1050)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1101))))) -(-13 (-111 |t#1| |t#1|) (-1039 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2253 (|t#1| $ |t#2|)) (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (-15 -2282 ($ |t#2| |t#1|)) (-15 -2014 ((-112) $)) (-15 -1568 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3468 ((-645 |t#1|) $)) (-15 -2604 ((-645 $) $)) (-15 -4183 ((-772) $)) (-15 -2969 (|t#2| $)) (-15 -2980 (|t#1| $)) (-15 -2165 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3006 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-1039 |#2|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 11))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 49)) (-2038 ((|#2| $) 50)) (-3014 (($ $) 35)) (-2695 (((-772) $) 39)) (-1709 (((-645 $) $) 40)) (-2843 (((-112) $) 43)) (-2290 (($ |#2| |#1|) 44)) (-3829 (($ (-1 |#1| |#1|) $) 45)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2976 ((|#2| $) 38)) (-2989 ((|#1| $) 37)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ |#2|) 48)) (-3032 (((-645 |#1|) $) 41)) (-4136 ((|#1| $ |#2|) 46)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-384 |#1| |#2|) (-140) (-1051) (-1102)) (T -384)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)))) (-2290 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-1709 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102))))) +(-13 (-111 |t#1| |t#1|) (-1040 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4136 (|t#1| $ |t#2|)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2290 ($ |t#2| |t#1|)) (-15 -2843 ((-112) $)) (-15 -2761 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3032 ((-645 |t#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (-15 -2976 (|t#2| $)) (-15 -2989 (|t#1| $)) (-15 -1901 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3014 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-1040 |#2|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 11))) (((-385) (-140)) (T -385)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-4 *1 (-385))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-690 (-700)))) (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-331))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1217) . T)) -((-3747 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-953 (-381)))) 17) (((-3 $ "failed") (-690 (-953 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 11)) (-2033 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-953 (-381)))) 18) (($ (-690 (-953 (-567)))) 16) (($ (-690 (-410 (-953 (-381))))) 14) (($ (-690 (-410 (-953 (-567))))) 12)) (-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 23))) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-385))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-690 (-700)))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))))) +(((-614 (-863)) . T) ((-398) . T) ((-1218) . T)) +((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-954 (-381)))) 17) (((-3 $ "failed") (-690 (-954 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 11)) (-2038 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-954 (-381)))) 18) (($ (-690 (-954 (-567)))) 16) (($ (-690 (-410 (-954 (-381))))) 14) (($ (-690 (-410 (-954 (-567))))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23))) (((-386) (-140)) (T -386)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-331))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))) (-15 -2033 ($ (-690 (-317 (-381))))) (-15 -3747 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -2033 ($ (-690 (-317 (-567))))) (-15 -3747 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -2033 ($ (-690 (-953 (-381))))) (-15 -3747 ((-3 $ "failed") (-690 (-953 (-381))))) (-15 -2033 ($ (-690 (-953 (-567))))) (-15 -3747 ((-3 $ "failed") (-690 (-953 (-567))))) (-15 -2033 ($ (-690 (-410 (-953 (-381)))))) (-15 -3747 ((-3 $ "failed") (-690 (-410 (-953 (-381)))))) (-15 -2033 ($ (-690 (-410 (-953 (-567)))))) (-15 -3747 ((-3 $ "failed") (-690 (-410 (-953 (-567)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-2821 (($ |#1| |#2|) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3748 ((|#2| $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 34)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 12 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) (-1050) (-851)) (T -387)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-690 (-317 (-381))))) (-15 -3753 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -2038 ($ (-690 (-317 (-567))))) (-15 -3753 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -2038 ($ (-690 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-690 (-954 (-381))))) (-15 -2038 ($ (-690 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-690 (-954 (-567))))) (-15 -2038 ($ (-690 (-410 (-954 (-381)))))) (-15 -3753 ((-3 $ "failed") (-690 (-410 (-954 (-381)))))) (-15 -2038 ($ (-690 (-410 (-954 (-567)))))) (-15 -3753 ((-3 $ "failed") (-690 (-410 (-954 (-567)))))))) +(((-614 (-863)) . T) ((-398) . T) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 34)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) (-1051) (-851)) (T -387)) NIL (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2371 (((-772) $) 34)) (-2245 (($) 19 T CONST)) (-3323 (((-3 $ "failed") $ $) 37)) (-3747 (((-3 |#1| "failed") $) 45)) (-2033 ((|#1| $) 46)) (-3153 (((-3 $ "failed") $) 16)) (-2074 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2843 (((-112) $) 18)) (-1771 ((|#1| $ (-567)) 31)) (-3866 (((-772) $ (-567)) 32)) (-2010 (($ $ $) 28 (|has| |#1| (-851)))) (-2998 (($ $ $) 27 (|has| |#1| (-851)))) (-3371 (($ (-1 |#1| |#1|) $) 29)) (-2753 (($ (-1 (-772) (-772)) $) 30)) (-3626 (((-3 $ "failed") $ $) 38)) (-3739 (((-1159) $) 10)) (-2425 (($ $ $) 39)) (-2719 (($ $ $) 40)) (-3430 (((-1121) $) 11)) (-2166 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-772)))) $) 33)) (-2573 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4127 (((-863) $) 12) (($ |#1|) 44)) (-4104 (((-112) $ $) 9)) (-1722 (($) 20 T CONST)) (-2988 (((-112) $ $) 25 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 24 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 26 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-388 |#1|) (-140) (-1101)) (T -388)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-2719 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-2425 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-3626 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-3323 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-2573 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1101)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2074 (*1 *2 *1 *1) (-12 (-4 *3 (-1101)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1101)) (-5 *2 (-772)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1101)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 (-772))))))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1101)) (-5 *2 (-772)))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1101)))) (-2753 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1101)))) (-3371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1101))))) -(-13 (-727) (-1039 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -2719 ($ $ $)) (-15 -2425 ($ $ $)) (-15 -3626 ((-3 $ "failed") $ $)) (-15 -3323 ((-3 $ "failed") $ $)) (-15 -2573 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2074 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2371 ((-772) $)) (-15 -2166 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3927 (-772)))) $)) (-15 -3866 ((-772) $ (-567))) (-15 -1771 (|t#1| $ (-567))) (-15 -2753 ($ (-1 (-772) (-772)) $)) (-15 -3371 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1039 |#1|) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772) $) 74)) (-2245 (($) NIL T CONST)) (-3323 (((-3 $ "failed") $ $) 77)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2074 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2843 (((-112) $) 17)) (-1771 ((|#1| $ (-567)) NIL)) (-3866 (((-772) $ (-567)) NIL)) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3371 (($ (-1 |#1| |#1|) $) 40)) (-2753 (($ (-1 (-772) (-772)) $) 37)) (-3626 (((-3 $ "failed") $ $) 60)) (-3739 (((-1159) $) NIL)) (-2425 (($ $ $) 28)) (-2719 (($ $ $) 26)) (-3430 (((-1121) $) NIL)) (-2166 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-772)))) $) 34)) (-2573 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4127 (((-863) $) 24) (($ |#1|) NIL)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 11 T CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-389 |#1|) (-388 |#1|) (-1101)) (T -389)) +((-2403 (((-112) $ $) 7)) (-2375 (((-772) $) 34)) (-2585 (($) 19 T CONST)) (-2885 (((-3 $ "failed") $ $) 37)) (-3753 (((-3 |#1| "failed") $) 45)) (-2038 ((|#1| $) 46)) (-2109 (((-3 $ "failed") $) 16)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1433 (((-112) $) 18)) (-4108 ((|#1| $ (-567)) 31)) (-3202 (((-772) $ (-567)) 32)) (-1354 (($ $ $) 28 (|has| |#1| (-851)))) (-2981 (($ $ $) 27 (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) 29)) (-2728 (($ (-1 (-772) (-772)) $) 30)) (-2173 (((-3 $ "failed") $ $) 38)) (-1419 (((-1160) $) 10)) (-3231 (($ $ $) 39)) (-3827 (($ $ $) 40)) (-3430 (((-1122) $) 11)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) 33)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4132 (((-863) $) 12) (($ |#1|) 44)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) 25 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 24 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 26 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-388 |#1|) (-140) (-1102)) (T -388)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3827 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2173 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2885 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2384 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-1914 (*1 *2 *1 *1) (-12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-772))))))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102))))) +(-13 (-727) (-1040 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -3827 ($ $ $)) (-15 -3231 ($ $ $)) (-15 -2173 ((-3 $ "failed") $ $)) (-15 -2885 ((-3 $ "failed") $ $)) (-15 -2384 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1914 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2375 ((-772) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3946 (-772)))) $)) (-15 -3202 ((-772) $ (-567))) (-15 -4108 (|t#1| $ (-567))) (-15 -2728 ($ (-1 (-772) (-772)) $)) (-15 -3496 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|))) +(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 |#1|) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) 74)) (-2585 (($) NIL T CONST)) (-2885 (((-3 $ "failed") $ $) 77)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1433 (((-112) $) 17)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-772) $ (-567)) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) 40)) (-2728 (($ (-1 (-772) (-772)) $) 37)) (-2173 (((-3 $ "failed") $ $) 60)) (-1419 (((-1160) $) NIL)) (-3231 (($ $ $) 28)) (-3827 (($ $ $) 26)) (-3430 (((-1122) $) NIL)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) 34)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4132 (((-863) $) 24) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 11 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-389 |#1|) (-388 |#1|) (-1102)) (T -389)) NIL (-388 |#1|) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 53)) (-2033 (((-567) $) 54)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-2010 (($ $ $) 60)) (-2998 (($ $ $) 59)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ $) 48)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 57)) (-2964 (((-112) $ $) 56)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 58)) (-2952 (((-112) $ $) 55)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 53)) (-2038 (((-567) $) 54)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1354 (($ $ $) 60)) (-2981 (($ $ $) 59)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 57)) (-2971 (((-112) $ $) 56)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 58)) (-2958 (((-112) $ $) 55)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-390) (-140)) (T -390)) NIL -(-13 (-559) (-851) (-1039 (-567))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-4393 (((-112) $) 25)) (-2706 (((-112) $) 22)) (-2844 (($ (-1159) (-1159) (-1159)) 26)) (-1988 (((-1159) $) 16)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1815 (($ (-1159) (-1159) (-1159)) 14)) (-3639 (((-1159) $) 17)) (-1645 (((-112) $) 18)) (-3839 (((-1159) $) 15)) (-4127 (((-863) $) 12) (($ (-1159)) 13) (((-1159) $) 9)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 7))) +(-13 (-559) (-851) (-1040 (-567))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2638 (((-112) $) 25)) (-2167 (((-112) $) 22)) (-2846 (($ (-1160) (-1160) (-1160)) 26)) (-1996 (((-1160) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1819 (($ (-1160) (-1160) (-1160)) 14)) (-3751 (((-1160) $) 17)) (-3648 (((-112) $) 18)) (-3818 (((-1160) $) 15)) (-4132 (((-863) $) 12) (($ (-1160)) 13) (((-1160) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 7))) (((-391) (-392)) (T -391)) NIL (-392) -((-2399 (((-112) $ $) 7)) (-4393 (((-112) $) 17)) (-2706 (((-112) $) 18)) (-2844 (($ (-1159) (-1159) (-1159)) 16)) (-1988 (((-1159) $) 21)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1815 (($ (-1159) (-1159) (-1159)) 23)) (-3639 (((-1159) $) 20)) (-1645 (((-112) $) 19)) (-3839 (((-1159) $) 22)) (-4127 (((-863) $) 12) (($ (-1159)) 25) (((-1159) $) 24)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-2403 (((-112) $ $) 7)) (-2638 (((-112) $) 17)) (-2167 (((-112) $) 18)) (-2846 (($ (-1160) (-1160) (-1160)) 16)) (-1996 (((-1160) $) 21)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1819 (($ (-1160) (-1160) (-1160)) 23)) (-3751 (((-1160) $) 20)) (-3648 (((-112) $) 19)) (-3818 (((-1160) $) 22)) (-4132 (((-863) $) 12) (($ (-1160)) 25) (((-1160) $) 24)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-392) (-140)) (T -392)) -((-1815 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-392)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4393 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2844 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-392))))) -(-13 (-1101) (-493 (-1159)) (-10 -8 (-15 -1815 ($ (-1159) (-1159) (-1159))) (-15 -3839 ((-1159) $)) (-15 -1988 ((-1159) $)) (-15 -3639 ((-1159) $)) (-15 -1645 ((-112) $)) (-15 -2706 ((-112) $)) (-15 -4393 ((-112) $)) (-15 -2844 ($ (-1159) (-1159) (-1159))))) -(((-102) . T) ((-617 #0=(-1159)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1306 (((-863) $) 64)) (-2245 (($) NIL T CONST)) (-2968 (($ $ (-922)) NIL)) (-3709 (($ $ (-922)) NIL)) (-2941 (($ $ (-922)) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($ (-772)) 38)) (-1635 (((-772)) 18)) (-3293 (((-863) $) 66)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1875 (($ $ $ $) NIL)) (-3411 (($ $ $) NIL)) (-1710 (($) 24 T CONST)) (-2929 (((-112) $ $) 41)) (-3037 (($ $) 48) (($ $ $) 50)) (-3024 (($ $ $) 51)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -1635 ((-772))) (-15 -3293 ((-863) $)) (-15 -1306 ((-863) $)) (-15 -1394 ($ (-772))))) (-772) (-772) (-172)) (T -393)) -((-1635 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-745 |#3|) (-10 -8 (-15 -1635 ((-772))) (-15 -3293 ((-863) $)) (-15 -1306 ((-863) $)) (-15 -1394 ($ (-772))))) -((-3019 (((-1159)) 12)) (-2694 (((-1148 (-1159))) 31)) (-1452 (((-1272) (-1159)) 28) (((-1272) (-391)) 27)) (-1465 (((-1272)) 29)) (-4299 (((-1148 (-1159))) 30))) -(((-394) (-10 -7 (-15 -4299 ((-1148 (-1159)))) (-15 -2694 ((-1148 (-1159)))) (-15 -1465 ((-1272))) (-15 -1452 ((-1272) (-391))) (-15 -1452 ((-1272) (-1159))) (-15 -3019 ((-1159))))) (T -394)) -((-3019 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-394)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-394)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1272)) (-5 *1 (-394)))) (-1465 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-394)))) (-2694 (*1 *2) (-12 (-5 *2 (-1148 (-1159))) (-5 *1 (-394)))) (-4299 (*1 *2) (-12 (-5 *2 (-1148 (-1159))) (-5 *1 (-394))))) -(-10 -7 (-15 -4299 ((-1148 (-1159)))) (-15 -2694 ((-1148 (-1159)))) (-15 -1465 ((-1272))) (-15 -1452 ((-1272) (-391))) (-15 -1452 ((-1272) (-1159))) (-15 -3019 ((-1159)))) -((-2937 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2937 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395)) -((-2937 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))) -(-10 -7 (-15 -2937 ((-772) (-338 |#1| |#2| |#3| |#4|)))) -((-4127 (((-397) |#1|) 11))) -(((-396 |#1|) (-10 -7 (-15 -4127 ((-397) |#1|))) (-1101)) (T -396)) -((-4127 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1101))))) -(-10 -7 (-15 -4127 ((-397) |#1|))) -((-2399 (((-112) $ $) NIL)) (-1824 (((-645 (-1159)) $ (-645 (-1159))) 43)) (-2626 (((-645 (-1159)) $ (-645 (-1159))) 44)) (-2019 (((-645 (-1159)) $ (-645 (-1159))) 45)) (-3853 (((-645 (-1159)) $) 40)) (-2844 (($) 30)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4266 (((-645 (-1159)) $) 41)) (-1625 (((-645 (-1159)) $) 42)) (-4015 (((-1272) $ (-567)) 38) (((-1272) $) 39)) (-3880 (($ (-863) (-567)) 35)) (-4127 (((-863) $) 54) (($ (-863)) 32)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-397) (-13 (-1101) (-617 (-863)) (-10 -8 (-15 -3880 ($ (-863) (-567))) (-15 -4015 ((-1272) $ (-567))) (-15 -4015 ((-1272) $)) (-15 -1625 ((-645 (-1159)) $)) (-15 -4266 ((-645 (-1159)) $)) (-15 -2844 ($)) (-15 -3853 ((-645 (-1159)) $)) (-15 -2019 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -2626 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1824 ((-645 (-1159)) $ (-645 (-1159))))))) (T -397)) -((-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-397)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-397)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) (-2844 (*1 *1) (-5 *1 (-397))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) (-2019 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) (-2626 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) (-1824 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397))))) -(-13 (-1101) (-617 (-863)) (-10 -8 (-15 -3880 ($ (-863) (-567))) (-15 -4015 ((-1272) $ (-567))) (-15 -4015 ((-1272) $)) (-15 -1625 ((-645 (-1159)) $)) (-15 -4266 ((-645 (-1159)) $)) (-15 -2844 ($)) (-15 -3853 ((-645 (-1159)) $)) (-15 -2019 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -2626 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1824 ((-645 (-1159)) $ (-645 (-1159)))))) -((-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8))) +((-1819 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2846 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392))))) +(-13 (-1102) (-493 (-1160)) (-10 -8 (-15 -1819 ($ (-1160) (-1160) (-1160))) (-15 -3818 ((-1160) $)) (-15 -1996 ((-1160) $)) (-15 -3751 ((-1160) $)) (-15 -3648 ((-112) $)) (-15 -2167 ((-112) $)) (-15 -2638 ((-112) $)) (-15 -2846 ($ (-1160) (-1160) (-1160))))) +(((-102) . T) ((-617 #0=(-1160)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2983 (((-863) $) 64)) (-2585 (($) NIL T CONST)) (-2586 (($ $ (-923)) NIL)) (-3719 (($ $ (-923)) NIL)) (-3450 (($ $ (-923)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) 38)) (-1879 (((-772)) 18)) (-3030 (((-863) $) 66)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-2214 (($ $ $) NIL)) (-1716 (($) 24 T CONST)) (-2936 (((-112) $ $) 41)) (-3045 (($ $) 48) (($ $ $) 50)) (-3033 (($ $ $) 51)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -1879 ((-772))) (-15 -3030 ((-863) $)) (-15 -2983 ((-863) $)) (-15 -1398 ($ (-772))))) (-772) (-772) (-172)) (T -393)) +((-1879 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-745 |#3|) (-10 -8 (-15 -1879 ((-772))) (-15 -3030 ((-863) $)) (-15 -2983 ((-863) $)) (-15 -1398 ($ (-772))))) +((-2422 (((-1160)) 12)) (-3672 (((-1149 (-1160))) 31)) (-1424 (((-1273) (-1160)) 28) (((-1273) (-391)) 27)) (-1436 (((-1273)) 29)) (-3738 (((-1149 (-1160))) 30))) +(((-394) (-10 -7 (-15 -3738 ((-1149 (-1160)))) (-15 -3672 ((-1149 (-1160)))) (-15 -1436 ((-1273))) (-15 -1424 ((-1273) (-391))) (-15 -1424 ((-1273) (-1160))) (-15 -2422 ((-1160))))) (T -394)) +((-2422 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-394)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-394)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-394)))) (-1436 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-394)))) (-3672 (*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394)))) (-3738 (*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394))))) +(-10 -7 (-15 -3738 ((-1149 (-1160)))) (-15 -3672 ((-1149 (-1160)))) (-15 -1436 ((-1273))) (-15 -1424 ((-1273) (-391))) (-15 -1424 ((-1273) (-1160))) (-15 -2422 ((-1160)))) +((-4384 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19))) +(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395)) +((-4384 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))) +(-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|)))) +((-4132 (((-397) |#1|) 11))) +(((-396 |#1|) (-10 -7 (-15 -4132 ((-397) |#1|))) (-1102)) (T -396)) +((-4132 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102))))) +(-10 -7 (-15 -4132 ((-397) |#1|))) +((-2403 (((-112) $ $) NIL)) (-1631 (((-645 (-1160)) $ (-645 (-1160))) 43)) (-2020 (((-645 (-1160)) $ (-645 (-1160))) 44)) (-2121 (((-645 (-1160)) $ (-645 (-1160))) 45)) (-1499 (((-645 (-1160)) $) 40)) (-2846 (($) 30)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3593 (((-645 (-1160)) $) 41)) (-3028 (((-645 (-1160)) $) 42)) (-4022 (((-1273) $ (-567)) 38) (((-1273) $) 39)) (-3893 (($ (-863) (-567)) 35)) (-4132 (((-863) $) 54) (($ (-863)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-397) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -3593 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2020 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))) (T -397)) +((-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-397)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-397)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2846 (*1 *1) (-5 *1 (-397))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2121 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-1631 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))) +(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -3593 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2020 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160)))))) +((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8))) (((-398) (-140)) (T -398)) -((-1484 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1272))))) -(-13 (-1217) (-614 (-863)) (-10 -8 (-15 -1484 ((-1272) $)))) -(((-614 (-863)) . T) ((-1217) . T)) -((-3747 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-953 (-381))) 17) (((-3 $ "failed") (-953 (-567))) 15) (((-3 $ "failed") (-410 (-953 (-381)))) 13) (((-3 $ "failed") (-410 (-953 (-567)))) 11)) (-2033 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-953 (-381))) 18) (($ (-953 (-567))) 16) (($ (-410 (-953 (-381)))) 14) (($ (-410 (-953 (-567)))) 12)) (-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 23))) +((-1453 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1273))))) +(-13 (-1218) (-614 (-863)) (-10 -8 (-15 -1453 ((-1273) $)))) +(((-614 (-863)) . T) ((-1218) . T)) +((-3753 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-954 (-381))) 17) (((-3 $ "failed") (-954 (-567))) 15) (((-3 $ "failed") (-410 (-954 (-381)))) 13) (((-3 $ "failed") (-410 (-954 (-567)))) 11)) (-2038 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-954 (-381))) 18) (($ (-954 (-567))) 16) (($ (-410 (-954 (-381)))) 14) (($ (-410 (-954 (-567)))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23))) (((-399) (-140)) (T -399)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-331))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))) (-15 -2033 ($ (-317 (-381)))) (-15 -3747 ((-3 $ "failed") (-317 (-381)))) (-15 -2033 ($ (-317 (-567)))) (-15 -3747 ((-3 $ "failed") (-317 (-567)))) (-15 -2033 ($ (-953 (-381)))) (-15 -3747 ((-3 $ "failed") (-953 (-381)))) (-15 -2033 ($ (-953 (-567)))) (-15 -3747 ((-3 $ "failed") (-953 (-567)))) (-15 -2033 ($ (-410 (-953 (-381))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -2033 ($ (-410 (-953 (-567))))) (-15 -3747 ((-3 $ "failed") (-410 (-953 (-567))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1217) . T)) -((-1667 (((-645 (-1159)) (-645 (-1159))) 9)) (-1484 (((-1272) (-391)) 27)) (-2682 (((-1105) (-1177) (-645 (-1177)) (-1180) (-645 (-1177))) 60) (((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177)) (-1177)) 35) (((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177))) 34))) -(((-400) (-10 -7 (-15 -2682 ((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177)))) (-15 -2682 ((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177)) (-1177))) (-15 -2682 ((-1105) (-1177) (-645 (-1177)) (-1180) (-645 (-1177)))) (-15 -1484 ((-1272) (-391))) (-15 -1667 ((-645 (-1159)) (-645 (-1159)))))) (T -400)) -((-1667 (*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-400)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1272)) (-5 *1 (-400)))) (-2682 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1177))) (-5 *5 (-1180)) (-5 *3 (-1177)) (-5 *2 (-1105)) (-5 *1 (-400)))) (-2682 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1177))))) (-5 *6 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1105)) (-5 *1 (-400)))) (-2682 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1177))))) (-5 *6 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1105)) (-5 *1 (-400))))) -(-10 -7 (-15 -2682 ((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177)))) (-15 -2682 ((-1105) (-1177) (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177)))) (-645 (-645 (-3 (|:| |array| (-645 (-1177))) (|:| |scalar| (-1177))))) (-645 (-1177)) (-1177))) (-15 -2682 ((-1105) (-1177) (-645 (-1177)) (-1180) (-645 (-1177)))) (-15 -1484 ((-1272) (-391))) (-15 -1667 ((-645 (-1159)) (-645 (-1159))))) -((-1484 (((-1272) $) 36)) (-4127 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) -(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -4127 ($ (-331))) (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))) (-15 -4127 ($ (-317 (-702)))) (-15 -4127 ($ (-317 (-700)))) (-15 -4127 ($ (-317 (-695)))) (-15 -4127 ($ (-295 (-317 (-702))))) (-15 -4127 ($ (-295 (-317 (-700))))) (-15 -4127 ($ (-295 (-317 (-695))))) (-15 -4127 ($ (-317 (-567)))) (-15 -4127 ($ (-317 (-381)))) (-15 -4127 ($ (-317 (-169 (-381))))) (-15 -4127 ($ (-295 (-317 (-567))))) (-15 -4127 ($ (-295 (-317 (-381))))) (-15 -4127 ($ (-295 (-317 (-169 (-381)))))))) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-1177)) (-1181)) (T -401)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-14 *5 (-645 (-1177))) (-14 *6 (-1181))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-331))) (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))) (-15 -4127 ($ (-317 (-702)))) (-15 -4127 ($ (-317 (-700)))) (-15 -4127 ($ (-317 (-695)))) (-15 -4127 ($ (-295 (-317 (-702))))) (-15 -4127 ($ (-295 (-317 (-700))))) (-15 -4127 ($ (-295 (-317 (-695))))) (-15 -4127 ($ (-317 (-567)))) (-15 -4127 ($ (-317 (-381)))) (-15 -4127 ($ (-317 (-169 (-381))))) (-15 -4127 ($ (-295 (-317 (-567))))) (-15 -4127 ($ (-295 (-317 (-381))))) (-15 -4127 ($ (-295 (-317 (-169 (-381)))))))) -((-2399 (((-112) $ $) NIL)) (-4282 ((|#2| $) 38)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4048 (($ (-410 |#2|)) 95)) (-4044 (((-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|))) $) 39)) (-1621 (($ $) 34) (($ $ (-772)) 36)) (-3880 (((-410 |#2|) $) 51)) (-4142 (($ (-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|)))) 33)) (-4127 (((-863) $) 132)) (-4104 (((-112) $ $) NIL)) (-2636 (($ $) 35) (($ $ (-772)) 37)) (-2929 (((-112) $ $) NIL)) (-3024 (($ |#2| $) 41))) -(((-402 |#1| |#2|) (-13 (-1101) (-615 (-410 |#2|)) (-10 -8 (-15 -3024 ($ |#2| $)) (-15 -4048 ($ (-410 |#2|))) (-15 -4282 (|#2| $)) (-15 -4044 ((-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|))) $)) (-15 -4142 ($ (-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|))))) (-15 -1621 ($ $)) (-15 -2636 ($ $)) (-15 -1621 ($ $ (-772))) (-15 -2636 ($ $ (-772))))) (-13 (-365) (-147)) (-1243 |#1|)) (T -402)) -((-3024 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1243 *3)))) (-4048 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-4282 (*1 *2 *1) (-12 (-4 *2 (-1243 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-4044 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -4250 (-772)) (|:| -2793 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1243 *3)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -4250 (-772)) (|:| -2793 *4) (|:| |num| *4)))) (-4 *4 (-1243 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1621 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1243 *2)))) (-2636 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1243 *2)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1243 *3)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1243 *3))))) -(-13 (-1101) (-615 (-410 |#2|)) (-10 -8 (-15 -3024 ($ |#2| $)) (-15 -4048 ($ (-410 |#2|))) (-15 -4282 (|#2| $)) (-15 -4044 ((-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|))) $)) (-15 -4142 ($ (-645 (-2 (|:| -4250 (-772)) (|:| -2793 |#2|) (|:| |num| |#2|))))) (-15 -1621 ($ $)) (-15 -2636 ($ $)) (-15 -1621 ($ $ (-772))) (-15 -2636 ($ $ (-772))))) -((-2399 (((-112) $ $) 9 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 16 (|has| |#1| (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 15 (|has| |#1| (-887 (-567))))) (-3739 (((-1159) $) 13 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3430 (((-1121) $) 12 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-4127 (((-863) $) 11 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-4104 (((-112) $ $) 14 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-2929 (((-112) $ $) 10 (-2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381))))))) -(((-403 |#1|) (-140) (-1217)) (T -403)) -NIL -(-13 (-1217) (-10 -7 (IF (|has| |t#1| (-887 (-567))) (-6 (-887 (-567))) |%noBranch|) (IF (|has| |t#1| (-887 (-381))) (-6 (-887 (-381))) |%noBranch|))) -(((-102) -2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-614 (-863)) -2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-1101) -2797 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-1217) . T)) -((-4112 (($ $) 10) (($ $ (-772)) 12))) -(((-404 |#1|) (-10 -8 (-15 -4112 (|#1| |#1| (-772))) (-15 -4112 (|#1| |#1|))) (-405)) (T -404)) -NIL -(-10 -8 (-15 -4112 (|#1| |#1| (-772))) (-15 -4112 (|#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4112 (($ $) 87) (($ $ (-772)) 86)) (-4341 (((-112) $) 79)) (-2937 (((-834 (-922)) $) 89)) (-2843 (((-112) $) 35)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3942 (((-3 (-772) "failed") $ $) 88)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1467 (((-3 $ "failed") $) 90)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567))))))) +(((-614 (-863)) . T) ((-398) . T) ((-1218) . T)) +((-3446 (((-645 (-1160)) (-645 (-1160))) 9)) (-1453 (((-1273) (-391)) 27)) (-4152 (((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178))) 60) (((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178)) 35) (((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178))) 34))) +(((-400) (-10 -7 (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)))) (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178))) (-15 -4152 ((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178)))) (-15 -1453 ((-1273) (-391))) (-15 -3446 ((-645 (-1160)) (-645 (-1160)))))) (T -400)) +((-3446 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-400)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *5 (-1181)) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400))))) +(-10 -7 (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)))) (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178))) (-15 -4152 ((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178)))) (-15 -1453 ((-1273) (-391))) (-15 -3446 ((-645 (-1160)) (-645 (-1160))))) +((-1453 (((-1273) $) 36)) (-4132 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) +(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -4132 ($ (-331))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -4132 ($ (-317 (-702)))) (-15 -4132 ($ (-317 (-700)))) (-15 -4132 ($ (-317 (-695)))) (-15 -4132 ($ (-295 (-317 (-702))))) (-15 -4132 ($ (-295 (-317 (-700))))) (-15 -4132 ($ (-295 (-317 (-695))))) (-15 -4132 ($ (-317 (-567)))) (-15 -4132 ($ (-317 (-381)))) (-15 -4132 ($ (-317 (-169 (-381))))) (-15 -4132 ($ (-295 (-317 (-567))))) (-15 -4132 ($ (-295 (-317 (-381))))) (-15 -4132 ($ (-295 (-317 (-169 (-381)))))))) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-1182)) (T -401)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-331))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -4132 ($ (-317 (-702)))) (-15 -4132 ($ (-317 (-700)))) (-15 -4132 ($ (-317 (-695)))) (-15 -4132 ($ (-295 (-317 (-702))))) (-15 -4132 ($ (-295 (-317 (-700))))) (-15 -4132 ($ (-295 (-317 (-695))))) (-15 -4132 ($ (-317 (-567)))) (-15 -4132 ($ (-317 (-381)))) (-15 -4132 ($ (-317 (-169 (-381))))) (-15 -4132 ($ (-295 (-317 (-567))))) (-15 -4132 ($ (-295 (-317 (-381))))) (-15 -4132 ($ (-295 (-317 (-169 (-381)))))))) +((-2403 (((-112) $ $) NIL)) (-3654 ((|#2| $) 38)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1387 (($ (-410 |#2|)) 95)) (-4036 (((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $) 39)) (-1593 (($ $) 34) (($ $ (-772)) 36)) (-3893 (((-410 |#2|) $) 51)) (-4147 (($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|)))) 33)) (-4132 (((-863) $) 132)) (-1745 (((-112) $ $) NIL)) (-2637 (($ $) 35) (($ $ (-772)) 37)) (-2936 (((-112) $ $) NIL)) (-3033 (($ |#2| $) 41))) +(((-402 |#1| |#2|) (-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3033 ($ |#2| $)) (-15 -1387 ($ (-410 |#2|))) (-15 -3654 (|#2| $)) (-15 -4036 ((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))))) (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772))))) (-13 (-365) (-147)) (-1244 |#1|)) (T -402)) +((-3033 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1244 *3)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-3654 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-4036 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1593 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1244 *2)))) (-2637 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1244 *2)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3))))) +(-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3033 ($ |#2| $)) (-15 -1387 ($ (-410 |#2|))) (-15 -3654 (|#2| $)) (-15 -4036 ((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))))) (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772))))) +((-2403 (((-112) $ $) 9 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 16 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 15 (|has| |#1| (-888 (-567))))) (-1419 (((-1160) $) 13 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3430 (((-1122) $) 12 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-4132 (((-863) $) 11 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-1745 (((-112) $ $) 14 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2936 (((-112) $ $) 10 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381))))))) +(((-403 |#1|) (-140) (-1218)) (T -403)) +NIL +(-13 (-1218) (-10 -7 (IF (|has| |t#1| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|))) +(((-102) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-614 (-863)) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-1102) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-1218) . T)) +((-4225 (($ $) 10) (($ $ (-772)) 12))) +(((-404 |#1|) (-10 -8 (-15 -4225 (|#1| |#1| (-772))) (-15 -4225 (|#1| |#1|))) (-405)) (T -404)) +NIL +(-10 -8 (-15 -4225 (|#1| |#1| (-772))) (-15 -4225 (|#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4225 (($ $) 87) (($ $ (-772)) 86)) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 89)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 88)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1903 (((-3 $ "failed") $) 90)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) (((-405) (-140)) (T -405)) -((-2937 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) (-3942 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-4112 (*1 *1 *1) (-4 *1 (-405))) (-4112 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))) -(-13 (-365) (-145) (-10 -8 (-15 -2937 ((-834 (-922)) $)) (-15 -3942 ((-3 (-772) "failed") $ $)) (-15 -4112 ($ $)) (-15 -4112 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-2319 (($ (-567) (-567)) 11) (($ (-567) (-567) (-922)) NIL)) (-3435 (((-922)) 20) (((-922) (-922)) NIL))) -(((-406 |#1|) (-10 -8 (-15 -3435 ((-922) (-922))) (-15 -3435 ((-922))) (-15 -2319 (|#1| (-567) (-567) (-922))) (-15 -2319 (|#1| (-567) (-567)))) (-407)) (T -406)) -((-3435 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407))))) -(-10 -8 (-15 -3435 ((-922) (-922))) (-15 -3435 ((-922))) (-15 -2319 (|#1| (-567) (-567) (-922))) (-15 -2319 (|#1| (-567) (-567)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2660 (((-567) $) 97)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-1873 (($ $) 95)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2714 (($ $) 105)) (-2373 (((-112) $ $) 65)) (-3449 (((-567) $) 122)) (-2245 (($) 18 T CONST)) (-2273 (($ $) 94)) (-3747 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2033 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-3735 (((-922)) 138) (((-922) (-922)) 135 (|has| $ (-6 -4408)))) (-4357 (((-112) $) 120)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 101)) (-2937 (((-567) $) 144)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 104)) (-2896 (($ $) 100)) (-2102 (((-112) $) 121)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2010 (($ $ $) 119) (($) 132 (-12 (-1653 (|has| $ (-6 -4408))) (-1653 (|has| $ (-6 -4400)))))) (-2998 (($ $ $) 118) (($) 131 (-12 (-1653 (|has| $ (-6 -4408))) (-1653 (|has| $ (-6 -4400)))))) (-2145 (((-567) $) 141)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-3507 (((-922) (-567)) 134 (|has| $ (-6 -4408)))) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2721 (($ $) 96)) (-1842 (($ $) 98)) (-2319 (($ (-567) (-567)) 146) (($ (-567) (-567) (-922)) 145)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4250 (((-567) $) 142)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3435 (((-922)) 139) (((-922) (-922)) 136 (|has| $ (-6 -4408)))) (-3676 (((-922) (-567)) 133 (|has| $ (-6 -4408)))) (-3880 (((-381) $) 113) (((-225) $) 112) (((-893 (-381)) $) 102)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-1772 (((-772)) 32 T CONST)) (-1687 (($ $) 99)) (-4009 (((-922)) 140) (((-922) (-922)) 137 (|has| $ (-6 -4408)))) (-4104 (((-112) $ $) 9)) (-3074 (((-922)) 143)) (-4380 (((-112) $ $) 45)) (-4137 (($ $) 123)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 116)) (-2964 (((-112) $ $) 115)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 117)) (-2952 (((-112) $ $) 114)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-4384 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) (-2491 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-4225 (*1 *1 *1) (-4 *1 (-405))) (-4225 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))) +(-13 (-365) (-145) (-10 -8 (-15 -4384 ((-834 (-923)) $)) (-15 -2491 ((-3 (-772) "failed") $ $)) (-15 -4225 ($ $)) (-15 -4225 ($ $ (-772))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-2327 (($ (-567) (-567)) 11) (($ (-567) (-567) (-923)) NIL)) (-3038 (((-923)) 20) (((-923) (-923)) NIL))) +(((-406 |#1|) (-10 -8 (-15 -3038 ((-923) (-923))) (-15 -3038 ((-923))) (-15 -2327 (|#1| (-567) (-567) (-923))) (-15 -2327 (|#1| (-567) (-567)))) (-407)) (T -406)) +((-3038 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))) +(-10 -8 (-15 -3038 ((-923) (-923))) (-15 -3038 ((-923))) (-15 -2327 (|#1| (-567) (-567) (-923))) (-15 -2327 (|#1| (-567) (-567)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 (((-567) $) 97)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-1950 (($ $) 95)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 105)) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 122)) (-2585 (($) 18 T CONST)) (-2535 (($ $) 94)) (-3753 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2038 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-3725 (((-923)) 138) (((-923) (-923)) 135 (|has| $ (-6 -4409)))) (-4336 (((-112) $) 120)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-4384 (((-567) $) 144)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 104)) (-2475 (($ $) 100)) (-3494 (((-112) $) 121)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 119) (($) 132 (-12 (-1657 (|has| $ (-6 -4409))) (-1657 (|has| $ (-6 -4401)))))) (-2981 (($ $ $) 118) (($) 131 (-12 (-1657 (|has| $ (-6 -4409))) (-1657 (|has| $ (-6 -4401)))))) (-2148 (((-567) $) 141)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3214 (((-923) (-567)) 134 (|has| $ (-6 -4409)))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 96)) (-2780 (($ $) 98)) (-2327 (($ (-567) (-567)) 146) (($ (-567) (-567) (-923)) 145)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-3458 (((-567) $) 142)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3038 (((-923)) 139) (((-923) (-923)) 136 (|has| $ (-6 -4409)))) (-4223 (((-923) (-567)) 133 (|has| $ (-6 -4409)))) (-3893 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-4221 (((-772)) 32 T CONST)) (-1423 (($ $) 99)) (-2547 (((-923)) 140) (((-923) (-923)) 137 (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) 9)) (-3047 (((-923)) 143)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 123)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 116)) (-2971 (((-112) $ $) 115)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 117)) (-2958 (((-112) $ $) 114)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) (((-407) (-140)) (T -407)) -((-2319 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2319 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-4 *1 (-407)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3074 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-4009 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-3435 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-3735 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4408)) (-4 *1 (-407)) (-5 *2 (-922)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4408)) (-4 *1 (-407)) (-5 *2 (-922)))) (-2010 (*1 *1) (-12 (-4 *1 (-407)) (-1653 (|has| *1 (-6 -4408))) (-1653 (|has| *1 (-6 -4400))))) (-2998 (*1 *1) (-12 (-4 *1 (-407)) (-1653 (|has| *1 (-6 -4408))) (-1653 (|has| *1 (-6 -4400)))))) -(-13 (-1061) (-10 -8 (-6 -3040) (-15 -2319 ($ (-567) (-567))) (-15 -2319 ($ (-567) (-567) (-922))) (-15 -2937 ((-567) $)) (-15 -3074 ((-922))) (-15 -4250 ((-567) $)) (-15 -2145 ((-567) $)) (-15 -4009 ((-922))) (-15 -3435 ((-922))) (-15 -3735 ((-922))) (IF (|has| $ (-6 -4408)) (PROGN (-15 -4009 ((-922) (-922))) (-15 -3435 ((-922) (-922))) (-15 -3735 ((-922) (-922))) (-15 -3507 ((-922) (-567))) (-15 -3676 ((-922) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4400)) |%noBranch| (IF (|has| $ (-6 -4408)) |%noBranch| (PROGN (-15 -2010 ($)) (-15 -2998 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-893 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-887 (-381)) . T) ((-921) . T) ((-1003) . T) ((-1023) . T) ((-1061) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-3822 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20))) -(((-408 |#1| |#2|) (-10 -7 (-15 -3822 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6))))) -(-10 -7 (-15 -3822 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) -((-3822 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13))) -(((-409 |#1| |#2|) (-10 -7 (-15 -3822 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6))))) -(-10 -7 (-15 -3822 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 13)) (-2660 ((|#1| $) 21 (|has| |#1| (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| |#1| (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 17) (((-3 (-1177) "failed") $) NIL (|has| |#1| (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567))))) (-2033 ((|#1| $) 15) (((-1177) $) NIL (|has| |#1| (-1039 (-1177)))) (((-410 (-567)) $) 69 (|has| |#1| (-1039 (-567)))) (((-567) $) NIL (|has| |#1| (-1039 (-567))))) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) 51)) (-1378 (($) NIL (|has| |#1| (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| |#1| (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#1| (-887 (-381))))) (-2843 (((-112) $) 57)) (-1747 (($ $) NIL)) (-1441 ((|#1| $) 73)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1152)))) (-2102 (((-112) $) NIL (|has| |#1| (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| |#1| (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 100)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| |#1| (-308)))) (-1842 ((|#1| $) 28 (|has| |#1| (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 148 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 141 (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-517 (-1177) |#1|)))) (-4197 (((-772) $) NIL)) (-1783 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3168 (($ $) NIL)) (-1455 ((|#1| $) 75)) (-3880 (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1023))) (((-225) $) NIL (|has| |#1| (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1177)) NIL (|has| |#1| (-1039 (-1177))))) (-1467 (((-3 $ "failed") $) 102 (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 103 T CONST)) (-1687 ((|#1| $) 26 (|has| |#1| (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-821)))) (-1710 (($) 22 T CONST)) (-1722 (($) 8 T CONST)) (-4224 (((-1159) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1159) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1272) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1272) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2636 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) 66)) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3050 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3037 (($ $) 25) (($ $ $) 56)) (-3024 (($ $ $) 54)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-410 |#1|) (-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4415)) (-6 -4404) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410)) -NIL -(-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4415)) (-6 -4404) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2981 (((-690 |#2|) (-1267 $)) NIL) (((-690 |#2|)) 18)) (-4025 (($ (-1267 |#2|) (-1267 $)) NIL) (($ (-1267 |#2|)) 24)) (-1937 (((-690 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) $) 40)) (-2612 ((|#3| $) 73)) (-1999 ((|#2| (-1267 $)) NIL) ((|#2|) 20)) (-2446 (((-1267 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) (-1267 $) (-1267 $)) NIL) (((-1267 |#2|) $) 22) (((-690 |#2|) (-1267 $)) 38)) (-3880 (((-1267 |#2|) $) 11) (($ (-1267 |#2|)) 13)) (-3116 ((|#3| $) 55))) -(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -1937 ((-690 |#2|) |#1|)) (-15 -1999 (|#2|)) (-15 -2981 ((-690 |#2|))) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2612 (|#3| |#1|)) (-15 -3116 (|#3| |#1|)) (-15 -2981 ((-690 |#2|) (-1267 |#1|))) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1937 ((-690 |#2|) |#1| (-1267 |#1|)))) (-412 |#2| |#3|) (-172) (-1243 |#2|)) (T -411)) -((-2981 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-1999 (*1 *2) (-12 (-4 *4 (-1243 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4))))) -(-10 -8 (-15 -1937 ((-690 |#2|) |#1|)) (-15 -1999 (|#2|)) (-15 -2981 ((-690 |#2|))) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2612 (|#3| |#1|)) (-15 -3116 (|#3| |#1|)) (-15 -2981 ((-690 |#2|) (-1267 |#1|))) (-15 -1999 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1937 ((-690 |#2|) |#1| (-1267 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2981 (((-690 |#1|) (-1267 $)) 53) (((-690 |#1|)) 68)) (-4290 ((|#1| $) 59)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-4025 (($ (-1267 |#1|) (-1267 $)) 55) (($ (-1267 |#1|)) 71)) (-1937 (((-690 |#1|) $ (-1267 $)) 60) (((-690 |#1|) $) 66)) (-3153 (((-3 $ "failed") $) 37)) (-1979 (((-922)) 61)) (-2843 (((-112) $) 35)) (-2896 ((|#1| $) 58)) (-2612 ((|#2| $) 51 (|has| |#1| (-365)))) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1999 ((|#1| (-1267 $)) 54) ((|#1|) 67)) (-2446 (((-1267 |#1|) $ (-1267 $)) 57) (((-690 |#1|) (-1267 $) (-1267 $)) 56) (((-1267 |#1|) $) 73) (((-690 |#1|) (-1267 $)) 72)) (-3880 (((-1267 |#1|) $) 70) (($ (-1267 |#1|)) 69)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1467 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3116 ((|#2| $) 52)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 74)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-412 |#1| |#2|) (-140) (-172) (-1243 |t#1|)) (T -412)) -((-1975 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-1267 *1)) (-4 *1 (-412 *3 *4)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-1267 *3)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1243 *3)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-1267 *3)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1243 *3)))) (-2981 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-690 *3)))) (-1999 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-690 *3))))) -(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -1975 ((-1267 $))) (-15 -2446 ((-1267 |t#1|) $)) (-15 -2446 ((-690 |t#1|) (-1267 $))) (-15 -4025 ($ (-1267 |t#1|))) (-15 -3880 ((-1267 |t#1|) $)) (-15 -3880 ($ (-1267 |t#1|))) (-15 -2981 ((-690 |t#1|))) (-15 -1999 (|t#1|)) (-15 -1937 ((-690 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-372 |#1| |#2|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-4127 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11))) -(((-413 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| (-567))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|))) (-414 |#2|) (-1217)) (T -413)) -NIL -(-10 -8 (-15 -4127 (|#1| (-567))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|))) -((-3747 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1039 (-567))))) (-2033 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1039 (-567))))) (-4127 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1039 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1039 (-567)))))) -(((-414 |#1|) (-140) (-1217)) (T -414)) -NIL -(-13 (-1039 |t#1|) (-10 -7 (IF (|has| |t#1| (-1039 (-567))) (-6 (-1039 (-567))) |%noBranch|) (IF (|has| |t#1| (-1039 (-410 (-567)))) (-6 (-1039 (-410 (-567)))) |%noBranch|))) -(((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 #1=(-567)) |has| |#1| (-1039 (-567))) ((-617 |#1|) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 #1#) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T)) -((-3822 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35))) -(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3822 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-993 |#1|) (-1243 |#2|) (-13 (-412 |#2| |#3|) (-1039 |#2|)) (-308) (-993 |#5|) (-1243 |#6|) (-13 (-412 |#6| |#7|) (-1039 |#6|))) (T -415)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-993 *5)) (-4 *7 (-1243 *6)) (-4 *8 (-13 (-412 *6 *7) (-1039 *6))) (-4 *9 (-308)) (-4 *10 (-993 *9)) (-4 *11 (-1243 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1039 *10)))))) -(-10 -7 (-15 -3822 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) -((-2399 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-3073 ((|#4| (-772) (-1267 |#4|)) 60)) (-2843 (((-112) $) NIL)) (-1441 (((-1267 |#4|) $) 17)) (-2896 ((|#2| $) 55)) (-2087 (($ $) 163)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 108)) (-1821 (($ (-1267 |#4|)) 107)) (-3430 (((-1121) $) NIL)) (-1455 ((|#1| $) 18)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) 153)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 |#4|) $) 146)) (-1722 (($) 11 T CONST)) (-2929 (((-112) $ $) 41)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135))) -(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -1821 ($ (-1267 |#4|))) (-15 -1975 ((-1267 |#4|) $)) (-15 -2896 (|#2| $)) (-15 -1441 ((-1267 |#4|) $)) (-15 -1455 (|#1| $)) (-15 -2087 ($ $)) (-15 -3073 (|#4| (-772) (-1267 |#4|))))) (-308) (-993 |#1|) (-1243 |#2|) (-13 (-412 |#2| |#3|) (-1039 |#2|))) (T -416)) -((-1821 (*1 *1 *2) (-12 (-5 *2 (-1267 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-1975 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-5 *2 (-1267 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) (-2896 (*1 *2 *1) (-12 (-4 *4 (-1243 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1039 *2))))) (-1441 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-5 *2 (-1267 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) (-1455 (*1 *2 *1) (-12 (-4 *3 (-993 *2)) (-4 *4 (-1243 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))) (-2087 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-993 *2)) (-4 *4 (-1243 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1267 *2)) (-4 *5 (-308)) (-4 *6 (-993 *5)) (-4 *2 (-13 (-412 *6 *7) (-1039 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1243 *6))))) -(-13 (-476) (-10 -8 (-15 -1821 ($ (-1267 |#4|))) (-15 -1975 ((-1267 |#4|) $)) (-15 -2896 (|#2| $)) (-15 -1441 ((-1267 |#4|) $)) (-15 -1455 (|#1| $)) (-15 -2087 ($ $)) (-15 -3073 (|#4| (-772) (-1267 |#4|))))) -((-2399 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-2896 ((|#2| $) 71)) (-2395 (($ (-1267 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1039 |#2|)))) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 37)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 |#4|) $) 28)) (-1722 (($) 25 T CONST)) (-2929 (((-112) $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82))) -(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -1975 ((-1267 |#4|) $)) (-15 -2896 (|#2| $)) (-15 -2395 ($ (-1267 |#4|))) (IF (|has| |#4| (-1039 |#2|)) (-15 -2395 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-993 |#1|) (-1243 |#2|) (-412 |#2| |#3|) (-1267 |#4|)) (T -417)) -((-1975 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-5 *2 (-1267 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-2896 (*1 *2 *1) (-12 (-4 *4 (-1243 *2)) (-4 *2 (-993 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1267 *5)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-1267 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1039 *4)) (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1267 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))) -(-13 (-727) (-10 -8 (-15 -1975 ((-1267 |#4|) $)) (-15 -2896 (|#2| $)) (-15 -2395 ($ (-1267 |#4|))) (IF (|has| |#4| (-1039 |#2|)) (-15 -2395 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3822 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5))))) -(-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) -((-2720 (((-3 $ "failed")) 99)) (-3316 (((-1267 (-690 |#2|)) (-1267 $)) NIL) (((-1267 (-690 |#2|))) 104)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 97)) (-3650 (((-3 $ "failed")) 96)) (-2942 (((-690 |#2|) (-1267 $)) NIL) (((-690 |#2|)) 115)) (-1668 (((-690 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) $) 123)) (-2852 (((-1173 (-953 |#2|))) 65)) (-1809 ((|#2| (-1267 $)) NIL) ((|#2|) 119)) (-4025 (($ (-1267 |#2|) (-1267 $)) NIL) (($ (-1267 |#2|)) 125)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 95)) (-1946 (((-3 $ "failed")) 87)) (-3356 (((-690 |#2|) (-1267 $)) NIL) (((-690 |#2|)) 113)) (-2013 (((-690 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) $) 121)) (-1527 (((-1173 (-953 |#2|))) 64)) (-2152 ((|#2| (-1267 $)) NIL) ((|#2|) 117)) (-2446 (((-1267 |#2|) $ (-1267 $)) NIL) (((-690 |#2|) (-1267 $) (-1267 $)) NIL) (((-1267 |#2|) $) 124) (((-690 |#2|) (-1267 $)) 133)) (-3880 (((-1267 |#2|) $) 109) (($ (-1267 |#2|)) 111)) (-1526 (((-645 (-953 |#2|)) (-1267 $)) NIL) (((-645 (-953 |#2|))) 107)) (-2351 (($ (-690 |#2|) $) 103))) -(((-419 |#1| |#2|) (-10 -8 (-15 -2351 (|#1| (-690 |#2|) |#1|)) (-15 -2852 ((-1173 (-953 |#2|)))) (-15 -1527 ((-1173 (-953 |#2|)))) (-15 -1668 ((-690 |#2|) |#1|)) (-15 -2013 ((-690 |#2|) |#1|)) (-15 -2942 ((-690 |#2|))) (-15 -3356 ((-690 |#2|))) (-15 -1809 (|#2|)) (-15 -2152 (|#2|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -1526 ((-645 (-953 |#2|)))) (-15 -3316 ((-1267 (-690 |#2|)))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2720 ((-3 |#1| "failed"))) (-15 -3650 ((-3 |#1| "failed"))) (-15 -1946 ((-3 |#1| "failed"))) (-15 -2747 ((-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed"))) (-15 -2651 ((-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed"))) (-15 -2942 ((-690 |#2|) (-1267 |#1|))) (-15 -3356 ((-690 |#2|) (-1267 |#1|))) (-15 -1809 (|#2| (-1267 |#1|))) (-15 -2152 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1668 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -2013 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -3316 ((-1267 (-690 |#2|)) (-1267 |#1|))) (-15 -1526 ((-645 (-953 |#2|)) (-1267 |#1|)))) (-420 |#2|) (-172)) (T -419)) -((-3316 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1267 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1526 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2152 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-1809 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-3356 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2942 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1527 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1173 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2852 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1173 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) -(-10 -8 (-15 -2351 (|#1| (-690 |#2|) |#1|)) (-15 -2852 ((-1173 (-953 |#2|)))) (-15 -1527 ((-1173 (-953 |#2|)))) (-15 -1668 ((-690 |#2|) |#1|)) (-15 -2013 ((-690 |#2|) |#1|)) (-15 -2942 ((-690 |#2|))) (-15 -3356 ((-690 |#2|))) (-15 -1809 (|#2|)) (-15 -2152 (|#2|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -4025 (|#1| (-1267 |#2|))) (-15 -1526 ((-645 (-953 |#2|)))) (-15 -3316 ((-1267 (-690 |#2|)))) (-15 -2446 ((-690 |#2|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1|)) (-15 -2720 ((-3 |#1| "failed"))) (-15 -3650 ((-3 |#1| "failed"))) (-15 -1946 ((-3 |#1| "failed"))) (-15 -2747 ((-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed"))) (-15 -2651 ((-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed"))) (-15 -2942 ((-690 |#2|) (-1267 |#1|))) (-15 -3356 ((-690 |#2|) (-1267 |#1|))) (-15 -1809 (|#2| (-1267 |#1|))) (-15 -2152 (|#2| (-1267 |#1|))) (-15 -4025 (|#1| (-1267 |#2|) (-1267 |#1|))) (-15 -2446 ((-690 |#2|) (-1267 |#1|) (-1267 |#1|))) (-15 -2446 ((-1267 |#2|) |#1| (-1267 |#1|))) (-15 -1668 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -2013 ((-690 |#2|) |#1| (-1267 |#1|))) (-15 -3316 ((-1267 (-690 |#2|)) (-1267 |#1|))) (-15 -1526 ((-645 (-953 |#2|)) (-1267 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2720 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) 20)) (-3316 (((-1267 (-690 |#1|)) (-1267 $)) 83) (((-1267 (-690 |#1|))) 105)) (-4308 (((-1267 $)) 86)) (-2245 (($) 18 T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3650 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-2942 (((-690 |#1|) (-1267 $)) 70) (((-690 |#1|)) 97)) (-2442 ((|#1| $) 79)) (-1668 (((-690 |#1|) $ (-1267 $)) 81) (((-690 |#1|) $) 95)) (-2385 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-2852 (((-1173 (-953 |#1|))) 93 (|has| |#1| (-365)))) (-2968 (($ $ (-922)) 31)) (-2675 ((|#1| $) 77)) (-3090 (((-1173 |#1|) $) 47 (|has| |#1| (-559)))) (-1809 ((|#1| (-1267 $)) 72) ((|#1|) 99)) (-3798 (((-1173 |#1|) $) 68)) (-4037 (((-112)) 62)) (-4025 (($ (-1267 |#1|) (-1267 $)) 74) (($ (-1267 |#1|)) 103)) (-3153 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1979 (((-922)) 85)) (-2128 (((-112)) 59)) (-3709 (($ $ (-922)) 38)) (-3809 (((-112)) 55)) (-2427 (((-112)) 53)) (-3151 (((-112)) 57)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-1946 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-3356 (((-690 |#1|) (-1267 $)) 71) (((-690 |#1|)) 98)) (-2506 ((|#1| $) 80)) (-2013 (((-690 |#1|) $ (-1267 $)) 82) (((-690 |#1|) $) 96)) (-2539 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-1527 (((-1173 (-953 |#1|))) 94 (|has| |#1| (-365)))) (-2941 (($ $ (-922)) 32)) (-3660 ((|#1| $) 78)) (-2464 (((-1173 |#1|) $) 48 (|has| |#1| (-559)))) (-2152 ((|#1| (-1267 $)) 73) ((|#1|) 100)) (-1837 (((-1173 |#1|) $) 69)) (-2690 (((-112)) 63)) (-3739 (((-1159) $) 10)) (-2972 (((-112)) 54)) (-3657 (((-112)) 56)) (-1790 (((-112)) 58)) (-3430 (((-1121) $) 11)) (-3630 (((-112)) 61)) (-1783 ((|#1| $ (-567)) 106)) (-2446 (((-1267 |#1|) $ (-1267 $)) 76) (((-690 |#1|) (-1267 $) (-1267 $)) 75) (((-1267 |#1|) $) 108) (((-690 |#1|) (-1267 $)) 107)) (-3880 (((-1267 |#1|) $) 102) (($ (-1267 |#1|)) 101)) (-1526 (((-645 (-953 |#1|)) (-1267 $)) 84) (((-645 (-953 |#1|))) 104)) (-3387 (($ $ $) 28)) (-4348 (((-112)) 67)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 109)) (-2925 (((-645 (-1267 |#1|))) 49 (|has| |#1| (-559)))) (-1875 (($ $ $ $) 29)) (-3947 (((-112)) 65)) (-2351 (($ (-690 |#1|) $) 92)) (-3411 (($ $ $) 27)) (-4237 (((-112)) 66)) (-3571 (((-112)) 64)) (-2950 (((-112)) 60)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2327 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2327 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3047 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2547 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3038 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3725 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) (-5 *2 (-923)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) (-5 *2 (-923)))) (-1354 (*1 *1) (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) (-1657 (|has| *1 (-6 -4401))))) (-2981 (*1 *1) (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) (-1657 (|has| *1 (-6 -4401)))))) +(-13 (-1062) (-10 -8 (-6 -3050) (-15 -2327 ($ (-567) (-567))) (-15 -2327 ($ (-567) (-567) (-923))) (-15 -4384 ((-567) $)) (-15 -3047 ((-923))) (-15 -3458 ((-567) $)) (-15 -2148 ((-567) $)) (-15 -2547 ((-923))) (-15 -3038 ((-923))) (-15 -3725 ((-923))) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2547 ((-923) (-923))) (-15 -3038 ((-923) (-923))) (-15 -3725 ((-923) (-923))) (-15 -3214 ((-923) (-567))) (-15 -4223 ((-923) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4401)) |%noBranch| (IF (|has| $ (-6 -4409)) |%noBranch| (PROGN (-15 -1354 ($)) (-15 -2981 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1062) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-3829 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20))) +(((-408 |#1| |#2|) (-10 -7 (-15 -3829 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6))))) +(-10 -7 (-15 -3829 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) +((-3829 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13))) +(((-409 |#1| |#2|) (-10 -7 (-15 -3829 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6))))) +(-10 -7 (-15 -3829 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 13)) (-3093 ((|#1| $) 21 (|has| |#1| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#1| (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 17) (((-3 (-1178) "failed") $) NIL (|has| |#1| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 15) (((-1178) $) NIL (|has| |#1| (-1040 (-1178)))) (((-410 (-567)) $) 69 (|has| |#1| (-1040 (-567)))) (((-567) $) NIL (|has| |#1| (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 51)) (-1348 (($) NIL (|has| |#1| (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| |#1| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-1433 (((-112) $) 57)) (-3530 (($ $) NIL)) (-1448 ((|#1| $) 73)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-3494 (((-112) $) NIL (|has| |#1| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 100)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| |#1| (-308)))) (-2780 ((|#1| $) 28 (|has| |#1| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 148 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) NIL)) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1967 (($ $) NIL)) (-1460 ((|#1| $) 75)) (-3893 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1024))) (((-225) $) NIL (|has| |#1| (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1178)) NIL (|has| |#1| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) 102 (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 103 T CONST)) (-1423 ((|#1| $) 26 (|has| |#1| (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-821)))) (-1716 (($) 22 T CONST)) (-1728 (($) 8 T CONST)) (-2904 (((-1160) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1160) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1273) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1273) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) 66)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3060 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3045 (($ $) 25) (($ $ $) 56)) (-3033 (($ $ $) 54)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4416)) (-6 -4405) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410)) +NIL +(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4416)) (-6 -4405) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2141 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 18)) (-3658 (($ (-1268 |#2|) (-1268 $)) NIL) (($ (-1268 |#2|)) 24)) (-1811 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 40)) (-4206 ((|#3| $) 73)) (-3788 ((|#2| (-1268 $)) NIL) ((|#2|) 20)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 22) (((-690 |#2|) (-1268 $)) 38)) (-3893 (((-1268 |#2|) $) 11) (($ (-1268 |#2|)) 13)) (-2155 ((|#3| $) 55))) +(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -1811 ((-690 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -2141 ((-690 |#2|))) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 (|#3| |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) (-412 |#2| |#3|) (-172) (-1244 |#2|)) (T -411)) +((-2141 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-3788 (*1 *2) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4))))) +(-10 -8 (-15 -1811 ((-690 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -2141 ((-690 |#2|))) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 (|#3| |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1903 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-412 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -412)) +((-2623 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *1)) (-4 *1 (-412 *3 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1244 *3)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1244 *3)))) (-2141 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-690 *3)))) (-3788 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-690 *3))))) +(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -3893 ((-1268 |t#1|) $)) (-15 -3893 ($ (-1268 |t#1|))) (-15 -2141 ((-690 |t#1|))) (-15 -3788 (|t#1|)) (-15 -1811 ((-690 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-372 |#1| |#2|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-4132 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11))) +(((-413 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|))) (-414 |#2|) (-1218)) (T -413)) +NIL +(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|))) +((-3753 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1040 (-567))))) (-4132 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1040 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1040 (-567)))))) +(((-414 |#1|) (-140) (-1218)) (T -414)) +NIL +(-13 (-1040 |t#1|) (-10 -7 (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-567))) |%noBranch|) (IF (|has| |t#1| (-1040 (-410 (-567)))) (-6 (-1040 (-410 (-567)))) |%noBranch|))) +(((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 #1=(-567)) |has| |#1| (-1040 (-567))) ((-617 |#1|) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 #1#) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T)) +((-3829 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35))) +(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1244 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|)) (-308) (-994 |#5|) (-1244 |#6|) (-13 (-412 |#6| |#7|) (-1040 |#6|))) (T -415)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1244 *6)) (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1244 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1040 *10)))))) +(-10 -7 (-15 -3829 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) +((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-3809 ((|#4| (-772) (-1268 |#4|)) 60)) (-1433 (((-112) $) NIL)) (-1448 (((-1268 |#4|) $) 17)) (-2475 ((|#2| $) 55)) (-1571 (($ $) 163)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 108)) (-1321 (($ (-1268 |#4|)) 107)) (-3430 (((-1122) $) NIL)) (-1460 ((|#1| $) 18)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 153)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 |#4|) $) 146)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) 41)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135))) +(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -1321 ($ (-1268 |#4|))) (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1448 ((-1268 |#4|) $)) (-15 -1460 (|#1| $)) (-15 -1571 ($ $)) (-15 -3809 (|#4| (-772) (-1268 |#4|))))) (-308) (-994 |#1|) (-1244 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|))) (T -416)) +((-1321 (*1 *1 *2) (-12 (-5 *2 (-1268 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-2475 (*1 *2 *1) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-1460 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-1571 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1268 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1244 *6))))) +(-13 (-476) (-10 -8 (-15 -1321 ($ (-1268 |#4|))) (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1448 ((-1268 |#4|) $)) (-15 -1460 (|#1| $)) (-15 -1571 ($ $)) (-15 -3809 (|#4| (-772) (-1268 |#4|))))) +((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2475 ((|#2| $) 71)) (-1652 (($ (-1268 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1040 |#2|)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 37)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 |#4|) $) 28)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82))) +(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1652 ($ (-1268 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -1652 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1244 |#2|) (-412 |#2| |#3|) (-1268 |#4|)) (T -417)) +((-2623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-2475 (*1 *2 *1) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1268 *5)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1268 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))) +(-13 (-727) (-10 -8 (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1652 ($ (-1268 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -1652 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5))))) +(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) +((-3951 (((-3 $ "failed")) 99)) (-2189 (((-1268 (-690 |#2|)) (-1268 $)) NIL) (((-1268 (-690 |#2|))) 104)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 97)) (-3645 (((-3 $ "failed")) 96)) (-1735 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 115)) (-3528 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 123)) (-4063 (((-1174 (-954 |#2|))) 65)) (-2676 ((|#2| (-1268 $)) NIL) ((|#2|) 119)) (-3658 (($ (-1268 |#2|) (-1268 $)) NIL) (($ (-1268 |#2|)) 125)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 95)) (-3345 (((-3 $ "failed")) 87)) (-2119 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 113)) (-2702 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 121)) (-4162 (((-1174 (-954 |#2|))) 64)) (-3042 ((|#2| (-1268 $)) NIL) ((|#2|) 117)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 124) (((-690 |#2|) (-1268 $)) 133)) (-3893 (((-1268 |#2|) $) 109) (($ (-1268 |#2|)) 111)) (-4013 (((-645 (-954 |#2|)) (-1268 $)) NIL) (((-645 (-954 |#2|))) 107)) (-2355 (($ (-690 |#2|) $) 103))) +(((-419 |#1| |#2|) (-10 -8 (-15 -2355 (|#1| (-690 |#2|) |#1|)) (-15 -4063 ((-1174 (-954 |#2|)))) (-15 -4162 ((-1174 (-954 |#2|)))) (-15 -3528 ((-690 |#2|) |#1|)) (-15 -2702 ((-690 |#2|) |#1|)) (-15 -1735 ((-690 |#2|))) (-15 -2119 ((-690 |#2|))) (-15 -2676 (|#2|)) (-15 -3042 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -4013 ((-645 (-954 |#2|)))) (-15 -2189 ((-1268 (-690 |#2|)))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3951 ((-3 |#1| "failed"))) (-15 -3645 ((-3 |#1| "failed"))) (-15 -3345 ((-3 |#1| "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -3412 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|))) (-15 -4013 ((-645 (-954 |#2|)) (-1268 |#1|)))) (-420 |#2|) (-172)) (T -419)) +((-2189 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4013 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3042 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2676 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2119 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1735 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4162 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4063 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) +(-10 -8 (-15 -2355 (|#1| (-690 |#2|) |#1|)) (-15 -4063 ((-1174 (-954 |#2|)))) (-15 -4162 ((-1174 (-954 |#2|)))) (-15 -3528 ((-690 |#2|) |#1|)) (-15 -2702 ((-690 |#2|) |#1|)) (-15 -1735 ((-690 |#2|))) (-15 -2119 ((-690 |#2|))) (-15 -2676 (|#2|)) (-15 -3042 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -4013 ((-645 (-954 |#2|)))) (-15 -2189 ((-1268 (-690 |#2|)))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3951 ((-3 |#1| "failed"))) (-15 -3645 ((-3 |#1| "failed"))) (-15 -3345 ((-3 |#1| "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -3412 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|))) (-15 -4013 ((-645 (-954 |#2|)) (-1268 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3951 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) 83) (((-1268 (-690 |#1|))) 105)) (-3337 (((-1268 $)) 86)) (-2585 (($) 18 T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) 70) (((-690 |#1|)) 97)) (-2583 ((|#1| $) 79)) (-3528 (((-690 |#1|) $ (-1268 $)) 81) (((-690 |#1|) $) 95)) (-2209 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-4063 (((-1174 (-954 |#1|))) 93 (|has| |#1| (-365)))) (-2586 (($ $ (-923)) 31)) (-1883 ((|#1| $) 77)) (-1575 (((-1174 |#1|) $) 47 (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) 72) ((|#1|) 99)) (-1682 (((-1174 |#1|) $) 68)) (-1444 (((-112)) 62)) (-3658 (($ (-1268 |#1|) (-1268 $)) 74) (($ (-1268 |#1|)) 103)) (-2109 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1954 (((-923)) 85)) (-1379 (((-112)) 59)) (-3719 (($ $ (-923)) 38)) (-4353 (((-112)) 55)) (-3375 (((-112)) 53)) (-3154 (((-112)) 57)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) 71) (((-690 |#1|)) 98)) (-2726 ((|#1| $) 80)) (-2702 (((-690 |#1|) $ (-1268 $)) 82) (((-690 |#1|) $) 96)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-4162 (((-1174 (-954 |#1|))) 94 (|has| |#1| (-365)))) (-3450 (($ $ (-923)) 32)) (-2200 ((|#1| $) 78)) (-3960 (((-1174 |#1|) $) 48 (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) 73) ((|#1|) 100)) (-3567 (((-1174 |#1|) $) 69)) (-3396 (((-112)) 63)) (-1419 (((-1160) $) 10)) (-2609 (((-112)) 54)) (-3070 (((-112)) 56)) (-4341 (((-112)) 58)) (-3430 (((-1122) $) 11)) (-4356 (((-112)) 61)) (-1787 ((|#1| $ (-567)) 106)) (-2887 (((-1268 |#1|) $ (-1268 $)) 76) (((-690 |#1|) (-1268 $) (-1268 $)) 75) (((-1268 |#1|) $) 108) (((-690 |#1|) (-1268 $)) 107)) (-3893 (((-1268 |#1|) $) 102) (($ (-1268 |#1|)) 101)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) 84) (((-645 (-954 |#1|))) 104)) (-1485 (($ $ $) 28)) (-1502 (((-112)) 67)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 109)) (-2652 (((-645 (-1268 |#1|))) 49 (|has| |#1| (-559)))) (-2153 (($ $ $ $) 29)) (-3013 (((-112)) 65)) (-2355 (($ (-690 |#1|) $) 92)) (-2214 (($ $ $) 27)) (-1636 (((-112)) 66)) (-1749 (((-112)) 64)) (-2059 (((-112)) 60)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-420 |#1|) (-140) (-172)) (T -420)) -((-1975 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1267 *1)) (-4 *1 (-420 *3)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 *3)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-3316 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 (-690 *3))))) (-1526 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-953 *3))))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 *3)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-2152 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-1809 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-3356 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2942 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1527 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1173 (-953 *3))))) (-2852 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1173 (-953 *3))))) (-2351 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172))))) -(-13 (-369 |t#1|) (-10 -8 (-15 -1975 ((-1267 $))) (-15 -2446 ((-1267 |t#1|) $)) (-15 -2446 ((-690 |t#1|) (-1267 $))) (-15 -1783 (|t#1| $ (-567))) (-15 -3316 ((-1267 (-690 |t#1|)))) (-15 -1526 ((-645 (-953 |t#1|)))) (-15 -4025 ($ (-1267 |t#1|))) (-15 -3880 ((-1267 |t#1|) $)) (-15 -3880 ($ (-1267 |t#1|))) (-15 -2152 (|t#1|)) (-15 -1809 (|t#1|)) (-15 -3356 ((-690 |t#1|))) (-15 -2942 ((-690 |t#1|))) (-15 -2013 ((-690 |t#1|) $)) (-15 -1668 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -1527 ((-1173 (-953 |t#1|)))) (-15 -2852 ((-1173 (-953 |t#1|))))) |%noBranch|) (-15 -2351 ($ (-690 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-369 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 60)) (-3080 (($ $) 78)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 191)) (-1312 (($ $) NIL)) (-2318 (((-112) $) 48)) (-2720 ((|#1| $) 16)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1221)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-1221)))) (-1398 (($ |#1| (-567)) 42)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 74)) (-3153 (((-3 $ "failed") $) 164)) (-2240 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-1426 (((-112) $) 80 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-2725 (($ |#1| (-567)) 44)) (-4341 (((-112) $) 213 (|has| |#1| (-1221)))) (-2843 (((-112) $) 62)) (-1539 (((-772) $) 51)) (-3467 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-1771 ((|#1| $ (-567)) 174)) (-4206 (((-567) $ (-567)) 173)) (-1550 (($ |#1| (-567)) 41)) (-3822 (($ (-1 |#1| |#1|) $) 183)) (-2270 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-3200 (($ |#1| (-567)) 43)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-2661 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2166 (((-645 (-2 (|:| -2703 |#1|) (|:| -4250 (-567)))) $) 73)) (-2676 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-2703 (((-421 $) $) NIL (|has| |#1| (-1221)))) (-2387 (((-3 $ "failed") $ $) 176)) (-4250 (((-567) $) 167)) (-3304 ((|#1| $) 75)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) $) NIL (|has| |#1| (-517 (-1177) $))) (($ $ (-645 (-1177)) (-645 $)) 107 (|has| |#1| (-517 (-1177) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1783 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-1621 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3880 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1023))) (((-225) $) 119 (|has| |#1| (-1023)))) (-4127 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567)))))) (-1772 (((-772)) 67 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 53 T CONST)) (-1722 (($) 52 T CONST)) (-2636 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) 159)) (-3037 (($ $) 161) (($ $ $) NIL)) (-3024 (($ $ $) 180)) (** (($ $ (-922)) NIL) (($ $ (-772)) 125)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3304 (|#1| $)) (-15 -4250 ((-567) $)) (-15 -2270 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -2676 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1550 ($ |#1| (-567))) (-15 -2166 ((-645 (-2 (|:| -2703 |#1|) (|:| -4250 (-567)))) $)) (-15 -3200 ($ |#1| (-567))) (-15 -4206 ((-567) $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -3467 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -1539 ((-772) $)) (-15 -2725 ($ |#1| (-567))) (-15 -1398 ($ |#1| (-567))) (-15 -2661 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2720 (|#1| $)) (-15 -3080 ($ $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1221)) (-6 (-1221)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1177) $)) (-6 (-517 (-1177) $)) |%noBranch|))) (-559)) (T -421)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-3304 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2270 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1550 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2703 *3) (|:| -4250 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3200 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4206 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1398 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2661 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2720 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2240 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))) -(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3304 (|#1| $)) (-15 -4250 ((-567) $)) (-15 -2270 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -2676 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1550 ($ |#1| (-567))) (-15 -2166 ((-645 (-2 (|:| -2703 |#1|) (|:| -4250 (-567)))) $)) (-15 -3200 ($ |#1| (-567))) (-15 -4206 ((-567) $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -3467 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -1539 ((-772) $)) (-15 -2725 ($ |#1| (-567))) (-15 -1398 ($ |#1| (-567))) (-15 -2661 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2720 (|#1| $)) (-15 -3080 ($ $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1221)) (-6 (-1221)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1177) $)) (-6 (-517 (-1177) $)) |%noBranch|))) -((-1906 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-3879 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17))) -(((-422 |#1|) (-10 -7 (-15 -1906 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -3879 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422)) -((-3879 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-1906 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4))))) -(-10 -7 (-15 -1906 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -3879 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) -((-2504 ((|#2| |#2|) 183)) (-2430 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112)) 60))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2430 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112))) (-15 -2504 (|#2| |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|)) (-1177) |#2|) (T -423)) -((-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1202) (-433 *3))) (-14 *4 (-1177)) (-14 *5 *2))) (-2430 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-14 *6 (-1177)) (-14 *7 *3)))) -(-10 -7 (-15 -2430 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112))) (-15 -2504 (|#2| |#2|))) -((-3822 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|))) (-1050) (-433 |#1|) (-1050) (-433 |#3|)) (T -424)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|))) -((-2504 ((|#2| |#2|) 106)) (-2017 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159)) 52)) (-1907 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159)) 171))) -(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2017 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159))) (-15 -1907 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159))) (-15 -2504 (|#2| |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|) (-10 -8 (-15 -4127 ($ |#3|)))) (-849) (-13 (-1245 |#2| |#3|) (-365) (-1202) (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $)))) (-984 |#4|) (-1177)) (T -425)) -((-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1202) (-433 *3) (-10 -8 (-15 -4127 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1245 *2 *4) (-365) (-1202) (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1177)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1202) (-433 *6) (-10 -8 (-15 -4127 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1245 *3 *7) (-365) (-1202) (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1159)) (-4 *9 (-984 *8)) (-14 *10 (-1177)))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1202) (-433 *6) (-10 -8 (-15 -4127 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1245 *3 *7) (-365) (-1202) (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1159)) (-4 *9 (-984 *8)) (-14 *10 (-1177))))) -(-10 -7 (-15 -2017 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159))) (-15 -1907 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159))))) |#2| (-112) (-1159))) (-15 -2504 (|#2| |#2|))) -((-2565 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2499 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3822 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2499 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2565 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1101) (-428 |#1|) (-1101) (-428 |#3|)) (T -426)) -((-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1101)) (-4 *5 (-1101)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1101)) (-4 *2 (-1101)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2499 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2565 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3007 (($) 52)) (-4240 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-4020 (($ $ $) 45)) (-4202 (((-112) $ $) 34)) (-2371 (((-772)) 56)) (-4150 (($ (-645 |#2|)) 23) (($) NIL)) (-1378 (($) 67)) (-3834 (((-112) $ $) 15)) (-2010 ((|#2| $) 78)) (-2998 ((|#2| $) 76)) (-3425 (((-922) $) 71)) (-1877 (($ $ $) 41)) (-3763 (($ (-922)) 61)) (-1739 (($ $ |#2|) NIL) (($ $ $) 44)) (-3439 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-4142 (($ (-645 |#2|)) 27)) (-4092 (($ $) 54)) (-4127 (((-863) $) 39)) (-3725 (((-772) $) 24)) (-2768 (($ (-645 |#2|)) 22) (($) NIL)) (-2929 (((-112) $ $) 19))) -(((-427 |#1| |#2|) (-10 -8 (-15 -2371 ((-772))) (-15 -3763 (|#1| (-922))) (-15 -3425 ((-922) |#1|)) (-15 -1378 (|#1|)) (-15 -2010 (|#2| |#1|)) (-15 -2998 (|#2| |#1|)) (-15 -3007 (|#1|)) (-15 -4092 (|#1| |#1|)) (-15 -3725 ((-772) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -3834 ((-112) |#1| |#1|)) (-15 -2768 (|#1|)) (-15 -2768 (|#1| (-645 |#2|))) (-15 -4150 (|#1|)) (-15 -4150 (|#1| (-645 |#2|))) (-15 -1877 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -4202 ((-112) |#1| |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#2| |#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1101)) (T -427)) -((-2371 (*1 *2) (-12 (-4 *4 (-1101)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4))))) -(-10 -8 (-15 -2371 ((-772))) (-15 -3763 (|#1| (-922))) (-15 -3425 ((-922) |#1|)) (-15 -1378 (|#1|)) (-15 -2010 (|#2| |#1|)) (-15 -2998 (|#2| |#1|)) (-15 -3007 (|#1|)) (-15 -4092 (|#1| |#1|)) (-15 -3725 ((-772) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -3834 ((-112) |#1| |#1|)) (-15 -2768 (|#1|)) (-15 -2768 (|#1| (-645 |#2|))) (-15 -4150 (|#1|)) (-15 -4150 (|#1| (-645 |#2|))) (-15 -1877 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -4202 ((-112) |#1| |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#2| |#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|))) -((-2399 (((-112) $ $) 19)) (-3007 (($) 68 (|has| |#1| (-370)))) (-4240 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4020 (($ $ $) 79)) (-4202 (((-112) $ $) 80)) (-2112 (((-112) $ (-772)) 8)) (-2371 (((-772)) 62 (|has| |#1| (-370)))) (-4150 (($ (-645 |#1|)) 75) (($) 74)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-1378 (($) 65 (|has| |#1| (-370)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) 71)) (-1904 (((-112) $ (-772)) 9)) (-2010 ((|#1| $) 66 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2998 ((|#1| $) 67 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-3425 (((-922) $) 64 (|has| |#1| (-370)))) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22)) (-1877 (($ $ $) 76)) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3763 (($ (-922)) 63 (|has| |#1| (-370)))) (-3430 (((-1121) $) 21)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1739 (($ $ |#1|) 78) (($ $ $) 77)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4092 (($ $) 69 (|has| |#1| (-370)))) (-4127 (((-863) $) 18)) (-3725 (((-772) $) 70)) (-2768 (($ (-645 |#1|)) 73) (($) 72)) (-4104 (((-112) $ $) 23)) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20)) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-428 |#1|) (-140) (-1101)) (T -428)) -((-3725 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1101)) (-5 *2 (-772)))) (-4092 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-370)))) (-3007 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1101)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-851)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-851))))) -(-13 (-229 |t#1|) (-1099 |t#1|) (-10 -8 (-6 -4417) (-15 -3725 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -4092 ($ $)) (-15 -3007 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2998 (|t#1| $)) (-15 -2010 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1099 |#1|) . T) ((-1101) . T) ((-1217) . T)) -((-1567 (((-588 |#2|) |#2| (-1177)) 36)) (-3047 (((-588 |#2|) |#2| (-1177)) 21)) (-2367 ((|#2| |#2| (-1177)) 26))) -(((-429 |#1| |#2|) (-10 -7 (-15 -3047 ((-588 |#2|) |#2| (-1177))) (-15 -1567 ((-588 |#2|) |#2| (-1177))) (-15 -2367 (|#2| |#2| (-1177)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-29 |#1|))) (T -429)) -((-2367 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1202) (-29 *4))))) (-1567 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1202) (-29 *5))))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1202) (-29 *5)))))) -(-10 -7 (-15 -3047 ((-588 |#2|) |#2| (-1177))) (-15 -1567 ((-588 |#2|) |#2| (-1177))) (-15 -2367 (|#2| |#2| (-1177)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-2510 (($ |#2| |#1|) 37)) (-4128 (($ |#2| |#1|) 35)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 10 T CONST)) (-1722 (($) 16 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 36)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4404)) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (-15 -4127 ($ |#1|)) (-15 -4127 ($ (-332 |#2|))) (-15 -2510 ($ |#2| |#1|)) (-15 -4128 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430)) -((-4127 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-2510 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-4128 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4404)) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (-15 -4127 ($ |#1|)) (-15 -4127 ($ (-332 |#2|))) (-15 -2510 ($ |#2| |#1|)) (-15 -4128 ($ |#2| |#1|)))) -((-1576 (((-3 |#2| (-645 |#2|)) |#2| (-1177)) 115))) -(((-431 |#1| |#2|) (-10 -7 (-15 -1576 ((-3 |#2| (-645 |#2|)) |#2| (-1177)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-960) (-29 |#1|))) (T -431)) -((-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1202) (-960) (-29 *5)))))) -(-10 -7 (-15 -1576 ((-3 |#2| (-645 |#2|)) |#2| (-1177)))) -((-2845 (((-645 (-1177)) $) 81)) (-2670 (((-410 (-1173 $)) $ (-613 $)) 314)) (-2989 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-3747 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1177) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-953 |#2|)) "failed") $) 364) (((-3 (-953 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-2033 (((-613 $) $) NIL) (((-1177) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-953 |#2|)) $) 346) (((-953 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-2652 (((-114) (-114)) 47)) (-1747 (($ $) 99)) (-1622 (((-3 (-613 $) "failed") $) 269)) (-2640 (((-645 (-613 $)) $) 270)) (-2662 (((-3 (-645 $) "failed") $) 288)) (-2641 (((-3 (-2 (|:| |val| $) (|:| -4250 (-567))) "failed") $) 295)) (-2432 (((-3 (-645 $) "failed") $) 286)) (-1440 (((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-4026 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-1177)) 258)) (-2943 (((-112) $) 17)) (-2955 ((|#2| $) 19)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1177) (-1 $ (-645 $))) NIL) (($ $ (-1177) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1177)) 62) (($ $ (-645 (-1177))) 281) (($ $) 282) (($ $ (-114) $ (-1177)) 65) (($ $ (-645 (-114)) (-645 $) (-1177)) 72) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1177) (-772) (-1 $ (-645 $))) 105) (($ $ (-1177) (-772) (-1 $ $)) 104)) (-1783 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) 279)) (-3168 (($ $) 325)) (-3880 (((-893 (-567)) $) 298) (((-893 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-4127 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1177)) 24) (($ |#2|) NIL) (($ (-1126 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-953 (-410 |#2|))) 369) (($ (-410 (-953 (-410 |#2|)))) 342) (($ (-410 (-953 |#2|))) 336) (($ $) NIL) (($ (-953 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-1772 (((-772)) 88)) (-2134 (((-112) (-114)) 42)) (-2075 (($ (-1177) $) 31) (($ (-1177) $ $) 32) (($ (-1177) $ $ $) 33) (($ (-1177) $ $ $ $) 34) (($ (-1177) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL))) -(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4127 (|#1| (-567))) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -4127 (|#1| (-953 |#2|))) (-15 -3747 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -2033 ((-953 |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4127 (|#1| (-410 (-953 |#2|)))) (-15 -3747 ((-3 (-410 (-953 |#2|)) "failed") |#1|)) (-15 -2033 ((-410 (-953 |#2|)) |#1|)) (-15 -2670 ((-410 (-1173 |#1|)) |#1| (-613 |#1|))) (-15 -4127 (|#1| (-410 (-953 (-410 |#2|))))) (-15 -4127 (|#1| (-953 (-410 |#2|)))) (-15 -4127 (|#1| (-410 |#2|))) (-15 -3168 (|#1| |#1|)) (-15 -3880 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -2641 ((-3 (-2 (|:| |val| |#1|) (|:| -4250 (-567))) "failed") |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1| (-1177))) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1| (-114))) (-15 -1747 (|#1| |#1|)) (-15 -4127 (|#1| (-1126 |#2| (-613 |#1|)))) (-15 -1440 ((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -2432 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1|)) (-15 -2662 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1177))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1177))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1177)))) (-15 -2631 (|#1| |#1| (-1177))) (-15 -2075 (|#1| (-1177) (-645 |#1|))) (-15 -2075 (|#1| (-1177) |#1| |#1| |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1| |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1|)) (-15 -2845 ((-645 (-1177)) |#1|)) (-15 -2955 (|#2| |#1|)) (-15 -2943 ((-112) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -4127 (|#1| (-1177))) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| |#1|)))) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -2640 ((-645 (-613 |#1|)) |#1|)) (-15 -1622 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2989 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2989 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2989 (|#1| |#1| (-295 |#1|))) (-15 -1783 (|#1| (-114) (-645 |#1|))) (-15 -1783 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4127 (|#1| (-613 |#1|))) (-15 -3747 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2033 ((-613 |#1|) |#1|)) (-15 -4127 ((-863) |#1|))) (-433 |#2|) (-1101)) (T -432)) -((-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1101)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1101)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-1772 (*1 *2) (-12 (-4 *4 (-1101)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) -(-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4127 (|#1| (-567))) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -4127 (|#1| (-953 |#2|))) (-15 -3747 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -2033 ((-953 |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4127 (|#1| (-410 (-953 |#2|)))) (-15 -3747 ((-3 (-410 (-953 |#2|)) "failed") |#1|)) (-15 -2033 ((-410 (-953 |#2|)) |#1|)) (-15 -2670 ((-410 (-1173 |#1|)) |#1| (-613 |#1|))) (-15 -4127 (|#1| (-410 (-953 (-410 |#2|))))) (-15 -4127 (|#1| (-953 (-410 |#2|)))) (-15 -4127 (|#1| (-410 |#2|))) (-15 -3168 (|#1| |#1|)) (-15 -3880 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -2641 ((-3 (-2 (|:| |val| |#1|) (|:| -4250 (-567))) "failed") |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1| (-1177))) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1| (-114))) (-15 -1747 (|#1| |#1|)) (-15 -4127 (|#1| (-1126 |#2| (-613 |#1|)))) (-15 -1440 ((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -2432 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4250 (-567))) "failed") |#1|)) (-15 -2662 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1177))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1177))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1177)))) (-15 -2631 (|#1| |#1| (-1177))) (-15 -2075 (|#1| (-1177) (-645 |#1|))) (-15 -2075 (|#1| (-1177) |#1| |#1| |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1| |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1| |#1|)) (-15 -2075 (|#1| (-1177) |#1|)) (-15 -2845 ((-645 (-1177)) |#1|)) (-15 -2955 (|#2| |#1|)) (-15 -2943 ((-112) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -4127 (|#1| (-1177))) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1177) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1177)) (-645 (-1 |#1| |#1|)))) (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -2640 ((-645 (-613 |#1|)) |#1|)) (-15 -1622 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2989 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2989 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2989 (|#1| |#1| (-295 |#1|))) (-15 -1783 (|#1| (-114) (-645 |#1|))) (-15 -1783 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1| |#1|)) (-15 -1783 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4127 (|#1| (-613 |#1|))) (-15 -3747 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2033 ((-613 |#1|) |#1|)) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 116 (|has| |#1| (-25)))) (-2845 (((-645 (-1177)) $) 203)) (-2670 (((-410 (-1173 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-1312 (($ $) 144 (|has| |#1| (-559)))) (-2318 (((-112) $) 146 (|has| |#1| (-559)))) (-2564 (((-645 (-613 $)) $) 39)) (-3460 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2989 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3081 (($ $) 163 (|has| |#1| (-559)))) (-2833 (((-421 $) $) 164 (|has| |#1| (-559)))) (-2373 (((-112) $ $) 154 (|has| |#1| (-559)))) (-2245 (($) 104 (-2797 (|has| |#1| (-1113)) (|has| |#1| (-25))) CONST)) (-3747 (((-3 (-613 $) "failed") $) 64) (((-3 (-1177) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1039 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-953 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-953 |#1|) "failed") $) 123 (|has| |#1| (-1050))) (((-3 (-410 (-567)) "failed") $) 98 (-2797 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2033 (((-613 $) $) 65) (((-1177) $) 217) (((-567) $) 209 (|has| |#1| (-1039 (-567)))) ((|#1| $) 208) (((-410 (-953 |#1|)) $) 170 (|has| |#1| (-559))) (((-953 |#1|) $) 124 (|has| |#1| (-1050))) (((-410 (-567)) $) 99 (-2797 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2344 (($ $ $) 158 (|has| |#1| (-559)))) (-1868 (((-690 (-567)) (-690 $)) 137 (-1664 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 136 (-1664 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 135 (|has| |#1| (-1050))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1050)))) (-3153 (((-3 $ "failed") $) 106 (|has| |#1| (-1113)))) (-2355 (($ $ $) 157 (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-4341 (((-112) $) 165 (|has| |#1| (-559)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 212 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 211 (|has| |#1| (-887 (-381))))) (-2482 (($ $) 46) (($ (-645 $)) 45)) (-3921 (((-645 (-114)) $) 38)) (-2652 (((-114) (-114)) 37)) (-2843 (((-112) $) 105 (|has| |#1| (-1113)))) (-2904 (((-112) $) 17 (|has| $ (-1039 (-567))))) (-1747 (($ $) 186 (|has| |#1| (-1050)))) (-1441 (((-1126 |#1| (-613 $)) $) 187 (|has| |#1| (-1050)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-4275 (((-1173 $) (-613 $)) 20 (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) 31)) (-1622 (((-3 (-613 $) "failed") $) 41)) (-2735 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-3739 (((-1159) $) 10)) (-2640 (((-645 (-613 $)) $) 40)) (-3627 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-2662 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1113)))) (-2641 (((-3 (-2 (|:| |val| $) (|:| -4250 (-567))) "failed") $) 183 (|has| |#1| (-1050)))) (-2432 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-1440 (((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-4026 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $) 191 (|has| |#1| (-1113))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-1177)) 184 (|has| |#1| (-1050)))) (-1582 (((-112) $ (-114)) 35) (((-112) $ (-1177)) 34)) (-2933 (($ $) 108 (-2797 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-4133 (((-772) $) 42)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 205)) (-2955 ((|#1| $) 204)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 151 (|has| |#1| (-559)))) (-2771 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-3211 (((-112) $ $) 30) (((-112) $ (-1177)) 29)) (-2703 (((-421 $) $) 162 (|has| |#1| (-559)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 159 (|has| |#1| (-559)))) (-2387 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-2799 (((-112) $) 18 (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1177)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1177) (-1 $ (-645 $))) 26) (($ $ (-1177) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1177)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1177))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1177)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1177)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1050))) (($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1050))) (($ $ (-1177) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1050))) (($ $ (-1177) (-772) (-1 $ $)) 179 (|has| |#1| (-1050)))) (-4197 (((-772) $) 155 (|has| |#1| (-559)))) (-1783 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 156 (|has| |#1| (-559)))) (-1612 (($ $) 44) (($ $ $) 43)) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 128 (|has| |#1| (-1050))) (($ $ (-1177) (-772)) 127 (|has| |#1| (-1050))) (($ $ (-645 (-1177))) 126 (|has| |#1| (-1050))) (($ $ (-1177)) 125 (|has| |#1| (-1050)))) (-3168 (($ $) 176 (|has| |#1| (-559)))) (-1455 (((-1126 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-2530 (($ $) 19 (|has| $ (-1050)))) (-3880 (((-893 (-567)) $) 214 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 213 (|has| |#1| (-615 (-893 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-2073 (($ $ $) 111 (|has| |#1| (-476)))) (-3387 (($ $ $) 112 (|has| |#1| (-476)))) (-4127 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1177)) 215) (($ |#1|) 206) (($ (-1126 |#1| (-613 $))) 188 (|has| |#1| (-1050))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-953 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-953 |#1|)) 122 (|has| |#1| (-1050))) (($ (-410 (-567))) 97 (-2797 (|has| |#1| (-559)) (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567)))))) (($ (-567)) 96 (-2797 (|has| |#1| (-1050)) (|has| |#1| (-1039 (-567)))))) (-1467 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-1772 (((-772)) 133 (|has| |#1| (-1050)) CONST)) (-1331 (($ $) 48) (($ (-645 $)) 47)) (-2134 (((-112) (-114)) 36)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 145 (|has| |#1| (-559)))) (-2075 (($ (-1177) $) 202) (($ (-1177) $ $) 201) (($ (-1177) $ $ $) 200) (($ (-1177) $ $ $ $) 199) (($ (-1177) (-645 $)) 198)) (-1710 (($) 115 (|has| |#1| (-25)) CONST)) (-1722 (($) 103 (|has| |#1| (-1113)) CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 132 (|has| |#1| (-1050))) (($ $ (-1177) (-772)) 131 (|has| |#1| (-1050))) (($ $ (-645 (-1177))) 130 (|has| |#1| (-1050))) (($ $ (-1177)) 129 (|has| |#1| (-1050)))) (-2929 (((-112) $ $) 6)) (-3050 (($ (-1126 |#1| (-613 $)) (-1126 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2797 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3037 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3024 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2797 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1113))) (($ $ (-922)) 102 (|has| |#1| (-1113)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-922) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1113))))) -(((-433 |#1|) (-140) (-1101)) (T -433)) -((-2943 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-5 *2 (-645 (-1177))))) (-2075 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) (-2075 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) (-2075 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) (-2075 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) (-2075 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1101)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1177))) (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1177)) (-4 *1 (-433 *4)) (-4 *4 (-1101)) (-4 *4 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1177)) (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-615 (-539))))) (-2662 (*1 *2 *1) (|partial| -12 (-4 *3 (-1113)) (-4 *3 (-1101)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-4026 (*1 *2 *1) (|partial| -12 (-4 *3 (-1113)) (-4 *3 (-1101)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) (-4 *1 (-433 *3)))) (-2432 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1101)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-1440 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1101)) (-5 *2 (-2 (|:| -3686 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1126 *3 (-613 *1))) (-4 *3 (-1050)) (-4 *3 (-1101)) (-4 *1 (-433 *3)))) (-1441 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *3 (-1101)) (-5 *2 (-1126 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1747 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-1050)))) (-4026 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1050)) (-4 *4 (-1101)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) (-4 *1 (-433 *4)))) (-4026 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1177)) (-4 *4 (-1050)) (-4 *4 (-1101)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) (-4 *1 (-433 *4)))) (-2641 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *3 (-1101)) (-5 *2 (-2 (|:| |val| *1) (|:| -4250 (-567)))) (-4 *1 (-433 *3)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1101)))) (-1455 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1101)) (-5 *2 (-1126 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-559)))) (-3050 (*1 *1 *2 *2) (-12 (-5 *2 (-1126 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1101)) (-4 *1 (-433 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1101)) (-4 *1 (-433 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1101)) (-4 *1 (-433 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1101)) (-4 *1 (-433 *3)))) (-2670 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1101)) (-4 *4 (-559)) (-5 *2 (-410 (-1173 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-4 *3 (-1113))))) -(-13 (-303) (-1039 (-1177)) (-885 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2943 ((-112) $)) (-15 -2955 (|t#1| $)) (-15 -2845 ((-645 (-1177)) $)) (-15 -2075 ($ (-1177) $)) (-15 -2075 ($ (-1177) $ $)) (-15 -2075 ($ (-1177) $ $ $)) (-15 -2075 ($ (-1177) $ $ $ $)) (-15 -2075 ($ (-1177) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -2631 ($ $ (-1177))) (-15 -2631 ($ $ (-645 (-1177)))) (-15 -2631 ($ $)) (-15 -2631 ($ $ (-114) $ (-1177))) (-15 -2631 ($ $ (-645 (-114)) (-645 $) (-1177)))) |%noBranch|) (IF (|has| |t#1| (-1113)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -2662 ((-3 (-645 $) "failed") $)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2432 ((-3 (-645 $) "failed") $)) (-15 -1440 ((-3 (-2 (|:| -3686 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-1039 (-953 |t#1|))) (-6 (-901 (-1177))) (-6 (-379 |t#1|)) (-15 -4127 ($ (-1126 |t#1| (-613 $)))) (-15 -1441 ((-1126 |t#1| (-613 $)) $)) (-15 -1747 ($ $)) (-15 -4026 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-114))) (-15 -4026 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4250 (-567))) "failed") $ (-1177))) (-15 -2641 ((-3 (-2 (|:| |val| $) (|:| -4250 (-567))) "failed") $)) (-15 -2631 ($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1177)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1177) (-772) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1177) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1039 (-410 (-953 |t#1|)))) (-15 -3880 ($ (-421 $))) (-15 -1455 ((-1126 |t#1| (-613 $)) $)) (-15 -3168 ($ $)) (-15 -3050 ($ (-1126 |t#1| (-613 $)) (-1126 |t#1| (-613 $)))) (-15 -4127 ($ (-410 |t#1|))) (-15 -4127 ($ (-953 (-410 |t#1|)))) (-15 -4127 ($ (-410 (-953 (-410 |t#1|))))) (-15 -2670 ((-410 (-1173 $)) $ (-613 $))) (IF (|has| |t#1| (-1039 (-567))) (-6 (-1039 (-410 (-567)))) |%noBranch|)) |%noBranch|))) -(((-21) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-953 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2797 (|has| |#1| (-1050)) (|has| |#1| (-1039 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-953 |#1|)) |has| |#1| (-1050)) ((-617 #4=(-1177)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1050)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) ((-640 |#1|) |has| |#1| (-1050)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2797 (|has| |#1| (-1113)) (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-901 (-1177)) |has| |#1| (-1050)) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-921) |has| |#1| (-559)) ((-1039 (-410 (-567))) -2797 (|has| |#1| (-1039 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) ((-1039 #1#) |has| |#1| (-559)) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 #3#) |has| |#1| (-1050)) ((-1039 #4#) . T) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-559)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-559)) ((-1057 #0#) |has| |#1| (-559)) ((-1057 |#1|) |has| |#1| (-172)) ((-1057 $) |has| |#1| (-559)) ((-1050) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1059) -2797 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1113) -2797 (|has| |#1| (-1113)) (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1101) . T) ((-1217) . T) ((-1221) |has| |#1| (-559))) -((-2217 ((|#2| |#2| |#2|) 31)) (-2652 (((-114) (-114)) 43)) (-3877 ((|#2| |#2|) 63)) (-3028 ((|#2| |#2|) 66)) (-3214 ((|#2| |#2|) 30)) (-3975 ((|#2| |#2| |#2|) 33)) (-3749 ((|#2| |#2| |#2|) 35)) (-2136 ((|#2| |#2| |#2|) 32)) (-2889 ((|#2| |#2| |#2|) 34)) (-2134 (((-112) (-114)) 41)) (-4079 ((|#2| |#2|) 37)) (-2622 ((|#2| |#2|) 36)) (-4137 ((|#2| |#2|) 25)) (-4148 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2947 ((|#2| |#2| |#2|) 29))) -(((-434 |#1| |#2|) (-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -4137 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -4148 (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -2217 (|#2| |#2| |#2|)) (-15 -2136 (|#2| |#2| |#2|)) (-15 -3975 (|#2| |#2| |#2|)) (-15 -2889 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -3877 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434)) -((-3877 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3028 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2889 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3975 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2136 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2217 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2947 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4148 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4148 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))) -(-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -4137 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -4148 (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -2217 (|#2| |#2| |#2|)) (-15 -2136 (|#2| |#2| |#2|)) (-15 -3975 (|#2| |#2| |#2|)) (-15 -2889 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -3877 (|#2| |#2|))) -((-3005 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1173 |#2|)) (|:| |pol2| (-1173 |#2|)) (|:| |prim| (-1173 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1173 |#2|))) (|:| |prim| (-1173 |#2|))) (-645 |#2|)) 68))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3005 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1173 |#2|))) (|:| |prim| (-1173 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3005 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1173 |#2|)) (|:| |pol2| (-1173 |#2|)) (|:| |prim| (-1173 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435)) -((-3005 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1173 *3)) (|:| |pol2| (-1173 *3)) (|:| |prim| (-1173 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1173 *5))) (|:| |prim| (-1173 *5)))) (-5 *1 (-435 *4 *5))))) -(-10 -7 (-15 -3005 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1173 |#2|))) (|:| |prim| (-1173 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3005 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1173 |#2|)) (|:| |pol2| (-1173 |#2|)) (|:| |prim| (-1173 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1836 (((-1272)) 19)) (-3588 (((-1173 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25))) -(((-436 |#1| |#2|) (-10 -7 (-15 -3588 ((-410 (-567)) |#2|)) (-15 -3588 ((-1173 (-410 (-567))) |#2| (-613 |#2|))) (-15 -1836 ((-1272)))) (-13 (-559) (-1039 (-567))) (-433 |#1|)) (T -436)) -((-1836 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1272)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))) -(-10 -7 (-15 -3588 ((-410 (-567)) |#2|)) (-15 -3588 ((-1173 (-410 (-567))) |#2| (-613 |#2|))) (-15 -1836 ((-1272)))) -((-1964 (((-112) $) 32)) (-1531 (((-112) $) 34)) (-4353 (((-112) $) 35)) (-2532 (((-112) $) 38)) (-1315 (((-112) $) 33)) (-3378 (((-112) $) 37)) (-4127 (((-863) $) 20) (($ (-1159)) 31) (($ (-1177)) 26) (((-1177) $) 24) (((-1105) $) 23)) (-2881 (((-112) $) 36)) (-2929 (((-112) $ $) 17))) -(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -4127 ($ (-1159))) (-15 -4127 ($ (-1177))) (-15 -4127 ((-1177) $)) (-15 -4127 ((-1105) $)) (-15 -1964 ((-112) $)) (-15 -1315 ((-112) $)) (-15 -4353 ((-112) $)) (-15 -3378 ((-112) $)) (-15 -2532 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -1531 ((-112) $)) (-15 -2929 ((-112) $ $))))) (T -437)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-437)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-437)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-437)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-437)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2929 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(-13 (-614 (-863)) (-10 -8 (-15 -4127 ($ (-1159))) (-15 -4127 ($ (-1177))) (-15 -4127 ((-1177) $)) (-15 -4127 ((-1105) $)) (-15 -1964 ((-112) $)) (-15 -1315 ((-112) $)) (-15 -4353 ((-112) $)) (-15 -3378 ((-112) $)) (-15 -2532 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -1531 ((-112) $)) (-15 -2929 ((-112) $ $)))) -((-3375 (((-3 (-421 (-1173 (-410 (-567)))) "failed") |#3|) 72)) (-3845 (((-421 |#3|) |#3|) 34)) (-2749 (((-3 (-421 (-1173 (-48))) "failed") |#3|) 46 (|has| |#2| (-1039 (-48))))) (-2960 (((-3 (|:| |overq| (-1173 (-410 (-567)))) (|:| |overan| (-1173 (-48))) (|:| -3661 (-112))) |#3|) 37))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3845 ((-421 |#3|) |#3|)) (-15 -3375 ((-3 (-421 (-1173 (-410 (-567)))) "failed") |#3|)) (-15 -2960 ((-3 (|:| |overq| (-1173 (-410 (-567)))) (|:| |overan| (-1173 (-48))) (|:| -3661 (-112))) |#3|)) (IF (|has| |#2| (-1039 (-48))) (-15 -2749 ((-3 (-421 (-1173 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1039 (-567))) (-433 |#1|) (-1243 |#2|)) (T -438)) -((-2749 (*1 *2 *3) (|partial| -12 (-4 *5 (-1039 (-48))) (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1173 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5)))) (-2960 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1173 (-410 (-567)))) (|:| |overan| (-1173 (-48))) (|:| -3661 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5)))) (-3375 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1173 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5))))) -(-10 -7 (-15 -3845 ((-421 |#3|) |#3|)) (-15 -3375 ((-3 (-421 (-1173 (-410 (-567)))) "failed") |#3|)) (-15 -2960 ((-3 (|:| |overq| (-1173 (-410 (-567)))) (|:| |overan| (-1173 (-48))) (|:| -3661 (-112))) |#3|)) (IF (|has| |#2| (-1039 (-48))) (-15 -2749 ((-3 (-421 (-1173 (-48))) "failed") |#3|)) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-3673 (((-1159) $ (-1159)) NIL)) (-2888 (($ $ (-1159)) NIL)) (-2209 (((-1159) $) NIL)) (-2912 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-3815 (($ (-391)) NIL) (($ (-391) (-1159)) NIL)) (-1988 (((-391) $) NIL)) (-3739 (((-1159) $) NIL)) (-3857 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2996 (((-1272) (-1159)) 9)) (-3504 (((-1272) (-1159)) 10)) (-3801 (((-1272)) 11)) (-4127 (((-863) $) NIL)) (-2990 (($ $) 39)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-439) (-13 (-366 (-391) (-1159)) (-10 -7 (-15 -2912 ((-391) (-391) (-391))) (-15 -2912 ((-391) (-391))) (-15 -2996 ((-1272) (-1159))) (-15 -3504 ((-1272) (-1159))) (-15 -3801 ((-1272)))))) (T -439)) -((-2912 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-439)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-439)))) (-3801 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-439))))) -(-13 (-366 (-391) (-1159)) (-10 -7 (-15 -2912 ((-391) (-391) (-391))) (-15 -2912 ((-391) (-391))) (-15 -2996 ((-1272) (-1159))) (-15 -3504 ((-1272) (-1159))) (-15 -3801 ((-1272))))) -((-2399 (((-112) $ $) NIL)) (-3578 (((-3 (|:| |fst| (-437)) (|:| -4319 "void")) $) 11)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3167 (($) 35)) (-3223 (($) 41)) (-2597 (($) 37)) (-3286 (($) 39)) (-4310 (($) 36)) (-3591 (($) 38)) (-3541 (($) 40)) (-1530 (((-112) $) 8)) (-4215 (((-645 (-953 (-567))) $) 19)) (-4142 (($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-1177)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-953 (-567))) (-112)) 30)) (-4127 (((-863) $) 24) (($ (-437)) 32)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-440) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-437))) (-15 -3578 ((-3 (|:| |fst| (-437)) (|:| -4319 "void")) $)) (-15 -4215 ((-645 (-953 (-567))) $)) (-15 -1530 ((-112) $)) (-15 -4142 ($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-1177)) (-112))) (-15 -4142 ($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-953 (-567))) (-112))) (-15 -3167 ($)) (-15 -4310 ($)) (-15 -2597 ($)) (-15 -3223 ($)) (-15 -3591 ($)) (-15 -3286 ($)) (-15 -3541 ($))))) (T -440)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *1 (-440)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-645 (-953 (-567)))) (-5 *1 (-440)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4142 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *3 (-645 (-1177))) (-5 *4 (-112)) (-5 *1 (-440)))) (-4142 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-3167 (*1 *1) (-5 *1 (-440))) (-4310 (*1 *1) (-5 *1 (-440))) (-2597 (*1 *1) (-5 *1 (-440))) (-3223 (*1 *1) (-5 *1 (-440))) (-3591 (*1 *1) (-5 *1 (-440))) (-3286 (*1 *1) (-5 *1 (-440))) (-3541 (*1 *1) (-5 *1 (-440)))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-437))) (-15 -3578 ((-3 (|:| |fst| (-437)) (|:| -4319 "void")) $)) (-15 -4215 ((-645 (-953 (-567))) $)) (-15 -1530 ((-112) $)) (-15 -4142 ($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-1177)) (-112))) (-15 -4142 ($ (-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-645 (-953 (-567))) (-112))) (-15 -3167 ($)) (-15 -4310 ($)) (-15 -2597 ($)) (-15 -3223 ($)) (-15 -3591 ($)) (-15 -3286 ($)) (-15 -3541 ($)))) -((-2399 (((-112) $ $) NIL)) (-1988 (((-1177) $) 8)) (-3739 (((-1159) $) 17)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 11)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 14))) -(((-441 |#1|) (-13 (-1101) (-10 -8 (-15 -1988 ((-1177) $)))) (-1177)) (T -441)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-441 *3)) (-14 *3 *2)))) -(-13 (-1101) (-10 -8 (-15 -1988 ((-1177) $)))) -((-2399 (((-112) $ $) NIL)) (-3384 (((-1119) $) 7)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 13)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9))) -(((-442) (-13 (-1101) (-10 -8 (-15 -3384 ((-1119) $))))) (T -442)) -((-3384 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-442))))) -(-13 (-1101) (-10 -8 (-15 -3384 ((-1119) $)))) -((-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8) (($ (-1267 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 11))) +((-2623 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-420 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2189 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 (-690 *3))))) (-4013 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3042 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2676 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2119 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1735 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-4162 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-954 *3))))) (-4063 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-954 *3))))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172))))) +(-13 (-369 |t#1|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -1787 (|t#1| $ (-567))) (-15 -2189 ((-1268 (-690 |t#1|)))) (-15 -4013 ((-645 (-954 |t#1|)))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -3893 ((-1268 |t#1|) $)) (-15 -3893 ($ (-1268 |t#1|))) (-15 -3042 (|t#1|)) (-15 -2676 (|t#1|)) (-15 -2119 ((-690 |t#1|))) (-15 -1735 ((-690 |t#1|))) (-15 -2702 ((-690 |t#1|) $)) (-15 -3528 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4162 ((-1174 (-954 |t#1|)))) (-15 -4063 ((-1174 (-954 |t#1|))))) |%noBranch|) (-15 -2355 ($ (-690 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-369 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 60)) (-3145 (($ $) 78)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 191)) (-4381 (($ $) NIL)) (-3949 (((-112) $) 48)) (-3951 ((|#1| $) 16)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-1222)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-1222)))) (-3930 (($ |#1| (-567)) 42)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 74)) (-2109 (((-3 $ "failed") $) 164)) (-2085 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-1862 (((-112) $) 80 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-4388 (($ |#1| (-567)) 44)) (-3184 (((-112) $) 213 (|has| |#1| (-1222)))) (-1433 (((-112) $) 62)) (-2820 (((-772) $) 51)) (-2915 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-4108 ((|#1| $ (-567)) 174)) (-1663 (((-567) $ (-567)) 173)) (-1356 (($ |#1| (-567)) 41)) (-3829 (($ (-1 |#1| |#1|) $) 183)) (-2204 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2453 (($ |#1| (-567)) 43)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-3173 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3920 (((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $) 73)) (-3792 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-2706 (((-421 $) $) NIL (|has| |#1| (-1222)))) (-2391 (((-3 $ "failed") $ $) 176)) (-3458 (((-567) $) 167)) (-3317 ((|#1| $) 75)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) $) NIL (|has| |#1| (-517 (-1178) $))) (($ $ (-645 (-1178)) (-645 $)) 107 (|has| |#1| (-517 (-1178) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1787 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3893 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1024))) (((-225) $) 119 (|has| |#1| (-1024)))) (-4132 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567)))))) (-4221 (((-772)) 67 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 53 T CONST)) (-1728 (($) 52 T CONST)) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) 159)) (-3045 (($ $) 161) (($ $ $) NIL)) (-3033 (($ $ $) 180)) (** (($ $ (-923)) NIL) (($ $ (-772)) 125)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3317 (|#1| $)) (-15 -3458 ((-567) $)) (-15 -2204 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3792 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1356 ($ |#1| (-567))) (-15 -3920 ((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $)) (-15 -2453 ($ |#1| (-567))) (-15 -1663 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2915 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2820 ((-772) $)) (-15 -4388 ($ |#1| (-567))) (-15 -3930 ($ |#1| (-567))) (-15 -3173 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3951 (|#1| $)) (-15 -3145 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1222)) (-6 (-1222)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1178) $)) (-6 (-517 (-1178) $)) |%noBranch|))) (-559)) (T -421)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-3317 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1356 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3458 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2453 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1663 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4388 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3930 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3173 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))) +(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3317 (|#1| $)) (-15 -3458 ((-567) $)) (-15 -2204 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3792 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1356 ($ |#1| (-567))) (-15 -3920 ((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $)) (-15 -2453 ($ |#1| (-567))) (-15 -1663 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2915 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2820 ((-772) $)) (-15 -4388 ($ |#1| (-567))) (-15 -3930 ($ |#1| (-567))) (-15 -3173 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3951 (|#1| $)) (-15 -3145 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1222)) (-6 (-1222)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1178) $)) (-6 (-517 (-1178) $)) |%noBranch|))) +((-2298 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-2990 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17))) +(((-422 |#1|) (-10 -7 (-15 -2298 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -2990 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422)) +((-2990 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4))))) +(-10 -7 (-15 -2298 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -2990 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) +((-2509 ((|#2| |#2|) 183)) (-3538 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112)) 60))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112))) (-15 -2509 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -423)) +((-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1203) (-433 *3))) (-14 *4 (-1178)) (-14 *5 *2))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-14 *6 (-1178)) (-14 *7 *3)))) +(-10 -7 (-15 -3538 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112))) (-15 -2509 (|#2| |#2|))) +((-3829 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-433 |#1|) (-1051) (-433 |#3|)) (T -424)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) +((-2509 ((|#2| |#2|) 106)) (-3163 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160)) 52)) (-2434 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160)) 171))) +(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3163 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2434 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2509 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|) (-10 -8 (-15 -4132 ($ |#3|)))) (-849) (-13 (-1246 |#2| |#3|) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $)))) (-985 |#4|) (-1178)) (T -425)) +((-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1203) (-433 *3) (-10 -8 (-15 -4132 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1246 *2 *4) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1178)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1246 *3 *7) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) (-14 *10 (-1178)))) (-3163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1246 *3 *7) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) (-14 *10 (-1178))))) +(-10 -7 (-15 -3163 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2434 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2509 (|#2| |#2|))) +((-2788 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2477 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3829 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1102) (-428 |#1|) (-1102) (-428 |#3|)) (T -426)) +((-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3533 (($) 52)) (-4244 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-4287 (($ $ $) 45)) (-2493 (((-112) $ $) 34)) (-2375 (((-772)) 56)) (-4155 (($ (-645 |#2|)) 23) (($) NIL)) (-1348 (($) 67)) (-2548 (((-112) $ $) 15)) (-1354 ((|#2| $) 78)) (-2981 ((|#2| $) 76)) (-4249 (((-923) $) 71)) (-2370 (($ $ $) 41)) (-3768 (($ (-923)) 61)) (-4071 (($ $ |#2|) NIL) (($ $ $) 44)) (-3439 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-4147 (($ (-645 |#2|)) 27)) (-2099 (($ $) 54)) (-4132 (((-863) $) 39)) (-1480 (((-772) $) 24)) (-2772 (($ (-645 |#2|)) 22) (($) NIL)) (-2936 (((-112) $ $) 19))) +(((-427 |#1| |#2|) (-10 -8 (-15 -2375 ((-772))) (-15 -3768 (|#1| (-923))) (-15 -4249 ((-923) |#1|)) (-15 -1348 (|#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2981 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -2099 (|#1| |#1|)) (-15 -1480 ((-772) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2548 ((-112) |#1| |#1|)) (-15 -2772 (|#1|)) (-15 -2772 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -2493 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1102)) (T -427)) +((-2375 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4))))) +(-10 -8 (-15 -2375 ((-772))) (-15 -3768 (|#1| (-923))) (-15 -4249 ((-923) |#1|)) (-15 -1348 (|#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2981 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -2099 (|#1| |#1|)) (-15 -1480 ((-772) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2548 ((-112) |#1| |#1|)) (-15 -2772 (|#1|)) (-15 -2772 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -2493 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|))) +((-2403 (((-112) $ $) 19)) (-3533 (($) 68 (|has| |#1| (-370)))) (-4244 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4287 (($ $ $) 79)) (-2493 (((-112) $ $) 80)) (-3445 (((-112) $ (-772)) 8)) (-2375 (((-772)) 62 (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) 75) (($) 74)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-1348 (($) 65 (|has| |#1| (-370)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 71)) (-2077 (((-112) $ (-772)) 9)) (-1354 ((|#1| $) 66 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 67 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-4249 (((-923) $) 64 (|has| |#1| (-370)))) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 76)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3768 (($ (-923)) 63 (|has| |#1| (-370)))) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-4071 (($ $ |#1|) 78) (($ $ $) 77)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-2099 (($ $) 69 (|has| |#1| (-370)))) (-4132 (((-863) $) 18)) (-1480 (((-772) $) 70)) (-2772 (($ (-645 |#1|)) 73) (($) 72)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-428 |#1|) (-140) (-1102)) (T -428)) +((-1480 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-2099 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))) (-3533 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851))))) +(-13 (-229 |t#1|) (-1100 |t#1|) (-10 -8 (-6 -4418) (-15 -1480 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -2099 ($ $)) (-15 -3533 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2981 (|t#1| $)) (-15 -1354 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T)) +((-2621 (((-588 |#2|) |#2| (-1178)) 36)) (-3089 (((-588 |#2|) |#2| (-1178)) 21)) (-4393 ((|#2| |#2| (-1178)) 26))) +(((-429 |#1| |#2|) (-10 -7 (-15 -3089 ((-588 |#2|) |#2| (-1178))) (-15 -2621 ((-588 |#2|) |#2| (-1178))) (-15 -4393 (|#2| |#2| (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-29 |#1|))) (T -429)) +((-4393 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1203) (-29 *4))))) (-2621 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1203) (-29 *5))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1203) (-29 *5)))))) +(-10 -7 (-15 -3089 ((-588 |#2|) |#2| (-1178))) (-15 -2621 ((-588 |#2|) |#2| (-1178))) (-15 -4393 (|#2| |#2| (-1178)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1960 (($ |#2| |#1|) 37)) (-2753 (($ |#2| |#1|) 35)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-1728 (($) 16 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 36)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4405)) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (-15 -4132 ($ |#1|)) (-15 -4132 ($ (-332 |#2|))) (-15 -1960 ($ |#2| |#1|)) (-15 -2753 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430)) +((-4132 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-1960 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-2753 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4405)) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (-15 -4132 ($ |#1|)) (-15 -4132 ($ (-332 |#2|))) (-15 -1960 ($ |#2| |#1|)) (-15 -2753 ($ |#2| |#1|)))) +((-2416 (((-3 |#2| (-645 |#2|)) |#2| (-1178)) 115))) +(((-431 |#1| |#2|) (-10 -7 (-15 -2416 ((-3 |#2| (-645 |#2|)) |#2| (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -431)) +((-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1203) (-961) (-29 *5)))))) +(-10 -7 (-15 -2416 ((-3 |#2| (-645 |#2|)) |#2| (-1178)))) +((-2847 (((-645 (-1178)) $) 81)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 314)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1178) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-954 |#2|)) "failed") $) 364) (((-3 (-954 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-1178) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-954 |#2|)) $) 346) (((-954 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-2654 (((-114) (-114)) 47)) (-3530 (($ $) 99)) (-2700 (((-3 (-613 $) "failed") $) 269)) (-2641 (((-645 (-613 $)) $) 270)) (-2056 (((-3 (-645 $) "failed") $) 288)) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 295)) (-3671 (((-3 (-645 $) "failed") $) 286)) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 258)) (-2949 (((-112) $) 17)) (-2962 ((|#2| $) 19)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1178)) 62) (($ $ (-645 (-1178))) 281) (($ $) 282) (($ $ (-114) $ (-1178)) 65) (($ $ (-645 (-114)) (-645 $) (-1178)) 72) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1178) (-772) (-1 $ (-645 $))) 105) (($ $ (-1178) (-772) (-1 $ $)) 104)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) 279)) (-1967 (($ $) 325)) (-3893 (((-894 (-567)) $) 298) (((-894 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-4132 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1178)) 24) (($ |#2|) NIL) (($ (-1127 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-954 (-410 |#2|))) 369) (($ (-410 (-954 (-410 |#2|)))) 342) (($ (-410 (-954 |#2|))) 336) (($ $) NIL) (($ (-954 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-4221 (((-772)) 88)) (-3797 (((-112) (-114)) 42)) (-3247 (($ (-1178) $) 31) (($ (-1178) $ $) 32) (($ (-1178) $ $ $) 33) (($ (-1178) $ $ $ $) 34) (($ (-1178) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) +(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4132 (|#1| (-567))) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-954 |#2|))) (-15 -3753 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2038 ((-954 |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-954 |#2|)))) (-15 -3753 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2038 ((-410 (-954 |#2|)) |#1|)) (-15 -2675 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4132 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4132 (|#1| (-954 (-410 |#2|)))) (-15 -4132 (|#1| (-410 |#2|))) (-15 -1967 (|#1| |#1|)) (-15 -3893 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1912 ((-3 (-2 (|:| |val| |#1|) (|:| -3458 (-567))) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-1178))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-114))) (-15 -3530 (|#1| |#1|)) (-15 -4132 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1178))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1178))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1178)))) (-15 -2631 (|#1| |#1| (-1178))) (-15 -3247 (|#1| (-1178) (-645 |#1|))) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1|)) (-15 -2847 ((-645 (-1178)) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2641 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4132 (|#1| (-613 |#1|))) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|)) (-15 -4132 ((-863) |#1|))) (-433 |#2|) (-1102)) (T -432)) +((-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-4221 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) +(-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4132 (|#1| (-567))) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-954 |#2|))) (-15 -3753 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2038 ((-954 |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-954 |#2|)))) (-15 -3753 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2038 ((-410 (-954 |#2|)) |#1|)) (-15 -2675 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4132 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4132 (|#1| (-954 (-410 |#2|)))) (-15 -4132 (|#1| (-410 |#2|))) (-15 -1967 (|#1| |#1|)) (-15 -3893 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1912 ((-3 (-2 (|:| |val| |#1|) (|:| -3458 (-567))) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-1178))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-114))) (-15 -3530 (|#1| |#1|)) (-15 -4132 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1178))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1178))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1178)))) (-15 -2631 (|#1| |#1| (-1178))) (-15 -3247 (|#1| (-1178) (-645 |#1|))) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1|)) (-15 -2847 ((-645 (-1178)) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2641 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4132 (|#1| (-613 |#1|))) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|)) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 116 (|has| |#1| (-25)))) (-2847 (((-645 (-1178)) $) 203)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-4381 (($ $) 144 (|has| |#1| (-559)))) (-3949 (((-112) $) 146 (|has| |#1| (-559)))) (-2566 (((-645 (-613 $)) $) 39)) (-3472 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2960 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3248 (($ $) 163 (|has| |#1| (-559)))) (-2908 (((-421 $) $) 164 (|has| |#1| (-559)))) (-3609 (((-112) $ $) 154 (|has| |#1| (-559)))) (-2585 (($) 104 (-2800 (|has| |#1| (-1114)) (|has| |#1| (-25))) CONST)) (-3753 (((-3 (-613 $) "failed") $) 64) (((-3 (-1178) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1040 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-954 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) 123 (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 98 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-613 $) $) 65) (((-1178) $) 217) (((-567) $) 209 (|has| |#1| (-1040 (-567)))) ((|#1| $) 208) (((-410 (-954 |#1|)) $) 170 (|has| |#1| (-559))) (((-954 |#1|) $) 124 (|has| |#1| (-1051))) (((-410 (-567)) $) 99 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) 158 (|has| |#1| (-559)))) (-2630 (((-690 (-567)) (-690 $)) 137 (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 136 (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 135 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1051)))) (-2109 (((-3 $ "failed") $) 106 (|has| |#1| (-1114)))) (-2360 (($ $ $) 157 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-3184 (((-112) $) 165 (|has| |#1| (-559)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 212 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 211 (|has| |#1| (-888 (-381))))) (-2068 (($ $) 46) (($ (-645 $)) 45)) (-2034 (((-645 (-114)) $) 38)) (-2654 (((-114) (-114)) 37)) (-1433 (((-112) $) 105 (|has| |#1| (-1114)))) (-3837 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-3530 (($ $) 186 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 187 (|has| |#1| (-1051)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-3263 (((-1174 $) (-613 $)) 20 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 31)) (-2700 (((-3 (-613 $) "failed") $) 41)) (-2740 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 40)) (-3632 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-2056 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 183 (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 191 (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 184 (|has| |#1| (-1051)))) (-1854 (((-112) $ (-114)) 35) (((-112) $ (-1178)) 34)) (-2939 (($ $) 108 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-4138 (((-772) $) 42)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 205)) (-2962 ((|#1| $) 204)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 151 (|has| |#1| (-559)))) (-2774 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-3922 (((-112) $ $) 30) (((-112) $ (-1178)) 29)) (-2706 (((-421 $) $) 162 (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 159 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-2757 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1178) (-1 $ (-645 $))) 26) (($ $ (-1178) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1178)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1178)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ $)) 179 (|has| |#1| (-1051)))) (-1990 (((-772) $) 155 (|has| |#1| (-559)))) (-1787 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 156 (|has| |#1| (-559)))) (-3241 (($ $) 44) (($ $ $) 43)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 128 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 127 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 126 (|has| |#1| (-1051))) (($ $ (-1178)) 125 (|has| |#1| (-1051)))) (-1967 (($ $) 176 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-3341 (($ $) 19 (|has| $ (-1051)))) (-3893 (((-894 (-567)) $) 214 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 213 (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-1823 (($ $ $) 111 (|has| |#1| (-476)))) (-1485 (($ $ $) 112 (|has| |#1| (-476)))) (-4132 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1178)) 215) (($ |#1|) 206) (($ (-1127 |#1| (-613 $))) 188 (|has| |#1| (-1051))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-954 |#1|)) 122 (|has| |#1| (-1051))) (($ (-410 (-567))) 97 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 96 (-2800 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567)))))) (-1903 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-4221 (((-772)) 133 (|has| |#1| (-1051)) CONST)) (-1334 (($ $) 48) (($ (-645 $)) 47)) (-3797 (((-112) (-114)) 36)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 145 (|has| |#1| (-559)))) (-3247 (($ (-1178) $) 202) (($ (-1178) $ $) 201) (($ (-1178) $ $ $) 200) (($ (-1178) $ $ $ $) 199) (($ (-1178) (-645 $)) 198)) (-1716 (($) 115 (|has| |#1| (-25)) CONST)) (-1728 (($) 103 (|has| |#1| (-1114)) CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 132 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 131 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 130 (|has| |#1| (-1051))) (($ $ (-1178)) 129 (|has| |#1| (-1051)))) (-2936 (((-112) $ $) 6)) (-3060 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3045 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3033 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1114))) (($ $ (-923)) 102 (|has| |#1| (-1114)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-923) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1114))))) +(((-433 |#1|) (-140) (-1102)) (T -433)) +((-2949 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1178))))) (-3247 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1178)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1178)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *3)))) (-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3556 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| -3694 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) (-3798 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *4)))) (-3798 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *4)))) (-1912 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |val| *1) (|:| -3458 (-567)))) (-4 *1 (-433 *3)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-1460 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1967 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) (-3060 (*1 *1 *2 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-559)) (-5 *2 (-410 (-1174 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-1114))))) +(-13 (-303) (-1040 (-1178)) (-886 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2949 ((-112) $)) (-15 -2962 (|t#1| $)) (-15 -2847 ((-645 (-1178)) $)) (-15 -3247 ($ (-1178) $)) (-15 -3247 ($ (-1178) $ $)) (-15 -3247 ($ (-1178) $ $ $)) (-15 -3247 ($ (-1178) $ $ $ $)) (-15 -3247 ($ (-1178) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -2631 ($ $ (-1178))) (-15 -2631 ($ $ (-645 (-1178)))) (-15 -2631 ($ $)) (-15 -2631 ($ $ (-114) $ (-1178))) (-15 -2631 ($ $ (-645 (-114)) (-645 $) (-1178)))) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-1040 (-954 |t#1|))) (-6 (-902 (-1178))) (-6 (-379 |t#1|)) (-15 -4132 ($ (-1127 |t#1| (-613 $)))) (-15 -1448 ((-1127 |t#1| (-613 $)) $)) (-15 -3530 ($ $)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178))) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $)) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1178) (-772) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1178) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1040 (-410 (-954 |t#1|)))) (-15 -3893 ($ (-421 $))) (-15 -1460 ((-1127 |t#1| (-613 $)) $)) (-15 -1967 ($ $)) (-15 -3060 ($ (-1127 |t#1| (-613 $)) (-1127 |t#1| (-613 $)))) (-15 -4132 ($ (-410 |t#1|))) (-15 -4132 ($ (-954 (-410 |t#1|)))) (-15 -4132 ($ (-410 (-954 (-410 |t#1|))))) (-15 -2675 ((-410 (-1174 $)) $ (-613 $))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-410 (-567)))) |%noBranch|)) |%noBranch|))) +(((-21) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2800 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1178)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2800 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-902 (-1178)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) |has| |#1| (-559)) ((-1040 (-410 (-567))) -2800 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-559)) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) |has| |#1| (-559)) ((-1058 #0#) |has| |#1| (-559)) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) |has| |#1| (-559)) ((-1051) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1114) -2800 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1102) . T) ((-1218) . T) ((-1222) |has| |#1| (-559))) +((-2387 ((|#2| |#2| |#2|) 31)) (-2654 (((-114) (-114)) 43)) (-2795 ((|#2| |#2|) 63)) (-4325 ((|#2| |#2|) 66)) (-4275 ((|#2| |#2|) 30)) (-3031 ((|#2| |#2| |#2|) 33)) (-2030 ((|#2| |#2| |#2|) 35)) (-3913 ((|#2| |#2| |#2|) 32)) (-2944 ((|#2| |#2| |#2|) 34)) (-3797 (((-112) (-114)) 41)) (-3382 ((|#2| |#2|) 37)) (-4023 ((|#2| |#2|) 36)) (-2219 ((|#2| |#2|) 25)) (-1890 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3944 ((|#2| |#2| |#2|) 29))) +(((-434 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2219 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -3944 (|#2| |#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -2387 (|#2| |#2| |#2|)) (-15 -3913 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2|)) (-15 -2030 (|#2| |#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434)) +((-2795 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2030 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2944 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3913 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2387 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3944 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1890 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))) +(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2219 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -3944 (|#2| |#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -2387 (|#2| |#2| |#2|)) (-15 -3913 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2|)) (-15 -2030 (|#2| |#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) +((-3431 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|)) 68))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435)) +((-3431 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-435 *4 *5))))) +(-10 -7 (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3481 (((-1273)) 19)) (-2801 (((-1174 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25))) +(((-436 |#1| |#2|) (-10 -7 (-15 -2801 ((-410 (-567)) |#2|)) (-15 -2801 ((-1174 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3481 ((-1273)))) (-13 (-559) (-1040 (-567))) (-433 |#1|)) (T -436)) +((-3481 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1273)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))) +(-10 -7 (-15 -2801 ((-410 (-567)) |#2|)) (-15 -2801 ((-1174 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3481 ((-1273)))) +((-1684 (((-112) $) 32)) (-3343 (((-112) $) 34)) (-2047 (((-112) $) 35)) (-3542 (((-112) $) 38)) (-1405 (((-112) $) 33)) (-2922 (((-112) $) 37)) (-4132 (((-863) $) 20) (($ (-1160)) 31) (($ (-1178)) 26) (((-1178) $) 24) (((-1106) $) 23)) (-4192 (((-112) $) 36)) (-2936 (((-112) $ $) 17))) +(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1160))) (-15 -4132 ($ (-1178))) (-15 -4132 ((-1178) $)) (-15 -4132 ((-1106) $)) (-15 -1684 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2922 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -2936 ((-112) $ $))))) (T -437)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-437)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2936 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1160))) (-15 -4132 ($ (-1178))) (-15 -4132 ((-1178) $)) (-15 -4132 ((-1106) $)) (-15 -1684 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2922 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -2936 ((-112) $ $)))) +((-2635 (((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|) 72)) (-3961 (((-421 |#3|) |#3|) 34)) (-3580 (((-3 (-421 (-1174 (-48))) "failed") |#3|) 46 (|has| |#2| (-1040 (-48))))) (-3969 (((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|) 37))) +(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-421 |#3|) |#3|)) (-15 -2635 ((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|)) (-15 -3969 ((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3580 ((-3 (-421 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1244 |#2|)) (T -438)) +((-3580 (*1 *2 *3) (|partial| -12 (-4 *5 (-1040 (-48))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-2635 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1174 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-3961 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5))))) +(-10 -7 (-15 -3961 ((-421 |#3|) |#3|)) (-15 -2635 ((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|)) (-15 -3969 ((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3580 ((-3 (-421 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-4032 (((-1160) $ (-1160)) NIL)) (-2828 (($ $ (-1160)) NIL)) (-2636 (((-1160) $) NIL)) (-3678 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-3823 (($ (-391)) NIL) (($ (-391) (-1160)) NIL)) (-1996 (((-391) $) NIL)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3935 (((-1273) (-1160)) 9)) (-3039 (((-1273) (-1160)) 10)) (-1956 (((-1273)) 11)) (-4132 (((-863) $) NIL)) (-1675 (($ $) 39)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-439) (-13 (-366 (-391) (-1160)) (-10 -7 (-15 -3678 ((-391) (-391) (-391))) (-15 -3678 ((-391) (-391))) (-15 -3935 ((-1273) (-1160))) (-15 -3039 ((-1273) (-1160))) (-15 -1956 ((-1273)))))) (T -439)) +((-3678 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))) (-1956 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-439))))) +(-13 (-366 (-391) (-1160)) (-10 -7 (-15 -3678 ((-391) (-391) (-391))) (-15 -3678 ((-391) (-391))) (-15 -3935 ((-1273) (-1160))) (-15 -3039 ((-1273) (-1160))) (-15 -1956 ((-1273))))) +((-2403 (((-112) $ $) NIL)) (-4317 (((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $) 11)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1873 (($) 35)) (-1658 (($) 41)) (-2162 (($) 37)) (-3534 (($) 39)) (-3514 (($) 36)) (-3103 (($) 38)) (-3305 (($) 40)) (-3245 (((-112) $) 8)) (-3234 (((-645 (-954 (-567))) $) 19)) (-4147 (($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112)) 30)) (-4132 (((-863) $) 24) (($ (-437)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-440) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-437))) (-15 -4317 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -3234 ((-645 (-954 (-567))) $)) (-15 -3245 ((-112) $)) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112))) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112))) (-15 -1873 ($)) (-15 -3514 ($)) (-15 -2162 ($)) (-15 -1658 ($)) (-15 -3103 ($)) (-15 -3534 ($)) (-15 -3305 ($))))) (T -440)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-440)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *3 (-645 (-1178))) (-5 *4 (-112)) (-5 *1 (-440)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-1873 (*1 *1) (-5 *1 (-440))) (-3514 (*1 *1) (-5 *1 (-440))) (-2162 (*1 *1) (-5 *1 (-440))) (-1658 (*1 *1) (-5 *1 (-440))) (-3103 (*1 *1) (-5 *1 (-440))) (-3534 (*1 *1) (-5 *1 (-440))) (-3305 (*1 *1) (-5 *1 (-440)))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-437))) (-15 -4317 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -3234 ((-645 (-954 (-567))) $)) (-15 -3245 ((-112) $)) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112))) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112))) (-15 -1873 ($)) (-15 -3514 ($)) (-15 -2162 ($)) (-15 -1658 ($)) (-15 -3103 ($)) (-15 -3534 ($)) (-15 -3305 ($)))) +((-2403 (((-112) $ $) NIL)) (-1996 (((-1178) $) 8)) (-1419 (((-1160) $) 17)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 14))) +(((-441 |#1|) (-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) (-1178)) (T -441)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-441 *3)) (-14 *3 *2)))) +(-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) +((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 7)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9))) +(((-442) (-13 (-1102) (-10 -8 (-15 -3386 ((-1120) $))))) (T -442)) +((-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442))))) +(-13 (-1102) (-10 -8 (-15 -3386 ((-1120) $)))) +((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-1268 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 11))) (((-443) (-140)) (T -443)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-700))) (-4 *1 (-443)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-4 *1 (-443))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-1267 (-700)))) (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-331))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1217) . T)) -((-3747 (((-3 $ "failed") (-1267 (-317 (-381)))) 21) (((-3 $ "failed") (-1267 (-317 (-567)))) 19) (((-3 $ "failed") (-1267 (-953 (-381)))) 17) (((-3 $ "failed") (-1267 (-953 (-567)))) 15) (((-3 $ "failed") (-1267 (-410 (-953 (-381))))) 13) (((-3 $ "failed") (-1267 (-410 (-953 (-567))))) 11)) (-2033 (($ (-1267 (-317 (-381)))) 22) (($ (-1267 (-317 (-567)))) 20) (($ (-1267 (-953 (-381)))) 18) (($ (-1267 (-953 (-567)))) 16) (($ (-1267 (-410 (-953 (-381))))) 14) (($ (-1267 (-410 (-953 (-567))))) 12)) (-1484 (((-1272) $) 7)) (-4127 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) 23))) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-700))) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-443))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-1268 (-700)))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))))) +(((-614 (-863)) . T) ((-398) . T) ((-1218) . T)) +((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 21) (((-3 $ "failed") (-1268 (-317 (-567)))) 19) (((-3 $ "failed") (-1268 (-954 (-381)))) 17) (((-3 $ "failed") (-1268 (-954 (-567)))) 15) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 11)) (-2038 (($ (-1268 (-317 (-381)))) 22) (($ (-1268 (-317 (-567)))) 20) (($ (-1268 (-954 (-381)))) 18) (($ (-1268 (-954 (-567)))) 16) (($ (-1268 (-410 (-954 (-381))))) 14) (($ (-1268 (-410 (-954 (-567))))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23))) (((-444) (-140)) (T -444)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-317 (-381)))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-317 (-381)))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-317 (-567)))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-317 (-567)))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-953 (-381)))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-953 (-381)))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-953 (-567)))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-953 (-567)))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-410 (-953 (-381))))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-410 (-953 (-381))))) (-4 *1 (-444)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-1267 (-410 (-953 (-567))))) (-4 *1 (-444)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-1267 (-410 (-953 (-567))))) (-4 *1 (-444))))) -(-13 (-398) (-10 -8 (-15 -4127 ($ (-645 (-331)))) (-15 -4127 ($ (-331))) (-15 -4127 ($ (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331)))))) (-15 -2033 ($ (-1267 (-317 (-381))))) (-15 -3747 ((-3 $ "failed") (-1267 (-317 (-381))))) (-15 -2033 ($ (-1267 (-317 (-567))))) (-15 -3747 ((-3 $ "failed") (-1267 (-317 (-567))))) (-15 -2033 ($ (-1267 (-953 (-381))))) (-15 -3747 ((-3 $ "failed") (-1267 (-953 (-381))))) (-15 -2033 ($ (-1267 (-953 (-567))))) (-15 -3747 ((-3 $ "failed") (-1267 (-953 (-567))))) (-15 -2033 ($ (-1267 (-410 (-953 (-381)))))) (-15 -3747 ((-3 $ "failed") (-1267 (-410 (-953 (-381)))))) (-15 -2033 ($ (-1267 (-410 (-953 (-567)))))) (-15 -3747 ((-3 $ "failed") (-1267 (-410 (-953 (-567)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1217) . T)) -((-2789 (((-112)) 18)) (-3888 (((-112) (-112)) 19)) (-1532 (((-112)) 14)) (-1305 (((-112) (-112)) 15)) (-2976 (((-112)) 16)) (-2305 (((-112) (-112)) 17)) (-3829 (((-922) (-922)) 22) (((-922)) 21)) (-1539 (((-772) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567))))) 52)) (-3943 (((-922) (-922)) 24) (((-922)) 23)) (-1494 (((-2 (|:| -1321 (-567)) (|:| -2166 (-645 |#1|))) |#1|) 97)) (-2270 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567))))))) 178)) (-3355 (((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112)) 211)) (-2443 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-3335 (((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-922) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-922) |#1| (-772)) 230) (((-3 |#1| "failed") (-922) |#1|) 232)) (-2703 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-4029 (((-112) |#1|) 44)) (-3437 (((-738 (-772)) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567))))) 102)) (-3710 (((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112) (-1103 (-772)) (-772)) 215))) -(((-445 |#1|) (-10 -7 (-15 -2270 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))))) (-15 -3437 ((-738 (-772)) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))))) (-15 -3943 ((-922))) (-15 -3943 ((-922) (-922))) (-15 -3829 ((-922))) (-15 -3829 ((-922) (-922))) (-15 -1539 ((-772) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))))) (-15 -1494 ((-2 (|:| -1321 (-567)) (|:| -2166 (-645 |#1|))) |#1|)) (-15 -2789 ((-112))) (-15 -3888 ((-112) (-112))) (-15 -1532 ((-112))) (-15 -1305 ((-112) (-112))) (-15 -4029 ((-112) |#1|)) (-15 -2976 ((-112))) (-15 -2305 ((-112) (-112))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2703 ((-421 |#1|) |#1| (-772))) (-15 -2703 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2703 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2703 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2443 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1| (-772))) (-15 -2443 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2443 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2443 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1|)) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112))) (-15 -3355 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112))) (-15 -3710 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112) (-1103 (-772)) (-772)))) (-1243 (-567))) (T -445)) -((-3710 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1103 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3335 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) (-3335 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) (-3335 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) (-3335 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) (-3335 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) (-2443 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2443 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2976 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-4029 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-1305 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-1532 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-2789 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-1494 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1321 (-567)) (|:| -2166 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2703 *4) (|:| -1813 (-567))))) (-4 *4 (-1243 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3829 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3943 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2703 *4) (|:| -1813 (-567))))) (-4 *4 (-1243 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| *4) (|:| -1594 (-567))))))) (-4 *4 (-1243 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) -(-10 -7 (-15 -2270 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))))) (-15 -3437 ((-738 (-772)) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))))) (-15 -3943 ((-922))) (-15 -3943 ((-922) (-922))) (-15 -3829 ((-922))) (-15 -3829 ((-922) (-922))) (-15 -1539 ((-772) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))))) (-15 -1494 ((-2 (|:| -1321 (-567)) (|:| -2166 (-645 |#1|))) |#1|)) (-15 -2789 ((-112))) (-15 -3888 ((-112) (-112))) (-15 -1532 ((-112))) (-15 -1305 ((-112) (-112))) (-15 -4029 ((-112) |#1|)) (-15 -2976 ((-112))) (-15 -2305 ((-112) (-112))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2703 ((-421 |#1|) |#1| (-772))) (-15 -2703 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2703 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2703 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2443 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1| (-772))) (-15 -2443 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2443 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2443 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1|)) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772))) (-15 -3335 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112))) (-15 -3355 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112))) (-15 -3710 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112) (-1103 (-772)) (-772)))) -((-3035 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-4306 (((-567) |#2|) 67)) (-3698 ((|#3| |#2|) 26)) (-2896 ((|#3| |#2| (-922)) 15)) (-2334 ((|#3| |#2|) 16)) (-2940 ((|#3| |#2|) 9)) (-4133 ((|#3| |#2|) 10)) (-1301 ((|#3| |#2| (-922)) 74) ((|#3| |#2|) 34)) (-4395 (((-567) |#2|) 69))) -(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -4395 ((-567) |#2|)) (-15 -1301 (|#3| |#2|)) (-15 -1301 (|#3| |#2| (-922))) (-15 -4306 ((-567) |#2|)) (-15 -3035 ((-567) |#2| (-772))) (-15 -3035 ((-567) |#2|)) (-15 -2896 (|#3| |#2| (-922))) (-15 -3698 (|#3| |#2|)) (-15 -2940 (|#3| |#2|)) (-15 -4133 (|#3| |#2|)) (-15 -2334 (|#3| |#2|))) (-1050) (-1243 |#1|) (-13 (-407) (-1039 |#1|) (-365) (-1202) (-285))) (T -446)) -((-2334 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1243 *5)))) (-3035 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1243 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1243 *5)) (-4 *6 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))))) (-4306 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1243 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))))) (-1301 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1243 *5)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) (-4395 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1243 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285)))))) -(-10 -7 (-15 -4395 ((-567) |#2|)) (-15 -1301 (|#3| |#2|)) (-15 -1301 (|#3| |#2| (-922))) (-15 -4306 ((-567) |#2|)) (-15 -3035 ((-567) |#2| (-772))) (-15 -3035 ((-567) |#2|)) (-15 -2896 (|#3| |#2| (-922))) (-15 -3698 (|#3| |#2|)) (-15 -2940 (|#3| |#2|)) (-15 -4133 (|#3| |#2|)) (-15 -2334 (|#3| |#2|))) -((-1591 ((|#2| (-1267 |#1|)) 45)) (-3846 ((|#2| |#2| |#1|) 61)) (-4181 ((|#2| |#2| |#1|) 53)) (-3583 ((|#2| |#2|) 49)) (-1729 (((-112) |#2|) 36)) (-2256 (((-645 |#2|) (-922) (-421 |#2|)) 24)) (-3335 ((|#2| (-922) (-421 |#2|)) 28)) (-3437 (((-738 (-772)) (-421 |#2|)) 33))) -(((-447 |#1| |#2|) (-10 -7 (-15 -1729 ((-112) |#2|)) (-15 -1591 (|#2| (-1267 |#1|))) (-15 -3583 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3846 (|#2| |#2| |#1|)) (-15 -3437 ((-738 (-772)) (-421 |#2|))) (-15 -3335 (|#2| (-922) (-421 |#2|))) (-15 -2256 ((-645 |#2|) (-922) (-421 |#2|)))) (-1050) (-1243 |#1|)) (T -447)) -((-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-421 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-1050)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-421 *2)) (-4 *2 (-1243 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1050)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-1050)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-3846 (*1 *2 *2 *3) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3)))) (-4181 (*1 *2 *2 *3) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3)))) (-3583 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-1050)) (-4 *2 (-1243 *4)) (-5 *1 (-447 *4 *2)))) (-1729 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -1729 ((-112) |#2|)) (-15 -1591 (|#2| (-1267 |#1|))) (-15 -3583 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3846 (|#2| |#2| |#1|)) (-15 -3437 ((-738 (-772)) (-421 |#2|))) (-15 -3335 (|#2| (-922) (-421 |#2|))) (-15 -2256 ((-645 |#2|) (-922) (-421 |#2|)))) -((-4064 (((-772)) 59)) (-3346 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-2346 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-4230 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-2327 (((-772)) 58) (((-772) (-772)) 57)) (-3964 ((|#1| (-772) (-567)) 37)) (-1764 (((-1272)) 61))) -(((-448 |#1|) (-10 -7 (-15 -3964 (|#1| (-772) (-567))) (-15 -2327 ((-772) (-772))) (-15 -2327 ((-772))) (-15 -4064 ((-772))) (-15 -1764 ((-1272))) (IF (|has| |#1| (-407)) (PROGN (-15 -4230 ((-567) |#1|)) (-15 -2346 ((-567) |#1|)) (-15 -3346 ((-772) (-772))) (-15 -3346 ((-772)))) |%noBranch|)) (-1050)) (T -448)) -((-3346 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-3346 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-4230 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-1764 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-4064 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-2327 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1050))))) -(-10 -7 (-15 -3964 (|#1| (-772) (-567))) (-15 -2327 ((-772) (-772))) (-15 -2327 ((-772))) (-15 -4064 ((-772))) (-15 -1764 ((-1272))) (IF (|has| |#1| (-407)) (PROGN (-15 -4230 ((-567) |#1|)) (-15 -2346 ((-567) |#1|)) (-15 -3346 ((-772) (-772))) (-15 -3346 ((-772)))) |%noBranch|)) -((-1421 (((-645 (-567)) (-567)) 76)) (-4341 (((-112) (-169 (-567))) 82)) (-2703 (((-421 (-169 (-567))) (-169 (-567))) 75))) -(((-449) (-10 -7 (-15 -2703 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1421 ((-645 (-567)) (-567))) (-15 -4341 ((-112) (-169 (-567)))))) (T -449)) -((-4341 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-1421 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567)))))) -(-10 -7 (-15 -2703 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1421 ((-645 (-567)) (-567))) (-15 -4341 ((-112) (-169 (-567))))) -((-3102 ((|#4| |#4| (-645 |#4|)) 82)) (-2596 (((-645 |#4|) (-645 |#4|) (-1159) (-1159)) 22) (((-645 |#4|) (-645 |#4|) (-1159)) 21) (((-645 |#4|) (-645 |#4|)) 13))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 (|#4| |#4| (-645 |#4|))) (-15 -2596 ((-645 |#4|) (-645 |#4|))) (-15 -2596 ((-645 |#4|) (-645 |#4|) (-1159))) (-15 -2596 ((-645 |#4|) (-645 |#4|) (-1159) (-1159)))) (-308) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -450)) -((-2596 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2596 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-3102 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) -(-10 -7 (-15 -3102 (|#4| |#4| (-645 |#4|))) (-15 -2596 ((-645 |#4|) (-645 |#4|))) (-15 -2596 ((-645 |#4|) (-645 |#4|) (-1159))) (-15 -2596 ((-645 |#4|) (-645 |#4|) (-1159) (-1159)))) -((-4057 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-1827 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77))) -(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1827 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1827 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -451)) -((-4057 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4057 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-4057 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(-10 -7 (-15 -1827 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1827 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -4057 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) -((-2148 (((-772) |#4|) 12)) (-3848 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|)))) 39)) (-2954 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-4119 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-3742 ((|#4| |#4| (-645 |#4|)) 56)) (-3716 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-4295 (((-1272) |#4|) 61)) (-1917 (((-1272) (-645 |#4|)) 71)) (-2492 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-3717 (((-1272) (-567)) 113)) (-1604 (((-645 |#4|) (-645 |#4|)) 105)) (-4010 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|)) |#4| (-772)) 31)) (-1638 (((-567) |#4|) 110)) (-1603 ((|#4| |#4|) 37)) (-2132 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-3729 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-3108 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2663 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-4185 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-2290 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4051 (((-112) |#2| |#2|) 77)) (-2438 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-1561 (((-112) |#2| |#2| |#2| |#2|) 82)) (-4288 ((|#4| |#4| (-645 |#4|)) 99))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4288 (|#4| |#4| (-645 |#4|))) (-15 -3742 (|#4| |#4| (-645 |#4|))) (-15 -2132 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2663 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4051 ((-112) |#2| |#2|)) (-15 -1561 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2438 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2290 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4185 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3716 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -1603 (|#4| |#4|)) (-15 -3848 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|))))) (-15 -4119 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2954 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1604 ((-645 |#4|) (-645 |#4|))) (-15 -1638 ((-567) |#4|)) (-15 -4295 ((-1272) |#4|)) (-15 -2492 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -3729 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -1917 ((-1272) (-645 |#4|))) (-15 -3717 ((-1272) (-567))) (-15 -3108 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4010 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|)) |#4| (-772))) (-15 -2148 ((-772) |#4|))) (-455) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -452)) -((-2148 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1867 *4))) (-5 *5 (-772)) (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-3108 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1272)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1272)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3729 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-2492 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-4295 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1272)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2954 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 *3)))) (-5 *4 (-772)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-4185 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-2290 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2438 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-1561 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-4051 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2132 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3742 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-4288 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) -(-10 -7 (-15 -4288 (|#4| |#4| (-645 |#4|))) (-15 -3742 (|#4| |#4| (-645 |#4|))) (-15 -2132 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2663 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4051 ((-112) |#2| |#2|)) (-15 -1561 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2438 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2290 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4185 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3716 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -1603 (|#4| |#4|)) (-15 -3848 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|))))) (-15 -4119 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2954 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1604 ((-645 |#4|) (-645 |#4|))) (-15 -1638 ((-567) |#4|)) (-15 -4295 ((-1272) |#4|)) (-15 -2492 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -3729 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -1917 ((-1272) (-645 |#4|))) (-15 -3717 ((-1272) (-567))) (-15 -3108 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4010 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1867 |#4|)) |#4| (-772))) (-15 -2148 ((-772) |#4|))) -((-4073 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-2147 (((-645 |#4|) (-645 |#4|) (-1159) (-1159)) 46) (((-645 |#4|) (-645 |#4|) (-1159)) 45) (((-645 |#4|) (-645 |#4|)) 34))) -(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2147 ((-645 |#4|) (-645 |#4|))) (-15 -2147 ((-645 |#4|) (-645 |#4|) (-1159))) (-15 -2147 ((-645 |#4|) (-645 |#4|) (-1159) (-1159))) (IF (|has| |#1| (-365)) (-15 -4073 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -453)) -((-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-2147 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2147 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))) -(-10 -7 (-15 -2147 ((-645 |#4|) (-645 |#4|))) (-15 -2147 ((-645 |#4|) (-645 |#4|) (-1159))) (-15 -2147 ((-645 |#4|) (-645 |#4|) (-1159) (-1159))) (IF (|has| |#1| (-365)) (-15 -4073 (|#4| |#4| (-645 |#4|))) |%noBranch|)) -((-2735 (($ $ $) 14) (($ (-645 $)) 21)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 46)) (-2771 (($ $ $) NIL) (($ (-645 $)) 22))) -(((-454 |#1|) (-10 -8 (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2735 (|#1| (-645 |#1|))) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|))) (-455)) (T -454)) -NIL -(-10 -8 (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2735 (|#1| (-645 |#1|))) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -2771 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2387 (((-3 $ "failed") $ $) 48)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444))))) +(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-1268 (-317 (-381))))) (-15 -3753 ((-3 $ "failed") (-1268 (-317 (-381))))) (-15 -2038 ($ (-1268 (-317 (-567))))) (-15 -3753 ((-3 $ "failed") (-1268 (-317 (-567))))) (-15 -2038 ($ (-1268 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-1268 (-954 (-381))))) (-15 -2038 ($ (-1268 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-1268 (-954 (-567))))) (-15 -2038 ($ (-1268 (-410 (-954 (-381)))))) (-15 -3753 ((-3 $ "failed") (-1268 (-410 (-954 (-381)))))) (-15 -2038 ($ (-1268 (-410 (-954 (-567)))))) (-15 -3753 ((-3 $ "failed") (-1268 (-410 (-954 (-567)))))))) +(((-614 (-863)) . T) ((-398) . T) ((-1218) . T)) +((-4386 (((-112)) 18)) (-3147 (((-112) (-112)) 19)) (-3433 (((-112)) 14)) (-2853 (((-112) (-112)) 15)) (-3036 (((-112)) 16)) (-2471 (((-112) (-112)) 17)) (-2075 (((-923) (-923)) 22) (((-923)) 21)) (-2820 (((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567))))) 52)) (-2589 (((-923) (-923)) 24) (((-923)) 23)) (-3830 (((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|) 97)) (-2204 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567))))))) 178)) (-2033 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)) 211)) (-2688 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-1619 (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-923) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-923) |#1| (-772)) 230) (((-3 |#1| "failed") (-923) |#1|) 232)) (-2706 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-2998 (((-112) |#1|) 44)) (-1970 (((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567))))) 102)) (-2683 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)) 215))) +(((-445 |#1|) (-10 -7 (-15 -2204 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))))) (-15 -1970 ((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -2589 ((-923))) (-15 -2589 ((-923) (-923))) (-15 -2075 ((-923))) (-15 -2075 ((-923) (-923))) (-15 -2820 ((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -3830 ((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|)) (-15 -4386 ((-112))) (-15 -3147 ((-112) (-112))) (-15 -3433 ((-112))) (-15 -2853 ((-112) (-112))) (-15 -2998 ((-112) |#1|)) (-15 -3036 ((-112))) (-15 -2471 ((-112) (-112))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1| (-772))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2706 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1| (-772))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2688 ((-421 |#1|) |#1| (-772) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1|)) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112))) (-15 -2683 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) (-1244 (-567))) (T -445)) +((-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-2688 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2998 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3433 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-4386 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3830 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3950 (-567)) (|:| -3920 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) (-4 *4 (-1244 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2075 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2589 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) (-4 *4 (-1244 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *4) (|:| -2625 (-567))))))) (-4 *4 (-1244 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) +(-10 -7 (-15 -2204 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))))) (-15 -1970 ((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -2589 ((-923))) (-15 -2589 ((-923) (-923))) (-15 -2075 ((-923))) (-15 -2075 ((-923) (-923))) (-15 -2820 ((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -3830 ((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|)) (-15 -4386 ((-112))) (-15 -3147 ((-112) (-112))) (-15 -3433 ((-112))) (-15 -2853 ((-112) (-112))) (-15 -2998 ((-112) |#1|)) (-15 -3036 ((-112))) (-15 -2471 ((-112) (-112))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1| (-772))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2706 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1| (-772))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2688 ((-421 |#1|) |#1| (-772) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1|)) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112))) (-15 -2683 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) +((-3516 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-4352 (((-567) |#2|) 67)) (-1933 ((|#3| |#2|) 26)) (-2475 ((|#3| |#2| (-923)) 15)) (-1699 ((|#3| |#2|) 16)) (-3351 ((|#3| |#2|) 9)) (-4138 ((|#3| |#2|) 10)) (-2617 ((|#3| |#2| (-923)) 74) ((|#3| |#2|) 34)) (-2873 (((-567) |#2|) 69))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2873 ((-567) |#2|)) (-15 -2617 (|#3| |#2|)) (-15 -2617 (|#3| |#2| (-923))) (-15 -4352 ((-567) |#2|)) (-15 -3516 ((-567) |#2| (-772))) (-15 -3516 ((-567) |#2|)) (-15 -2475 (|#3| |#2| (-923))) (-15 -1933 (|#3| |#2|)) (-15 -3351 (|#3| |#2|)) (-15 -4138 (|#3| |#2|)) (-15 -1699 (|#3| |#2|))) (-1051) (-1244 |#1|) (-13 (-407) (-1040 |#1|) (-365) (-1203) (-285))) (T -446)) +((-1699 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-3351 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1244 *5)) (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))))) (-4352 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))))) +(-10 -7 (-15 -2873 ((-567) |#2|)) (-15 -2617 (|#3| |#2|)) (-15 -2617 (|#3| |#2| (-923))) (-15 -4352 ((-567) |#2|)) (-15 -3516 ((-567) |#2| (-772))) (-15 -3516 ((-567) |#2|)) (-15 -2475 (|#3| |#2| (-923))) (-15 -1933 (|#3| |#2|)) (-15 -3351 (|#3| |#2|)) (-15 -4138 (|#3| |#2|)) (-15 -1699 (|#3| |#2|))) +((-3480 ((|#2| (-1268 |#1|)) 45)) (-4030 ((|#2| |#2| |#1|) 61)) (-2611 ((|#2| |#2| |#1|) 53)) (-3584 ((|#2| |#2|) 49)) (-1721 (((-112) |#2|) 36)) (-4370 (((-645 |#2|) (-923) (-421 |#2|)) 24)) (-1619 ((|#2| (-923) (-421 |#2|)) 28)) (-1970 (((-738 (-772)) (-421 |#2|)) 33))) +(((-447 |#1| |#2|) (-10 -7 (-15 -1721 ((-112) |#2|)) (-15 -3480 (|#2| (-1268 |#1|))) (-15 -3584 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#1|)) (-15 -4030 (|#2| |#2| |#1|)) (-15 -1970 ((-738 (-772)) (-421 |#2|))) (-15 -1619 (|#2| (-923) (-421 |#2|))) (-15 -4370 ((-645 |#2|) (-923) (-421 |#2|)))) (-1051) (-1244 |#1|)) (T -447)) +((-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1051)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-4030 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-2611 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-3584 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-1051)) (-4 *2 (-1244 *4)) (-5 *1 (-447 *4 *2)))) (-1721 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -1721 ((-112) |#2|)) (-15 -3480 (|#2| (-1268 |#1|))) (-15 -3584 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#1|)) (-15 -4030 (|#2| |#2| |#1|)) (-15 -1970 ((-738 (-772)) (-421 |#2|))) (-15 -1619 (|#2| (-923) (-421 |#2|))) (-15 -4370 ((-645 |#2|) (-923) (-421 |#2|)))) +((-1358 (((-772)) 59)) (-3371 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-2423 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-2275 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-3362 (((-772)) 58) (((-772) (-772)) 57)) (-4271 ((|#1| (-772) (-567)) 37)) (-1548 (((-1273)) 61))) +(((-448 |#1|) (-10 -7 (-15 -4271 (|#1| (-772) (-567))) (-15 -3362 ((-772) (-772))) (-15 -3362 ((-772))) (-15 -1358 ((-772))) (-15 -1548 ((-1273))) (IF (|has| |#1| (-407)) (PROGN (-15 -2275 ((-567) |#1|)) (-15 -2423 ((-567) |#1|)) (-15 -3371 ((-772) (-772))) (-15 -3371 ((-772)))) |%noBranch|)) (-1051)) (T -448)) +((-3371 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-2275 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-1548 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-1358 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051))))) +(-10 -7 (-15 -4271 (|#1| (-772) (-567))) (-15 -3362 ((-772) (-772))) (-15 -3362 ((-772))) (-15 -1358 ((-772))) (-15 -1548 ((-1273))) (IF (|has| |#1| (-407)) (PROGN (-15 -2275 ((-567) |#1|)) (-15 -2423 ((-567) |#1|)) (-15 -3371 ((-772) (-772))) (-15 -3371 ((-772)))) |%noBranch|)) +((-1553 (((-645 (-567)) (-567)) 76)) (-3184 (((-112) (-169 (-567))) 82)) (-2706 (((-421 (-169 (-567))) (-169 (-567))) 75))) +(((-449) (-10 -7 (-15 -2706 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1553 ((-645 (-567)) (-567))) (-15 -3184 ((-112) (-169 (-567)))))) (T -449)) +((-3184 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-1553 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567)))))) +(-10 -7 (-15 -2706 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1553 ((-645 (-567)) (-567))) (-15 -3184 ((-112) (-169 (-567))))) +((-4394 ((|#4| |#4| (-645 |#4|)) 82)) (-3256 (((-645 |#4|) (-645 |#4|) (-1160) (-1160)) 22) (((-645 |#4|) (-645 |#4|) (-1160)) 21) (((-645 |#4|) (-645 |#4|)) 13))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4394 (|#4| |#4| (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160) (-1160)))) (-308) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -450)) +((-3256 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-4394 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) +(-10 -7 (-15 -4394 (|#4| |#4| (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160) (-1160)))) +((-3515 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-1941 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -451)) +((-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3515 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3515 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-1941 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(-10 -7 (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) +((-2639 (((-772) |#4|) 12)) (-4298 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)))) 39)) (-3470 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-3503 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-1760 ((|#4| |#4| (-645 |#4|)) 56)) (-3165 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-1475 (((-1273) |#4|) 61)) (-3349 (((-1273) (-645 |#4|)) 71)) (-1720 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-2070 (((-1273) (-567)) 113)) (-1373 (((-645 |#4|) (-645 |#4|)) 105)) (-1463 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772)) 31)) (-4093 (((-567) |#4|) 110)) (-2487 ((|#4| |#4|) 37)) (-1797 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-1939 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-2869 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2129 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-2849 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-3340 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1747 (((-112) |#2| |#2|) 77)) (-3493 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-3665 (((-112) |#2| |#2| |#2| |#2|) 82)) (-1995 ((|#4| |#4| (-645 |#4|)) 99))) +(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1995 (|#4| |#4| (-645 |#4|))) (-15 -1760 (|#4| |#4| (-645 |#4|))) (-15 -1797 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2129 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1747 ((-112) |#2| |#2|)) (-15 -3665 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3493 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3340 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2849 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3165 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4298 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))))) (-15 -3503 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3470 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1373 ((-645 |#4|) (-645 |#4|))) (-15 -4093 ((-567) |#4|)) (-15 -1475 ((-1273) |#4|)) (-15 -1720 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1939 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -3349 ((-1273) (-645 |#4|))) (-15 -2070 ((-1273) (-567))) (-15 -2869 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1463 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772))) (-15 -2639 ((-772) |#4|))) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -452)) +((-2639 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -2517 *4))) (-5 *5 (-772)) (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1939 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1720 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1475 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-4298 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 *3)))) (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-2849 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3493 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-3665 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-1747 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1797 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1760 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-1995 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) +(-10 -7 (-15 -1995 (|#4| |#4| (-645 |#4|))) (-15 -1760 (|#4| |#4| (-645 |#4|))) (-15 -1797 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2129 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1747 ((-112) |#2| |#2|)) (-15 -3665 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3493 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3340 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2849 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3165 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4298 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))))) (-15 -3503 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3470 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1373 ((-645 |#4|) (-645 |#4|))) (-15 -4093 ((-567) |#4|)) (-15 -1475 ((-1273) |#4|)) (-15 -1720 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1939 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -3349 ((-1273) (-645 |#4|))) (-15 -2070 ((-1273) (-567))) (-15 -2869 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1463 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772))) (-15 -2639 ((-772) |#4|))) +((-4092 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-3716 (((-645 |#4|) (-645 |#4|) (-1160) (-1160)) 46) (((-645 |#4|) (-645 |#4|) (-1160)) 45) (((-645 |#4|) (-645 |#4|)) 34))) +(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-645 |#4|) (-645 |#4|))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160) (-1160))) (IF (|has| |#1| (-365)) (-15 -4092 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -453)) +((-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-3716 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3716 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))) +(-10 -7 (-15 -3716 ((-645 |#4|) (-645 |#4|))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160) (-1160))) (IF (|has| |#1| (-365)) (-15 -4092 (|#4| |#4| (-645 |#4|))) |%noBranch|)) +((-2740 (($ $ $) 14) (($ (-645 $)) 21)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 46)) (-2774 (($ $ $) NIL) (($ (-645 $)) 22))) +(((-454 |#1|) (-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2740 (|#1| (-645 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|))) (-455)) (T -454)) +NIL +(-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2740 (|#1| (-645 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-455) (-140)) (T -455)) -((-2771 (*1 *1 *1 *1) (-4 *1 (-455))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2735 (*1 *1 *1 *1) (-4 *1 (-455))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-455))))) -(-13 (-559) (-10 -8 (-15 -2771 ($ $ $)) (-15 -2771 ($ (-645 $))) (-15 -2735 ($ $ $)) (-15 -2735 ($ (-645 $))) (-15 -2052 ((-1173 $) (-1173 $) (-1173 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2720 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3316 (((-1267 (-690 (-410 (-953 |#1|)))) (-1267 $)) NIL) (((-1267 (-690 (-410 (-953 |#1|))))) NIL)) (-4308 (((-1267 $)) NIL)) (-2245 (($) NIL T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL)) (-3650 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-2942 (((-690 (-410 (-953 |#1|))) (-1267 $)) NIL) (((-690 (-410 (-953 |#1|)))) NIL)) (-2442 (((-410 (-953 |#1|)) $) NIL)) (-1668 (((-690 (-410 (-953 |#1|))) $ (-1267 $)) NIL) (((-690 (-410 (-953 |#1|))) $) NIL)) (-2385 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-2852 (((-1173 (-953 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-365))) (((-1173 (-410 (-953 |#1|)))) 94 (|has| |#1| (-559)))) (-2968 (($ $ (-922)) NIL)) (-2675 (((-410 (-953 |#1|)) $) NIL)) (-3090 (((-1173 (-410 (-953 |#1|))) $) 92 (|has| (-410 (-953 |#1|)) (-559)))) (-1809 (((-410 (-953 |#1|)) (-1267 $)) NIL) (((-410 (-953 |#1|))) NIL)) (-3798 (((-1173 (-410 (-953 |#1|))) $) NIL)) (-4037 (((-112)) NIL)) (-4025 (($ (-1267 (-410 (-953 |#1|))) (-1267 $)) 118) (($ (-1267 (-410 (-953 |#1|)))) NIL)) (-3153 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-1979 (((-922)) NIL)) (-2128 (((-112)) NIL)) (-3709 (($ $ (-922)) NIL)) (-3809 (((-112)) NIL)) (-2427 (((-112)) NIL)) (-3151 (((-112)) NIL)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL)) (-1946 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-3356 (((-690 (-410 (-953 |#1|))) (-1267 $)) NIL) (((-690 (-410 (-953 |#1|)))) NIL)) (-2506 (((-410 (-953 |#1|)) $) NIL)) (-2013 (((-690 (-410 (-953 |#1|))) $ (-1267 $)) NIL) (((-690 (-410 (-953 |#1|))) $) NIL)) (-2539 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-1527 (((-1173 (-953 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-365))) (((-1173 (-410 (-953 |#1|)))) 93 (|has| |#1| (-559)))) (-2941 (($ $ (-922)) NIL)) (-3660 (((-410 (-953 |#1|)) $) NIL)) (-2464 (((-1173 (-410 (-953 |#1|))) $) 87 (|has| (-410 (-953 |#1|)) (-559)))) (-2152 (((-410 (-953 |#1|)) (-1267 $)) NIL) (((-410 (-953 |#1|))) NIL)) (-1837 (((-1173 (-410 (-953 |#1|))) $) NIL)) (-2690 (((-112)) NIL)) (-3739 (((-1159) $) NIL)) (-2972 (((-112)) NIL)) (-3657 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-3430 (((-1121) $) NIL)) (-4173 (((-410 (-953 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-2527 (((-410 (-953 |#1|)) $) 104 (|has| |#1| (-559)))) (-3707 (((-410 (-953 |#1|)) $) 108 (|has| |#1| (-559)))) (-4394 (((-1173 (-410 (-953 |#1|))) $) 98 (|has| |#1| (-559)))) (-3171 (((-410 (-953 |#1|))) 79 (|has| |#1| (-559)))) (-2518 (((-410 (-953 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-2085 (((-410 (-953 |#1|)) $) 103 (|has| |#1| (-559)))) (-3294 (((-410 (-953 |#1|)) $) 107 (|has| |#1| (-559)))) (-3417 (((-1173 (-410 (-953 |#1|))) $) 97 (|has| |#1| (-559)))) (-3990 (((-410 (-953 |#1|))) 75 (|has| |#1| (-559)))) (-1922 (($) 114) (($ (-1177)) 122) (($ (-1267 (-1177))) 121) (($ (-1267 $)) 109) (($ (-1177) (-1267 $)) 120) (($ (-1267 (-1177)) (-1267 $)) 119)) (-3630 (((-112)) NIL)) (-1783 (((-410 (-953 |#1|)) $ (-567)) NIL)) (-2446 (((-1267 (-410 (-953 |#1|))) $ (-1267 $)) 111) (((-690 (-410 (-953 |#1|))) (-1267 $) (-1267 $)) NIL) (((-1267 (-410 (-953 |#1|))) $) 45) (((-690 (-410 (-953 |#1|))) (-1267 $)) NIL)) (-3880 (((-1267 (-410 (-953 |#1|))) $) NIL) (($ (-1267 (-410 (-953 |#1|)))) 42)) (-1526 (((-645 (-953 (-410 (-953 |#1|)))) (-1267 $)) NIL) (((-645 (-953 (-410 (-953 |#1|))))) NIL) (((-645 (-953 |#1|)) (-1267 $)) 112 (|has| |#1| (-559))) (((-645 (-953 |#1|))) 113 (|has| |#1| (-559)))) (-3387 (($ $ $) NIL)) (-4348 (((-112)) NIL)) (-4127 (((-863) $) NIL) (($ (-1267 (-410 (-953 |#1|)))) NIL)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 67)) (-2925 (((-645 (-1267 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-1875 (($ $ $ $) NIL)) (-3947 (((-112)) NIL)) (-2351 (($ (-690 (-410 (-953 |#1|))) $) NIL)) (-3411 (($ $ $) NIL)) (-4237 (((-112)) NIL)) (-3571 (((-112)) NIL)) (-2950 (((-112)) NIL)) (-1710 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) 110)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-953 |#1|))) NIL) (($ (-410 (-953 |#1|)) $) NIL) (($ (-1143 |#2| (-410 (-953 |#1|))) $) NIL))) -(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-953 |#1|))) (-649 (-1143 |#2| (-410 (-953 |#1|)))) (-10 -8 (-15 -4127 ($ (-1267 (-410 (-953 |#1|))))) (-15 -2651 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -2747 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -1922 ($)) (-15 -1922 ($ (-1177))) (-15 -1922 ($ (-1267 (-1177)))) (-15 -1922 ($ (-1267 $))) (-15 -1922 ($ (-1177) (-1267 $))) (-15 -1922 ($ (-1267 (-1177)) (-1267 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -1527 ((-1173 (-410 (-953 |#1|))))) (-15 -3417 ((-1173 (-410 (-953 |#1|))) $)) (-15 -2085 ((-410 (-953 |#1|)) $)) (-15 -3294 ((-410 (-953 |#1|)) $)) (-15 -2852 ((-1173 (-410 (-953 |#1|))))) (-15 -4394 ((-1173 (-410 (-953 |#1|))) $)) (-15 -2527 ((-410 (-953 |#1|)) $)) (-15 -3707 ((-410 (-953 |#1|)) $)) (-15 -2518 ((-410 (-953 |#1|)) $ $)) (-15 -3990 ((-410 (-953 |#1|)))) (-15 -4173 ((-410 (-953 |#1|)) $ $)) (-15 -3171 ((-410 (-953 |#1|)))) (-15 -1526 ((-645 (-953 |#1|)) (-1267 $))) (-15 -1526 ((-645 (-953 |#1|))))) |%noBranch|))) (-172) (-922) (-645 (-1177)) (-1267 (-690 |#1|))) (T -456)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1267 (-410 (-953 *3)))) (-4 *3 (-172)) (-14 *6 (-1267 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))))) (-2651 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -1975 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-2747 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -1975 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-1922 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) (-14 *4 (-645 (-1177))) (-14 *5 (-1267 (-690 *2))))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 *2)) (-14 *6 (-1267 (-690 *3))))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-1267 (-1177))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-1267 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 *2)) (-14 *7 (-1267 (-690 *4))))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-1267 (-1177))) (-5 *3 (-1267 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 (-1177))) (-14 *7 (-1267 (-690 *4))))) (-1527 (*1 *2) (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-2852 (*1 *2) (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-4394 (*1 *2 *1) (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-2518 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-3990 (*1 *2) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-4173 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-3171 (*1 *2) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1267 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-953 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 (-1177))) (-14 *7 (-1267 (-690 *4))))) (-1526 (*1 *2) (-12 (-5 *2 (-645 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(-13 (-420 (-410 (-953 |#1|))) (-649 (-1143 |#2| (-410 (-953 |#1|)))) (-10 -8 (-15 -4127 ($ (-1267 (-410 (-953 |#1|))))) (-15 -2651 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -2747 ((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed"))) (-15 -1922 ($)) (-15 -1922 ($ (-1177))) (-15 -1922 ($ (-1267 (-1177)))) (-15 -1922 ($ (-1267 $))) (-15 -1922 ($ (-1177) (-1267 $))) (-15 -1922 ($ (-1267 (-1177)) (-1267 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -1527 ((-1173 (-410 (-953 |#1|))))) (-15 -3417 ((-1173 (-410 (-953 |#1|))) $)) (-15 -2085 ((-410 (-953 |#1|)) $)) (-15 -3294 ((-410 (-953 |#1|)) $)) (-15 -2852 ((-1173 (-410 (-953 |#1|))))) (-15 -4394 ((-1173 (-410 (-953 |#1|))) $)) (-15 -2527 ((-410 (-953 |#1|)) $)) (-15 -3707 ((-410 (-953 |#1|)) $)) (-15 -2518 ((-410 (-953 |#1|)) $ $)) (-15 -3990 ((-410 (-953 |#1|)))) (-15 -4173 ((-410 (-953 |#1|)) $ $)) (-15 -3171 ((-410 (-953 |#1|)))) (-15 -1526 ((-645 (-953 |#1|)) (-1267 $))) (-15 -1526 ((-645 (-953 |#1|))))) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 18)) (-2845 (((-645 (-865 |#1|)) $) 92)) (-2670 (((-1173 $) $ (-865 |#1|)) 55) (((-1173 |#2|) $) 143)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1312 (($ $) NIL (|has| |#2| (-559)))) (-2318 (((-112) $) NIL (|has| |#2| (-559)))) (-2350 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL (|has| |#2| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2033 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-3621 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2393 (($ $ (-645 (-567))) 98)) (-3006 (($ $) 85)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#2| (-910)))) (-2543 (($ $ |#2| |#3| $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) 68)) (-2832 (($ (-1173 |#2|) (-865 |#1|)) 148) (($ (-1173 $) (-865 |#1|)) 61)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) 71)) (-2821 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-865 |#1|)) NIL)) (-2752 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-3345 (($ (-1 |#3| |#3|) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-3 (-865 |#1|) "failed") $) 48)) (-2969 (($ $) NIL)) (-2980 ((|#2| $) 50)) (-2735 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4250 (-772))) "failed") $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) 49)) (-2955 ((|#2| $) 141)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-1999 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1621 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1813 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4127 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1710 (($) 22 T CONST)) (-1722 (($) 31 T CONST)) (-2636 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 136)) (** (($ $ (-922)) NIL) (($ $ (-772)) 134)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) -(((-457 |#1| |#2| |#3|) (-13 (-950 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) (-645 (-1177)) (-1050) (-238 (-2410 |#1|) (-772))) (T -457)) -((-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1177))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-238 (-2410 *3) (-772)))))) -(-13 (-950 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) -((-3870 (((-112) |#1| (-645 |#2|)) 94)) (-3041 (((-3 (-1267 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-2763 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1267 (-645 |#2|))) 105)) (-3269 ((|#2| |#2| |#1|) 35)) (-4041 (((-772) |#2| (-645 |#2|)) 26))) -(((-458 |#1| |#2|) (-10 -7 (-15 -3269 (|#2| |#2| |#1|)) (-15 -4041 ((-772) |#2| (-645 |#2|))) (-15 -3041 ((-3 (-1267 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2763 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1267 (-645 |#2|)))) (-15 -3870 ((-112) |#1| (-645 |#2|)))) (-308) (-1243 |#1|)) (T -458)) -((-3870 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1243 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2763 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1267 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1243 *4)))) (-3041 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1243 *4)) (-5 *2 (-1267 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-3269 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1243 *3))))) -(-10 -7 (-15 -3269 (|#2| |#2| |#1|)) (-15 -4041 ((-772) |#2| (-645 |#2|))) (-15 -3041 ((-3 (-1267 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2763 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1267 (-645 |#2|)))) (-15 -3870 ((-112) |#1| (-645 |#2|)))) -((-2703 (((-421 |#5|) |#5|) 24))) -(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2703 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177))))) (-794) (-559) (-559) (-950 |#4| |#2| |#1|)) (T -459)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-950 *7 *5 *4))))) -(-10 -7 (-15 -2703 ((-421 |#5|) |#5|))) -((-1822 ((|#3|) 40)) (-2052 (((-1173 |#4|) (-1173 |#4|) (-1173 |#4|)) 36))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2052 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -1822 (|#3|))) (-794) (-851) (-910) (-950 |#3| |#1| |#2|)) (T -460)) -((-1822 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-910)) (-5 *1 (-460 *3 *4 *5 *6))))) -(-10 -7 (-15 -2052 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -1822 (|#3|))) -((-2703 (((-421 (-1173 |#1|)) (-1173 |#1|)) 43))) -(((-461 |#1|) (-10 -7 (-15 -2703 ((-421 (-1173 |#1|)) (-1173 |#1|)))) (-308)) (T -461)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1173 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1173 *4))))) -(-10 -7 (-15 -2703 ((-421 (-1173 |#1|)) (-1173 |#1|)))) -((-2892 (((-52) |#2| (-1177) (-295 |#2|) (-1234 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-772))) 43) (((-52) |#2| (-1177) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-1970 (((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567))) 85) (((-52) |#2| (-1177) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-2913 (((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))) 72)) (-2903 (((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567))) 50))) -(((-462 |#1| |#2|) (-10 -7 (-15 -2892 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2892 ((-52) |#2| (-1177) (-295 |#2|))) (-15 -2892 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-772)))) (-15 -2892 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-772)))) (-15 -2903 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567)))) (-15 -2903 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567)))) (-15 -2913 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -2913 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -1970 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|))) (-15 -1970 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567)))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567)))) (-15 -1970 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -462)) -((-1970 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *8))) (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-1970 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1234 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-1970 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-1970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-567))) (-4 *7 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-1970 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-2913 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *8))) (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2913 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1234 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2903 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-567))) (-4 *7 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2892 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-772))) (-4 *3 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-772))) (-4 *7 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2892 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2892 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6))))) -(-10 -7 (-15 -2892 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2892 ((-52) |#2| (-1177) (-295 |#2|))) (-15 -2892 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-772)))) (-15 -2892 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-772)))) (-15 -2903 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567)))) (-15 -2903 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567)))) (-15 -2913 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -2913 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -1970 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|))) (-15 -1970 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1234 (-567)))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-567)))) (-15 -1970 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567)))) (-15 -1970 ((-52) |#2| (-1177) (-295 |#2|) (-1234 (-410 (-567))) (-410 (-567))))) -((-3269 ((|#2| |#2| |#1|) 15)) (-2354 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-922)) 82)) (-2297 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922)) 72))) -(((-463 |#1| |#2|) (-10 -7 (-15 -2297 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922))) (-15 -2354 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-922))) (-15 -3269 (|#2| |#2| |#1|))) (-308) (-1243 |#1|)) (T -463)) -((-3269 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1243 *3)))) (-2354 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-922)) (-4 *3 (-1243 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-2297 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1243 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) -(-10 -7 (-15 -2297 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922))) (-15 -2354 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-922))) (-15 -3269 (|#2| |#2| |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 28)) (-3457 (($ |#3|) 25)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) 32)) (-4249 (($ |#2| |#4| $) 33)) (-2821 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-2969 (((-714 |#3| |#4| |#5|) $) 15)) (-3281 ((|#3| $) 19)) (-3881 ((|#4| $) 17)) (-2980 ((|#2| $) 29)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1569 (($ |#2| |#3| |#4|) 26)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 36 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 34)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2980 (|#2| $)) (-15 -2969 ((-714 |#3| |#4| |#5|) $)) (-15 -3881 (|#4| $)) (-15 -3281 (|#3| $)) (-15 -3006 ($ $)) (-15 -2821 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -3457 ($ |#3|)) (-15 -1569 ($ |#2| |#3| |#4|)) (-15 -4249 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1177)) (-172) (-851) (-238 (-2410 |#1|) (-772)) (-1 (-112) (-2 (|:| -3763 |#3|) (|:| -4250 |#4|)) (-2 (|:| -3763 |#3|) (|:| -4250 |#4|))) (-950 |#2| |#4| (-865 |#1|))) (T -464)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) (-4 *6 (-238 (-2410 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) (-2 (|:| -3763 *5) (|:| -4250 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-950 *4 *6 (-865 *3))))) (-2980 (*1 *2 *1) (-12 (-14 *3 (-645 (-1177))) (-4 *5 (-238 (-2410 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *4) (|:| -4250 *5)) (-2 (|:| -3763 *4) (|:| -4250 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-950 *2 *5 (-865 *3))))) (-2969 (*1 *2 *1) (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) (-4 *6 (-238 (-2410 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) (-2 (|:| -3763 *5) (|:| -4250 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-950 *4 *6 (-865 *3))))) (-3881 (*1 *2 *1) (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *2)) (-2 (|:| -3763 *5) (|:| -4250 *2)))) (-4 *2 (-238 (-2410 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-950 *4 *2 (-865 *3))))) (-3281 (*1 *2 *1) (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) (-4 *5 (-238 (-2410 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *5)) (-2 (|:| -3763 *2) (|:| -4250 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-950 *4 *5 (-865 *3))))) (-3006 (*1 *1 *1) (-12 (-14 *2 (-645 (-1177))) (-4 *3 (-172)) (-4 *5 (-238 (-2410 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *4) (|:| -4250 *5)) (-2 (|:| -3763 *4) (|:| -4250 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-950 *3 *5 (-865 *2))))) (-2821 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2410 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) (-2 (|:| -3763 *5) (|:| -4250 *6)))) (-14 *4 (-645 (-1177))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-865 *4))))) (-3457 (*1 *1 *2) (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) (-4 *5 (-238 (-2410 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *5)) (-2 (|:| -3763 *2) (|:| -4250 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-950 *4 *5 (-865 *3))))) (-1569 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1177))) (-4 *2 (-172)) (-4 *4 (-238 (-2410 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *3) (|:| -4250 *4)) (-2 (|:| -3763 *3) (|:| -4250 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-950 *2 *4 (-865 *5))))) (-4249 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1177))) (-4 *2 (-172)) (-4 *3 (-238 (-2410 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *3)) (-2 (|:| -3763 *5) (|:| -4250 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-950 *2 *3 (-865 *4)))))) -(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2980 (|#2| $)) (-15 -2969 ((-714 |#3| |#4| |#5|) $)) (-15 -3881 (|#4| $)) (-15 -3281 (|#3| $)) (-15 -3006 ($ $)) (-15 -2821 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -3457 ($ |#3|)) (-15 -1569 ($ |#2| |#3| |#4|)) (-15 -4249 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-4074 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4074 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|) (-13 (-1039 (-410 (-567))) (-365) (-10 -8 (-15 -4127 ($ |#4|)) (-15 -1441 (|#4| $)) (-15 -1455 (|#4| $))))) (T -465)) -((-4074 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-950 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1039 (-410 (-567))) (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $)))))))) -(-10 -7 (-15 -4074 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2845 (((-645 |#3|) $) 41)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) NIL (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4267 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 49)) (-2033 (($ (-645 |#4|)) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3230 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417)))) (-3397 (((-645 |#4|) $) 18 (|has| $ (-6 -4417)))) (-4146 ((|#3| $) 47)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#4|) $) 14 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3751 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 21)) (-3254 (((-645 |#3|) $) NIL)) (-3377 (((-112) |#3| $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3430 (((-1121) $) NIL)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 39)) (-3347 (($) 17)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) 16)) (-3880 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-4142 (($ (-645 |#4|)) 13)) (-2388 (($ $ |#3|) NIL)) (-2155 (($ $ |#3|) NIL)) (-3712 (($ $ |#3|) NIL)) (-4127 (((-863) $) 38) (((-645 |#4|) $) 50)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 30)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-466 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3880 ($ (-645 |#4|))) (-6 -4417) (-6 -4418))) (-1050) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -466)) -((-3880 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6))))) -(-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3880 ($ (-645 |#4|))) (-6 -4417) (-6 -4418))) -((-1710 (($) 11)) (-1722 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1722 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1710 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467)) -NIL -(-10 -8 (-15 -1722 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1710 (|#1|))) -((-2399 (((-112) $ $) 7)) (-3747 (((-3 |#1| "failed") $) 27)) (-2033 ((|#1| $) 28)) (-3963 (($ $ $) 24)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1813 ((|#2| $) 20)) (-4127 (((-863) $) 12) (($ |#1|) 26)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 25 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 16) (($ $ $) 14)) (-3024 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2774 (*1 *1 *1 *1) (-4 *1 (-455))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2740 (*1 *1 *1 *1) (-4 *1 (-455))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455))))) +(-13 (-559) (-10 -8 (-15 -2774 ($ $ $)) (-15 -2774 ($ (-645 $))) (-15 -2740 ($ $ $)) (-15 -2740 ($ (-645 $))) (-15 -3750 ((-1174 $) (-1174 $) (-1174 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 (-410 (-954 |#1|)))) (-1268 $)) NIL) (((-1268 (-690 (-410 (-954 |#1|))))) NIL)) (-3337 (((-1268 $)) NIL)) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL)) (-3645 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1735 (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-2583 (((-410 (-954 |#1|)) $) NIL)) (-3528 (((-690 (-410 (-954 |#1|))) $ (-1268 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-4063 (((-1174 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1174 (-410 (-954 |#1|)))) 94 (|has| |#1| (-559)))) (-2586 (($ $ (-923)) NIL)) (-1883 (((-410 (-954 |#1|)) $) NIL)) (-1575 (((-1174 (-410 (-954 |#1|))) $) 92 (|has| (-410 (-954 |#1|)) (-559)))) (-2676 (((-410 (-954 |#1|)) (-1268 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-1682 (((-1174 (-410 (-954 |#1|))) $) NIL)) (-1444 (((-112)) NIL)) (-3658 (($ (-1268 (-410 (-954 |#1|))) (-1268 $)) 118) (($ (-1268 (-410 (-954 |#1|)))) NIL)) (-2109 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1954 (((-923)) NIL)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL)) (-3345 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2119 (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-2726 (((-410 (-954 |#1|)) $) NIL)) (-2702 (((-690 (-410 (-954 |#1|))) $ (-1268 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-4162 (((-1174 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1174 (-410 (-954 |#1|)))) 93 (|has| |#1| (-559)))) (-3450 (($ $ (-923)) NIL)) (-2200 (((-410 (-954 |#1|)) $) NIL)) (-3960 (((-1174 (-410 (-954 |#1|))) $) 87 (|has| (-410 (-954 |#1|)) (-559)))) (-3042 (((-410 (-954 |#1|)) (-1268 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-3567 (((-1174 (-410 (-954 |#1|))) $) NIL)) (-3396 (((-112)) NIL)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL)) (-3070 (((-112)) NIL)) (-4341 (((-112)) NIL)) (-3430 (((-1122) $) NIL)) (-3325 (((-410 (-954 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-3152 (((-410 (-954 |#1|)) $) 104 (|has| |#1| (-559)))) (-3492 (((-410 (-954 |#1|)) $) 108 (|has| |#1| (-559)))) (-2712 (((-1174 (-410 (-954 |#1|))) $) 98 (|has| |#1| (-559)))) (-4058 (((-410 (-954 |#1|))) 79 (|has| |#1| (-559)))) (-1589 (((-410 (-954 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-1364 (((-410 (-954 |#1|)) $) 103 (|has| |#1| (-559)))) (-3134 (((-410 (-954 |#1|)) $) 107 (|has| |#1| (-559)))) (-1522 (((-1174 (-410 (-954 |#1|))) $) 97 (|has| |#1| (-559)))) (-3880 (((-410 (-954 |#1|))) 75 (|has| |#1| (-559)))) (-3742 (($) 114) (($ (-1178)) 122) (($ (-1268 (-1178))) 121) (($ (-1268 $)) 109) (($ (-1178) (-1268 $)) 120) (($ (-1268 (-1178)) (-1268 $)) 119)) (-4356 (((-112)) NIL)) (-1787 (((-410 (-954 |#1|)) $ (-567)) NIL)) (-2887 (((-1268 (-410 (-954 |#1|))) $ (-1268 $)) 111) (((-690 (-410 (-954 |#1|))) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 (-954 |#1|))) $) 45) (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL)) (-3893 (((-1268 (-410 (-954 |#1|))) $) NIL) (($ (-1268 (-410 (-954 |#1|)))) 42)) (-4013 (((-645 (-954 (-410 (-954 |#1|)))) (-1268 $)) NIL) (((-645 (-954 (-410 (-954 |#1|))))) NIL) (((-645 (-954 |#1|)) (-1268 $)) 112 (|has| |#1| (-559))) (((-645 (-954 |#1|))) 113 (|has| |#1| (-559)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL)) (-4132 (((-863) $) NIL) (($ (-1268 (-410 (-954 |#1|)))) NIL)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 67)) (-2652 (((-645 (-1268 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL)) (-2355 (($ (-690 (-410 (-954 |#1|))) $) NIL)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL)) (-1749 (((-112)) NIL)) (-2059 (((-112)) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) 110)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-954 |#1|))) NIL) (($ (-410 (-954 |#1|)) $) NIL) (($ (-1144 |#2| (-410 (-954 |#1|))) $) NIL))) +(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4132 ($ (-1268 (-410 (-954 |#1|))))) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3742 ($)) (-15 -3742 ($ (-1178))) (-15 -3742 ($ (-1268 (-1178)))) (-15 -3742 ($ (-1268 $))) (-15 -3742 ($ (-1178) (-1268 $))) (-15 -3742 ($ (-1268 (-1178)) (-1268 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -4162 ((-1174 (-410 (-954 |#1|))))) (-15 -1522 ((-1174 (-410 (-954 |#1|))) $)) (-15 -1364 ((-410 (-954 |#1|)) $)) (-15 -3134 ((-410 (-954 |#1|)) $)) (-15 -4063 ((-1174 (-410 (-954 |#1|))))) (-15 -2712 ((-1174 (-410 (-954 |#1|))) $)) (-15 -3152 ((-410 (-954 |#1|)) $)) (-15 -3492 ((-410 (-954 |#1|)) $)) (-15 -1589 ((-410 (-954 |#1|)) $ $)) (-15 -3880 ((-410 (-954 |#1|)))) (-15 -3325 ((-410 (-954 |#1|)) $ $)) (-15 -4058 ((-410 (-954 |#1|)))) (-15 -4013 ((-645 (-954 |#1|)) (-1268 $))) (-15 -4013 ((-645 (-954 |#1|))))) |%noBranch|))) (-172) (-923) (-645 (-1178)) (-1268 (-690 |#1|))) (T -456)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 *3)))) (-4 *3 (-172)) (-14 *6 (-1268 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))))) (-3412 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3425 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) (-14 *4 (-645 (-1178))) (-14 *5 (-1268 (-690 *2))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1268 (-1178))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1268 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 *2)) (-14 *7 (-1268 (-690 *4))))) (-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 (-1178))) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))) (-4162 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4063 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1589 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3880 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3325 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4058 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))) (-4013 (*1 *2) (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4132 ($ (-1268 (-410 (-954 |#1|))))) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3742 ($)) (-15 -3742 ($ (-1178))) (-15 -3742 ($ (-1268 (-1178)))) (-15 -3742 ($ (-1268 $))) (-15 -3742 ($ (-1178) (-1268 $))) (-15 -3742 ($ (-1268 (-1178)) (-1268 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -4162 ((-1174 (-410 (-954 |#1|))))) (-15 -1522 ((-1174 (-410 (-954 |#1|))) $)) (-15 -1364 ((-410 (-954 |#1|)) $)) (-15 -3134 ((-410 (-954 |#1|)) $)) (-15 -4063 ((-1174 (-410 (-954 |#1|))))) (-15 -2712 ((-1174 (-410 (-954 |#1|))) $)) (-15 -3152 ((-410 (-954 |#1|)) $)) (-15 -3492 ((-410 (-954 |#1|)) $)) (-15 -1589 ((-410 (-954 |#1|)) $ $)) (-15 -3880 ((-410 (-954 |#1|)))) (-15 -3325 ((-410 (-954 |#1|)) $ $)) (-15 -4058 ((-410 (-954 |#1|)))) (-15 -4013 ((-645 (-954 |#1|)) (-1268 $))) (-15 -4013 ((-645 (-954 |#1|))))) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 18)) (-2847 (((-645 (-865 |#1|)) $) 92)) (-2675 (((-1174 $) $ (-865 |#1|)) 55) (((-1174 |#2|) $) 143)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) 98)) (-3014 (($ $) 85)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| |#3| $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 68)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) 148) (($ (-1174 $) (-865 |#1|)) 61)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) 71)) (-2824 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-3273 (($ (-1 |#3| |#3|) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) 48)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) 50)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 49)) (-2962 ((|#2| $) 141)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) 22 T CONST)) (-1728 (($) 31 T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 136)) (** (($ $ (-923)) NIL) (($ $ (-772)) 134)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) +(((-457 |#1| |#2| |#3|) (-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051) (-238 (-2414 |#1|) (-772))) (T -457)) +((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1178))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-238 (-2414 *3) (-772)))))) +(-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) +((-3435 (((-112) |#1| (-645 |#2|)) 94)) (-3749 (((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-2850 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|))) 105)) (-1591 ((|#2| |#2| |#1|) 35)) (-1885 (((-772) |#2| (-645 |#2|)) 26))) +(((-458 |#1| |#2|) (-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -1885 ((-772) |#2| (-645 |#2|))) (-15 -3749 ((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2850 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|)))) (-15 -3435 ((-112) |#1| (-645 |#2|)))) (-308) (-1244 |#1|)) (T -458)) +((-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1244 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2850 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1268 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1244 *4)))) (-3749 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1244 *4)) (-5 *2 (-1268 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1244 *3))))) +(-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -1885 ((-772) |#2| (-645 |#2|))) (-15 -3749 ((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2850 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|)))) (-15 -3435 ((-112) |#1| (-645 |#2|)))) +((-2706 (((-421 |#5|) |#5|) 24))) +(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2706 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-794) (-559) (-559) (-951 |#4| |#2| |#1|)) (T -459)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-951 *7 *5 *4))))) +(-10 -7 (-15 -2706 ((-421 |#5|) |#5|))) +((-1422 ((|#3|) 40)) (-3750 (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 36))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3750 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -1422 (|#3|))) (-794) (-851) (-911) (-951 |#3| |#1| |#2|)) (T -460)) +((-1422 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6))))) +(-10 -7 (-15 -3750 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -1422 (|#3|))) +((-2706 (((-421 (-1174 |#1|)) (-1174 |#1|)) 43))) +(((-461 |#1|) (-10 -7 (-15 -2706 ((-421 (-1174 |#1|)) (-1174 |#1|)))) (-308)) (T -461)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1174 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1174 *4))))) +(-10 -7 (-15 -2706 ((-421 (-1174 |#1|)) (-1174 |#1|)))) +((-2896 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772))) 43) (((-52) |#2| (-1178) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-1306 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567))) 85) (((-52) |#2| (-1178) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-2919 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 72)) (-2907 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567))) 50))) +(((-462 |#1| |#2|) (-10 -7 (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772)))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772)))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -2907 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -2919 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -2919 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -462)) +((-1306 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-1306 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-1306 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-2919 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2919 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2907 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2896 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-772))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-772))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6))))) +(-10 -7 (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772)))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772)))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -2907 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -2919 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -2919 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))))) +((-1591 ((|#2| |#2| |#1|) 15)) (-1707 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-923)) 82)) (-1980 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923)) 72))) +(((-463 |#1| |#2|) (-10 -7 (-15 -1980 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1707 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -1591 (|#2| |#2| |#1|))) (-308) (-1244 |#1|)) (T -463)) +((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1244 *3)))) (-1707 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1244 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-1980 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1244 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) +(-10 -7 (-15 -1980 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1707 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -1591 (|#2| |#2| |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 28)) (-4387 (($ |#3|) 25)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) 32)) (-3358 (($ |#2| |#4| $) 33)) (-2824 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-2976 (((-714 |#3| |#4| |#5|) $) 15)) (-4357 ((|#3| $) 19)) (-3617 ((|#4| $) 17)) (-2989 ((|#2| $) 29)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-2867 (($ |#2| |#3| |#4|) 26)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 36 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2989 (|#2| $)) (-15 -2976 ((-714 |#3| |#4| |#5|) $)) (-15 -3617 (|#4| $)) (-15 -4357 (|#3| $)) (-15 -3014 ($ $)) (-15 -2824 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4387 ($ |#3|)) (-15 -2867 ($ |#2| |#3| |#4|)) (-15 -3358 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1178)) (-172) (-851) (-238 (-2414 |#1|) (-772)) (-1 (-112) (-2 (|:| -3768 |#3|) (|:| -3458 |#4|)) (-2 (|:| -3768 |#3|) (|:| -3458 |#4|))) (-951 |#2| |#4| (-865 |#1|))) (T -464)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-951 *4 *6 (-865 *3))))) (-2989 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *2 *5 (-865 *3))))) (-2976 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) (-3617 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *2)) (-2 (|:| -3768 *5) (|:| -3458 *2)))) (-4 *2 (-238 (-2414 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))) (-4357 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) (-2 (|:| -3768 *2) (|:| -3458 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-3014 (*1 *1 *1) (-12 (-14 *2 (-645 (-1178))) (-4 *3 (-172)) (-4 *5 (-238 (-2414 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *3 *5 (-865 *2))))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2414 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-14 *4 (-645 (-1178))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) (-4387 (*1 *1 *2) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) (-2 (|:| -3768 *2) (|:| -3458 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-2867 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1178))) (-4 *2 (-172)) (-4 *4 (-238 (-2414 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *4)) (-2 (|:| -3768 *3) (|:| -3458 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-951 *2 *4 (-865 *5))))) (-3358 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1178))) (-4 *2 (-172)) (-4 *3 (-238 (-2414 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *3)) (-2 (|:| -3768 *5) (|:| -3458 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *2 *3 (-865 *4)))))) +(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2989 (|#2| $)) (-15 -2976 ((-714 |#3| |#4| |#5|) $)) (-15 -3617 (|#4| $)) (-15 -4357 (|#3| $)) (-15 -3014 ($ $)) (-15 -2824 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4387 ($ |#3|)) (-15 -2867 ($ |#2| |#3| |#4|)) (-15 -3358 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-4208 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4208 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -465)) +((-4208 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))) +(-10 -7 (-15 -4208 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2847 (((-645 |#3|) $) 41)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 49)) (-2038 (($ (-645 |#4|)) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1679 ((|#3| $) 47)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 14 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 21)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 39)) (-3498 (($) 17)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 16)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-4147 (($ (-645 |#4|)) 13)) (-2397 (($ $ |#3|) NIL)) (-2120 (($ $ |#3|) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 38) (((-645 |#4|) $) 50)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 30)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-466 |#1| |#2| |#3| |#4|) (-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3893 ($ (-645 |#4|))) (-6 -4418) (-6 -4419))) (-1051) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -466)) +((-3893 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6))))) +(-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3893 ($ (-645 |#4|))) (-6 -4418) (-6 -4419))) +((-1716 (($) 11)) (-1728 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1728 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1716 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467)) +NIL +(-10 -8 (-15 -1728 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1716 (|#1|))) +((-2403 (((-112) $ $) 7)) (-3753 (((-3 |#1| "failed") $) 27)) (-2038 ((|#1| $) 28)) (-4207 (($ $ $) 24)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 ((|#2| $) 20)) (-4132 (((-863) $) 12) (($ |#1|) 26)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 16) (($ $ $) 14)) (-3033 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-468 |#1| |#2|) (-140) (-172) (-23)) (T -468)) -((-1722 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3963 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-473 |t#1| |t#2|) (-1039 |t#1|) (-10 -8 (-15 (-1722) ($) -3280) (-15 -3963 ($ $ $)))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-473 |#1| |#2|) . T) ((-1039 |#1|) . T) ((-1101) . T)) -((-2846 (((-1267 (-1267 (-567))) (-1267 (-1267 (-567))) (-922)) 29)) (-1460 (((-1267 (-1267 (-567))) (-922)) 24))) -(((-469) (-10 -7 (-15 -2846 ((-1267 (-1267 (-567))) (-1267 (-1267 (-567))) (-922))) (-15 -1460 ((-1267 (-1267 (-567))) (-922))))) (T -469)) -((-1460 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1267 (-1267 (-567)))) (-5 *1 (-469)))) (-2846 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 (-1267 (-567)))) (-5 *3 (-922)) (-5 *1 (-469))))) -(-10 -7 (-15 -2846 ((-1267 (-1267 (-567))) (-1267 (-1267 (-567))) (-922))) (-15 -1460 ((-1267 (-1267 (-567))) (-922)))) -((-2801 (((-567) (-567)) 32) (((-567)) 24)) (-2886 (((-567) (-567)) 28) (((-567)) 20)) (-3996 (((-567) (-567)) 30) (((-567)) 22)) (-1399 (((-112) (-112)) 14) (((-112)) 12)) (-1303 (((-112) (-112)) 13) (((-112)) 11)) (-1832 (((-112) (-112)) 26) (((-112)) 17))) -(((-470) (-10 -7 (-15 -1303 ((-112))) (-15 -1399 ((-112))) (-15 -1303 ((-112) (-112))) (-15 -1399 ((-112) (-112))) (-15 -1832 ((-112))) (-15 -3996 ((-567))) (-15 -2886 ((-567))) (-15 -2801 ((-567))) (-15 -1832 ((-112) (-112))) (-15 -3996 ((-567) (-567))) (-15 -2886 ((-567) (-567))) (-15 -2801 ((-567) (-567))))) (T -470)) -((-2801 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2801 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2886 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3996 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-1832 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-1303 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-1399 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-1303 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(-10 -7 (-15 -1303 ((-112))) (-15 -1399 ((-112))) (-15 -1303 ((-112) (-112))) (-15 -1399 ((-112) (-112))) (-15 -1832 ((-112))) (-15 -3996 ((-567))) (-15 -2886 ((-567))) (-15 -2801 ((-567))) (-15 -1832 ((-112) (-112))) (-15 -3996 ((-567) (-567))) (-15 -2886 ((-567) (-567))) (-15 -2801 ((-567) (-567)))) -((-2399 (((-112) $ $) NIL)) (-1737 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-1551 (((-645 (-1095 (-381))) $) 16) (((-645 (-1095 (-381))) $ (-645 (-1095 (-381)))) 142)) (-4170 (((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875))) 58)) (-3865 (((-645 (-645 (-944 (-225)))) $) 137)) (-1943 (((-1272) $ (-944 (-225)) (-875)) 163)) (-2483 (($ $) 136) (($ (-645 (-645 (-944 (-225))))) 149) (($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922))) 148) (($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264))) 150)) (-3739 (((-1159) $) NIL)) (-1791 (((-567) $) 110)) (-3430 (((-1121) $) NIL)) (-1719 (($) 147)) (-1351 (((-645 (-225)) (-645 (-645 (-944 (-225))))) 89)) (-1482 (((-1272) $ (-645 (-944 (-225))) (-875) (-875) (-922)) 155) (((-1272) $ (-944 (-225))) 157) (((-1272) $ (-944 (-225)) (-875) (-875) (-922)) 156)) (-4127 (((-863) $) 169) (($ (-645 (-645 (-944 (-225))))) 164)) (-4104 (((-112) $ $) NIL)) (-4251 (((-1272) $ (-944 (-225))) 162)) (-2929 (((-112) $ $) NIL))) -(((-471) (-13 (-1101) (-10 -8 (-15 -1719 ($)) (-15 -2483 ($ $)) (-15 -2483 ($ (-645 (-645 (-944 (-225)))))) (-15 -2483 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)))) (-15 -2483 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264)))) (-15 -3865 ((-645 (-645 (-944 (-225)))) $)) (-15 -1791 ((-567) $)) (-15 -1551 ((-645 (-1095 (-381))) $)) (-15 -1551 ((-645 (-1095 (-381))) $ (-645 (-1095 (-381))))) (-15 -1737 ((-645 (-381)) $)) (-15 -1737 ((-645 (-381)) $ (-645 (-381)))) (-15 -1482 ((-1272) $ (-645 (-944 (-225))) (-875) (-875) (-922))) (-15 -1482 ((-1272) $ (-944 (-225)))) (-15 -1482 ((-1272) $ (-944 (-225)) (-875) (-875) (-922))) (-15 -4251 ((-1272) $ (-944 (-225)))) (-15 -1943 ((-1272) $ (-944 (-225)) (-875))) (-15 -4127 ($ (-645 (-645 (-944 (-225)))))) (-15 -4127 ((-863) $)) (-15 -4170 ((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875)))) (-15 -1351 ((-645 (-225)) (-645 (-645 (-944 (-225))))))))) (T -471)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-1719 (*1 *1) (-5 *1 (-471))) (-2483 (*1 *1 *1) (-5 *1 (-471))) (-2483 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-2483 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-922))) (-5 *1 (-471)))) (-2483 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-922))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-471)))) (-1551 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-471)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1737 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1482 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *2 (-1272)) (-5 *1 (-471)))) (-1482 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1272)) (-5 *1 (-471)))) (-1482 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *2 (-1272)) (-5 *1 (-471)))) (-4251 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1272)) (-5 *1 (-471)))) (-1943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *2 (-1272)) (-5 *1 (-471)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-4170 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471))))) -(-13 (-1101) (-10 -8 (-15 -1719 ($)) (-15 -2483 ($ $)) (-15 -2483 ($ (-645 (-645 (-944 (-225)))))) (-15 -2483 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)))) (-15 -2483 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264)))) (-15 -3865 ((-645 (-645 (-944 (-225)))) $)) (-15 -1791 ((-567) $)) (-15 -1551 ((-645 (-1095 (-381))) $)) (-15 -1551 ((-645 (-1095 (-381))) $ (-645 (-1095 (-381))))) (-15 -1737 ((-645 (-381)) $)) (-15 -1737 ((-645 (-381)) $ (-645 (-381)))) (-15 -1482 ((-1272) $ (-645 (-944 (-225))) (-875) (-875) (-922))) (-15 -1482 ((-1272) $ (-944 (-225)))) (-15 -1482 ((-1272) $ (-944 (-225)) (-875) (-875) (-922))) (-15 -4251 ((-1272) $ (-944 (-225)))) (-15 -1943 ((-1272) $ (-944 (-225)) (-875))) (-15 -4127 ($ (-645 (-645 (-944 (-225)))))) (-15 -4127 ((-863) $)) (-15 -4170 ((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875)))) (-15 -1351 ((-645 (-225)) (-645 (-645 (-944 (-225)))))))) -((-3037 (($ $) NIL) (($ $ $) 11))) -(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472)) -NIL -(-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1813 ((|#2| $) 20)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 16) (($ $ $) 14)) (-3024 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-1728 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4207 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-473 |t#1| |t#2|) (-1040 |t#1|) (-10 -8 (-15 (-1728) ($) -3286) (-15 -4207 ($ $ $)))) +(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-473 |#1| |#2|) . T) ((-1040 |#1|) . T) ((-1102) . T)) +((-1523 (((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923)) 29)) (-2616 (((-1268 (-1268 (-567))) (-923)) 24))) +(((-469) (-10 -7 (-15 -1523 ((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923))) (-15 -2616 ((-1268 (-1268 (-567))) (-923))))) (T -469)) +((-2616 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 (-567)))) (-5 *1 (-469)))) (-1523 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 (-1268 (-567)))) (-5 *3 (-923)) (-5 *1 (-469))))) +(-10 -7 (-15 -1523 ((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923))) (-15 -2616 ((-1268 (-1268 (-567))) (-923)))) +((-2959 (((-567) (-567)) 32) (((-567)) 24)) (-3467 (((-567) (-567)) 28) (((-567)) 20)) (-3213 (((-567) (-567)) 30) (((-567)) 22)) (-4059 (((-112) (-112)) 14) (((-112)) 12)) (-4079 (((-112) (-112)) 13) (((-112)) 11)) (-4307 (((-112) (-112)) 26) (((-112)) 17))) +(((-470) (-10 -7 (-15 -4079 ((-112))) (-15 -4059 ((-112))) (-15 -4079 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4307 ((-112))) (-15 -3213 ((-567))) (-15 -3467 ((-567))) (-15 -2959 ((-567))) (-15 -4307 ((-112) (-112))) (-15 -3213 ((-567) (-567))) (-15 -3467 ((-567) (-567))) (-15 -2959 ((-567) (-567))))) (T -470)) +((-2959 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3213 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2959 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3467 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3213 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4307 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4059 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(-10 -7 (-15 -4079 ((-112))) (-15 -4059 ((-112))) (-15 -4079 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4307 ((-112))) (-15 -3213 ((-567))) (-15 -3467 ((-567))) (-15 -2959 ((-567))) (-15 -4307 ((-112) (-112))) (-15 -3213 ((-567) (-567))) (-15 -3467 ((-567) (-567))) (-15 -2959 ((-567) (-567)))) +((-2403 (((-112) $ $) NIL)) (-1741 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-3320 (((-645 (-1096 (-381))) $) 16) (((-645 (-1096 (-381))) $ (-645 (-1096 (-381)))) 142)) (-4290 (((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875))) 58)) (-4311 (((-645 (-645 (-945 (-225)))) $) 137)) (-4371 (((-1273) $ (-945 (-225)) (-875)) 163)) (-2170 (($ $) 136) (($ (-645 (-645 (-945 (-225))))) 149) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923))) 148) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264))) 150)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 110)) (-3430 (((-1122) $) NIL)) (-2230 (($) 147)) (-2704 (((-645 (-225)) (-645 (-645 (-945 (-225))))) 89)) (-1859 (((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923)) 155) (((-1273) $ (-945 (-225))) 157) (((-1273) $ (-945 (-225)) (-875) (-875) (-923)) 156)) (-4132 (((-863) $) 169) (($ (-645 (-645 (-945 (-225))))) 164)) (-1745 (((-112) $ $) NIL)) (-2653 (((-1273) $ (-945 (-225))) 162)) (-2936 (((-112) $ $) NIL))) +(((-471) (-13 (-1102) (-10 -8 (-15 -2230 ($)) (-15 -2170 ($ $)) (-15 -2170 ($ (-645 (-645 (-945 (-225)))))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -4311 ((-645 (-645 (-945 (-225)))) $)) (-15 -1795 ((-567) $)) (-15 -3320 ((-645 (-1096 (-381))) $)) (-15 -3320 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1741 ((-645 (-381)) $)) (-15 -1741 ((-645 (-381)) $ (-645 (-381)))) (-15 -1859 ((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1859 ((-1273) $ (-945 (-225)))) (-15 -1859 ((-1273) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2653 ((-1273) $ (-945 (-225)))) (-15 -4371 ((-1273) $ (-945 (-225)) (-875))) (-15 -4132 ($ (-645 (-645 (-945 (-225)))))) (-15 -4132 ((-863) $)) (-15 -4290 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2704 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))) (T -471)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-2230 (*1 *1) (-5 *1 (-471))) (-2170 (*1 *1 *1) (-5 *1 (-471))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-2170 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *1 (-471)))) (-2170 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-3320 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1741 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-2653 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))) (-4371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-4290 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471))))) +(-13 (-1102) (-10 -8 (-15 -2230 ($)) (-15 -2170 ($ $)) (-15 -2170 ($ (-645 (-645 (-945 (-225)))))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -4311 ((-645 (-645 (-945 (-225)))) $)) (-15 -1795 ((-567) $)) (-15 -3320 ((-645 (-1096 (-381))) $)) (-15 -3320 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1741 ((-645 (-381)) $)) (-15 -1741 ((-645 (-381)) $ (-645 (-381)))) (-15 -1859 ((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1859 ((-1273) $ (-945 (-225)))) (-15 -1859 ((-1273) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2653 ((-1273) $ (-945 (-225)))) (-15 -4371 ((-1273) $ (-945 (-225)) (-875))) (-15 -4132 ($ (-645 (-645 (-945 (-225)))))) (-15 -4132 ((-863) $)) (-15 -4290 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2704 ((-645 (-225)) (-645 (-645 (-945 (-225)))))))) +((-3045 (($ $) NIL) (($ $ $) 11))) +(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472)) +NIL +(-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 ((|#2| $) 20)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 16) (($ $ $) 14)) (-3033 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-473 |#1| |#2|) (-140) (-172) (-23)) (T -473)) -((-1813 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1710 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3037 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1101) (-10 -8 (-15 -1813 (|t#2| $)) (-15 (-1710) ($) -3280) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3037 ($ $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-1702 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-3276 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-3782 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86))) -(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -3276 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1702 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3782 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1177)) (-455) (-455)) (T -474)) -((-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1177))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-1702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1177))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) -(-10 -7 (-15 -3276 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1702 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3782 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) -((-3153 (((-3 $ "failed") $) 11)) (-2073 (($ $ $) 23)) (-3387 (($ $ $) 24)) (-3050 (($ $ $) 9)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22))) -(((-475 |#1|) (-10 -8 (-15 -3387 (|#1| |#1| |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) (-476)) (T -475)) -NIL -(-10 -8 (-15 -3387 (|#1| |#1| |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2245 (($) 19 T CONST)) (-3153 (((-3 $ "failed") $) 16)) (-2843 (((-112) $) 18)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 25)) (-3430 (((-1121) $) 11)) (-2073 (($ $ $) 22)) (-3387 (($ $ $) 21)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1722 (($) 20 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) +((-3077 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1716 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1102) (-10 -8 (-15 -3077 (|t#2| $)) (-15 (-1716) ($) -3286) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3045 ($ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-4367 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-3901 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-3081 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86))) +(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -3901 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -4367 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3081 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1178)) (-455) (-455)) (T -474)) +((-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-4367 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) +(-10 -7 (-15 -3901 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -4367 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3081 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) +((-2109 (((-3 $ "failed") $) 11)) (-1823 (($ $ $) 23)) (-1485 (($ $ $) 24)) (-3060 (($ $ $) 9)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22))) +(((-475 |#1|) (-10 -8 (-15 -1485 (|#1| |#1| |#1|)) (-15 -1823 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-476)) (T -475)) +NIL +(-10 -8 (-15 -1485 (|#1| |#1| |#1|)) (-15 -1823 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-1433 (((-112) $) 18)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 25)) (-3430 (((-1122) $) 11)) (-1823 (($ $ $) 22)) (-1485 (($ $ $) 21)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) (((-476) (-140)) (T -476)) -((-2933 (*1 *1 *1) (-4 *1 (-476))) (-3050 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-2073 (*1 *1 *1 *1) (-4 *1 (-476))) (-3387 (*1 *1 *1 *1) (-4 *1 (-476)))) -(-13 (-727) (-10 -8 (-15 -2933 ($ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4414) (-15 -2073 ($ $ $)) (-15 -3387 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 18)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-410 (-567))) NIL) (($ $ (-1083) (-410 (-567))) NIL) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) 25)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 35 (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1263 |#2|)) 16)) (-1813 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1263 |#2|)) NIL) (($ (-1252 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 21)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) 27)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-477 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -4127 ($ (-1252 |#1| |#2| |#3|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -477)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1252 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1248 |#1|) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -4127 ($ (-1252 |#1| |#2| |#3|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) 18)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) 19)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 16)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) NIL)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-478 |#1| |#2| |#3| |#4|) (-1193 |#1| |#2|) (-1101) (-1101) (-1193 |#1| |#2|) |#2|) (T -478)) -NIL -(-1193 |#1| |#2|) -((-2399 (((-112) $ $) NIL)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3645 (((-645 $) (-645 |#4|)) NIL)) (-2845 (((-645 |#3|) $) NIL)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4124 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) 29 (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4267 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2033 (($ (-645 |#4|)) NIL)) (-2417 (((-3 $ "failed") $) 45)) (-4042 ((|#4| |#4| $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3230 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3670 ((|#4| |#4| $) NIL)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) NIL)) (-3397 (((-645 |#4|) $) 18 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4146 ((|#3| $) 38)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#4|) $) 19 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 23)) (-3254 (((-645 |#3|) $) NIL)) (-3377 (((-112) |#3| $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-3250 (((-3 |#4| "failed") $) 42)) (-2200 (((-645 |#4|) $) NIL)) (-2815 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1626 ((|#4| |#4| $) NIL)) (-1835 (((-112) $ $) NIL)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1471 ((|#4| |#4| $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-3 |#4| "failed") $) 40)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3454 (((-3 $ "failed") $ |#4|) 58)) (-3981 (($ $ |#4|) NIL)) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 14)) (-1813 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) 13)) (-3880 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 22)) (-2388 (($ $ |#3|) 52)) (-2155 (($ $ |#3|) 54)) (-2961 (($ $) NIL)) (-3712 (($ $ |#3|) NIL)) (-4127 (((-863) $) 35) (((-645 |#4|) $) 46)) (-4191 (((-772) $) NIL (|has| |#3| (-370)))) (-4104 (((-112) $ $) NIL)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) NIL)) (-3113 (((-112) |#3| $) NIL)) (-2929 (((-112) $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-479 |#1| |#2| |#3| |#4|) (-1210 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -479)) -NIL -(-1210 |#1| |#2| |#3| |#4|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-1480 (($) 17)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3880 (((-381) $) 21) (((-225) $) 24) (((-410 (-1173 (-567))) $) 18) (((-539) $) 53)) (-4127 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 37 T CONST)) (-1722 (($) 8 T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-480) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))) (-1023) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1173 (-567)))) (-615 (-539)) (-10 -8 (-15 -1480 ($))))) (T -480)) -((-1480 (*1 *1) (-5 *1 (-480)))) -(-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))) (-1023) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1173 (-567)))) (-615 (-539)) (-10 -8 (-15 -1480 ($)))) -((-2399 (((-112) $ $) NIL)) (-4100 (((-1136) $) 11)) (-4084 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-481) (-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $))))) (T -481)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-481)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-481))))) -(-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $)))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) 16)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) 20)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 18)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) 13)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 19)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 11 (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) 15 (|has| $ (-6 -4417))))) -(((-482 |#1| |#2| |#3|) (-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) (-1101) (-1101) (-1159)) (T -482)) -NIL -(-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) -((-2653 (((-567) (-567) (-567)) 19)) (-1379 (((-112) (-567) (-567) (-567) (-567)) 28)) (-3270 (((-1267 (-645 (-567))) (-772) (-772)) 44))) -(((-483) (-10 -7 (-15 -2653 ((-567) (-567) (-567))) (-15 -1379 ((-112) (-567) (-567) (-567) (-567))) (-15 -3270 ((-1267 (-645 (-567))) (-772) (-772))))) (T -483)) -((-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1267 (-645 (-567)))) (-5 *1 (-483)))) (-1379 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-2653 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) -(-10 -7 (-15 -2653 ((-567) (-567) (-567))) (-15 -1379 ((-112) (-567) (-567) (-567) (-567))) (-15 -3270 ((-1267 (-645 (-567))) (-772) (-772)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-865 |#1|)) $) NIL)) (-2670 (((-1173 $) $ (-865 |#1|)) NIL) (((-1173 |#2|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1312 (($ $) NIL (|has| |#2| (-559)))) (-2318 (((-112) $) NIL (|has| |#2| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL (|has| |#2| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-3621 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2393 (($ $ (-645 (-567))) NIL)) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#2| (-910)))) (-2543 (($ $ |#2| (-485 (-2410 |#1|) (-772)) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#2|) (-865 |#1|)) NIL) (($ (-1173 $) (-865 |#1|)) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#2| (-485 (-2410 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-865 |#1|)) NIL)) (-2752 (((-485 (-2410 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3345 (($ (-1 (-485 (-2410 |#1|) (-772)) (-485 (-2410 |#1|) (-772))) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-3 (-865 |#1|) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#2| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4250 (-772))) "failed") $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#2| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-1999 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1621 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1813 (((-485 (-2410 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-485 (-2410 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-484 |#1| |#2|) (-13 (-950 |#2| (-485 (-2410 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) (-645 (-1177)) (-1050)) (T -484)) -((-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1177))) (-4 *4 (-1050))))) -(-13 (-950 |#2| (-485 (-2410 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2393 ($ $ (-645 (-567)))))) -((-2399 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2840 (((-112) $) NIL (|has| |#2| (-131)))) (-3457 (($ (-922)) NIL (|has| |#2| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) NIL (|has| |#2| (-794)))) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#2| (-370)))) (-3449 (((-567) $) NIL (|has| |#2| (-849)))) (-4281 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1101)))) (-2033 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) ((|#2| $) NIL (|has| |#2| (-1101)))) (-1868 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-3153 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1378 (($) NIL (|has| |#2| (-370)))) (-3759 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ (-567)) 15)) (-4357 (((-112) $) NIL (|has| |#2| (-849)))) (-3397 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (|has| |#2| (-727)))) (-2102 (((-112) $) NIL (|has| |#2| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2513 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#2| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#2| (-1101)))) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#2| (-370)))) (-3430 (((-1121) $) NIL (|has| |#2| (-1101)))) (-2405 ((|#2| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3246 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2746 (($ (-1267 |#2|)) NIL)) (-1635 (((-134)) NIL (|has| |#2| (-365)))) (-1621 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#2|) $) NIL) (($ (-567)) NIL (-2797 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (($ |#2|) NIL (|has| |#2| (-1101))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-1772 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-4104 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2461 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#2| (-849)))) (-1710 (($) NIL (|has| |#2| (-131)) CONST)) (-1722 (($) NIL (|has| |#2| (-727)) CONST)) (-2636 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2929 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2977 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2952 (((-112) $ $) 21 (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3024 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) +((-2939 (*1 *1 *1) (-4 *1 (-476))) (-3060 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-1823 (*1 *1 *1 *1) (-4 *1 (-476))) (-1485 (*1 *1 *1 *1) (-4 *1 (-476)))) +(-13 (-727) (-10 -8 (-15 -2939 ($ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4415) (-15 -1823 ($ $ $)) (-15 -1485 ($ $ $)))) +(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 18)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 25)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 35 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 16)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1264 |#2|)) NIL) (($ (-1253 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 21)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 27)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-477 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -4132 ($ (-1253 |#1| |#2| |#3|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -477)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1249 |#1|) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -4132 ($ (-1253 |#1| |#2| |#3|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) 18)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 19)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 16)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-478 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2|) (-1102) (-1102) (-1194 |#1| |#2|) |#2|) (T -478)) +NIL +(-1194 |#1| |#2|) +((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) NIL)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-3 |#4| "failed") $) 42)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 58)) (-2410 (($ $ |#4|) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2012 (((-112) |#3| $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-479 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -479)) +NIL +(-1211 |#1| |#2| |#3| |#4|) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-1482 (($) 17)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3893 (((-381) $) 21) (((-225) $) 24) (((-410 (-1174 (-567))) $) 18) (((-539) $) 53)) (-4132 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 8 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-480) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1174 (-567)))) (-615 (-539)) (-10 -8 (-15 -1482 ($))))) (T -480)) +((-1482 (*1 *1) (-5 *1 (-480)))) +(-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1174 (-567)))) (-615 (-539)) (-10 -8 (-15 -1482 ($)))) +((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-481) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -481)) +((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481))))) +(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $)))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) 16)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 20)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 18)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) 13)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 19)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 11 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) 15 (|has| $ (-6 -4418))))) +(((-482 |#1| |#2| |#3|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102) (-1160)) (T -482)) +NIL +(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) +((-3511 (((-567) (-567) (-567)) 19)) (-2756 (((-112) (-567) (-567) (-567) (-567)) 28)) (-3291 (((-1268 (-645 (-567))) (-772) (-772)) 44))) +(((-483) (-10 -7 (-15 -3511 ((-567) (-567) (-567))) (-15 -2756 ((-112) (-567) (-567) (-567) (-567))) (-15 -3291 ((-1268 (-645 (-567))) (-772) (-772))))) (T -483)) +((-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1268 (-645 (-567)))) (-5 *1 (-483)))) (-2756 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-3511 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) +(-10 -7 (-15 -3511 ((-567) (-567) (-567))) (-15 -2756 ((-112) (-567) (-567) (-567) (-567))) (-15 -3291 ((-1268 (-645 (-567))) (-772) (-772)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) NIL)) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-485 (-2414 |#1|) (-772)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-485 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-485 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-485 (-2414 |#1|) (-772)) (-485 (-2414 |#1|) (-772))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-485 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-485 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-484 |#1| |#2|) (-13 (-951 |#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051)) (T -484)) +((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1178))) (-4 *4 (-1051))))) +(-13 (-951 |#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) +((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) NIL (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 15)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) NIL)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) NIL (|has| |#2| (-131)) CONST)) (-1728 (($) NIL (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 21 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) (((-485 |#1| |#2|) (-238 |#1| |#2|) (-772) (-794)) (T -485)) NIL (-238 |#1| |#2|) -((-2399 (((-112) $ $) NIL)) (-2265 (((-645 (-509)) $) 14)) (-1988 (((-509) $) 12)) (-3739 (((-1159) $) NIL)) (-3889 (($ (-509) (-645 (-509))) 10)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 21) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-486) (-13 (-1084) (-10 -8 (-15 -3889 ($ (-509) (-645 (-509)))) (-15 -1988 ((-509) $)) (-15 -2265 ((-645 (-509)) $))))) (T -486)) -((-3889 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-509))) (-5 *2 (-509)) (-5 *1 (-486)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-486))))) -(-13 (-1084) (-10 -8 (-15 -3889 ($ (-509) (-645 (-509)))) (-15 -1988 ((-509) $)) (-15 -2265 ((-645 (-509)) $)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-1812 (($ $ $) 50)) (-3523 (($ $ $) 49)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2998 ((|#1| $) 40)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) 41)) (-1330 (($ |#1| $) 18)) (-4082 (($ (-645 |#1|)) 19)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3060 ((|#1| $) 34)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 11)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 47)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) 29 (|has| $ (-6 -4417))))) -(((-487 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -4082 ($ (-645 |#1|))))) (-851)) (T -487)) -((-4082 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) -(-13 (-969 |#1|) (-10 -8 (-15 -4082 ($ (-645 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2499 (($ $) 72)) (-2812 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-1821 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3430 (((-1121) $) NIL)) (-1394 (((-3 |#4| "failed") $) 118)) (-1616 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-3349 (((-2 (|:| -3970 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4127 (((-863) $) 111)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 32 T CONST)) (-2929 (((-112) $ $) 122)) (-3037 (($ $) 78) (($ $ $) NIL)) (-3024 (($ $ $) 73)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79))) -(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488)) +((-2403 (((-112) $ $) NIL)) (-2238 (((-645 (-877)) $) 15)) (-1996 (((-509) $) 13)) (-1419 (((-1160) $) NIL)) (-2029 (($ (-509) (-645 (-877))) 11)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 22) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-486) (-13 (-1085) (-10 -8 (-15 -2029 ($ (-509) (-645 (-877)))) (-15 -1996 ((-509) $)) (-15 -2238 ((-645 (-877)) $))))) (T -486)) +((-2029 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486))))) +(-13 (-1085) (-10 -8 (-15 -2029 ($ (-509) (-645 (-877)))) (-15 -1996 ((-509) $)) (-15 -2238 ((-645 (-877)) $)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2966 (($ $ $) 50)) (-4135 (($ $ $) 49)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2981 ((|#1| $) 40)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 41)) (-2531 (($ |#1| $) 18)) (-3655 (($ (-645 |#1|)) 19)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 34)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 11)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 47)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) 29 (|has| $ (-6 -4418))))) +(((-487 |#1|) (-13 (-970 |#1|) (-10 -8 (-15 -3655 ($ (-645 |#1|))))) (-851)) (T -487)) +((-3655 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) +(-13 (-970 |#1|) (-10 -8 (-15 -3655 ($ (-645 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ $) 72)) (-1500 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3430 (((-1122) $) NIL)) (-1398 (((-3 |#4| "failed") $) 118)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4132 (((-863) $) 111)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 32 T CONST)) (-2936 (((-112) $ $) 122)) (-3045 (($ $) 78) (($ $ $) NIL)) (-3033 (($ $ $) 73)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79))) +(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488)) NIL (-337 |#1| |#2| |#3| |#4|) -((-1734 (((-567) (-645 (-567))) 55)) (-2813 ((|#1| (-645 |#1|)) 97)) (-3182 (((-645 |#1|) (-645 |#1|)) 98)) (-4114 (((-645 |#1|) (-645 |#1|)) 100)) (-2771 ((|#1| (-645 |#1|)) 99)) (-4385 (((-645 (-567)) (-645 |#1|)) 58))) -(((-489 |#1|) (-10 -7 (-15 -2771 (|#1| (-645 |#1|))) (-15 -2813 (|#1| (-645 |#1|))) (-15 -4114 ((-645 |#1|) (-645 |#1|))) (-15 -3182 ((-645 |#1|) (-645 |#1|))) (-15 -4385 ((-645 (-567)) (-645 |#1|))) (-15 -1734 ((-567) (-645 (-567))))) (-1243 (-567))) (T -489)) -((-1734 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1243 *2)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1243 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1243 (-567))) (-5 *1 (-489 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1243 (-567))) (-5 *1 (-489 *3)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1243 (-567))))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1243 (-567)))))) -(-10 -7 (-15 -2771 (|#1| (-645 |#1|))) (-15 -2813 (|#1| (-645 |#1|))) (-15 -4114 ((-645 |#1|) (-645 |#1|))) (-15 -3182 ((-645 |#1|) (-645 |#1|))) (-15 -4385 ((-645 (-567)) (-645 |#1|))) (-15 -1734 ((-567) (-645 (-567))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-567) $) NIL (|has| (-567) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-567) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-567) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-2033 (((-567) $) NIL) (((-1177) $) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-567) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-567) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-567) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-567) (-1152)))) (-2102 (((-112) $) NIL (|has| (-567) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-567) (-851)))) (-3822 (($ (-1 (-567) (-567)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-567) (-1152)) CONST)) (-2895 (($ (-410 (-567))) 9)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1842 (((-567) $) NIL (|has| (-567) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1177)) (-645 (-567))) NIL (|has| (-567) (-517 (-1177) (-567)))) (($ $ (-1177) (-567)) NIL (|has| (-567) (-517 (-1177) (-567))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-567) $) NIL)) (-3880 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1177)) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL) (((-1005 16) $) 10)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-567) $) NIL (|has| (-567) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| (-567) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3050 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-490) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 16)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -2895 ($ (-410 (-567))))))) (T -490)) -((-2721 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) -(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 16)) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -2895 ($ (-410 (-567)))))) -((-2513 (((-645 |#2|) $) 29)) (-3136 (((-112) |#2| $) 34)) (-3256 (((-112) (-1 (-112) |#2|) $) 24)) (-2631 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3439 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-4127 (((-863) $) 43)) (-2461 (((-112) (-1 (-112) |#2|) $) 23)) (-2929 (((-112) $ $) 37)) (-2410 (((-772) $) 18))) -(((-491 |#1| |#2|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3136 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2513 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|))) (-492 |#2|) (-1217)) (T -491)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3136 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2513 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-492 |#1|) (-140) (-1217)) (T -492)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1217)))) (-3751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1217)))) (-2461 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) (-4 *4 (-1217)) (-5 *2 (-112)))) (-3256 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) (-4 *4 (-1217)) (-5 *2 (-112)))) (-3439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) (-4 *4 (-1217)) (-5 *2 (-772)))) (-3397 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) (-5 *2 (-645 *3)))) (-2513 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) (-5 *2 (-645 *3)))) (-3439 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-772)))) (-3136 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1101)) (-6 (-1101)) |%noBranch|) (IF (|has| |t#1| (-1101)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4418)) (-15 -3751 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4417)) (PROGN (-15 -2461 ((-112) (-1 (-112) |t#1|) $)) (-15 -3256 ((-112) (-1 (-112) |t#1|) $)) (-15 -3439 ((-772) (-1 (-112) |t#1|) $)) (-15 -3397 ((-645 |t#1|) $)) (-15 -2513 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1101)) (PROGN (-15 -3439 ((-772) |t#1| $)) (-15 -3136 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-4127 ((|#1| $) 6) (($ |#1|) 9))) -(((-493 |#1|) (-140) (-1217)) (T -493)) +((-1815 (((-567) (-645 (-567))) 55)) (-1584 ((|#1| (-645 |#1|)) 97)) (-3478 (((-645 |#1|) (-645 |#1|)) 98)) (-4392 (((-645 |#1|) (-645 |#1|)) 100)) (-2774 ((|#1| (-645 |#1|)) 99)) (-4358 (((-645 (-567)) (-645 |#1|)) 58))) +(((-489 |#1|) (-10 -7 (-15 -2774 (|#1| (-645 |#1|))) (-15 -1584 (|#1| (-645 |#1|))) (-15 -4392 ((-645 |#1|) (-645 |#1|))) (-15 -3478 ((-645 |#1|) (-645 |#1|))) (-15 -4358 ((-645 (-567)) (-645 |#1|))) (-15 -1815 ((-567) (-645 (-567))))) (-1244 (-567))) (T -489)) +((-1815 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1244 *2)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1244 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))) (-4392 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567))))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567)))))) +(-10 -7 (-15 -2774 (|#1| (-645 |#1|))) (-15 -1584 (|#1| (-645 |#1|))) (-15 -4392 ((-645 |#1|) (-645 |#1|))) (-15 -3478 ((-645 |#1|) (-645 |#1|))) (-15 -4358 ((-645 (-567)) (-645 |#1|))) (-15 -1815 ((-567) (-645 (-567))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-2342 (($ (-410 (-567))) 9)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 16) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) +(((-490) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2342 ($ (-410 (-567))))))) (T -490)) +((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) +(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2342 ($ (-410 (-567)))))) +((-2279 (((-645 |#2|) $) 29)) (-4337 (((-112) |#2| $) 34)) (-3025 (((-112) (-1 (-112) |#2|) $) 24)) (-2631 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3439 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-4132 (((-863) $) 43)) (-1853 (((-112) (-1 (-112) |#2|) $) 23)) (-2936 (((-112) $ $) 37)) (-2414 (((-772) $) 18))) +(((-491 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2279 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) (-492 |#2|) (-1218)) (T -491)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2279 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-492 |#1|) (-140) (-1218)) (T -492)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1218)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-492 *3)) (-4 *3 (-1218)))) (-1853 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-3025 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-3439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-772)))) (-2777 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-2279 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-3439 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-4337 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |t#1| (-1102)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4419)) (-15 -3731 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1853 ((-112) (-1 (-112) |t#1|) $)) (-15 -3025 ((-112) (-1 (-112) |t#1|) $)) (-15 -3439 ((-772) (-1 (-112) |t#1|) $)) (-15 -2777 ((-645 |t#1|) $)) (-15 -2279 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3439 ((-772) |t#1| $)) (-15 -4337 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-4132 ((|#1| $) 6) (($ |#1|) 9))) +(((-493 |#1|) (-140) (-1218)) (T -493)) NIL (-13 (-614 |t#1|) (-617 |t#1|)) (((-617 |#1|) . T) ((-614 |#1|) . T)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3633 (($ (-1159)) 8)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 15) (((-1159) $) 12)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 11))) -(((-494) (-13 (-1101) (-614 (-1159)) (-10 -8 (-15 -3633 ($ (-1159)))))) (T -494)) -((-3633 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-494))))) -(-13 (-1101) (-614 (-1159)) (-10 -8 (-15 -3633 ($ (-1159))))) -((-3165 (($ $) 15)) (-3148 (($ $) 24)) (-3184 (($ $) 12)) (-3192 (($ $) 10)) (-3174 (($ $) 17)) (-3157 (($ $) 22))) -(((-495 |#1|) (-10 -8 (-15 -3157 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|))) (-496)) (T -495)) -NIL -(-10 -8 (-15 -3157 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|))) -((-3165 (($ $) 11)) (-3148 (($ $) 10)) (-3184 (($ $) 9)) (-3192 (($ $) 8)) (-3174 (($ $) 7)) (-3157 (($ $) 6))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-1481 (($ (-1160)) 8)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (((-1160) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11))) +(((-494) (-13 (-1102) (-614 (-1160)) (-10 -8 (-15 -1481 ($ (-1160)))))) (T -494)) +((-1481 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-494))))) +(-13 (-1102) (-614 (-1160)) (-10 -8 (-15 -1481 ($ (-1160))))) +((-3146 (($ $) 15)) (-3128 (($ $) 24)) (-3166 (($ $) 12)) (-3175 (($ $) 10)) (-3156 (($ $) 17)) (-3137 (($ $) 22))) +(((-495 |#1|) (-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|))) (-496)) (T -495)) +NIL +(-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|))) +((-3146 (($ $) 11)) (-3128 (($ $) 10)) (-3166 (($ $) 9)) (-3175 (($ $) 8)) (-3156 (($ $) 7)) (-3137 (($ $) 6))) (((-496) (-140)) (T -496)) -((-3165 (*1 *1 *1) (-4 *1 (-496))) (-3148 (*1 *1 *1) (-4 *1 (-496))) (-3184 (*1 *1 *1) (-4 *1 (-496))) (-3192 (*1 *1 *1) (-4 *1 (-496))) (-3174 (*1 *1 *1) (-4 *1 (-496))) (-3157 (*1 *1 *1) (-4 *1 (-496)))) -(-13 (-10 -8 (-15 -3157 ($ $)) (-15 -3174 ($ $)) (-15 -3192 ($ $)) (-15 -3184 ($ $)) (-15 -3148 ($ $)) (-15 -3165 ($ $)))) -((-2703 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54))) -(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1243 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1243 |#3|)) (T -497)) -((-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1243 *7))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) -((-2399 (((-112) $ $) NIL)) (-3689 (((-645 $) (-1173 $) (-1177)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-953 $)) NIL)) (-2002 (($ (-1173 $) (-1177)) NIL) (($ (-1173 $)) NIL) (($ (-953 $)) NIL)) (-2840 (((-112) $) 39)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1553 (((-112) $ $) 73)) (-2564 (((-645 (-613 $)) $) 50)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2989 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-1599 (((-645 $) (-1173 $) (-1177)) NIL) (((-645 $) (-1173 $)) NIL) (((-645 $) (-953 $)) NIL)) (-3070 (($ (-1173 $) (-1177)) NIL) (($ (-1173 $)) NIL) (($ (-953 $)) NIL)) (-3747 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2033 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2344 (($ $ $) NIL)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-410 (-567)))) (|:| |vec| (-1267 (-410 (-567))))) (-690 $) (-1267 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2499 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-2482 (($ $) NIL) (($ (-645 $)) NIL)) (-3921 (((-645 (-114)) $) NIL)) (-2652 (((-114) (-114)) NIL)) (-2843 (((-112) $) 42)) (-2904 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-1441 (((-1126 (-567) (-613 $)) $) 37)) (-1709 (($ $ (-567)) NIL)) (-2896 (((-1173 $) (-1173 $) (-613 $)) 87) (((-1173 $) (-1173 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4275 (((-1173 $) (-613 $)) 74 (|has| $ (-1050)))) (-3822 (($ (-1 $ $) (-613 $)) NIL)) (-1622 (((-3 (-613 $) "failed") $) NIL)) (-2735 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-2640 (((-645 (-613 $)) $) NIL)) (-3627 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1582 (((-112) $ (-114)) NIL) (((-112) $ (-1177)) NIL)) (-2933 (($ $) NIL)) (-4133 (((-772) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3211 (((-112) $ $) NIL) (((-112) $ (-1177)) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1177)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1177) (-1 $ (-645 $))) NIL) (($ $ (-1177) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4197 (((-772) $) NIL)) (-1783 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1621 (($ $ (-772)) NIL) (($ $) 36)) (-1455 (((-1126 (-567) (-613 $)) $) 20)) (-2530 (($ $) NIL (|has| $ (-1050)))) (-3880 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-4127 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1126 (-567) (-613 $))) 21)) (-1772 (((-772)) NIL T CONST)) (-1331 (($ $) NIL) (($ (-645 $)) NIL)) (-2134 (((-112) (-114)) 93)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 10 T CONST)) (-1722 (($) 22 T CONST)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2929 (((-112) $ $) 24)) (-3050 (($ $ $) 44)) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL))) -(((-498) (-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4127 ($ (-1126 (-567) (-613 $)))) (-15 -1441 ((-1126 (-567) (-613 $)) $)) (-15 -1455 ((-1126 (-567) (-613 $)) $)) (-15 -2499 ($ $)) (-15 -1553 ((-112) $ $)) (-15 -2896 ((-1173 $) (-1173 $) (-613 $))) (-15 -2896 ((-1173 $) (-1173 $) (-645 (-613 $)))) (-15 -2896 ($ $ (-613 $))) (-15 -2896 ($ $ (-645 (-613 $))))))) (T -498)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-2499 (*1 *1 *1) (-5 *1 (-498))) (-1553 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))) -(-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4127 ($ (-1126 (-567) (-613 $)))) (-15 -1441 ((-1126 (-567) (-613 $)) $)) (-15 -1455 ((-1126 (-567) (-613 $)) $)) (-15 -2499 ($ $)) (-15 -1553 ((-112) $ $)) (-15 -2896 ((-1173 $) (-1173 $) (-613 $))) (-15 -2896 ((-1173 $) (-1173 $) (-645 (-613 $)))) (-15 -2896 ($ $ (-613 $))) (-15 -2896 ($ $ (-645 (-613 $)))))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 41)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 21)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 17 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) 44 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) 15 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 19)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1234 (-567))) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 24)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) 11 (|has| $ (-6 -4417))))) -(((-499 |#1| |#2|) (-19 |#1|) (-1217) (-567)) (T -499)) +((-3146 (*1 *1 *1) (-4 *1 (-496))) (-3128 (*1 *1 *1) (-4 *1 (-496))) (-3166 (*1 *1 *1) (-4 *1 (-496))) (-3175 (*1 *1 *1) (-4 *1 (-496))) (-3156 (*1 *1 *1) (-4 *1 (-496))) (-3137 (*1 *1 *1) (-4 *1 (-496)))) +(-13 (-10 -8 (-15 -3137 ($ $)) (-15 -3156 ($ $)) (-15 -3175 ($ $)) (-15 -3166 ($ $)) (-15 -3128 ($ $)) (-15 -3146 ($ $)))) +((-2706 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54))) +(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1244 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1244 |#3|)) (T -497)) +((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1244 *7))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) +((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-4103 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-2460 (((-112) $) 39)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3520 (((-112) $ $) 73)) (-2566 (((-645 (-613 $)) $) 50)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2005 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3483 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-410 (-567)))) (|:| |vec| (-1268 (-410 (-567))))) (-690 $) (-1268 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2477 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) 42)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1448 (((-1127 (-567) (-613 $)) $) 37)) (-2651 (($ $ (-567)) NIL)) (-2475 (((-1174 $) (-1174 $) (-613 $)) 87) (((-1174 $) (-1174 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3263 (((-1174 $) (-613 $)) 74 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-2939 (($ $) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1990 (((-772) $) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) 36)) (-1460 (((-1127 (-567) (-613 $)) $) 20)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3893 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) 21)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) 93)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-1728 (($) 22 T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) 24)) (-3060 (($ $ $) 44)) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) +(((-498) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -3520 ((-112) $ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))) (T -498)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-2477 (*1 *1 *1) (-5 *1 (-498))) (-3520 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))) +(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -3520 ((-112) $ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $)))))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 41)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 21)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 17 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) 44 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 15 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 19)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 24)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 11 (|has| $ (-6 -4418))))) +(((-499 |#1| |#2|) (-19 |#1|) (-1218) (-567)) (T -499)) NIL (-19 |#1|) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3056 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-1814 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-2245 (($) NIL T CONST)) (-1938 (((-499 |#1| |#3|) $ (-567)) NIL)) (-3759 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3702 ((|#1| $ (-567) (-567)) NIL)) (-3397 (((-645 |#1|) $) NIL)) (-4313 (((-772) $) NIL)) (-2844 (($ (-772) (-772) |#1|) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-1454 (((-499 |#1| |#2|) $ (-567)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1217) (-567) (-567)) (T -500)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2615 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-1961 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-2585 (($) NIL T CONST)) (-1944 (((-499 |#1| |#3|) $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-499 |#1| |#2|) $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1218) (-567) (-567)) (T -500)) NIL (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) -((-4069 (((-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-2676 (((-645 (-1173 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-2181 (((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2676 ((-645 (-1173 |#1|)) |#1| (-772) (-772) (-772))) (-15 -4069 ((-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2181 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1243 |#1|) (-1243 |#2|)) (T -501)) -((-2181 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -1975 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1243 *7)) (-4 *7 (-1243 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -1975 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-4069 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -1975 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -1975 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1243 *6)))) (-2676 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1243 *3)) (-5 *2 (-645 (-1173 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1243 *5))))) -(-10 -7 (-15 -2676 ((-645 (-1173 |#1|)) |#1| (-772) (-772) (-772))) (-15 -4069 ((-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2181 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) -((-1343 (((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-4262 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-3149 (((-772) (-772) (-772)) 36)) (-2893 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-2568 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-2098 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-1997 ((|#1| (-690 |#1|)) 18))) -(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -1997 (|#1| (-690 |#1|))) (-15 -4262 (|#1| (-690 |#1|) |#1| (-772))) (-15 -2098 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3149 ((-772) (-772) (-772))) (-15 -2568 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2568 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2893 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1343 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $)))) (-1243 |#1|) (-412 |#1| |#2|)) (T -502)) -((-1343 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2893 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2568 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2568 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3149 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2098 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *5 (-1243 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-4262 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-4 *5 (-1243 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1243 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))) -(-10 -7 (-15 -1997 (|#1| (-690 |#1|))) (-15 -4262 (|#1| (-690 |#1|) |#1| (-772))) (-15 -2098 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3149 ((-772) (-772) (-772))) (-15 -2568 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2568 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2893 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1343 ((-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -1975 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) -((-2399 (((-112) $ $) NIL)) (-2421 (($ $) NIL)) (-1688 (($ $ $) 40)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3161 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1332 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-112) $ (-1234 (-567)) (-112)) NIL (|has| $ (-6 -4418))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3230 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-2499 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3759 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4418)))) (-3702 (((-112) $ (-567)) NIL)) (-2567 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1101))) (((-567) (-112) $) NIL (|has| (-112) (-1101))) (((-567) (-1 (-112) (-112)) $) NIL)) (-3397 (((-645 (-112)) $) NIL (|has| $ (-6 -4417)))) (-1676 (($ $ $) 38)) (-1653 (($ $) NIL)) (-1797 (($ $ $) NIL)) (-2844 (($ (-772) (-112)) 27)) (-3688 (($ $ $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 8 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL)) (-3523 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2513 (((-645 (-112)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL)) (-3751 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-112) $) NIL (|has| (-567) (-851)))) (-3424 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4271 (($ $ (-112)) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101))))) (-3564 (((-645 (-112)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 28)) (-1783 (($ $ (-1234 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1101)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) 29)) (-3880 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4142 (($ (-645 (-112))) NIL)) (-2260 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4127 (((-863) $) 26)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1664 (($ $ $) 36)) (-2465 (($ $ $) NIL)) (-1350 (($ $ $) 45)) (-1362 (($ $) 43)) (-1338 (($ $ $) 44)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 30)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 31)) (-2455 (($ $ $) NIL)) (-2410 (((-772) $) 13 (|has| $ (-6 -4417))))) -(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -1362 ($ $)) (-15 -1350 ($ $ $)) (-15 -1338 ($ $ $)))) (-567)) (T -503)) -((-1362 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1350 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1338 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))) -(-13 (-123) (-10 -8 (-15 -1362 ($ $)) (-15 -1350 ($ $ $)) (-15 -1338 ($ $ $)))) -((-3321 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1173 |#4|)) 35)) (-1564 (((-1173 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1173 |#4|)) 22)) (-3586 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1173 |#4|))) 49)) (-2169 (((-1173 (-1173 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1564 (|#2| (-1 |#1| |#4|) (-1173 |#4|))) (-15 -1564 ((-1173 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1173 |#4|))) (-15 -3586 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1173 |#4|)))) (-15 -2169 ((-1173 (-1173 |#4|)) (-1 |#4| |#1|) |#3|))) (-1050) (-1243 |#1|) (-1243 |#2|) (-1050)) (T -504)) -((-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *6 (-1243 *5)) (-5 *2 (-1173 (-1173 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1243 *6)))) (-3586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1173 *8))) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-1243 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1243 *6)))) (-3321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1173 *7)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1243 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1243 *2)))) (-1564 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *4 (-1243 *5)) (-5 *2 (-1173 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1243 *4)))) (-1564 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1173 *7)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1243 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1243 *2))))) -(-10 -7 (-15 -1564 (|#2| (-1 |#1| |#4|) (-1173 |#4|))) (-15 -1564 ((-1173 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1173 |#4|))) (-15 -3586 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1173 |#4|)))) (-15 -2169 ((-1173 (-1173 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2985 (((-1272) $) 25)) (-1783 (((-1159) $ (-1177)) 30)) (-4015 (((-1272) $) 17)) (-4127 (((-863) $) 27) (($ (-1159)) 26)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 11)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) -(((-505) (-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $)) (-15 -4127 ($ (-1159)))))) (T -505)) -((-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1159)) (-5 *1 (-505)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-505)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-505)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-505))))) -(-13 (-851) (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) (-15 -2985 ((-1272) $)) (-15 -4127 ($ (-1159))))) -((-1572 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1704 ((|#1| |#4|) 10)) (-1972 ((|#3| |#4|) 17))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1704 (|#1| |#4|)) (-15 -1972 (|#3| |#4|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-993 |#1|) (-375 |#1|) (-375 |#2|)) (T -506)) -((-1572 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -1704 (|#1| |#4|)) (-15 -1972 (|#3| |#4|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2399 (((-112) $ $) NIL)) (-1500 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-2840 (((-112) $) 178)) (-3187 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-1544 (((-1166 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1177))))) (-1598 (($ $ $) 105) (($ $ |#4|) 103)) (-2843 (((-112) $) 177)) (-2579 (($ $) 131)) (-3739 (((-1159) $) NIL)) (-1877 (($ $ $) 97) (($ (-645 $)) 99)) (-1694 (((-112) |#4| $) 129)) (-3617 (((-112) $ $) 82)) (-1821 (($ (-645 |#4|)) 104)) (-3430 (((-1121) $) NIL)) (-3054 (($ (-645 |#4|)) 175)) (-2055 (((-112) $) 176)) (-2147 (($ $) 85)) (-1963 (((-645 |#4|) $) 73)) (-1597 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-3350 (((-112) |#4| $) 89)) (-1635 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-4127 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-4104 (((-112) $ $) NIL)) (-3100 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-2929 (((-112) $ $) 84)) (-3024 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113))) -(((-507 |#1| |#2| |#3| |#4|) (-13 (-1101) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3024 ($ $ $)) (-15 -2843 ((-112) $)) (-15 -2840 ((-112) $)) (-15 -3350 ((-112) |#4| $)) (-15 -3617 ((-112) $ $)) (-15 -1694 ((-112) |#4| $)) (-15 -1500 ((-112) $ (-645 |#3|))) (-15 -1500 ((-112) $)) (-15 -1877 ($ $ $)) (-15 -1877 ($ (-645 $))) (-15 -1598 ($ $ $)) (-15 -1598 ($ $ |#4|)) (-15 -2147 ($ $)) (-15 -1597 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -3100 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1635 ((-567) $ (-645 |#3|))) (-15 -1635 ((-567) $)) (-15 -2579 ($ $)) (-15 -1821 ($ (-645 |#4|))) (-15 -3054 ($ (-645 |#4|))) (-15 -2055 ((-112) $)) (-15 -1963 ((-645 |#4|) $)) (-15 -4127 ($ (-645 |#4|))) (-15 -3187 ($ $ |#4|)) (-15 -3187 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1177))) (-15 -1544 ((-1166 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -507)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2843 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2840 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3350 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-3617 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1694 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1500 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-1500 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1877 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1877 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1598 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1598 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-2147 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1635 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2579 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2055 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1963 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3187 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-3187 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-615 (-1177))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1166 (-645 (-953 *4)) (-645 (-295 (-953 *4))))) (-5 *1 (-507 *4 *5 *6 *7))))) -(-13 (-1101) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3024 ($ $ $)) (-15 -2843 ((-112) $)) (-15 -2840 ((-112) $)) (-15 -3350 ((-112) |#4| $)) (-15 -3617 ((-112) $ $)) (-15 -1694 ((-112) |#4| $)) (-15 -1500 ((-112) $ (-645 |#3|))) (-15 -1500 ((-112) $)) (-15 -1877 ($ $ $)) (-15 -1877 ($ (-645 $))) (-15 -1598 ($ $ $)) (-15 -1598 ($ $ |#4|)) (-15 -2147 ($ $)) (-15 -1597 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -3100 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1635 ((-567) $ (-645 |#3|))) (-15 -1635 ((-567) $)) (-15 -2579 ($ $)) (-15 -1821 ($ (-645 |#4|))) (-15 -3054 ($ (-645 |#4|))) (-15 -2055 ((-112) $)) (-15 -1963 ((-645 |#4|) $)) (-15 -4127 ($ (-645 |#4|))) (-15 -3187 ($ $ |#4|)) (-15 -3187 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1177))) (-15 -1544 ((-1166 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|))) |%noBranch|))) -((-1615 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-2822 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3915 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-4341 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-1766 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-3560 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195))) -(((-508 |#1| |#2|) (-10 -7 (-15 -1615 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2822 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4341 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3915 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1766 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3560 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1177)) (-772)) (T -508)) -((-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-1766 (*1 *2 *3) (-12 (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1177))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5))))) -(-10 -7 (-15 -1615 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2822 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4341 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3915 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1766 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3560 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3242 (($) 6)) (-4127 (((-863) $) 12) (((-1177) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 8))) -(((-509) (-13 (-1101) (-614 (-1177)) (-10 -8 (-15 -3242 ($))))) (T -509)) -((-3242 (*1 *1) (-5 *1 (-509)))) -(-13 (-1101) (-614 (-1177)) (-10 -8 (-15 -3242 ($)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-2821 (($ |#1| |#2|) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3748 ((|#2| $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 12 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) 11) (($ $ $) 35)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21))) +((-1867 (((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-3792 (((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-2876 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -3792 ((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772))) (-15 -1867 ((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2876 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1244 |#1|) (-1244 |#2|)) (T -501)) +((-2876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1244 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-1867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1244 *6)))) (-3792 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1244 *3)) (-5 *2 (-645 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1244 *5))))) +(-10 -7 (-15 -3792 ((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772))) (-15 -1867 ((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2876 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) +((-4349 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-1388 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-2957 (((-772) (-772) (-772)) 36)) (-2063 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-2979 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-3185 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-1877 ((|#1| (-690 |#1|)) 18))) +(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -1877 (|#1| (-690 |#1|))) (-15 -1388 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3185 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2957 ((-772) (-772) (-772))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2063 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4349 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))) (-1244 |#1|) (-412 |#1| |#2|)) (T -502)) +((-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2063 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2979 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2979 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2957 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3185 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-1388 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1244 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))) +(-10 -7 (-15 -1877 (|#1| (-690 |#1|))) (-15 -1388 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3185 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2957 ((-772) (-772) (-772))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2063 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4349 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) +((-2403 (((-112) $ $) NIL)) (-2425 (($ $) NIL)) (-1689 (($ $ $) 40)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-112) $ (-1235 (-567)) (-112)) NIL (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3238 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3741 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) NIL)) (-2569 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2777 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-1677 (($ $ $) 38)) (-1657 (($ $) NIL)) (-4005 (($ $ $) NIL)) (-2846 (($ (-772) (-112)) 27)) (-3107 (($ $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 8 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL)) (-4135 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2279 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL)) (-3731 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-112) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3986 (($ $ (-112)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 28)) (-1787 (($ $ (-1235 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 29)) (-3893 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) NIL)) (-2269 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4132 (((-863) $) 26)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1667 (($ $ $) 36)) (-2470 (($ $ $) NIL)) (-1355 (($ $ $) 45)) (-1366 (($ $) 43)) (-1341 (($ $ $) 44)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 30)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 31)) (-2458 (($ $ $) NIL)) (-2414 (((-772) $) 13 (|has| $ (-6 -4418))))) +(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1355 ($ $ $)) (-15 -1341 ($ $ $)))) (-567)) (T -503)) +((-1366 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1341 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))) +(-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1355 ($ $ $)) (-15 -1341 ($ $ $)))) +((-2663 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|)) 35)) (-3963 (((-1174 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1174 |#4|)) 22)) (-2607 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|))) 49)) (-3765 (((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3963 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -3963 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2663 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2607 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|)))) (-15 -3765 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) (-1051) (-1244 |#1|) (-1244 |#2|) (-1051)) (T -504)) +((-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1244 *6)))) (-2607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1174 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-1244 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1244 *6)))) (-2663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *4 (-1244 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1244 *4)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2))))) +(-10 -7 (-15 -3963 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -3963 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2663 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2607 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|)))) (-15 -3765 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1345 (((-1273) $) 25)) (-1787 (((-1160) $ (-1178)) 30)) (-4022 (((-1273) $) 17)) (-4132 (((-863) $) 27) (($ (-1160)) 26)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 9))) +(((-505) (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -4132 ($ (-1160)))))) (T -505)) +((-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1160)) (-5 *1 (-505)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-505))))) +(-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -4132 ($ (-1160))))) +((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3354 ((|#1| |#4|) 10)) (-4304 ((|#3| |#4|) 17))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 (|#1| |#4|)) (-15 -4304 (|#3| |#4|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-994 |#1|) (-375 |#1|) (-375 |#2|)) (T -506)) +((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -3354 (|#1| |#4|)) (-15 -4304 (|#3| |#4|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2403 (((-112) $ $) NIL)) (-3249 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-2460 (((-112) $) 178)) (-3651 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-2007 (((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1178))))) (-3102 (($ $ $) 105) (($ $ |#4|) 103)) (-1433 (((-112) $) 177)) (-1835 (($ $) 131)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 97) (($ (-645 $)) 99)) (-3825 (((-112) |#4| $) 129)) (-2642 (((-112) $ $) 82)) (-1321 (($ (-645 |#4|)) 104)) (-3430 (((-1122) $) NIL)) (-2365 (($ (-645 |#4|)) 175)) (-2775 (((-112) $) 176)) (-3716 (($ $) 85)) (-1587 (((-645 |#4|) $) 73)) (-2994 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-2648 (((-112) |#4| $) 89)) (-1879 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-4132 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-1745 (((-112) $ $) NIL)) (-4184 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-2936 (((-112) $ $) 84)) (-3033 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113))) +(((-507 |#1| |#2| |#3| |#4|) (-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3033 ($ $ $)) (-15 -1433 ((-112) $)) (-15 -2460 ((-112) $)) (-15 -2648 ((-112) |#4| $)) (-15 -2642 ((-112) $ $)) (-15 -3825 ((-112) |#4| $)) (-15 -3249 ((-112) $ (-645 |#3|))) (-15 -3249 ((-112) $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ (-645 $))) (-15 -3102 ($ $ $)) (-15 -3102 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -2994 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -4184 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1879 ((-567) $ (-645 |#3|))) (-15 -1879 ((-567) $)) (-15 -1835 ($ $)) (-15 -1321 ($ (-645 |#4|))) (-15 -2365 ($ (-645 |#4|))) (-15 -2775 ((-112) $)) (-15 -1587 ((-645 |#4|) $)) (-15 -4132 ($ (-645 |#4|))) (-15 -3651 ($ $ |#4|)) (-15 -3651 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1178))) (-15 -2007 ((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -507)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-1433 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2460 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-2642 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3825 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-3249 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3102 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3716 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1835 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2775 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3651 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3651 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1178))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1167 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) (-5 *1 (-507 *4 *5 *6 *7))))) +(-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3033 ($ $ $)) (-15 -1433 ((-112) $)) (-15 -2460 ((-112) $)) (-15 -2648 ((-112) |#4| $)) (-15 -2642 ((-112) $ $)) (-15 -3825 ((-112) |#4| $)) (-15 -3249 ((-112) $ (-645 |#3|))) (-15 -3249 ((-112) $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ (-645 $))) (-15 -3102 ($ $ $)) (-15 -3102 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -2994 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -4184 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1879 ((-567) $ (-645 |#3|))) (-15 -1879 ((-567) $)) (-15 -1835 ($ $)) (-15 -1321 ($ (-645 |#4|))) (-15 -2365 ($ (-645 |#4|))) (-15 -2775 ((-112) $)) (-15 -1587 ((-645 |#4|) $)) (-15 -4132 ($ (-645 |#4|))) (-15 -3651 ($ $ |#4|)) (-15 -3651 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1178))) (-15 -2007 ((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) +((-3397 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-4266 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3890 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-3184 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-1751 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-1971 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195))) +(((-508 |#1| |#2|) (-10 -7 (-15 -3397 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4266 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3184 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3890 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1751 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1971 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1178)) (-772)) (T -508)) +((-1971 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-1751 (*1 *2 *3) (-12 (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5))))) +(-10 -7 (-15 -3397 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4266 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3184 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3890 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1751 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1971 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4167 (($) 6)) (-4132 (((-863) $) 12) (((-1178) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 8))) +(((-509) (-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4167 ($))))) (T -509)) +((-4167 (*1 *1) (-5 *1 (-509)))) +(-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4167 ($)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 11) (($ $ $) 35)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21))) (((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-851)) (T -510)) NIL (-13 (-21) (-512 |#1| |#2|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 13)) (-2245 (($) NIL T CONST)) (-3006 (($ $) 41)) (-2821 (($ |#1| |#2|) 38)) (-3822 (($ (-1 |#1| |#1|) $) 40)) (-3748 ((|#2| $) NIL)) (-2980 ((|#1| $) 42)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 10 T CONST)) (-2929 (((-112) $ $) NIL)) (-3024 (($ $ $) 26)) (* (($ (-922) $) NIL) (($ (-772) $) 36))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 13)) (-2585 (($) NIL T CONST)) (-3014 (($ $) 41)) (-2824 (($ |#1| |#2|) 38)) (-3829 (($ (-1 |#1| |#1|) $) 40)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) 42)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-2936 (((-112) $ $) NIL)) (-3033 (($ $ $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 36))) (((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-851)) (T -511)) NIL (-13 (-23) (-512 |#1| |#2|)) -((-2399 (((-112) $ $) 7)) (-3006 (($ $) 14)) (-2821 (($ |#1| |#2|) 17)) (-3822 (($ (-1 |#1| |#1|) $) 18)) (-3748 ((|#2| $) 15)) (-2980 ((|#1| $) 16)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-512 |#1| |#2|) (-140) (-1101) (-851)) (T -512)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-851)))) (-2821 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-851)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1101)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-851)))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-851))))) -(-13 (-1101) (-10 -8 (-15 -3822 ($ (-1 |t#1| |t#1|) $)) (-15 -2821 ($ |t#1| |t#2|)) (-15 -2980 (|t#1| $)) (-15 -3748 (|t#2| $)) (-15 -3006 ($ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-2821 (($ |#1| |#2|) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3748 ((|#2| $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 22)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL))) +((-2403 (((-112) $ $) 7)) (-3014 (($ $) 14)) (-2824 (($ |#1| |#2|) 17)) (-3829 (($ (-1 |#1| |#1|) $) 18)) (-3148 ((|#2| $) 15)) (-2989 ((|#1| $) 16)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-512 |#1| |#2|) (-140) (-1102) (-851)) (T -512)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-851)))) (-2824 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851))))) +(-13 (-1102) (-10 -8 (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2824 ($ |t#1| |t#2|)) (-15 -2989 (|t#1| $)) (-15 -3148 (|t#2| $)) (-15 -3014 ($ $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 22)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) (((-513 |#1| |#2|) (-13 (-793) (-512 |#1| |#2|)) (-793) (-851)) (T -513)) NIL (-13 (-793) (-512 |#1| |#2|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2825 (($ $ $) 23)) (-3460 (((-3 $ "failed") $ $) 19)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-2821 (($ |#1| |#2|) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3748 ((|#2| $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) 23)) (-3472 (((-3 $ "failed") $ $) 19)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) (((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-851)) (T -514)) NIL (-13 (-794) (-512 |#1| |#2|)) -((-2399 (((-112) $ $) NIL)) (-3006 (($ $) 32)) (-2821 (($ |#1| |#2|) 28)) (-3822 (($ (-1 |#1| |#1|) $) 30)) (-3748 ((|#2| $) 34)) (-2980 ((|#1| $) 33)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 27)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 20))) -(((-515 |#1| |#2|) (-512 |#1| |#2|) (-1101) (-851)) (T -515)) +((-2403 (((-112) $ $) NIL)) (-3014 (($ $) 32)) (-2824 (($ |#1| |#2|) 28)) (-3829 (($ (-1 |#1| |#1|) $) 30)) (-3148 ((|#2| $) 34)) (-2989 ((|#1| $) 33)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 20))) +(((-515 |#1| |#2|) (-512 |#1| |#2|) (-1102) (-851)) (T -515)) NIL (-512 |#1| |#2|) ((-2631 (($ $ (-645 |#2|) (-645 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -2631 (|#1| |#1| |#2| |#3|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1101) (-1217)) (T -516)) +(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -2631 (|#1| |#1| |#2| |#3|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1102) (-1218)) (T -516)) NIL (-10 -8 (-15 -2631 (|#1| |#1| |#2| |#3|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) ((-2631 (($ $ (-645 |#1|) (-645 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-517 |#1| |#2|) (-140) (-1101) (-1217)) (T -517)) -((-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1217)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1217))))) +(((-517 |#1| |#2|) (-140) (-1102) (-1218)) (T -517)) +((-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1218)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1218))))) (-13 (-10 -8 (-15 -2631 ($ $ |t#1| |t#2|)) (-15 -2631 ($ $ (-645 |t#1|) (-645 |t#2|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 17)) (-4268 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 19)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772) $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-1771 ((|#1| $ (-567)) 24)) (-1427 ((|#2| $ (-567)) 22)) (-3371 (($ (-1 |#1| |#1|) $) 48)) (-2621 (($ (-1 |#2| |#2|) $) 45)) (-3739 (((-1159) $) NIL)) (-4016 (($ $ $) 55 (|has| |#2| (-793)))) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 44) (($ |#1|) NIL)) (-2253 ((|#2| |#1| $) 51)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 11 T CONST)) (-2929 (((-112) $ $) 30)) (-3024 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-922) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32))) -(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1101) (-131) |#2|) (T -518)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 17)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 19)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) 24)) (-1936 ((|#2| $ (-567)) 22)) (-3496 (($ (-1 |#1| |#1|) $) 48)) (-3870 (($ (-1 |#2| |#2|) $) 45)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) 55 (|has| |#2| (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 44) (($ |#1|) NIL)) (-4136 ((|#2| |#1| $) 51)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 11 T CONST)) (-2936 (((-112) $ $) 30)) (-3033 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32))) +(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1102) (-131) |#2|) (T -518)) NIL (-324 |#1| |#2|) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-1748 (((-112) (-112)) 32)) (-4281 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) 80)) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2300 (($ $) 84 (|has| |#1| (-1101)))) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) NIL (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) 67)) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-2951 (($ $ (-567)) 19)) (-2966 (((-772) $) 13)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 31)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 29 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-1812 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) 28 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1330 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-1631 (($ (-645 |#1|)) 43)) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) 24 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 63)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 21)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1234 (-567))) NIL)) (-2115 (($ $ (-1234 (-567))) 74) (($ $ (-567)) 68)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) 64 (|has| $ (-6 -4418)))) (-4303 (($ $) 54)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-3444 (($ $ $) 65) (($ $ |#1|) 62)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) 22 (|has| $ (-6 -4417))))) -(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -1631 ($ (-645 |#1|))) (-15 -2966 ((-772) $)) (-15 -2951 ($ $ (-567))) (-15 -1748 ((-112) (-112))))) (-1217) (-567)) (T -519)) -((-1631 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) (-14 *4 (-567)))) (-2951 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) (-14 *4 *2))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) (-14 *4 (-567))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -1631 ($ (-645 |#1|))) (-15 -2966 ((-772) $)) (-15 -2951 ($ $ (-567))) (-15 -1748 ((-112) (-112))))) -((-2399 (((-112) $ $) NIL)) (-4227 (((-1136) $) 11)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2381 (((-1136) $) 13)) (-2050 (((-1136) $) 9)) (-4127 (((-863) $) 19) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-520) (-13 (-1084) (-10 -8 (-15 -2050 ((-1136) $)) (-15 -4227 ((-1136) $)) (-15 -2381 ((-1136) $))))) (T -520)) -((-2050 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520))))) -(-13 (-1084) (-10 -8 (-15 -2050 ((-1136) $)) (-15 -4227 ((-1136) $)) (-15 -2381 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-584 |#1|) "failed") $) NIL)) (-2033 (((-584 |#1|) $) NIL)) (-4025 (($ (-1267 (-584 |#1|))) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-584 |#1|) (-370)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL (|has| (-584 |#1|) (-370)))) (-4284 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-4112 (($ $ (-772)) NIL (-2797 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2797 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4341 (((-112) $) NIL)) (-2937 (((-922) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-922)) $) NIL (-2797 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| (-584 |#1|) (-370)))) (-3601 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2896 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 (-584 |#1|)) $) NIL) (((-1173 $) $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3425 (((-922) $) NIL (|has| (-584 |#1|) (-370)))) (-4091 (((-1173 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-2772 (((-1173 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1173 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-2157 (($ $ (-1173 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-3763 (($ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL (|has| (-584 |#1|) (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-2703 (((-421 $) $) NIL)) (-1768 (((-834 (-922))) NIL) (((-922)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2797 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1635 (((-134)) NIL)) (-1621 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-1813 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2530 (((-1173 (-584 |#1|))) NIL)) (-3057 (($) NIL (|has| (-584 |#1|) (-370)))) (-3914 (($) NIL (|has| (-584 |#1|) (-370)))) (-2446 (((-1267 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1267 $)) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-1467 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2797 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL) (((-1267 $) (-922)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2636 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL))) -(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-922) (-922)) (T -521)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-3600 (((-112) (-112)) 32)) (-4284 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 80)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2133 (($ $) 84 (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 67)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3459 (($ $ (-567)) 19)) (-2572 (((-772) $) 13)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 31)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 29 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) 28 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2558 (($ (-645 |#1|)) 43)) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 24 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 63)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 21)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1235 (-567))) NIL)) (-3670 (($ $ (-1235 (-567))) 74) (($ $ (-567)) 68)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) 64 (|has| $ (-6 -4419)))) (-4305 (($ $) 54)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) 65) (($ $ |#1|) 62)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 22 (|has| $ (-6 -4418))))) +(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) (-1218) (-567)) (T -519)) +((-2558 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 (-567)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 *2))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 (-567))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) +((-2403 (((-112) $ $) NIL)) (-1997 (((-1137) $) 11)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3133 (((-1137) $) 13)) (-2055 (((-1137) $) 9)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-520) (-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $)) (-15 -1997 ((-1137) $)) (-15 -3133 ((-1137) $))))) (T -520)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) +(-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $)) (-15 -1997 ((-1137) $)) (-15 -3133 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-584 |#1|) "failed") $) NIL)) (-2038 (((-584 |#1|) $) NIL)) (-3658 (($ (-1268 (-584 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-584 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-584 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-584 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2475 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-584 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-584 |#1|) (-370)))) (-2016 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-2280 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1174 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-2286 (($ $ (-1174 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| (-584 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-584 |#1|))) NIL)) (-1527 (($) NIL (|has| (-584 |#1|) (-370)))) (-2661 (($) NIL (|has| (-584 |#1|) (-370)))) (-2887 (((-1268 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL))) +(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-923) (-923)) (T -521)) NIL (-330 (-584 |#1|)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) 51)) (-3056 (($ $ (-567) |#4|) NIL)) (-1814 (($ $ (-567) |#5|) NIL)) (-2245 (($) NIL T CONST)) (-1938 ((|#4| $ (-567)) NIL)) (-3759 ((|#1| $ (-567) (-567) |#1|) 50)) (-3702 ((|#1| $ (-567) (-567)) 45)) (-3397 (((-645 |#1|) $) NIL)) (-4313 (((-772) $) 33)) (-2844 (($ (-772) (-772) |#1|) 30)) (-4325 (((-772) $) 38)) (-1904 (((-112) $ (-772)) NIL)) (-2971 (((-567) $) 31)) (-2970 (((-567) $) 32)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) 37)) (-2233 (((-567) $) 39)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) 55 (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 14)) (-3347 (($) 16)) (-1783 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-1454 ((|#5| $ (-567)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1217) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) 51)) (-2615 (($ $ (-567) |#4|) NIL)) (-1961 (($ $ (-567) |#5|) NIL)) (-2585 (($) NIL T CONST)) (-1944 ((|#4| $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) 50)) (-3680 ((|#1| $ (-567) (-567)) 45)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) 33)) (-2846 (($ (-772) (-772) |#1|) 30)) (-3643 (((-772) $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) 31)) (-4043 (((-567) $) 32)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 37)) (-2646 (((-567) $) 39)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) 55 (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 14)) (-3498 (($) 16)) (-1787 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 ((|#5| $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1218) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522)) NIL (-57 |#1| |#4| |#5|) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) NIL)) (-3991 ((|#1| $) NIL)) (-4280 (($ $) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 73 (|has| $ (-6 -4418)))) (-2871 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3161 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4418)))) (-1332 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1831 (($ $ $) 23 (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 21 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4418))) (($ $ "rest" $) 24 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) NIL)) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3977 ((|#1| $) NIL)) (-2245 (($) NIL T CONST)) (-3224 (($ $) 28 (|has| $ (-6 -4418)))) (-3583 (($ $) 29)) (-2417 (($ $) 18) (($ $ (-772)) 35)) (-2300 (($ $) 66 (|has| |#1| (-1101)))) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) NIL (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) NIL)) (-3230 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-1578 (((-112) $) NIL)) (-2567 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101))) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3397 (((-645 |#1|) $) 27 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 31 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-1812 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3523 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2276 (($ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) 62 (|has| |#1| (-1101)))) (-3250 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1330 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) 13) (($ $ (-772)) NIL)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3580 (((-112) $) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 12)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 16)) (-1783 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1234 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-4126 (((-567) $ $) NIL)) (-2115 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-3340 (((-112) $) 39)) (-1765 (($ $) NIL)) (-4367 (($ $) NIL (|has| $ (-6 -4418)))) (-4387 (((-772) $) NIL)) (-4263 (($ $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) 40)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 26)) (-3444 (($ $ $) 65) (($ $ |#1|) NIL)) (-2260 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4127 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) 58 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) 9 (|has| $ (-6 -4417))))) -(((-523 |#1| |#2|) (-667 |#1|) (-1217) (-567)) (T -523)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 73 (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 23 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 21 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4419))) (($ $ "rest" $) 24 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) 28 (|has| $ (-6 -4419)))) (-3584 (($ $) 29)) (-2421 (($ $) 18) (($ $ (-772)) 35)) (-2133 (($ $) 66 (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) 27 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 31 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) 62 (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) 13) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 12)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 16)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3900 (((-112) $) 39)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 40)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 26)) (-2484 (($ $ $) 65) (($ $ |#1|) NIL)) (-2269 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) 58 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 9 (|has| $ (-6 -4418))))) +(((-523 |#1| |#2|) (-667 |#1|) (-1218) (-567)) (T -523)) NIL (-667 |#1|) -((-2838 ((|#4| |#4|) 37)) (-1979 (((-772) |#4|) 45)) (-2978 (((-772) |#4|) 46)) (-2407 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4418)))) (-2634 (((-3 |#4| "failed") |#4|) 70)) (-2164 ((|#4| |#4|) 62)) (-2880 ((|#1| |#4|) 61))) -(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2838 (|#4| |#4|)) (-15 -1979 ((-772) |#4|)) (-15 -2978 ((-772) |#4|)) (IF (|has| |#3| (-6 -4418)) (-15 -2407 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2880 (|#1| |#4|)) (-15 -2164 (|#4| |#4|)) (-15 -2634 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524)) -((-2634 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2164 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2880 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-2407 (*1 *2 *3) (-12 (|has| *6 (-6 -4418)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1979 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -2838 (|#4| |#4|)) (-15 -1979 ((-772) |#4|)) (-15 -2978 ((-772) |#4|)) (IF (|has| |#3| (-6 -4418)) (-15 -2407 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2880 (|#1| |#4|)) (-15 -2164 (|#4| |#4|)) (-15 -2634 ((-3 |#4| "failed") |#4|))) -((-2838 ((|#8| |#4|) 20)) (-2407 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4418)))) (-2634 (((-3 |#8| "failed") |#4|) 23))) -(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2838 (|#8| |#4|)) (-15 -2634 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4418)) (-15 -2407 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-993 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525)) -((-2407 (*1 *2 *3) (-12 (|has| *9 (-6 -4418)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-2634 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2838 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) -(-10 -7 (-15 -2838 (|#8| |#4|)) (-15 -2634 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4418)) (-15 -2407 ((-645 |#3|) |#4|)) |%noBranch|)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772) (-772)) NIL)) (-1420 (($ $ $) NIL)) (-1650 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-2449 (((-112) $) NIL)) (-3103 (($ $ (-567) (-567)) 21)) (-3878 (($ $ (-567) (-567)) NIL)) (-1581 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3132 (($ $) NIL)) (-2038 (((-112) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2638 (($ $ (-567) (-567) $) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3056 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-1814 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-1644 (($ (-772) |#1|) NIL)) (-2245 (($) NIL T CONST)) (-2838 (($ $) 30 (|has| |#1| (-308)))) (-1938 (((-603 |#1| |#3|) $ (-567)) NIL)) (-1979 (((-772) $) 33 (|has| |#1| (-559)))) (-3759 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3702 ((|#1| $ (-567) (-567)) NIL)) (-3397 (((-645 |#1|) $) NIL)) (-2978 (((-772) $) 35 (|has| |#1| (-559)))) (-2407 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-4313 (((-772) $) NIL)) (-2844 (($ (-772) (-772) |#1|) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2570 ((|#1| $) 28 (|has| |#1| (-6 (-4419 "*"))))) (-2971 (((-567) $) 10)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) 13)) (-2233 (((-567) $) NIL)) (-2109 (($ (-645 (-645 |#1|))) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1633 (((-645 (-645 |#1|)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2634 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-1853 (($ $ $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-1449 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-4116 (((-112) $) NIL)) (-2880 ((|#1| $) 26 (|has| |#1| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-1454 (((-603 |#1| |#2|) $ (-567)) NIL)) (-4127 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-526 |#1| |#2| |#3|) (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) (-1050) (-567) (-567)) (T -526)) +((-2233 ((|#4| |#4|) 37)) (-1954 (((-772) |#4|) 45)) (-1940 (((-772) |#4|) 46)) (-1325 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4419)))) (-1401 (((-3 |#4| "failed") |#4|) 70)) (-1767 ((|#4| |#4|) 62)) (-4083 ((|#1| |#4|) 61))) +(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2233 (|#4| |#4|)) (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (IF (|has| |#3| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -4083 (|#1| |#4|)) (-15 -1767 (|#4| |#4|)) (-15 -1401 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524)) +((-1401 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-1325 (*1 *2 *3) (-12 (|has| *6 (-6 -4419)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -2233 (|#4| |#4|)) (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (IF (|has| |#3| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -4083 (|#1| |#4|)) (-15 -1767 (|#4| |#4|)) (-15 -1401 ((-3 |#4| "failed") |#4|))) +((-2233 ((|#8| |#4|) 20)) (-1325 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4419)))) (-1401 (((-3 |#8| "failed") |#4|) 23))) +(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2233 (|#8| |#4|)) (-15 -1401 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525)) +((-1325 (*1 *2 *3) (-12 (|has| *9 (-6 -4419)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-1401 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) +(-10 -7 (-15 -2233 (|#8| |#4|)) (-15 -1401 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) NIL)) (-1467 (($ $ $) NIL)) (-3094 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) 21)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-1961 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-3536 (($ (-772) |#1|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 30 (|has| |#1| (-308)))) (-1944 (((-603 |#1| |#3|) $ (-567)) NIL)) (-1954 (((-772) $) 33 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) 35 (|has| |#1| (-559)))) (-1325 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) 28 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 10)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 13)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#1|))) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) 26 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-603 |#1| |#2|) $ (-567)) NIL)) (-4132 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-526 |#1| |#2| |#3|) (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) (-1051) (-567) (-567)) (T -526)) NIL (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-2553 (((-645 (-1216)) $) 13)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 19) (($ (-1182)) NIL) (((-1182) $) NIL) (($ (-645 (-1216))) 11)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-527) (-13 (-1084) (-10 -8 (-15 -4127 ($ (-645 (-1216)))) (-15 -2553 ((-645 (-1216)) $))))) (T -527)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-527)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-527))))) -(-13 (-1084) (-10 -8 (-15 -4127 ($ (-645 (-1216)))) (-15 -2553 ((-645 (-1216)) $)))) -((-2399 (((-112) $ $) NIL)) (-1339 (((-1136) $) 14)) (-3739 (((-1159) $) NIL)) (-2617 (((-509) $) 11)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 21) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-528) (-13 (-1084) (-10 -8 (-15 -2617 ((-509) $)) (-15 -1339 ((-1136) $))))) (T -528)) -((-2617 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-528))))) -(-13 (-1084) (-10 -8 (-15 -2617 ((-509) $)) (-15 -1339 ((-1136) $)))) -((-1391 (((-692 (-1225)) $) 15)) (-4011 (((-692 (-1223)) $) 39)) (-2384 (((-692 (-1222)) $) 30)) (-3760 (((-692 (-552)) $) 12)) (-1996 (((-692 (-550)) $) 43)) (-3150 (((-692 (-549)) $) 34)) (-4171 (((-772) $ (-128)) 55))) -(((-529 |#1|) (-10 -8 (-15 -4171 ((-772) |#1| (-128))) (-15 -4011 ((-692 (-1223)) |#1|)) (-15 -1996 ((-692 (-550)) |#1|)) (-15 -2384 ((-692 (-1222)) |#1|)) (-15 -3150 ((-692 (-549)) |#1|)) (-15 -1391 ((-692 (-1225)) |#1|)) (-15 -3760 ((-692 (-552)) |#1|))) (-530)) (T -529)) -NIL -(-10 -8 (-15 -4171 ((-772) |#1| (-128))) (-15 -4011 ((-692 (-1223)) |#1|)) (-15 -1996 ((-692 (-550)) |#1|)) (-15 -2384 ((-692 (-1222)) |#1|)) (-15 -3150 ((-692 (-549)) |#1|)) (-15 -1391 ((-692 (-1225)) |#1|)) (-15 -3760 ((-692 (-552)) |#1|))) -((-1391 (((-692 (-1225)) $) 12)) (-4011 (((-692 (-1223)) $) 8)) (-2384 (((-692 (-1222)) $) 10)) (-3760 (((-692 (-552)) $) 13)) (-1996 (((-692 (-550)) $) 9)) (-3150 (((-692 (-549)) $) 11)) (-4171 (((-772) $ (-128)) 7)) (-3288 (((-692 (-129)) $) 14)) (-2990 (($ $) 6))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3800 (((-645 (-1217)) $) 13)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL) (($ (-645 (-1217))) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-527) (-13 (-1085) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -3800 ((-645 (-1217)) $))))) (T -527)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527))))) +(-13 (-1085) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -3800 ((-645 (-1217)) $)))) +((-2403 (((-112) $ $) NIL)) (-1982 (((-1137) $) 14)) (-1419 (((-1160) $) NIL)) (-3488 (((-509) $) 11)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-528) (-13 (-1085) (-10 -8 (-15 -3488 ((-509) $)) (-15 -1982 ((-1137) $))))) (T -528)) +((-3488 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528))))) +(-13 (-1085) (-10 -8 (-15 -3488 ((-509) $)) (-15 -1982 ((-1137) $)))) +((-2168 (((-692 (-1226)) $) 15)) (-1612 (((-692 (-1224)) $) 39)) (-2105 (((-692 (-1223)) $) 30)) (-1578 (((-692 (-552)) $) 12)) (-1784 (((-692 (-550)) $) 43)) (-3057 (((-692 (-549)) $) 34)) (-3176 (((-772) $ (-128)) 55))) +(((-529 |#1|) (-10 -8 (-15 -3176 ((-772) |#1| (-128))) (-15 -1612 ((-692 (-1224)) |#1|)) (-15 -1784 ((-692 (-550)) |#1|)) (-15 -2105 ((-692 (-1223)) |#1|)) (-15 -3057 ((-692 (-549)) |#1|)) (-15 -2168 ((-692 (-1226)) |#1|)) (-15 -1578 ((-692 (-552)) |#1|))) (-530)) (T -529)) +NIL +(-10 -8 (-15 -3176 ((-772) |#1| (-128))) (-15 -1612 ((-692 (-1224)) |#1|)) (-15 -1784 ((-692 (-550)) |#1|)) (-15 -2105 ((-692 (-1223)) |#1|)) (-15 -3057 ((-692 (-549)) |#1|)) (-15 -2168 ((-692 (-1226)) |#1|)) (-15 -1578 ((-692 (-552)) |#1|))) +((-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-1675 (($ $) 6))) (((-530) (-140)) (T -530)) -((-3288 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225))))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1222))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223))))) (-4171 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) -(-13 (-173) (-10 -8 (-15 -3288 ((-692 (-129)) $)) (-15 -3760 ((-692 (-552)) $)) (-15 -1391 ((-692 (-1225)) $)) (-15 -3150 ((-692 (-549)) $)) (-15 -2384 ((-692 (-1222)) $)) (-15 -1996 ((-692 (-550)) $)) (-15 -4011 ((-692 (-1223)) $)) (-15 -4171 ((-772) $ (-128))))) +((-3706 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1226))))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))) (-3176 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) +(-13 (-173) (-10 -8 (-15 -3706 ((-692 (-129)) $)) (-15 -1578 ((-692 (-552)) $)) (-15 -2168 ((-692 (-1226)) $)) (-15 -3057 ((-692 (-549)) $)) (-15 -2105 ((-692 (-1223)) $)) (-15 -1784 ((-692 (-550)) $)) (-15 -1612 ((-692 (-1224)) $)) (-15 -3176 ((-772) $ (-128))))) (((-173) . T)) -((-4300 (((-1173 |#1|) (-772)) 115)) (-4290 (((-1267 |#1|) (-1267 |#1|) (-922)) 108)) (-1506 (((-1272) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) |#1|) 124)) (-2396 (((-1267 |#1|) (-1267 |#1|) (-772)) 53)) (-1378 (((-1267 |#1|) (-922)) 110)) (-4099 (((-1267 |#1|) (-1267 |#1|) (-567)) 30)) (-1867 (((-1173 |#1|) (-1267 |#1|)) 116)) (-2794 (((-1267 |#1|) (-922)) 137)) (-3601 (((-112) (-1267 |#1|)) 120)) (-2896 (((-1267 |#1|) (-1267 |#1|) (-922)) 100)) (-2612 (((-1173 |#1|) (-1267 |#1|)) 131)) (-3425 (((-922) (-1267 |#1|)) 96)) (-2933 (((-1267 |#1|) (-1267 |#1|)) 38)) (-3763 (((-1267 |#1|) (-922) (-922)) 140)) (-4247 (((-1267 |#1|) (-1267 |#1|) (-1121) (-1121)) 29)) (-3812 (((-1267 |#1|) (-1267 |#1|) (-772) (-1121)) 54)) (-1975 (((-1267 (-1267 |#1|)) (-922)) 136)) (-3050 (((-1267 |#1|) (-1267 |#1|) (-1267 |#1|)) 121)) (** (((-1267 |#1|) (-1267 |#1|) (-567)) 67)) (* (((-1267 |#1|) (-1267 |#1|) (-1267 |#1|)) 31))) -(((-531 |#1|) (-10 -7 (-15 -1506 ((-1272) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) |#1|)) (-15 -1378 ((-1267 |#1|) (-922))) (-15 -3763 ((-1267 |#1|) (-922) (-922))) (-15 -1867 ((-1173 |#1|) (-1267 |#1|))) (-15 -4300 ((-1173 |#1|) (-772))) (-15 -3812 ((-1267 |#1|) (-1267 |#1|) (-772) (-1121))) (-15 -2396 ((-1267 |#1|) (-1267 |#1|) (-772))) (-15 -4247 ((-1267 |#1|) (-1267 |#1|) (-1121) (-1121))) (-15 -4099 ((-1267 |#1|) (-1267 |#1|) (-567))) (-15 ** ((-1267 |#1|) (-1267 |#1|) (-567))) (-15 * ((-1267 |#1|) (-1267 |#1|) (-1267 |#1|))) (-15 -3050 ((-1267 |#1|) (-1267 |#1|) (-1267 |#1|))) (-15 -2896 ((-1267 |#1|) (-1267 |#1|) (-922))) (-15 -4290 ((-1267 |#1|) (-1267 |#1|) (-922))) (-15 -2933 ((-1267 |#1|) (-1267 |#1|))) (-15 -3425 ((-922) (-1267 |#1|))) (-15 -3601 ((-112) (-1267 |#1|))) (-15 -1975 ((-1267 (-1267 |#1|)) (-922))) (-15 -2794 ((-1267 |#1|) (-922))) (-15 -2612 ((-1173 |#1|) (-1267 |#1|)))) (-351)) (T -531)) -((-2612 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-1173 *4)) (-5 *1 (-531 *4)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1267 (-1267 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-922)) (-5 *1 (-531 *4)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-4290 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-922)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-922)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-4099 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-4247 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1121)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2396 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3812 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1267 *5)) (-5 *3 (-772)) (-5 *4 (-1121)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1173 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-1173 *4)) (-5 *1 (-531 *4)))) (-3763 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) (-4 *4 (-351)) (-5 *2 (-1272)) (-5 *1 (-531 *4))))) -(-10 -7 (-15 -1506 ((-1272) (-1267 (-645 (-2 (|:| -3794 |#1|) (|:| -3763 (-1121))))) |#1|)) (-15 -1378 ((-1267 |#1|) (-922))) (-15 -3763 ((-1267 |#1|) (-922) (-922))) (-15 -1867 ((-1173 |#1|) (-1267 |#1|))) (-15 -4300 ((-1173 |#1|) (-772))) (-15 -3812 ((-1267 |#1|) (-1267 |#1|) (-772) (-1121))) (-15 -2396 ((-1267 |#1|) (-1267 |#1|) (-772))) (-15 -4247 ((-1267 |#1|) (-1267 |#1|) (-1121) (-1121))) (-15 -4099 ((-1267 |#1|) (-1267 |#1|) (-567))) (-15 ** ((-1267 |#1|) (-1267 |#1|) (-567))) (-15 * ((-1267 |#1|) (-1267 |#1|) (-1267 |#1|))) (-15 -3050 ((-1267 |#1|) (-1267 |#1|) (-1267 |#1|))) (-15 -2896 ((-1267 |#1|) (-1267 |#1|) (-922))) (-15 -4290 ((-1267 |#1|) (-1267 |#1|) (-922))) (-15 -2933 ((-1267 |#1|) (-1267 |#1|))) (-15 -3425 ((-922) (-1267 |#1|))) (-15 -3601 ((-112) (-1267 |#1|))) (-15 -1975 ((-1267 (-1267 |#1|)) (-922))) (-15 -2794 ((-1267 |#1|) (-922))) (-15 -2612 ((-1173 |#1|) (-1267 |#1|)))) -((-1391 (((-692 (-1225)) $) NIL)) (-4011 (((-692 (-1223)) $) NIL)) (-2384 (((-692 (-1222)) $) NIL)) (-3760 (((-692 (-552)) $) NIL)) (-1996 (((-692 (-550)) $) NIL)) (-3150 (((-692 (-549)) $) NIL)) (-4171 (((-772) $ (-128)) NIL)) (-3288 (((-692 (-129)) $) 26)) (-3367 (((-1121) $ (-1121)) 31)) (-2567 (((-1121) $) 30)) (-1703 (((-112) $) 20)) (-2683 (($ (-391)) 14) (($ (-1159)) 16)) (-4345 (((-112) $) 27)) (-4127 (((-863) $) 34)) (-2990 (($ $) 28))) -(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -2683 ($ (-391))) (-15 -2683 ($ (-1159))) (-15 -4345 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -2567 ((-1121) $)) (-15 -3367 ((-1121) $ (-1121)))))) (T -532)) -((-2683 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-532)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-532)))) (-3367 (*1 *2 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-532))))) -(-13 (-530) (-614 (-863)) (-10 -8 (-15 -2683 ($ (-391))) (-15 -2683 ($ (-1159))) (-15 -4345 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -2567 ((-1121) $)) (-15 -3367 ((-1121) $ (-1121))))) -((-3296 (((-1 |#1| |#1|) |#1|) 11)) (-2144 (((-1 |#1| |#1|)) 10))) -(((-533 |#1|) (-10 -7 (-15 -2144 ((-1 |#1| |#1|))) (-15 -3296 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533)) -((-3296 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-2144 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) -(-10 -7 (-15 -2144 ((-1 |#1| |#1|))) (-15 -3296 ((-1 |#1| |#1|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2825 (($ $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-2821 (($ (-772) |#1|) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3822 (($ (-1 (-772) (-772)) $) NIL)) (-3748 ((|#1| $) NIL)) (-2980 (((-772) $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 27)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL))) +((-3819 (((-1174 |#1|) (-772)) 115)) (-4293 (((-1268 |#1|) (-1268 |#1|) (-923)) 108)) (-2613 (((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|) 124)) (-1762 (((-1268 |#1|) (-1268 |#1|) (-772)) 53)) (-1348 (((-1268 |#1|) (-923)) 110)) (-1385 (((-1268 |#1|) (-1268 |#1|) (-567)) 30)) (-2517 (((-1174 |#1|) (-1268 |#1|)) 116)) (-3559 (((-1268 |#1|) (-923)) 137)) (-1426 (((-112) (-1268 |#1|)) 120)) (-2475 (((-1268 |#1|) (-1268 |#1|) (-923)) 100)) (-4206 (((-1174 |#1|) (-1268 |#1|)) 131)) (-4249 (((-923) (-1268 |#1|)) 96)) (-2939 (((-1268 |#1|) (-1268 |#1|)) 38)) (-3768 (((-1268 |#1|) (-923) (-923)) 140)) (-1307 (((-1268 |#1|) (-1268 |#1|) (-1122) (-1122)) 29)) (-3378 (((-1268 |#1|) (-1268 |#1|) (-772) (-1122)) 54)) (-2623 (((-1268 (-1268 |#1|)) (-923)) 136)) (-3060 (((-1268 |#1|) (-1268 |#1|) (-1268 |#1|)) 121)) (** (((-1268 |#1|) (-1268 |#1|) (-567)) 67)) (* (((-1268 |#1|) (-1268 |#1|) (-1268 |#1|)) 31))) +(((-531 |#1|) (-10 -7 (-15 -2613 ((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|)) (-15 -1348 ((-1268 |#1|) (-923))) (-15 -3768 ((-1268 |#1|) (-923) (-923))) (-15 -2517 ((-1174 |#1|) (-1268 |#1|))) (-15 -3819 ((-1174 |#1|) (-772))) (-15 -3378 ((-1268 |#1|) (-1268 |#1|) (-772) (-1122))) (-15 -1762 ((-1268 |#1|) (-1268 |#1|) (-772))) (-15 -1307 ((-1268 |#1|) (-1268 |#1|) (-1122) (-1122))) (-15 -1385 ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 ** ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 * ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -3060 ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -2475 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -4293 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -2939 ((-1268 |#1|) (-1268 |#1|))) (-15 -4249 ((-923) (-1268 |#1|))) (-15 -1426 ((-112) (-1268 |#1|))) (-15 -2623 ((-1268 (-1268 |#1|)) (-923))) (-15 -3559 ((-1268 |#1|) (-923))) (-15 -4206 ((-1174 |#1|) (-1268 |#1|)))) (-351)) (T -531)) +((-4206 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-923)) (-5 *1 (-531 *4)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1385 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1307 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1762 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3378 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1268 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-3768 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-1273)) (-5 *1 (-531 *4))))) +(-10 -7 (-15 -2613 ((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|)) (-15 -1348 ((-1268 |#1|) (-923))) (-15 -3768 ((-1268 |#1|) (-923) (-923))) (-15 -2517 ((-1174 |#1|) (-1268 |#1|))) (-15 -3819 ((-1174 |#1|) (-772))) (-15 -3378 ((-1268 |#1|) (-1268 |#1|) (-772) (-1122))) (-15 -1762 ((-1268 |#1|) (-1268 |#1|) (-772))) (-15 -1307 ((-1268 |#1|) (-1268 |#1|) (-1122) (-1122))) (-15 -1385 ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 ** ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 * ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -3060 ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -2475 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -4293 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -2939 ((-1268 |#1|) (-1268 |#1|))) (-15 -4249 ((-923) (-1268 |#1|))) (-15 -1426 ((-112) (-1268 |#1|))) (-15 -2623 ((-1268 (-1268 |#1|)) (-923))) (-15 -3559 ((-1268 |#1|) (-923))) (-15 -4206 ((-1174 |#1|) (-1268 |#1|)))) +((-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) NIL)) (-3706 (((-692 (-129)) $) 26)) (-3953 (((-1122) $ (-1122)) 31)) (-2569 (((-1122) $) 30)) (-3254 (((-112) $) 20)) (-4258 (($ (-391)) 14) (($ (-1160)) 16)) (-2402 (((-112) $) 27)) (-4132 (((-863) $) 34)) (-1675 (($ $) 28))) +(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -4258 ($ (-391))) (-15 -4258 ($ (-1160))) (-15 -2402 ((-112) $)) (-15 -3254 ((-112) $)) (-15 -2569 ((-1122) $)) (-15 -3953 ((-1122) $ (-1122)))))) (T -532)) +((-4258 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-4258 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-532)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) (-3953 (*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532))))) +(-13 (-530) (-614 (-863)) (-10 -8 (-15 -4258 ($ (-391))) (-15 -4258 ($ (-1160))) (-15 -2402 ((-112) $)) (-15 -3254 ((-112) $)) (-15 -2569 ((-1122) $)) (-15 -3953 ((-1122) $ (-1122))))) +((-3306 (((-1 |#1| |#1|) |#1|) 11)) (-3543 (((-1 |#1| |#1|)) 10))) +(((-533 |#1|) (-10 -7 (-15 -3543 ((-1 |#1| |#1|))) (-15 -3306 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533)) +((-3306 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-3543 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) +(-10 -7 (-15 -3543 ((-1 |#1| |#1|))) (-15 -3306 ((-1 |#1| |#1|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ (-772) |#1|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 (-772) (-772)) $) NIL)) (-3148 ((|#1| $) NIL)) (-2989 (((-772) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) (((-534 |#1|) (-13 (-794) (-512 (-772) |#1|)) (-851)) (T -534)) NIL (-13 (-794) (-512 (-772) |#1|)) -((-1908 (((-645 |#2|) (-1173 |#1|) |#3|) 98)) (-2514 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1173 |#1|)) (-1173 |#1|))) 114)) (-3909 (((-1173 |#1|) (-690 |#1|)) 110))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3909 ((-1173 |#1|) (-690 |#1|))) (-15 -1908 ((-645 |#2|) (-1173 |#1|) |#3|)) (-15 -2514 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1173 |#1|)) (-1173 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535)) -((-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1173 *6)) (-1173 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1173 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3909 ((-1173 |#1|) (-690 |#1|))) (-15 -1908 ((-645 |#2|) (-1173 |#1|) |#3|)) (-15 -2514 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1173 |#1|)) (-1173 |#1|))))) -((-2315 (((-692 (-1225)) $ (-1225)) NIL)) (-4285 (((-692 (-552)) $ (-552)) NIL)) (-1949 (((-772) $ (-128)) 41)) (-2198 (((-692 (-129)) $ (-129)) 42)) (-1391 (((-692 (-1225)) $) NIL)) (-4011 (((-692 (-1223)) $) NIL)) (-2384 (((-692 (-1222)) $) NIL)) (-3760 (((-692 (-552)) $) NIL)) (-1996 (((-692 (-550)) $) NIL)) (-3150 (((-692 (-549)) $) NIL)) (-4171 (((-772) $ (-128)) 37)) (-3288 (((-692 (-129)) $) 39)) (-2766 (((-112) $) 29)) (-2086 (((-692 $) (-582) (-955)) 19) (((-692 $) (-494) (-955)) 26)) (-4127 (((-863) $) 49)) (-2990 (($ $) 43))) -(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -2086 ((-692 $) (-494) (-955)))))) (T -536)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-955)) (-5 *2 (-692 (-536))) (-5 *1 (-536))))) -(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -2086 ((-692 $) (-494) (-955))))) -((-2311 (((-844 (-567))) 12)) (-2326 (((-844 (-567))) 14)) (-1491 (((-834 (-567))) 9))) -(((-537) (-10 -7 (-15 -1491 ((-834 (-567)))) (-15 -2311 ((-844 (-567)))) (-15 -2326 ((-844 (-567)))))) (T -537)) -((-2326 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2311 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-1491 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537))))) -(-10 -7 (-15 -1491 ((-834 (-567)))) (-15 -2311 ((-844 (-567)))) (-15 -2326 ((-844 (-567))))) -((-3488 (((-539) (-1177)) 15)) (-2646 ((|#1| (-539)) 20))) -(((-538 |#1|) (-10 -7 (-15 -3488 ((-539) (-1177))) (-15 -2646 (|#1| (-539)))) (-1217)) (T -538)) -((-2646 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1217)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1217))))) -(-10 -7 (-15 -3488 ((-539) (-1177))) (-15 -2646 (|#1| (-539)))) -((-2399 (((-112) $ $) NIL)) (-4200 (((-1159) $) 55)) (-3986 (((-112) $) 51)) (-3077 (((-1177) $) 52)) (-4296 (((-112) $) 49)) (-3651 (((-1159) $) 50)) (-1817 (($ (-1159)) 56)) (-4093 (((-112) $) NIL)) (-2692 (((-112) $) NIL)) (-3045 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-3185 (($ $ (-645 (-1177))) 21)) (-2646 (((-52) $) 23)) (-4353 (((-112) $) NIL)) (-3099 (((-567) $) NIL)) (-3430 (((-1121) $) NIL)) (-2610 (($ $ (-645 (-1177)) (-1177)) 73)) (-3972 (((-112) $) NIL)) (-2319 (((-225) $) NIL)) (-1438 (($ $) 44)) (-3599 (((-863) $) NIL)) (-3827 (((-112) $ $) NIL)) (-1783 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2780 (((-645 $) $) 30)) (-1777 (((-1177) (-645 $)) 57)) (-3880 (($ (-1159)) NIL) (($ (-1177)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1105) $) 12) (($ (-1105)) 13)) (-2194 (((-1177) (-1177) (-645 $)) 60)) (-4127 (((-863) $) 54)) (-2299 (($ $) 59)) (-2288 (($ $) 58)) (-4356 (($ $ (-645 $)) 66)) (-4104 (((-112) $ $) NIL)) (-3105 (((-112) $) 29)) (-1710 (($) 9 T CONST)) (-1722 (($) 11 T CONST)) (-2929 (((-112) $ $) 74)) (-3050 (($ $ $) 82)) (-3024 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2410 (((-567) $) NIL))) -(((-539) (-13 (-1104 (-1159) (-1177) (-567) (-225) (-863)) (-615 (-1105)) (-10 -8 (-15 -2646 ((-52) $)) (-15 -3880 ($ (-1105))) (-15 -4356 ($ $ (-645 $))) (-15 -2610 ($ $ (-645 (-1177)) (-1177))) (-15 -3185 ($ $ (-645 (-1177)))) (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -3280) (-15 1 ($) -3280) (-15 -1438 ($ $)) (-15 -4200 ((-1159) $)) (-15 -1817 ($ (-1159))) (-15 -1777 ((-1177) (-645 $))) (-15 -2194 ((-1177) (-1177) (-645 $)))))) (T -539)) -((-2646 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-539)))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-2610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-1177)) (-5 *1 (-539)))) (-3185 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-539)))) (-3024 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3050 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1710 (*1 *1) (-5 *1 (-539))) (-1722 (*1 *1) (-5 *1 (-539))) (-1438 (*1 *1 *1) (-5 *1 (-539))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-539)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-539)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1177)) (-5 *1 (-539)))) (-2194 (*1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) -(-13 (-1104 (-1159) (-1177) (-567) (-225) (-863)) (-615 (-1105)) (-10 -8 (-15 -2646 ((-52) $)) (-15 -3880 ($ (-1105))) (-15 -4356 ($ $ (-645 $))) (-15 -2610 ($ $ (-645 (-1177)) (-1177))) (-15 -3185 ($ $ (-645 (-1177)))) (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1710) ($) -3280) (-15 (-1722) ($) -3280) (-15 -1438 ($ $)) (-15 -4200 ((-1159) $)) (-15 -1817 ($ (-1159))) (-15 -1777 ((-1177) (-645 $))) (-15 -2194 ((-1177) (-1177) (-645 $))))) -((-4361 ((|#2| |#2|) 17)) (-1346 ((|#2| |#2|) 13)) (-3169 ((|#2| |#2| (-567) (-567)) 20)) (-2106 ((|#2| |#2|) 15))) -(((-540 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -3169 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1258 |#1|)) (T -540)) -((-3169 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1258 *4)))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1258 *3)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1258 *3)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1258 *3))))) -(-10 -7 (-15 -1346 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -3169 (|#2| |#2| (-567) (-567)))) -((-1475 (((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1177))) 32)) (-1994 (((-645 |#2|) (-953 |#1|) |#3|) 54) (((-645 |#2|) (-1173 |#1|) |#3|) 53)) (-3843 (((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177)) |#3|) 106))) -(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-645 |#2|) (-1173 |#1|) |#3|)) (-15 -1994 ((-645 |#2|) (-953 |#1|) |#3|)) (-15 -3843 ((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177)) |#3|)) (-15 -1475 ((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1177))))) (-455) (-365) (-13 (-365) (-849))) (T -541)) -((-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1177))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-953 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-3843 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -1994 ((-645 |#2|) (-1173 |#1|) |#3|)) (-15 -1994 ((-645 |#2|) (-953 |#1|) |#3|)) (-15 -3843 ((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177)) |#3|)) (-15 -1475 ((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1177))))) -((-3269 ((|#2| |#2| |#1|) 17)) (-3699 ((|#2| (-645 |#2|)) 31)) (-1639 ((|#2| (-645 |#2|)) 52))) -(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 (|#2| (-645 |#2|))) (-15 -1639 (|#2| (-645 |#2|))) (-15 -3269 (|#2| |#2| |#1|))) (-308) (-1243 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542)) -((-3269 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1243 *3)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) -(-10 -7 (-15 -3699 (|#2| (-645 |#2|))) (-15 -1639 (|#2| (-645 |#2|))) (-15 -3269 (|#2| |#2| |#1|))) -((-2703 (((-421 (-1173 |#4|)) (-1173 |#4|) (-1 (-421 (-1173 |#3|)) (-1173 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1173 |#3|)) (-1173 |#3|))) 218))) -(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4| (-1 (-421 (-1173 |#3|)) (-1173 |#3|)))) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|) (-1 (-421 (-1173 |#3|)) (-1173 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-950 |#3| |#2| |#1|)) (T -543)) -((-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1173 *7)) (-1173 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-421 (-1173 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1173 *8)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1173 *7)) (-1173 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-950 *7 *6 *5))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4| (-1 (-421 (-1173 |#3|)) (-1173 |#3|)))) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|) (-1 (-421 (-1173 |#3|)) (-1173 |#3|))))) -((-4361 ((|#4| |#4|) 74)) (-1346 ((|#4| |#4|) 70)) (-3169 ((|#4| |#4| (-567) (-567)) 76)) (-2106 ((|#4| |#4|) 72))) -(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| |#4|)) (-15 -2106 (|#4| |#4|)) (-15 -4361 (|#4| |#4|)) (-15 -3169 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1243 |#1|) (-725 |#1| |#2|) (-1258 |#3|)) (T -544)) -((-3169 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1243 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1258 *6)))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5))))) -(-10 -7 (-15 -1346 (|#4| |#4|)) (-15 -2106 (|#4| |#4|)) (-15 -4361 (|#4| |#4|)) (-15 -3169 (|#4| |#4| (-567) (-567)))) -((-4361 ((|#2| |#2|) 27)) (-1346 ((|#2| |#2|) 23)) (-3169 ((|#2| |#2| (-567) (-567)) 29)) (-2106 ((|#2| |#2|) 25))) -(((-545 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -3169 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1258 |#1|)) (T -545)) -((-3169 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1258 *4)))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1258 *3)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1258 *3)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1258 *3))))) -(-10 -7 (-15 -1346 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -3169 (|#2| |#2| (-567) (-567)))) -((-3083 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32))) -(((-546 |#1| |#2|) (-10 -7 (-15 -3083 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3083 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3083 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1050) (-1243 |#1|)) (T -546)) -((-3083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1243 *4)))) (-3083 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1243 *4)))) (-3083 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1243 *5))))) -(-10 -7 (-15 -3083 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3083 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3083 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) -((-2478 (($ $ $) 84)) (-2833 (((-421 $) $) 52)) (-3747 (((-3 (-567) "failed") $) 64)) (-2033 (((-567) $) 42)) (-2240 (((-3 (-410 (-567)) "failed") $) 79)) (-1426 (((-112) $) 26)) (-2242 (((-410 (-567)) $) 77)) (-4341 (((-112) $) 55)) (-3816 (($ $ $ $) 92)) (-4357 (((-112) $) 17)) (-2057 (($ $ $) 62)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 74)) (-3641 (((-3 $ "failed") $) 69)) (-1466 (($ $) 24)) (-3382 (($ $ $) 90)) (-2701 (($) 65)) (-1520 (($ $) 58)) (-2703 (((-421 $) $) 50)) (-2799 (((-112) $) 15)) (-4197 (((-772) $) 32)) (-1621 (($ $ (-772)) NIL) (($ $) 11)) (-4303 (($ $) 18)) (-3880 (((-567) $) NIL) (((-539) $) 41) (((-893 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-1772 (((-772)) 9)) (-2722 (((-112) $ $) 21)) (-2092 (($ $ $) 60))) -(((-547 |#1|) (-10 -8 (-15 -3382 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1| |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -2722 ((-112) |#1| |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2092 (|#1| |#1| |#1|)) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3880 ((-567) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -4357 ((-112) |#1|)) (-15 -4197 ((-772) |#1|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -4341 ((-112) |#1|)) (-15 -1772 ((-772)))) (-548)) (T -547)) -((-1772 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))) -(-10 -8 (-15 -3382 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1| |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -2722 ((-112) |#1| |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2092 (|#1| |#1| |#1|)) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3880 ((-567) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -4357 ((-112) |#1|)) (-15 -4197 ((-772) |#1|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -4341 ((-112) |#1|)) (-15 -1772 ((-772)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-2478 (($ $ $) 90)) (-3460 (((-3 $ "failed") $ $) 20)) (-3262 (($ $ $ $) 79)) (-3081 (($ $) 57)) (-2833 (((-421 $) $) 58)) (-2373 (((-112) $ $) 130)) (-3449 (((-567) $) 119)) (-4125 (($ $ $) 93)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 111)) (-2033 (((-567) $) 112)) (-2344 (($ $ $) 134)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-3153 (((-3 $ "failed") $) 37)) (-2240 (((-3 (-410 (-567)) "failed") $) 87)) (-1426 (((-112) $) 89)) (-2242 (((-410 (-567)) $) 88)) (-1378 (($) 86) (($ $) 85)) (-2355 (($ $ $) 133)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 128)) (-4341 (((-112) $) 59)) (-3816 (($ $ $ $) 77)) (-1411 (($ $ $) 91)) (-4357 (((-112) $) 121)) (-2057 (($ $ $) 102)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 105)) (-2843 (((-112) $) 35)) (-2904 (((-112) $) 97)) (-3641 (((-3 $ "failed") $) 99)) (-2102 (((-112) $) 120)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-3383 (($ $ $ $) 78)) (-2010 (($ $ $) 122)) (-2998 (($ $ $) 123)) (-1466 (($ $) 81)) (-2334 (($ $) 94)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3382 (($ $ $) 76)) (-2701 (($) 98 T CONST)) (-2281 (($ $) 83)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-1520 (($ $) 103)) (-2703 (((-421 $) $) 56)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 135)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-2799 (((-112) $) 96)) (-4197 (((-772) $) 131)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 132)) (-1621 (($ $ (-772)) 116) (($ $) 114)) (-2303 (($ $) 82)) (-4303 (($ $) 84)) (-3880 (((-567) $) 113) (((-539) $) 107) (((-893 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-1772 (((-772)) 32 T CONST)) (-2722 (((-112) $ $) 92)) (-2092 (($ $ $) 104)) (-4104 (((-112) $ $) 9)) (-3074 (($) 95)) (-4380 (((-112) $ $) 45)) (-1944 (($ $ $ $) 80)) (-4137 (($ $) 118)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-772)) 117) (($ $) 115)) (-2988 (((-112) $ $) 125)) (-2964 (((-112) $ $) 126)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 124)) (-2952 (((-112) $ $) 127)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-1305 (((-645 |#2|) (-1174 |#1|) |#3|) 98)) (-2392 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|))) 114)) (-3372 (((-1174 |#1|) (-690 |#1|)) 110))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3372 ((-1174 |#1|) (-690 |#1|))) (-15 -1305 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -2392 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535)) +((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1174 *6)) (-1174 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) +(-10 -7 (-15 -3372 ((-1174 |#1|) (-690 |#1|))) (-15 -1305 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -2392 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|))))) +((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) 41)) (-3887 (((-692 (-129)) $ (-129)) 42)) (-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) 37)) (-3706 (((-692 (-129)) $) 39)) (-3157 (((-112) $) 29)) (-1476 (((-692 $) (-582) (-956)) 19) (((-692 $) (-494) (-956)) 26)) (-4132 (((-863) $) 49)) (-1675 (($ $) 43))) +(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1476 ((-692 $) (-494) (-956)))))) (T -536)) +((-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) (-5 *1 (-536))))) +(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1476 ((-692 $) (-494) (-956))))) +((-2319 (((-844 (-567))) 12)) (-2333 (((-844 (-567))) 14)) (-1493 (((-834 (-567))) 9))) +(((-537) (-10 -7 (-15 -1493 ((-834 (-567)))) (-15 -2319 ((-844 (-567)))) (-15 -2333 ((-844 (-567)))))) (T -537)) +((-2333 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2319 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-1493 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537))))) +(-10 -7 (-15 -1493 ((-834 (-567)))) (-15 -2319 ((-844 (-567)))) (-15 -2333 ((-844 (-567))))) +((-4204 (((-539) (-1178)) 15)) (-2649 ((|#1| (-539)) 20))) +(((-538 |#1|) (-10 -7 (-15 -4204 ((-539) (-1178))) (-15 -2649 (|#1| (-539)))) (-1218)) (T -538)) +((-2649 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1218)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1218))))) +(-10 -7 (-15 -4204 ((-539) (-1178))) (-15 -2649 (|#1| (-539)))) +((-2403 (((-112) $ $) NIL)) (-2270 (((-1160) $) 55)) (-1765 (((-112) $) 51)) (-3085 (((-1178) $) 52)) (-1583 (((-112) $) 49)) (-3657 (((-1160) $) 50)) (-2142 (($ (-1160)) 56)) (-2181 (((-112) $) NIL)) (-3582 (((-112) $) NIL)) (-2968 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3167 (($ $ (-645 (-1178))) 21)) (-2649 (((-52) $) 23)) (-2047 (((-112) $) NIL)) (-3108 (((-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2614 (($ $ (-645 (-1178)) (-1178)) 73)) (-2660 (((-112) $) NIL)) (-2327 (((-225) $) NIL)) (-1445 (($ $) 44)) (-3602 (((-863) $) NIL)) (-3845 (((-112) $ $) NIL)) (-1787 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2784 (((-645 $) $) 30)) (-3621 (((-1178) (-645 $)) 57)) (-3893 (($ (-1160)) NIL) (($ (-1178)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2201 (((-1178) (-1178) (-645 $)) 60)) (-4132 (((-863) $) 54)) (-2307 (($ $) 59)) (-2296 (($ $) 58)) (-4227 (($ $ (-645 $)) 66)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) 29)) (-1716 (($) 9 T CONST)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) 74)) (-3060 (($ $ $) 82)) (-3033 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2414 (((-567) $) NIL))) +(((-539) (-13 (-1105 (-1160) (-1178) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2649 ((-52) $)) (-15 -3893 ($ (-1106))) (-15 -4227 ($ $ (-645 $))) (-15 -2614 ($ $ (-645 (-1178)) (-1178))) (-15 -3167 ($ $ (-645 (-1178)))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -3286) (-15 1 ($) -3286) (-15 -1445 ($ $)) (-15 -2270 ((-1160) $)) (-15 -2142 ($ (-1160))) (-15 -3621 ((-1178) (-645 $))) (-15 -2201 ((-1178) (-1178) (-645 $)))))) (T -539)) +((-2649 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-2614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1178)) (-5 *1 (-539)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-539)))) (-3033 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3060 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1716 (*1 *1) (-5 *1 (-539))) (-1728 (*1 *1) (-5 *1 (-539))) (-1445 (*1 *1 *1) (-5 *1 (-539))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1178)) (-5 *1 (-539)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) +(-13 (-1105 (-1160) (-1178) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2649 ((-52) $)) (-15 -3893 ($ (-1106))) (-15 -4227 ($ $ (-645 $))) (-15 -2614 ($ $ (-645 (-1178)) (-1178))) (-15 -3167 ($ $ (-645 (-1178)))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1716) ($) -3286) (-15 (-1728) ($) -3286) (-15 -1445 ($ $)) (-15 -2270 ((-1160) $)) (-15 -2142 ($ (-1160))) (-15 -3621 ((-1178) (-645 $))) (-15 -2201 ((-1178) (-1178) (-645 $))))) +((-3509 ((|#2| |#2|) 17)) (-3513 ((|#2| |#2|) 13)) (-3833 ((|#2| |#2| (-567) (-567)) 20)) (-4277 ((|#2| |#2|) 15))) +(((-540 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1259 |#1|)) (T -540)) +((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1259 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) +((-1360 (((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178))) 32)) (-1590 (((-645 |#2|) (-954 |#1|) |#3|) 54) (((-645 |#2|) (-1174 |#1|) |#3|) 53)) (-1934 (((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|) 106))) +(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -1590 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -1590 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1934 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|)) (-15 -1360 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178))))) (-455) (-365) (-13 (-365) (-849))) (T -541)) +((-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1178))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-1934 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) +(-10 -7 (-15 -1590 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -1590 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1934 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|)) (-15 -1360 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178))))) +((-1591 ((|#2| |#2| |#1|) 17)) (-3904 ((|#2| (-645 |#2|)) 31)) (-4242 ((|#2| (-645 |#2|)) 52))) +(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3904 (|#2| (-645 |#2|))) (-15 -4242 (|#2| (-645 |#2|))) (-15 -1591 (|#2| |#2| |#1|))) (-308) (-1244 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542)) +((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1244 *3)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) +(-10 -7 (-15 -3904 (|#2| (-645 |#2|))) (-15 -4242 (|#2| (-645 |#2|))) (-15 -1591 (|#2| |#2| |#1|))) +((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|))) 218))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|)))) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -543)) +((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-951 *7 *6 *5))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|)))) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|))))) +((-3509 ((|#4| |#4|) 74)) (-3513 ((|#4| |#4|) 70)) (-3833 ((|#4| |#4| (-567) (-567)) 76)) (-4277 ((|#4| |#4|) 72))) +(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3513 (|#4| |#4|)) (-15 -4277 (|#4| |#4|)) (-15 -3509 (|#4| |#4|)) (-15 -3833 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1244 |#1|) (-725 |#1| |#2|) (-1259 |#3|)) (T -544)) +((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1244 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1259 *6)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5))))) +(-10 -7 (-15 -3513 (|#4| |#4|)) (-15 -4277 (|#4| |#4|)) (-15 -3509 (|#4| |#4|)) (-15 -3833 (|#4| |#4| (-567) (-567)))) +((-3509 ((|#2| |#2|) 27)) (-3513 ((|#2| |#2|) 23)) (-3833 ((|#2| |#2| (-567) (-567)) 29)) (-4277 ((|#2| |#2|) 25))) +(((-545 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1259 |#1|)) (T -545)) +((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1259 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) +((-2254 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32))) +(((-546 |#1| |#2|) (-10 -7 (-15 -2254 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1051) (-1244 |#1|)) (T -546)) +((-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))) (-2254 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))) (-2254 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1244 *5))))) +(-10 -7 (-15 -2254 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) +((-2882 (($ $ $) 84)) (-2908 (((-421 $) $) 52)) (-3753 (((-3 (-567) "failed") $) 64)) (-2038 (((-567) $) 42)) (-2085 (((-3 (-410 (-567)) "failed") $) 79)) (-1862 (((-112) $) 26)) (-2331 (((-410 (-567)) $) 77)) (-3184 (((-112) $) 55)) (-3407 (($ $ $ $) 92)) (-4336 (((-112) $) 17)) (-2967 (($ $ $) 62)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 74)) (-3972 (((-3 $ "failed") $) 69)) (-1446 (($ $) 24)) (-2196 (($ $ $) 90)) (-2672 (($) 65)) (-1576 (($ $) 58)) (-2706 (((-421 $) $) 50)) (-2757 (((-112) $) 15)) (-1990 (((-772) $) 32)) (-1593 (($ $ (-772)) NIL) (($ $) 11)) (-4305 (($ $) 18)) (-3893 (((-567) $) NIL) (((-539) $) 41) (((-894 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-4221 (((-772)) 9)) (-4210 (((-112) $ $) 21)) (-3881 (($ $ $) 60))) +(((-547 |#1|) (-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4210 ((-112) |#1| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3893 ((-567) |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4336 ((-112) |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -4221 ((-772)))) (-548)) (T -547)) +((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))) +(-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4210 ((-112) |#1| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3893 ((-567) |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4336 ((-112) |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -4221 ((-772)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-2882 (($ $ $) 90)) (-3472 (((-3 $ "failed") $ $) 20)) (-2208 (($ $ $ $) 79)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-3609 (((-112) $ $) 130)) (-1750 (((-567) $) 119)) (-4130 (($ $ $) 93)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 111)) (-2038 (((-567) $) 112)) (-2349 (($ $ $) 134)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-2109 (((-3 $ "failed") $) 37)) (-2085 (((-3 (-410 (-567)) "failed") $) 87)) (-1862 (((-112) $) 89)) (-2331 (((-410 (-567)) $) 88)) (-1348 (($) 86) (($ $) 85)) (-2360 (($ $ $) 133)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 128)) (-3184 (((-112) $) 59)) (-3407 (($ $ $ $) 77)) (-4254 (($ $ $) 91)) (-4336 (((-112) $) 121)) (-2967 (($ $ $) 102)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 105)) (-1433 (((-112) $) 35)) (-3837 (((-112) $) 97)) (-3972 (((-3 $ "failed") $) 99)) (-3494 (((-112) $) 120)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-2317 (($ $ $ $) 78)) (-1354 (($ $ $) 122)) (-2981 (($ $ $) 123)) (-1446 (($ $) 81)) (-1699 (($ $) 94)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2196 (($ $ $) 76)) (-2672 (($) 98 T CONST)) (-2289 (($ $) 83)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1576 (($ $) 103)) (-2706 (((-421 $) $) 56)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 135)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-2757 (((-112) $) 96)) (-1990 (((-772) $) 131)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 132)) (-1593 (($ $ (-772)) 116) (($ $) 114)) (-2277 (($ $) 82)) (-4305 (($ $) 84)) (-3893 (((-567) $) 113) (((-539) $) 107) (((-894 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-4221 (((-772)) 32 T CONST)) (-4210 (((-112) $ $) 92)) (-3881 (($ $ $) 104)) (-1745 (((-112) $ $) 9)) (-3047 (($) 95)) (-3816 (((-112) $ $) 45)) (-4309 (($ $ $ $) 80)) (-2219 (($ $) 118)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-772)) 117) (($ $) 115)) (-2997 (((-112) $ $) 125)) (-2971 (((-112) $ $) 126)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 124)) (-2958 (((-112) $ $) 127)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-548) (-140)) (T -548)) -((-2904 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3074 (*1 *1) (-4 *1 (-548))) (-2334 (*1 *1 *1) (-4 *1 (-548))) (-4125 (*1 *1 *1 *1) (-4 *1 (-548))) (-2722 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-1411 (*1 *1 *1 *1) (-4 *1 (-548))) (-2478 (*1 *1 *1 *1) (-4 *1 (-548))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-2240 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1378 (*1 *1) (-4 *1 (-548))) (-1378 (*1 *1 *1) (-4 *1 (-548))) (-4303 (*1 *1 *1) (-4 *1 (-548))) (-2281 (*1 *1 *1) (-4 *1 (-548))) (-2303 (*1 *1 *1) (-4 *1 (-548))) (-1466 (*1 *1 *1) (-4 *1 (-548))) (-1944 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3262 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3383 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3816 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3382 (*1 *1 *1 *1) (-4 *1 (-548)))) -(-13 (-1221) (-308) (-821) (-233) (-615 (-567)) (-1039 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-893 (-567))) (-887 (-567)) (-143) (-1023) (-147) (-1152) (-10 -8 (-15 -2904 ((-112) $)) (-15 -2799 ((-112) $)) (-6 -4416) (-15 -3074 ($)) (-15 -2334 ($ $)) (-15 -4125 ($ $ $)) (-15 -2722 ((-112) $ $)) (-15 -1411 ($ $ $)) (-15 -2478 ($ $ $)) (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $)) (-15 -1378 ($)) (-15 -1378 ($ $)) (-15 -4303 ($ $)) (-15 -2281 ($ $)) (-15 -2303 ($ $)) (-15 -1466 ($ $)) (-15 -1944 ($ $ $ $)) (-15 -3262 ($ $ $ $)) (-15 -3383 ($ $ $ $)) (-15 -3816 ($ $ $ $)) (-15 -3382 ($ $ $)) (-6 -4415))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-893 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-887 (-567)) . T) ((-921) . T) ((-1023) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) . T) ((-1221) . T)) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-549) (-13 (-845) (-10 -8 (-15 -2245 ($) -3280)))) (T -549)) -((-2245 (*1 *1) (-5 *1 (-549)))) -(-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) +((-3837 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3047 (*1 *1) (-4 *1 (-548))) (-1699 (*1 *1 *1) (-4 *1 (-548))) (-4130 (*1 *1 *1 *1) (-4 *1 (-548))) (-4210 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-4254 (*1 *1 *1 *1) (-4 *1 (-548))) (-2882 (*1 *1 *1 *1) (-4 *1 (-548))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1348 (*1 *1) (-4 *1 (-548))) (-1348 (*1 *1 *1) (-4 *1 (-548))) (-4305 (*1 *1 *1) (-4 *1 (-548))) (-2289 (*1 *1 *1) (-4 *1 (-548))) (-2277 (*1 *1 *1) (-4 *1 (-548))) (-1446 (*1 *1 *1) (-4 *1 (-548))) (-4309 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2208 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2317 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3407 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2196 (*1 *1 *1 *1) (-4 *1 (-548)))) +(-13 (-1222) (-308) (-821) (-233) (-615 (-567)) (-1040 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-894 (-567))) (-888 (-567)) (-143) (-1024) (-147) (-1153) (-10 -8 (-15 -3837 ((-112) $)) (-15 -2757 ((-112) $)) (-6 -4417) (-15 -3047 ($)) (-15 -1699 ($ $)) (-15 -4130 ($ $ $)) (-15 -4210 ((-112) $ $)) (-15 -4254 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $)) (-15 -1348 ($)) (-15 -1348 ($ $)) (-15 -4305 ($ $)) (-15 -2289 ($ $)) (-15 -2277 ($ $)) (-15 -1446 ($ $)) (-15 -4309 ($ $ $ $)) (-15 -2208 ($ $ $ $)) (-15 -2317 ($ $ $ $)) (-15 -3407 ($ $ $ $)) (-15 -2196 ($ $ $)) (-6 -4416))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-894 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-888 (-567)) . T) ((-922) . T) ((-1024) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) . T) ((-1222) . T)) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-549) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -549)) +((-2585 (*1 *1) (-5 *1 (-549)))) +(-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-550) (-13 (-845) (-10 -8 (-15 -2245 ($) -3280)))) (T -550)) -((-2245 (*1 *1) (-5 *1 (-550)))) -(-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-550) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -550)) +((-2585 (*1 *1) (-5 *1 (-550)))) +(-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-551) (-13 (-845) (-10 -8 (-15 -2245 ($) -3280)))) (T -551)) -((-2245 (*1 *1) (-5 *1 (-551)))) -(-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-551) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -551)) +((-2585 (*1 *1) (-5 *1 (-551)))) +(-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-552) (-13 (-845) (-10 -8 (-15 -2245 ($) -3280)))) (T -552)) -((-2245 (*1 *1) (-5 *1 (-552)))) -(-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-552) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -552)) +((-2585 (*1 *1) (-5 *1 (-552)))) +(-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) NIL)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-553 |#1| |#2| |#3|) (-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) (-1101) (-1101) (-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417)))) (T -553)) -NIL -(-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) -((-2750 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1173 |#2|) (-1173 |#2|))) 50))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2750 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1173 |#2|) (-1173 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554)) -((-2750 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1173 *3) (-1173 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3))))) -(-10 -7 (-15 -2750 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1173 |#2|) (-1173 |#2|))))) -((-2129 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2741 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-3806 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3806 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2129 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2741 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1039 (-567))) (-13 (-27) (-433 |#1|)) (-1243 |#2|) (-1243 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555)) -((-2741 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *7 (-1243 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1243 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-4 *8 (-1243 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1243 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-4 *8 (-1243 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(-10 -7 (-15 -3806 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2129 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2741 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3813 (((-112) (-567) (-567)) 12)) (-2126 (((-567) (-567)) 7)) (-2162 (((-567) (-567) (-567)) 10))) -(((-556) (-10 -7 (-15 -2126 ((-567) (-567))) (-15 -2162 ((-567) (-567) (-567))) (-15 -3813 ((-112) (-567) (-567))))) (T -556)) -((-3813 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-2162 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) -(-10 -7 (-15 -2126 ((-567) (-567))) (-15 -2162 ((-567) (-567) (-567))) (-15 -3813 ((-112) (-567) (-567)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2036 ((|#1| $) 67)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3165 (($ $) 97)) (-3039 (($ $) 80)) (-2825 ((|#1| $) 68)) (-3460 (((-3 $ "failed") $ $) 20)) (-2714 (($ $) 79)) (-3148 (($ $) 96)) (-3015 (($ $) 81)) (-3184 (($ $) 95)) (-3065 (($ $) 82)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 75)) (-2033 (((-567) $) 76)) (-3153 (((-3 $ "failed") $) 37)) (-3968 (($ |#1| |#1|) 72)) (-4357 (((-112) $) 66)) (-1480 (($) 107)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 78)) (-2102 (((-112) $) 65)) (-2010 (($ $ $) 113)) (-2998 (($ $ $) 112)) (-3053 (($ $) 104)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2486 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-1504 ((|#1| $) 69)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2387 (((-3 $ "failed") $ $) 48)) (-3927 (($ $) 105)) (-3192 (($ $) 94)) (-3076 (($ $) 83)) (-3174 (($ $) 93)) (-3052 (($ $) 84)) (-3157 (($ $) 92)) (-3026 (($ $) 85)) (-2894 (((-112) $ |#1|) 64)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 103)) (-3109 (($ $) 91)) (-4380 (((-112) $ $) 45)) (-3201 (($ $) 102)) (-3087 (($ $) 90)) (-3241 (($ $) 101)) (-3128 (($ $) 89)) (-3807 (($ $) 100)) (-3137 (($ $) 88)) (-3228 (($ $) 99)) (-3119 (($ $) 87)) (-3210 (($ $) 98)) (-3098 (($ $) 86)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 110)) (-2964 (((-112) $ $) 109)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 111)) (-2952 (((-112) $ $) 108)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-557 |#1|) (-140) (-13 (-407) (-1202))) (T -557)) -((-2486 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-3968 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-2486 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-2036 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112)))) (-2894 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112))))) -(-13 (-455) (-851) (-1202) (-1003) (-1039 (-567)) (-10 -8 (-6 -3040) (-15 -2486 ($ |t#1| |t#1|)) (-15 -3968 ($ |t#1| |t#1|)) (-15 -2486 ($ |t#1|)) (-15 -2486 ($ (-410 (-567)))) (-15 -1504 (|t#1| $)) (-15 -2825 (|t#1| $)) (-15 -2036 (|t#1| $)) (-15 -4357 ((-112) $)) (-15 -2102 ((-112) $)) (-15 -2894 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1003) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) . T) ((-1205) . T)) -((-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 9)) (-1312 (($ $) 11)) (-2318 (((-112) $) 20)) (-3153 (((-3 $ "failed") $) 16)) (-4380 (((-112) $ $) 22))) -(((-558 |#1|) (-10 -8 (-15 -2318 ((-112) |#1|)) (-15 -4380 ((-112) |#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|))) (-559)) (T -558)) -NIL -(-10 -8 (-15 -2318 ((-112) |#1|)) (-15 -4380 ((-112) |#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -2474 ((-2 (|:| -2720 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ $) 48)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-553 |#1| |#2| |#3|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))) (T -553)) +NIL +(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) +((-3639 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))) 50))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3639 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554)) +((-3639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3))))) +(-10 -7 (-15 -3639 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) +((-1483 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-4333 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4170 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4170 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1483 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4333 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-433 |#1|)) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555)) +((-4333 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *7 (-1244 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-4170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(-10 -7 (-15 -4170 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1483 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4333 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3457 (((-112) (-567) (-567)) 12)) (-2406 (((-567) (-567)) 7)) (-1563 (((-567) (-567) (-567)) 10))) +(((-556) (-10 -7 (-15 -2406 ((-567) (-567))) (-15 -1563 ((-567) (-567) (-567))) (-15 -3457 ((-112) (-567) (-567))))) (T -556)) +((-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-1563 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-2406 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) +(-10 -7 (-15 -2406 ((-567) (-567))) (-15 -1563 ((-567) (-567) (-567))) (-15 -3457 ((-112) (-567) (-567)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2039 ((|#1| $) 67)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3146 (($ $) 97)) (-3012 (($ $) 80)) (-4016 ((|#1| $) 68)) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 79)) (-3128 (($ $) 96)) (-2987 (($ $) 81)) (-3166 (($ $) 95)) (-3035 (($ $) 82)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 75)) (-2038 (((-567) $) 76)) (-2109 (((-3 $ "failed") $) 37)) (-3471 (($ |#1| |#1|) 72)) (-4336 (((-112) $) 66)) (-1482 (($) 107)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 78)) (-3494 (((-112) $) 65)) (-1354 (($ $ $) 113)) (-2981 (($ $ $) 112)) (-3063 (($ $) 104)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2467 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-3589 ((|#1| $) 69)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-3946 (($ $) 105)) (-3175 (($ $) 94)) (-3049 (($ $) 83)) (-3156 (($ $) 93)) (-3023 (($ $) 84)) (-3137 (($ $) 92)) (-2999 (($ $) 85)) (-2218 (((-112) $ |#1|) 64)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 103)) (-3084 (($ $) 91)) (-3816 (((-112) $ $) 45)) (-3183 (($ $) 102)) (-3062 (($ $) 90)) (-3221 (($ $) 101)) (-3106 (($ $) 89)) (-3785 (($ $) 100)) (-3118 (($ $) 88)) (-3211 (($ $) 99)) (-3095 (($ $) 87)) (-3193 (($ $) 98)) (-3074 (($ $) 86)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 110)) (-2971 (((-112) $ $) 109)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 111)) (-2958 (((-112) $ $) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-557 |#1|) (-140) (-13 (-407) (-1203))) (T -557)) +((-2467 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-3471 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2467 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) (-2218 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112))))) +(-13 (-455) (-851) (-1203) (-1004) (-1040 (-567)) (-10 -8 (-6 -3050) (-15 -2467 ($ |t#1| |t#1|)) (-15 -3471 ($ |t#1| |t#1|)) (-15 -2467 ($ |t#1|)) (-15 -2467 ($ (-410 (-567)))) (-15 -3589 (|t#1| $)) (-15 -4016 (|t#1| $)) (-15 -2039 (|t#1| $)) (-15 -4336 ((-112) $)) (-15 -3494 ((-112) $)) (-15 -2218 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1004) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) . T) ((-1206) . T)) +((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 9)) (-4381 (($ $) 11)) (-3949 (((-112) $) 20)) (-2109 (((-3 $ "failed") $) 16)) (-3816 (((-112) $ $) 22))) +(((-558 |#1|) (-10 -8 (-15 -3949 ((-112) |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) (-559)) (T -558)) +NIL +(-10 -8 (-15 -3949 ((-112) |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-559) (-140)) (T -559)) -((-2387 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2720 *1) (|:| -4404 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-1312 (*1 *1 *1) (-4 *1 (-559))) (-4380 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2387 ((-3 $ "failed") $ $)) (-15 -2474 ((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $)) (-15 -1312 ($ $)) (-15 -4380 ((-112) $ $)) (-15 -2318 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-1606 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1177) (-645 |#2|)) 38)) (-3761 (((-588 |#2|) |#2| (-1177)) 63)) (-3497 (((-3 |#2| "failed") |#2| (-1177)) 156)) (-4374 (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-3956 (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) |#2|) 41))) -(((-560 |#1| |#2|) (-10 -7 (-15 -3956 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) |#2|)) (-15 -1606 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1177) (-645 |#2|))) (-15 -3497 ((-3 |#2| "failed") |#2| (-1177))) (-15 -3761 ((-588 |#2|) |#2| (-1177))) (-15 -4374 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -560)) -((-4374 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1177)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-3497 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-1606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-3956 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(-10 -7 (-15 -3956 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) |#2|)) (-15 -1606 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1177) (-645 |#2|))) (-15 -3497 ((-3 |#2| "failed") |#2| (-1177))) (-15 -3761 ((-588 |#2|) |#2| (-1177))) (-15 -4374 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1177) (-613 |#2|) (-645 (-613 |#2|))))) -((-2833 (((-421 |#1|) |#1|) 19)) (-2703 (((-421 |#1|) |#1|) 34)) (-2932 (((-3 |#1| "failed") |#1|) 51)) (-1738 (((-421 |#1|) |#1|) 64))) -(((-561 |#1|) (-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -1738 ((-421 |#1|) |#1|)) (-15 -2932 ((-3 |#1| "failed") |#1|))) (-548)) (T -561)) -((-2932 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-1738 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2833 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -1738 ((-421 |#1|) |#1|)) (-15 -2932 ((-3 |#1| "failed") |#1|))) -((-1731 (($) 9)) (-1948 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1422 (((-645 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1330 (($ (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3607 (($ (-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4232 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-3564 (((-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3757 (((-1272)) 12))) -(((-562) (-10 -8 (-15 -1731 ($)) (-15 -3757 ((-1272))) (-15 -1422 ((-645 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3607 ($ (-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1330 ($ (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1948 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3564 ((-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4232 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562)) -((-4232 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1948 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-3757 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-562)))) (-1731 (*1 *1) (-5 *1 (-562)))) -(-10 -8 (-15 -1731 ($)) (-15 -3757 ((-1272))) (-15 -1422 ((-645 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3607 ($ (-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1330 ($ (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1948 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3564 ((-645 (-2 (|:| -1791 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4232 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2221 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2670 (((-1173 (-410 (-1173 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1173 |#2|)) 35)) (-3872 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1173 |#2|)) 115)) (-4257 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|)) 55)) (-2426 (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1173 |#2|))) 92) (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1173 |#2|)) 114)) (-1502 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) (-613 |#2|) |#2| (-410 (-1173 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) |#2| (-1173 |#2|)) 116)) (-4109 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-2832 ((|#2| (-1173 (-410 (-1173 |#2|))) (-613 |#2|) |#2|) 53)) (-2488 (((-1173 (-410 (-1173 |#2|))) (-1173 |#2|) (-613 |#2|)) 34))) -(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -4257 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|))) (-15 -4257 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -2426 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1173 |#2|))) (-15 -2426 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -3872 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1173 |#2|))) (-15 -3872 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -1502 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) |#2| (-1173 |#2|))) (-15 -1502 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -2670 ((-1173 (-410 (-1173 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1173 |#2|))) (-15 -2832 (|#2| (-1173 (-410 (-1173 |#2|))) (-613 |#2|) |#2|)) (-15 -2488 ((-1173 (-410 (-1173 |#2|))) (-1173 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -4109 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|))) (-15 -4109 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|))))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1202)) (-1101)) (T -563)) -((-4109 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1173 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1202))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101)))) (-4109 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1173 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1202))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1202))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1173 (-410 (-1173 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1173 *6)) (-4 *7 (-1101)))) (-2832 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1173 (-410 (-1173 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1202))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1101)))) (-2670 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1173 (-410 (-1173 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1173 *3)) (-4 *7 (-1101)))) (-1502 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) (-5 *5 (-410 (-1173 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1101)))) (-1502 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) (-5 *5 (-1173 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1101)))) (-3872 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1173 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1202))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1101)))) (-3872 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1173 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1202))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1101)))) (-2426 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1173 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101)))) (-2426 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1173 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101)))) (-4257 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1173 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101)))) (-4257 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1173 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101))))) -(-10 -7 (-15 -4257 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|))) (-15 -4257 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -2426 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1173 |#2|))) (-15 -2426 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -3872 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1173 |#2|))) (-15 -3872 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -1502 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) |#2| (-1173 |#2|))) (-15 -1502 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)) (-613 |#2|) |#2| (-410 (-1173 |#2|)))) (-15 -2670 ((-1173 (-410 (-1173 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1173 |#2|))) (-15 -2832 (|#2| (-1173 (-410 (-1173 |#2|))) (-613 |#2|) |#2|)) (-15 -2488 ((-1173 (-410 (-1173 |#2|))) (-1173 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -4109 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1173 |#2|))) (-15 -4109 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1173 |#2|))))) |%noBranch|)) -((-3445 (((-567) (-567) (-772)) 90)) (-3731 (((-567) (-567)) 88)) (-2728 (((-567) (-567)) 86)) (-2216 (((-567) (-567)) 92)) (-2026 (((-567) (-567) (-567)) 70)) (-1366 (((-567) (-567) (-567)) 67)) (-1636 (((-410 (-567)) (-567)) 30)) (-2630 (((-567) (-567)) 36)) (-4115 (((-567) (-567)) 79)) (-4166 (((-567) (-567)) 51)) (-3634 (((-645 (-567)) (-567)) 85)) (-2181 (((-567) (-567) (-567) (-567) (-567)) 63)) (-3924 (((-410 (-567)) (-567)) 60))) -(((-564) (-10 -7 (-15 -3924 ((-410 (-567)) (-567))) (-15 -2181 ((-567) (-567) (-567) (-567) (-567))) (-15 -3634 ((-645 (-567)) (-567))) (-15 -4166 ((-567) (-567))) (-15 -4115 ((-567) (-567))) (-15 -2630 ((-567) (-567))) (-15 -1636 ((-410 (-567)) (-567))) (-15 -1366 ((-567) (-567) (-567))) (-15 -2026 ((-567) (-567) (-567))) (-15 -2216 ((-567) (-567))) (-15 -2728 ((-567) (-567))) (-15 -3731 ((-567) (-567))) (-15 -3445 ((-567) (-567) (-772))))) (T -564)) -((-3445 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2026 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1366 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1636 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3634 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2181 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) -(-10 -7 (-15 -3924 ((-410 (-567)) (-567))) (-15 -2181 ((-567) (-567) (-567) (-567) (-567))) (-15 -3634 ((-645 (-567)) (-567))) (-15 -4166 ((-567) (-567))) (-15 -4115 ((-567) (-567))) (-15 -2630 ((-567) (-567))) (-15 -1636 ((-410 (-567)) (-567))) (-15 -1366 ((-567) (-567) (-567))) (-15 -2026 ((-567) (-567) (-567))) (-15 -2216 ((-567) (-567))) (-15 -2728 ((-567) (-567))) (-15 -3731 ((-567) (-567))) (-15 -3445 ((-567) (-567) (-772)))) -((-2323 (((-2 (|:| |answer| |#4|) (|:| -1344 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-2 (|:| |answer| |#4|) (|:| -1344 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565)) -((-2323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-4 *7 (-1243 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1344 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) -(-10 -7 (-15 -2323 ((-2 (|:| |answer| |#4|) (|:| -1344 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2323 (((-2 (|:| |answer| (-410 |#2|)) (|:| -1344 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18))) -(((-566 |#1| |#2|) (-10 -7 (-15 -2323 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1344 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1243 |#1|)) (T -566)) -((-2323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -1344 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -2323 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1344 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 30)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 97)) (-1312 (($ $) 98)) (-2318 (((-112) $) NIL)) (-2478 (($ $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3262 (($ $ $ $) 52)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL)) (-4125 (($ $ $) 92)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL)) (-2033 (((-567) $) NIL)) (-2344 (($ $ $) 54)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-3153 (((-3 $ "failed") $) 94)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL)) (-1426 (((-112) $) NIL)) (-2242 (((-410 (-567)) $) NIL)) (-1378 (($) 79) (($ $) 80)) (-2355 (($ $ $) 91)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3816 (($ $ $ $) NIL)) (-1411 (($ $ $) 70)) (-4357 (((-112) $) NIL)) (-2057 (($ $ $) NIL)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-2843 (((-112) $) 34)) (-2904 (((-112) $) 86)) (-3641 (((-3 $ "failed") $) NIL)) (-2102 (((-112) $) 43)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3383 (($ $ $ $) 55)) (-2010 (($ $ $) 88)) (-2998 (($ $ $) 87)) (-1466 (($ $) NIL)) (-2334 (($ $) 49)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) 69)) (-3382 (($ $ $) NIL)) (-2701 (($) NIL T CONST)) (-2281 (($ $) 38)) (-3430 (((-1121) $) 42)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 129)) (-2771 (($ $ $) 95) (($ (-645 $)) NIL)) (-1520 (($ $) NIL)) (-2703 (((-421 $) $) 115)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) 113)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 90)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-2303 (($ $) 40)) (-4303 (($ $) 36)) (-3880 (((-567) $) 48) (((-539) $) 64) (((-893 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1159) $) 66)) (-4127 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-1772 (((-772)) NIL T CONST)) (-2722 (((-112) $ $) NIL)) (-2092 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-3074 (($) 35)) (-4380 (((-112) $ $) NIL)) (-1944 (($ $ $ $) 51)) (-4137 (($ $) 78)) (-1710 (($) 6 T CONST)) (-1722 (($) 31 T CONST)) (-4224 (((-1159) $) 26) (((-1159) $ (-112)) 27) (((-1272) (-823) $) 28) (((-1272) (-823) $ (-112)) 29)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2988 (((-112) $ $) 50)) (-2964 (((-112) $ $) 81)) (-2929 (((-112) $ $) 33)) (-2977 (((-112) $ $) 83)) (-2952 (((-112) $ $) 10)) (-3037 (($ $) 16) (($ $ $) 39)) (-3024 (($ $ $) 37)) (** (($ $ (-922)) NIL) (($ $ (-772)) 85)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53))) -(((-567) (-13 (-548) (-615 (-1159)) (-829) (-10 -7 (-6 -4404) (-6 -4409) (-6 -4405) (-6 -4399)))) (T -567)) -NIL -(-13 (-548) (-615 (-1159)) (-829) (-10 -7 (-6 -4404) (-6 -4409) (-6 -4405) (-6 -4399))) -((-2484 (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770) (-1064)) 119) (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770)) 121)) (-1576 (((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1177)) 197) (((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1159)) 196) (((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381) (-1064)) 201) (((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381)) 202) (((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381)) 203) (((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381))))) 204) (((-1036) (-317 (-381)) (-1095 (-844 (-381)))) 192) (((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381)) 191) (((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381)) 187) (((-1036) (-770)) 179) (((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381) (-1064)) 186))) -(((-568) (-10 -7 (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381) (-1064))) (-15 -1576 ((-1036) (-770))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381) (-1064))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770) (-1064))) (-15 -1576 ((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1159))) (-15 -1576 ((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1177))))) (T -568)) -((-1576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-844 (-381)))) (-5 *5 (-1177)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-844 (-381)))) (-5 *5 (-1159)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1064)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) (-5 *1 (-568)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1064)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-1576 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1064)) (-5 *2 (-1036)) (-5 *1 (-568))))) -(-10 -7 (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381) (-1064))) (-15 -1576 ((-1036) (-770))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-1095 (-844 (-381))))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381))) (-15 -1576 ((-1036) (-317 (-381)) (-645 (-1095 (-844 (-381)))) (-381) (-381) (-1064))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036))) (-770) (-1064))) (-15 -1576 ((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1159))) (-15 -1576 ((-3 (-1036) "failed") (-317 (-381)) (-1093 (-844 (-381))) (-1177)))) -((-3451 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-2583 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-3336 (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-4143 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177))) 203)) (-2228 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1177)) 212 (|has| |#3| (-657 |#2|))))) -(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -2583 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -3336 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -3451 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)))) (IF (|has| |#3| (-657 |#2|)) (-15 -2228 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1177))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1202)) (-1101)) (T -569)) -((-2228 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1177)) (-4 *4 (-13 (-433 *7) (-27) (-1202))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101)))) (-4143 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) (-4 *2 (-13 (-433 *5) (-27) (-1202))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1101)))) (-3451 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1202))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1101)))) (-3336 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1202))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1101)))) (-2583 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1202))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1101))))) -(-10 -7 (-15 -2583 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -3336 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -3451 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1177)))) (IF (|has| |#3| (-657 |#2|)) (-15 -2228 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1975 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1177))) |%noBranch|)) -((-1838 (((-2 (|:| -1663 |#2|) (|:| |nconst| |#2|)) |#2| (-1177)) 64)) (-1334 (((-3 |#2| "failed") |#2| (-1177) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1140)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567)))))) (-4192 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567))))))) -(((-570 |#1| |#2|) (-10 -7 (-15 -1838 ((-2 (|:| -1663 |#2|) (|:| |nconst| |#2|)) |#2| (-1177))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -4192 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177))) (-15 -1334 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)))) |%noBranch|) (IF (|has| |#2| (-1140)) (-15 -1334 ((-3 |#2| "failed") |#2| (-1177) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1039 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -570)) -((-1334 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1177)) (-5 *4 (-844 *2)) (-4 *2 (-1140)) (-4 *2 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-1334 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-4192 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -1663 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(-10 -7 (-15 -1838 ((-2 (|:| -1663 |#2|) (|:| |nconst| |#2|)) |#2| (-1177))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -4192 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177))) (-15 -1334 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)))) |%noBranch|) (IF (|has| |#2| (-1140)) (-15 -1334 ((-3 |#2| "failed") |#2| (-1177) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3257 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-1576 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-2560 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-4396 (((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48))) -(((-571 |#1| |#2|) (-10 -7 (-15 -1576 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -2560 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -4396 ((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3257 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-567))) (-1243 |#1|)) (T -571)) -((-3257 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-4396 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| -4012 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-2560 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-13 (-365) (-147) (-1039 (-567)))) (-5 *1 (-571 *3 *4)))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -1576 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -2560 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -4396 ((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3257 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) -((-2150 (((-3 (-567) "failed") |#1|) 14)) (-4353 (((-112) |#1|) 13)) (-3099 (((-567) |#1|) 9))) -(((-572 |#1|) (-10 -7 (-15 -3099 ((-567) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -2150 ((-3 (-567) "failed") |#1|))) (-1039 (-567))) (T -572)) -((-2150 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1039 (-567))))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2))))) -(-10 -7 (-15 -3099 ((-567) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -2150 ((-3 (-567) "failed") |#1|))) -((-4006 (((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1177) (-645 (-410 (-953 |#1|)))) 48)) (-3047 (((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1177)) 28)) (-2301 (((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1177)) 23)) (-4058 (((-3 (-2 (|:| -4012 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|))) 35))) -(((-573 |#1|) (-10 -7 (-15 -3047 ((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -2301 ((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1177))) (-15 -4006 ((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1177) (-645 (-410 (-953 |#1|))))) (-15 -4058 ((-3 (-2 (|:| -4012 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|))))) (-13 (-559) (-1039 (-567)) (-147))) (T -573)) -((-4058 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-2 (|:| -4012 (-410 (-953 *5))) (|:| |coeff| (-410 (-953 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5))))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 (-410 (-953 *6)))) (-5 *3 (-410 (-953 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2301 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)) (-147))) (-5 *1 (-573 *4)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-588 (-410 (-953 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5)))))) -(-10 -7 (-15 -3047 ((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -2301 ((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1177))) (-15 -4006 ((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1177) (-645 (-410 (-953 |#1|))))) (-15 -4058 ((-3 (-2 (|:| -4012 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|))))) -((-2399 (((-112) $ $) 75)) (-2840 (((-112) $) 48)) (-2036 ((|#1| $) 39)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) 79)) (-3165 (($ $) 140)) (-3039 (($ $) 119)) (-2825 ((|#1| $) 37)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $) NIL)) (-3148 (($ $) 142)) (-3015 (($ $) 115)) (-3184 (($ $) 144)) (-3065 (($ $) 123)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) 94)) (-2033 (((-567) $) 96)) (-3153 (((-3 $ "failed") $) 78)) (-3968 (($ |#1| |#1|) 35)) (-4357 (((-112) $) 44)) (-1480 (($) 105)) (-2843 (((-112) $) 55)) (-1709 (($ $ (-567)) NIL)) (-2102 (((-112) $) 45)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3053 (($ $) 107)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2486 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-1504 ((|#1| $) 36)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) 81) (($ (-645 $)) NIL)) (-2387 (((-3 $ "failed") $ $) 80)) (-3927 (($ $) 109)) (-3192 (($ $) 148)) (-3076 (($ $) 121)) (-3174 (($ $) 150)) (-3052 (($ $) 125)) (-3157 (($ $) 146)) (-3026 (($ $) 117)) (-2894 (((-112) $ |#1|) 42)) (-4127 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-1772 (((-772)) 103 T CONST)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 162)) (-3109 (($ $) 131)) (-4380 (((-112) $ $) NIL)) (-3201 (($ $) 160)) (-3087 (($ $) 127)) (-3241 (($ $) 158)) (-3128 (($ $) 138)) (-3807 (($ $) 156)) (-3137 (($ $) 136)) (-3228 (($ $) 154)) (-3119 (($ $) 133)) (-3210 (($ $) 152)) (-3098 (($ $) 129)) (-1710 (($) 30 T CONST)) (-1722 (($) 10 T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 49)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 47)) (-3037 (($ $) 53) (($ $ $) 54)) (-3024 (($ $ $) 52)) (** (($ $ (-922)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-922) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61))) -(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1202))) (T -574)) +((-2391 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3951 *1) (|:| -4405 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-4381 (*1 *1 *1) (-4 *1 (-559))) (-3816 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2391 ((-3 $ "failed") $ $)) (-15 -3666 ((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $)) (-15 -4381 ($ $)) (-15 -3816 ((-112) $ $)) (-15 -3949 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3980 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|)) 38)) (-1665 (((-588 |#2|) |#2| (-1178)) 63)) (-3539 (((-3 |#2| "failed") |#2| (-1178)) 156)) (-1411 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-1555 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|) 41))) +(((-560 |#1| |#2|) (-10 -7 (-15 -1555 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|)) (-15 -3980 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|))) (-15 -3539 ((-3 |#2| "failed") |#2| (-1178))) (-15 -1665 ((-588 |#2|) |#2| (-1178))) (-15 -1411 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -560)) +((-1411 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1178)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3539 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-1555 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(-10 -7 (-15 -1555 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|)) (-15 -3980 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|))) (-15 -3539 ((-3 |#2| "failed") |#2| (-1178))) (-15 -1665 ((-588 |#2|) |#2| (-1178))) (-15 -1411 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|))))) +((-2908 (((-421 |#1|) |#1|) 19)) (-2706 (((-421 |#1|) |#1|) 34)) (-3921 (((-3 |#1| "failed") |#1|) 51)) (-3942 (((-421 |#1|) |#1|) 64))) +(((-561 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3942 ((-421 |#1|) |#1|)) (-15 -3921 ((-3 |#1| "failed") |#1|))) (-548)) (T -561)) +((-3921 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3942 ((-421 |#1|) |#1|)) (-15 -3921 ((-3 |#1| "failed") |#1|))) +((-1909 (($) 9)) (-1951 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1391 (((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2531 (($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3822 (($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4237 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2339 (((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1370 (((-1273)) 12))) +(((-562) (-10 -8 (-15 -1909 ($)) (-15 -1370 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3822 ($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1951 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2339 ((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4237 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562)) +((-4237 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1951 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-1370 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-562)))) (-1909 (*1 *1) (-5 *1 (-562)))) +(-10 -8 (-15 -1909 ($)) (-15 -1370 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3822 ($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1951 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2339 ((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4237 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2675 (((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|)) 35)) (-3590 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|)) 115)) (-2082 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 55)) (-3315 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|))) 92) (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|)) 114)) (-3436 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|)) 116)) (-3918 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-2836 ((|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|) 53)) (-2465 (((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|)) 34))) +(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2675 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -2836 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -2465 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1203)) (-1102)) (T -563)) +((-3918 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-3918 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1174 *6)) (-4 *7 (-1102)))) (-2836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) (-2675 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1174 *3)) (-4 *7 (-1102)))) (-3436 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3436 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-1174 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3590 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3590 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1174 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3315 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-3315 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-2082 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-2082 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) +(-10 -7 (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2675 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -2836 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -2465 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) +((-1333 (((-567) (-567) (-772)) 90)) (-3957 (((-567) (-567)) 88)) (-1488 (((-567) (-567)) 86)) (-2229 (((-567) (-567)) 92)) (-1408 (((-567) (-567) (-567)) 70)) (-2624 (((-567) (-567) (-567)) 67)) (-2003 (((-410 (-567)) (-567)) 30)) (-2328 (((-567) (-567)) 36)) (-3251 (((-567) (-567)) 79)) (-3840 (((-567) (-567)) 51)) (-1599 (((-645 (-567)) (-567)) 85)) (-2876 (((-567) (-567) (-567) (-567) (-567)) 63)) (-2346 (((-410 (-567)) (-567)) 60))) +(((-564) (-10 -7 (-15 -2346 ((-410 (-567)) (-567))) (-15 -2876 ((-567) (-567) (-567) (-567) (-567))) (-15 -1599 ((-645 (-567)) (-567))) (-15 -3840 ((-567) (-567))) (-15 -3251 ((-567) (-567))) (-15 -2328 ((-567) (-567))) (-15 -2003 ((-410 (-567)) (-567))) (-15 -2624 ((-567) (-567) (-567))) (-15 -1408 ((-567) (-567) (-567))) (-15 -2229 ((-567) (-567))) (-15 -1488 ((-567) (-567))) (-15 -3957 ((-567) (-567))) (-15 -1333 ((-567) (-567) (-772))))) (T -564)) +((-1333 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1408 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2003 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2876 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) +(-10 -7 (-15 -2346 ((-410 (-567)) (-567))) (-15 -2876 ((-567) (-567) (-567) (-567) (-567))) (-15 -1599 ((-645 (-567)) (-567))) (-15 -3840 ((-567) (-567))) (-15 -3251 ((-567) (-567))) (-15 -2328 ((-567) (-567))) (-15 -2003 ((-410 (-567)) (-567))) (-15 -2624 ((-567) (-567) (-567))) (-15 -1408 ((-567) (-567) (-567))) (-15 -2229 ((-567) (-567))) (-15 -1488 ((-567) (-567))) (-15 -3957 ((-567) (-567))) (-15 -1333 ((-567) (-567) (-772)))) +((-4377 (((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4377 ((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565)) +((-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1382 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) +(-10 -7 (-15 -4377 ((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|)))) +((-4377 (((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18))) +(((-566 |#1| |#2|) (-10 -7 (-15 -4377 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -566)) +((-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -1382 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -4377 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 30)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 97)) (-4381 (($ $) 98)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) 52)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) 92)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) 54)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-2109 (((-3 $ "failed") $) 94)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) 79) (($ $) 80)) (-2360 (($ $ $) 91)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) 70)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) 34)) (-3837 (((-112) $) 86)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) 43)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) 55)) (-1354 (($ $ $) 88)) (-2981 (($ $ $) 87)) (-1446 (($ $) NIL)) (-1699 (($ $) 49)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) 69)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) 38)) (-3430 (((-1122) $) 42)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 129)) (-2774 (($ $ $) 95) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) 115)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 113)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 90)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) 40)) (-4305 (($ $) 36)) (-3893 (((-567) $) 48) (((-539) $) 64) (((-894 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1160) $) 66)) (-4132 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) 35)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) 51)) (-2219 (($ $) 78)) (-1716 (($) 6 T CONST)) (-1728 (($) 31 T CONST)) (-2904 (((-1160) $) 26) (((-1160) $ (-112)) 27) (((-1273) (-823) $) 28) (((-1273) (-823) $ (-112)) 29)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) 50)) (-2971 (((-112) $ $) 81)) (-2936 (((-112) $ $) 33)) (-2984 (((-112) $ $) 83)) (-2958 (((-112) $ $) 10)) (-3045 (($ $) 16) (($ $ $) 39)) (-3033 (($ $ $) 37)) (** (($ $ (-923)) NIL) (($ $ (-772)) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53))) +(((-567) (-13 (-548) (-615 (-1160)) (-829) (-10 -7 (-6 -4405) (-6 -4410) (-6 -4406) (-6 -4400)))) (T -567)) +NIL +(-13 (-548) (-615 (-1160)) (-829) (-10 -7 (-6 -4405) (-6 -4410) (-6 -4406) (-6 -4400))) +((-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065)) 119) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770)) 121)) (-2416 (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178)) 197) (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160)) 196) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065)) 201) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381)) 202) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381)) 203) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381))))) 204) (((-1037) (-317 (-381)) (-1096 (-844 (-381)))) 192) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381)) 191) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381)) 187) (((-1037) (-770)) 179) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065)) 186))) +(((-568) (-10 -7 (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -2416 ((-1037) (-770))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178))))) (T -568)) +((-2416 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1178)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1160)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))) +(-10 -7 (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -2416 ((-1037) (-770))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178)))) +((-1942 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-4201 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-1748 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-2604 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178))) 203)) (-3417 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178)) 212 (|has| |#3| (-657 |#2|))))) +(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1748 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -1942 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -2604 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3417 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1203)) (-1102)) (T -569)) +((-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1178)) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2604 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-4 *2 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))) (-1942 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))) (-1748 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))) (-4201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) +(-10 -7 (-15 -4201 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1748 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -1942 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -2604 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3417 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178))) |%noBranch|)) +((-3656 (((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178)) 64)) (-1569 (((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1141)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))) (-2805 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))))) +(((-570 |#1| |#2|) (-10 -7 (-15 -3656 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2805 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) (-15 -1569 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -1569 ((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1040 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -570)) +((-1569 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1178)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) (-4 *2 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-1569 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2805 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3656 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(-10 -7 (-15 -3656 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2805 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) (-15 -1569 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -1569 ((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3130 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-2416 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-3601 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-2995 (((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2416 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3601 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2995 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3130 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -571)) +((-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-2995 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -1752 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-3601 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) +(-10 -7 (-15 -2416 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3601 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2995 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3130 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) +((-2831 (((-3 (-567) "failed") |#1|) 14)) (-2047 (((-112) |#1|) 13)) (-3108 (((-567) |#1|) 9))) +(((-572 |#1|) (-10 -7 (-15 -3108 ((-567) |#1|)) (-15 -2047 ((-112) |#1|)) (-15 -2831 ((-3 (-567) "failed") |#1|))) (-1040 (-567))) (T -572)) +((-2831 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) (-2047 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2))))) +(-10 -7 (-15 -3108 ((-567) |#1|)) (-15 -2047 ((-112) |#1|)) (-15 -2831 ((-3 (-567) "failed") |#1|))) +((-2227 (((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|)))) 48)) (-3089 (((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178)) 28)) (-2216 (((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178)) 23)) (-3504 (((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))) 35))) +(((-573 |#1|) (-10 -7 (-15 -3089 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -2216 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178))) (-15 -2227 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|))))) (-15 -3504 ((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))))) (-13 (-559) (-1040 (-567)) (-147))) (T -573)) +((-3504 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| -1752 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5)))))) +(-10 -7 (-15 -3089 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -2216 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178))) (-15 -2227 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|))))) (-15 -3504 ((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))))) +((-2403 (((-112) $ $) 75)) (-2460 (((-112) $) 48)) (-2039 ((|#1| $) 39)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) 79)) (-3146 (($ $) 140)) (-3012 (($ $) 119)) (-4016 ((|#1| $) 37)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL)) (-3128 (($ $) 142)) (-2987 (($ $) 115)) (-3166 (($ $) 144)) (-3035 (($ $) 123)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 94)) (-2038 (((-567) $) 96)) (-2109 (((-3 $ "failed") $) 78)) (-3471 (($ |#1| |#1|) 35)) (-4336 (((-112) $) 44)) (-1482 (($) 105)) (-1433 (((-112) $) 55)) (-2651 (($ $ (-567)) NIL)) (-3494 (((-112) $) 45)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3063 (($ $) 107)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2467 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-3589 ((|#1| $) 36)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) 81) (($ (-645 $)) NIL)) (-2391 (((-3 $ "failed") $ $) 80)) (-3946 (($ $) 109)) (-3175 (($ $) 148)) (-3049 (($ $) 121)) (-3156 (($ $) 150)) (-3023 (($ $) 125)) (-3137 (($ $) 146)) (-2999 (($ $) 117)) (-2218 (((-112) $ |#1|) 42)) (-4132 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-4221 (((-772)) 103 T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 162)) (-3084 (($ $) 131)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 160)) (-3062 (($ $) 127)) (-3221 (($ $) 158)) (-3106 (($ $) 138)) (-3785 (($ $) 156)) (-3118 (($ $) 136)) (-3211 (($ $) 154)) (-3095 (($ $) 133)) (-3193 (($ $) 152)) (-3074 (($ $) 129)) (-1716 (($) 30 T CONST)) (-1728 (($) 10 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 49)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 47)) (-3045 (($ $) 53) (($ $ $) 54)) (-3033 (($ $ $) 52)) (** (($ $ (-923)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-923) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61))) +(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1203))) (T -574)) NIL (-557 |#1|) -((-1885 (((-3 (-645 (-1173 (-567))) "failed") (-645 (-1173 (-567))) (-1173 (-567))) 27))) -(((-575) (-10 -7 (-15 -1885 ((-3 (-645 (-1173 (-567))) "failed") (-645 (-1173 (-567))) (-1173 (-567)))))) (T -575)) -((-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 (-567)))) (-5 *3 (-1173 (-567))) (-5 *1 (-575))))) -(-10 -7 (-15 -1885 ((-3 (-645 (-1173 (-567))) "failed") (-645 (-1173 (-567))) (-1173 (-567))))) -((-1585 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1177)) 19)) (-2795 (((-645 (-613 |#2|)) (-645 |#2|) (-1177)) 23)) (-4240 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-2302 ((|#2| |#2| (-1177)) 59 (|has| |#1| (-559)))) (-3608 ((|#2| |#2| (-1177)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-1714 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1177)) 25)) (-1932 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-2158 (((-588 |#2|) |#2| (-1177) (-1 (-588 |#2|) |#2| (-1177)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1039 (-1177))) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-887 (-567))))))) -(((-576 |#1| |#2|) (-10 -7 (-15 -1585 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1177))) (-15 -1932 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -1714 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1177))) (-15 -4240 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -2795 ((-645 (-613 |#2|)) (-645 |#2|) (-1177))) (IF (|has| |#1| (-559)) (-15 -2302 (|#2| |#2| (-1177))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3608 (|#2| |#2| (-1177))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1039 (-1177))) (-15 -2158 ((-588 |#2|) |#2| (-1177) (-1 (-588 |#2|) |#2| (-1177)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1101) (-433 |#1|)) (T -576)) -((-2158 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1177))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1177))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1039 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1177)) (-4 *7 (-615 (-893 (-567)))) (-4 *7 (-455)) (-4 *7 (-887 (-567))) (-4 *7 (-1101)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-3608 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-455)) (-4 *4 (-1101)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-2302 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-4 *4 (-1101)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1177)) (-4 *6 (-433 *5)) (-4 *5 (-1101)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-4240 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1101)) (-5 *1 (-576 *3 *4)))) (-1714 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1177)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1101)) (-5 *1 (-576 *5 *6)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1101)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-1585 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1177)) (-4 *5 (-433 *4)) (-4 *4 (-1101)) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -1585 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1177))) (-15 -1932 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -1714 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1177))) (-15 -4240 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -2795 ((-645 (-613 |#2|)) (-645 |#2|) (-1177))) (IF (|has| |#1| (-559)) (-15 -2302 (|#2| |#2| (-1177))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3608 (|#2| |#2| (-1177))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1039 (-1177))) (-15 -2158 ((-588 |#2|) |#2| (-1177) (-1 (-588 |#2|) |#2| (-1177)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1177)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1447 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-2056 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-1910 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-1803 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-3373 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-1372 (((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-2917 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-2063 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-3446 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2704 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-2095 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-3573 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-3000 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213))) -(((-577 |#1| |#2|) (-10 -7 (-15 -3373 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3573 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -1447 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -2917 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3000 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2056 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2704 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1372 ((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1910 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -1803 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2095 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2063 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3446 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1243 |#1|)) (T -577)) -((-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2095 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2956 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1243 *4)) (-5 *1 (-577 *4 *5)))) (-1803 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1243 *4)))) (-1910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1243 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-1372 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4012 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2704 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2956 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1243 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2056 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4012 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1243 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-3000 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2956 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -4012 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4012 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -4012 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-1447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2956 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4012 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(-10 -7 (-15 -3373 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3573 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -1447 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -2917 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3000 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2056 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2704 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1372 ((-3 (-2 (|:| -4012 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1910 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -1803 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2095 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2956 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2063 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3446 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1678 (((-3 |#2| "failed") |#2| (-1177) (-1177)) 10))) -(((-578 |#1| |#2|) (-10 -7 (-15 -1678 ((-3 |#2| "failed") |#2| (-1177) (-1177)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-960) (-1140) (-29 |#1|))) (T -578)) -((-1678 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1202) (-960) (-1140) (-29 *4)))))) -(-10 -7 (-15 -1678 ((-3 |#2| "failed") |#2| (-1177) (-1177)))) -((-2315 (((-692 (-1225)) $ (-1225)) 26)) (-4285 (((-692 (-552)) $ (-552)) 25)) (-1949 (((-772) $ (-128)) 27)) (-2198 (((-692 (-129)) $ (-129)) 24)) (-1391 (((-692 (-1225)) $) 12)) (-4011 (((-692 (-1223)) $) 8)) (-2384 (((-692 (-1222)) $) 10)) (-3760 (((-692 (-552)) $) 13)) (-1996 (((-692 (-550)) $) 9)) (-3150 (((-692 (-549)) $) 11)) (-4171 (((-772) $ (-128)) 7)) (-3288 (((-692 (-129)) $) 14)) (-2990 (($ $) 6))) +((-3815 (((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567))) 27))) +(((-575) (-10 -7 (-15 -3815 ((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567)))))) (T -575)) +((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 (-567)))) (-5 *3 (-1174 (-567))) (-5 *1 (-575))))) +(-10 -7 (-15 -3815 ((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567))))) +((-4027 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178)) 19)) (-3635 (((-645 (-613 |#2|)) (-645 |#2|) (-1178)) 23)) (-4244 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-2292 ((|#2| |#2| (-1178)) 59 (|has| |#1| (-559)))) (-3955 ((|#2| |#2| (-1178)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-3009 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178)) 25)) (-2373 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-2400 (((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1040 (-1178))) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-888 (-567))))))) +(((-576 |#1| |#2|) (-10 -7 (-15 -4027 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178))) (-15 -2373 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -3009 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3635 ((-645 (-613 |#2|)) (-645 |#2|) (-1178))) (IF (|has| |#1| (-559)) (-15 -2292 (|#2| |#2| (-1178))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3955 (|#2| |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2400 ((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1102) (-433 |#1|)) (T -576)) +((-2400 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1178))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1178))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1178)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-455)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1178)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) (-5 *1 (-576 *3 *4)))) (-3009 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1178)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-4027 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1178)) (-4 *5 (-433 *4)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *5))))) +(-10 -7 (-15 -4027 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178))) (-15 -2373 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -3009 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3635 ((-645 (-613 |#2|)) (-645 |#2|) (-1178))) (IF (|has| |#1| (-559)) (-15 -2292 (|#2| |#2| (-1178))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3955 (|#2| |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2400 ((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2860 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-2870 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-1540 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-3307 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-3619 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-3418 (((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-3010 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-2228 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-1435 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3188 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-4097 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-3770 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-3142 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3619 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3770 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2860 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3010 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3142 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2870 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3188 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -3418 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3307 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4097 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2228 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -577)) +((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2228 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-4097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *1 (-577 *4 *5)))) (-3307 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1244 *4)))) (-1540 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1244 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-3418 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1752 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-3188 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2963 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2870 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-3142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3010 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2860 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(-10 -7 (-15 -3619 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3770 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2860 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3010 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3142 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2870 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3188 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -3418 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3307 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4097 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2228 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3088 (((-3 |#2| "failed") |#2| (-1178) (-1178)) 10))) +(((-578 |#1| |#2|) (-10 -7 (-15 -3088 ((-3 |#2| "failed") |#2| (-1178) (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-1141) (-29 |#1|))) (T -578)) +((-3088 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-1141) (-29 *4)))))) +(-10 -7 (-15 -3088 ((-3 |#2| "failed") |#2| (-1178) (-1178)))) +((-3835 (((-692 (-1226)) $ (-1226)) 26)) (-2841 (((-692 (-552)) $ (-552)) 25)) (-3597 (((-772) $ (-128)) 27)) (-3887 (((-692 (-129)) $ (-129)) 24)) (-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-1675 (($ $) 6))) (((-579) (-140)) (T -579)) NIL (-13 (-530) (-861)) (((-173) . T) ((-530) . T) ((-861) . T)) -((-2315 (((-692 (-1225)) $ (-1225)) NIL)) (-4285 (((-692 (-552)) $ (-552)) NIL)) (-1949 (((-772) $ (-128)) NIL)) (-2198 (((-692 (-129)) $ (-129)) NIL)) (-1391 (((-692 (-1225)) $) NIL)) (-4011 (((-692 (-1223)) $) NIL)) (-2384 (((-692 (-1222)) $) NIL)) (-3760 (((-692 (-552)) $) NIL)) (-1996 (((-692 (-550)) $) NIL)) (-3150 (((-692 (-549)) $) NIL)) (-4171 (((-772) $ (-128)) NIL)) (-3288 (((-692 (-129)) $) NIL)) (-1703 (((-112) $) NIL)) (-1721 (($ (-391)) 14) (($ (-1159)) 16)) (-4127 (((-863) $) NIL)) (-2990 (($ $) NIL))) -(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -1721 ($ (-391))) (-15 -1721 ($ (-1159))) (-15 -1703 ((-112) $))))) (T -580)) -((-1721 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-580)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))) -(-13 (-579) (-614 (-863)) (-10 -8 (-15 -1721 ($ (-391))) (-15 -1721 ($ (-1159))) (-15 -1703 ((-112) $)))) -((-2399 (((-112) $ $) NIL)) (-2389 (($) 7 T CONST)) (-3739 (((-1159) $) NIL)) (-4075 (($) 6 T CONST)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 14)) (-1537 (($) 8 T CONST)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 10))) -(((-581) (-13 (-1101) (-10 -8 (-15 -4075 ($) -3280) (-15 -2389 ($) -3280) (-15 -1537 ($) -3280)))) (T -581)) -((-4075 (*1 *1) (-5 *1 (-581))) (-2389 (*1 *1) (-5 *1 (-581))) (-1537 (*1 *1) (-5 *1 (-581)))) -(-13 (-1101) (-10 -8 (-15 -4075 ($) -3280) (-15 -2389 ($) -3280) (-15 -1537 ($) -3280))) -((-2399 (((-112) $ $) NIL)) (-2742 (((-692 $) (-494)) 21)) (-3739 (((-1159) $) NIL)) (-2313 (($ (-1159)) 14)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 34)) (-3589 (((-213 4 (-129)) $) 24)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 26))) -(((-582) (-13 (-1101) (-10 -8 (-15 -2313 ($ (-1159))) (-15 -3589 ((-213 4 (-129)) $)) (-15 -2742 ((-692 $) (-494)))))) (T -582)) -((-2313 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-582)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582))))) -(-13 (-1101) (-10 -8 (-15 -2313 ($ (-1159))) (-15 -3589 ((-213 4 (-129)) $)) (-15 -2742 ((-692 $) (-494))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $ (-567)) 77)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-1931 (($ (-1173 (-567)) (-567)) 83)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) 68)) (-1423 (($ $) 43)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-2937 (((-772) $) 16)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2542 (((-567)) 37)) (-1793 (((-567) $) 41)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3981 (($ $ (-567)) 24)) (-2387 (((-3 $ "failed") $ $) 73)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) 17)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 74)) (-3435 (((-1157 (-567)) $) 19)) (-1546 (($ $) 26)) (-4127 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-1772 (((-772)) 15 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-567) $ (-567)) 46)) (-1710 (($) 44 T CONST)) (-1722 (($) 21 T CONST)) (-2929 (((-112) $ $) 54)) (-3037 (($ $) 62) (($ $ $) 48)) (-3024 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65))) +((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) NIL)) (-3887 (((-692 (-129)) $ (-129)) NIL)) (-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) NIL)) (-3706 (((-692 (-129)) $) NIL)) (-3254 (((-112) $) NIL)) (-2411 (($ (-391)) 14) (($ (-1160)) 16)) (-4132 (((-863) $) NIL)) (-1675 (($ $) NIL))) +(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -2411 ($ (-391))) (-15 -2411 ($ (-1160))) (-15 -3254 ((-112) $))))) (T -580)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-580)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))) +(-13 (-579) (-614 (-863)) (-10 -8 (-15 -2411 ($ (-391))) (-15 -2411 ($ (-1160))) (-15 -3254 ((-112) $)))) +((-2403 (((-112) $ $) NIL)) (-2393 (($) 7 T CONST)) (-1419 (((-1160) $) NIL)) (-4081 (($) 6 T CONST)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 14)) (-2627 (($) 8 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10))) +(((-581) (-13 (-1102) (-10 -8 (-15 -4081 ($) -3286) (-15 -2393 ($) -3286) (-15 -2627 ($) -3286)))) (T -581)) +((-4081 (*1 *1) (-5 *1 (-581))) (-2393 (*1 *1) (-5 *1 (-581))) (-2627 (*1 *1) (-5 *1 (-581)))) +(-13 (-1102) (-10 -8 (-15 -4081 ($) -3286) (-15 -2393 ($) -3286) (-15 -2627 ($) -3286))) +((-2403 (((-112) $ $) NIL)) (-2744 (((-692 $) (-494)) 21)) (-1419 (((-1160) $) NIL)) (-1845 (($ (-1160)) 14)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 34)) (-2891 (((-213 4 (-129)) $) 24)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 26))) +(((-582) (-13 (-1102) (-10 -8 (-15 -1845 ($ (-1160))) (-15 -2891 ((-213 4 (-129)) $)) (-15 -2744 ((-692 $) (-494)))))) (T -582)) +((-1845 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-582)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582))))) +(-13 (-1102) (-10 -8 (-15 -1845 ($ (-1160))) (-15 -2891 ((-213 4 (-129)) $)) (-15 -2744 ((-692 $) (-494))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) 77)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) 83)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 68)) (-1648 (($ $) 43)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) 16)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) 37)) (-3297 (((-567) $) 41)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) 24)) (-2391 (((-3 $ "failed") $ $) 73)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) 17)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 74)) (-3038 (((-1158 (-567)) $) 19)) (-2192 (($ $) 26)) (-4132 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-4221 (((-772)) 15 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) 46)) (-1716 (($) 44 T CONST)) (-1728 (($) 21 T CONST)) (-2936 (((-112) $ $) 54)) (-3045 (($ $) 62) (($ $ $) 48)) (-3033 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65))) (((-583 |#1| |#2|) (-870 |#1|) (-567) (-112)) (T -583)) NIL (-870 |#1|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 30)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3581 (((-1190 (-922) (-772)) (-567)) 59)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 $ "failed") $) 97)) (-2033 (($ $) 96)) (-4025 (($ (-1267 $)) 95)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) 44)) (-1378 (($) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) 61)) (-4284 (((-112) $) NIL)) (-4112 (($ $) NIL) (($ $ (-772)) NIL)) (-4341 (((-112) $) NIL)) (-2937 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2843 (((-112) $) NIL)) (-2794 (($) 49 (|has| $ (-370)))) (-3601 (((-112) $) NIL (|has| $ (-370)))) (-2896 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 $) $ (-922)) NIL (|has| $ (-370))) (((-1173 $) $) 106)) (-3425 (((-922) $) 67)) (-4091 (((-1173 $) $) NIL (|has| $ (-370)))) (-2772 (((-3 (-1173 $) "failed") $ $) NIL (|has| $ (-370))) (((-1173 $) $) NIL (|has| $ (-370)))) (-2157 (($ $ (-1173 $)) NIL (|has| $ (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL T CONST)) (-3763 (($ (-922)) 60)) (-1816 (((-112) $) 89)) (-3430 (((-1121) $) NIL)) (-1394 (($) 28 (|has| $ (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 54)) (-2703 (((-421 $) $) NIL)) (-1768 (((-922)) 88) (((-834 (-922))) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1635 (((-134)) NIL)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-1813 (((-922) $) 87) (((-834 (-922)) $) NIL)) (-2530 (((-1173 $)) 104)) (-3057 (($) 66)) (-3914 (($) 50 (|has| $ (-370)))) (-2446 (((-690 $) (-1267 $)) NIL) (((-1267 $) $) 93)) (-3880 (((-567) $) 40)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1467 (((-3 $ "failed") $) NIL) (($ $) 107)) (-1772 (((-772)) 51 T CONST)) (-4104 (((-112) $ $) 109)) (-1975 (((-1267 $) (-922)) 99) (((-1267 $)) 98)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) 31 T CONST)) (-1722 (($) 27 T CONST)) (-2529 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-584 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-922)) (T -584)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 30)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) 59)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 $ "failed") $) 97)) (-2038 (($ $) 96)) (-3658 (($ (-1268 $)) 95)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 44)) (-1348 (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 61)) (-2722 (((-112) $) NIL)) (-4225 (($ $) NIL) (($ $ (-772)) NIL)) (-3184 (((-112) $) NIL)) (-4384 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-1433 (((-112) $) NIL)) (-3559 (($) 49 (|has| $ (-370)))) (-1426 (((-112) $) NIL (|has| $ (-370)))) (-2475 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 $) $ (-923)) NIL (|has| $ (-370))) (((-1174 $) $) 106)) (-4249 (((-923) $) 67)) (-2016 (((-1174 $) $) NIL (|has| $ (-370)))) (-2280 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-2286 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) 60)) (-2051 (((-112) $) 89)) (-3430 (((-1122) $) NIL)) (-1398 (($) 28 (|has| $ (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 54)) (-2706 (((-421 $) $) NIL)) (-1953 (((-923)) 88) (((-834 (-923))) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1879 (((-134)) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-3077 (((-923) $) 87) (((-834 (-923)) $) NIL)) (-3341 (((-1174 $)) 104)) (-1527 (($) 66)) (-2661 (($) 50 (|has| $ (-370)))) (-2887 (((-690 $) (-1268 $)) NIL) (((-1268 $) $) 93)) (-3893 (((-567) $) 40)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL) (($ $) 107)) (-4221 (((-772)) 51 T CONST)) (-1745 (((-112) $ $) 109)) (-2623 (((-1268 $) (-923)) 99) (((-1268 $)) 98)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 31 T CONST)) (-1728 (($) 27 T CONST)) (-3253 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-584 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -584)) NIL (-13 (-351) (-330 $) (-615 (-567))) -((-3095 (((-1272) (-1159)) 10))) -(((-585) (-10 -7 (-15 -3095 ((-1272) (-1159))))) (T -585)) -((-3095 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-585))))) -(-10 -7 (-15 -3095 ((-1272) (-1159)))) -((-1800 (((-588 |#2|) (-588 |#2|)) 42)) (-3304 (((-645 |#2|) (-588 |#2|)) 44)) (-2127 ((|#2| (-588 |#2|)) 50))) -(((-586 |#1| |#2|) (-10 -7 (-15 -1800 ((-588 |#2|) (-588 |#2|))) (-15 -3304 ((-645 |#2|) (-588 |#2|))) (-15 -2127 (|#2| (-588 |#2|)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1202))) (T -586)) -((-2127 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1202))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1202))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1202))) (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4))))) -(-10 -7 (-15 -1800 ((-588 |#2|) (-588 |#2|))) (-15 -3304 ((-645 |#2|) (-588 |#2|))) (-15 -2127 (|#2| (-588 |#2|)))) -((-3822 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30))) -(((-587 |#1| |#2|) (-10 -7 (-15 -3822 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3822 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3822 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3822 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587)) -((-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4012 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -4012 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6))))) -(-10 -7 (-15 -3822 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3822 ((-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4012 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3822 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3822 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 76)) (-2033 ((|#1| $) NIL)) (-4012 ((|#1| $) 30)) (-4096 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3810 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1344 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) $) 31)) (-3739 (((-1159) $) NIL)) (-2508 (($ |#1| |#1|) 38) (($ |#1| (-1177)) 49 (|has| |#1| (-1039 (-1177))))) (-3430 (((-1121) $) NIL)) (-1586 (((-112) $) 35)) (-1621 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1177)) 89 (|has| |#1| (-901 (-1177))))) (-4127 (((-863) $) 112) (($ |#1|) 29)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 18 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) 17) (($ $ $) NIL)) (-3024 (($ $ $) 85)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL))) -(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1039 |#1|) (-10 -8 (-15 -3810 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4012 (|#1| $)) (-15 -1344 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) $)) (-15 -4096 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1586 ((-112) $)) (-15 -2508 ($ |#1| |#1|)) (-15 -1621 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-901 (-1177))) (-15 -1621 (|#1| $ (-1177))) |%noBranch|) (IF (|has| |#1| (-1039 (-1177))) (-15 -2508 ($ |#1| (-1177))) |%noBranch|))) (-365)) (T -588)) -((-3810 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 *2)) (|:| |logand| (-1173 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-4012 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 *3)) (|:| |logand| (-1173 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2508 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1621 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1621 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-901 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1177)))) (-2508 (*1 *1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *1 (-588 *2)) (-4 *2 (-1039 *3)) (-4 *2 (-365))))) -(-13 (-718 (-410 (-567))) (-1039 |#1|) (-10 -8 (-15 -3810 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4012 (|#1| $)) (-15 -1344 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 |#1|)) (|:| |logand| (-1173 |#1|)))) $)) (-15 -4096 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1586 ((-112) $)) (-15 -2508 ($ |#1| |#1|)) (-15 -1621 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-901 (-1177))) (-15 -1621 (|#1| $ (-1177))) |%noBranch|) (IF (|has| |#1| (-1039 (-1177))) (-15 -2508 ($ |#1| (-1177))) |%noBranch|))) -((-1613 (((-112) |#1|) 16)) (-4320 (((-3 |#1| "failed") |#1|) 14)) (-2637 (((-2 (|:| -3074 |#1|) (|:| -4250 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-3303 (((-112) |#1| (-772)) 19)) (-2808 ((|#1| |#1|) 43)) (-2911 ((|#1| |#1| (-772)) 46))) -(((-589 |#1|) (-10 -7 (-15 -3303 ((-112) |#1| (-772))) (-15 -2637 ((-3 |#1| "failed") |#1| (-772))) (-15 -2637 ((-2 (|:| -3074 |#1|) (|:| -4250 (-772))) |#1|)) (-15 -2911 (|#1| |#1| (-772))) (-15 -1613 ((-112) |#1|)) (-15 -4320 ((-3 |#1| "failed") |#1|)) (-15 -2808 (|#1| |#1|))) (-548)) (T -589)) -((-2808 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-4320 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-2911 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-2637 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3074 *3) (|:| -4250 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-2637 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -3303 ((-112) |#1| (-772))) (-15 -2637 ((-3 |#1| "failed") |#1| (-772))) (-15 -2637 ((-2 (|:| -3074 |#1|) (|:| -4250 (-772))) |#1|)) (-15 -2911 (|#1| |#1| (-772))) (-15 -1613 ((-112) |#1|)) (-15 -4320 ((-3 |#1| "failed") |#1|)) (-15 -2808 (|#1| |#1|))) -((-1923 (((-1173 |#1|) (-922)) 44))) -(((-590 |#1|) (-10 -7 (-15 -1923 ((-1173 |#1|) (-922)))) (-351)) (T -590)) -((-1923 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351))))) -(-10 -7 (-15 -1923 ((-1173 |#1|) (-922)))) -((-1800 (((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|)))) 27)) (-1576 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1177)) 34 (|has| |#1| (-147)))) (-3304 (((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|)))) 19)) (-2367 (((-317 |#1|) (-410 (-953 |#1|)) (-1177)) 32 (|has| |#1| (-147)))) (-2127 (((-317 |#1|) (-588 (-410 (-953 |#1|)))) 21))) -(((-591 |#1|) (-10 -7 (-15 -1800 ((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|))))) (-15 -3304 ((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|))))) (-15 -2127 ((-317 |#1|) (-588 (-410 (-953 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1576 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -2367 ((-317 |#1|) (-410 (-953 |#1|)) (-1177)))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-640 (-567)))) (T -591)) -((-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-953 *4)))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-953 *4)))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-953 *3)))) (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))) -(-10 -7 (-15 -1800 ((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|))))) (-15 -3304 ((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|))))) (-15 -2127 ((-317 |#1|) (-588 (-410 (-953 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1576 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -2367 ((-317 |#1|) (-410 (-953 |#1|)) (-1177)))) |%noBranch|)) -((-2731 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-906 (-567))) 72)) (-2188 (((-772) (-645 (-567))) 69))) -(((-592) (-10 -7 (-15 -2188 ((-772) (-645 (-567)))) (-15 -2731 ((-690 (-567)) (-645 (-567)) (-906 (-567)))) (-15 -2731 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2731 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567))))))) (T -592)) -((-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-906 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-906 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) -(-10 -7 (-15 -2188 ((-772) (-645 (-567)))) (-15 -2731 ((-690 (-567)) (-645 (-567)) (-906 (-567)))) (-15 -2731 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2731 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567)))))) -((-2356 (((-645 |#5|) |#5| (-112)) 100)) (-2986 (((-112) |#5| (-645 |#5|)) 34))) -(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2356 ((-645 |#5|) |#5| (-112))) (-15 -2986 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1110 |#1| |#2| |#3| |#4|)) (T -593)) -((-2986 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1110 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1110 *5 *6 *7 *8))))) -(-10 -7 (-15 -2356 ((-645 |#5|) |#5| (-112))) (-15 -2986 ((-112) |#5| (-645 |#5|)))) -((-2399 (((-112) $ $) NIL)) (-4100 (((-1136) $) 11)) (-4084 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-594) (-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $))))) (T -594)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-594)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-594))))) -(-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $)))) -((-2399 (((-112) $ $) NIL (|has| (-144) (-1101)))) (-2168 (($ $) 38)) (-1863 (($ $) NIL)) (-3419 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-3683 (((-112) $ $) 68)) (-3664 (((-112) $ $ (-567)) 62)) (-1800 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-2871 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-3161 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-851))))) (-1332 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4418))) (((-144) $ (-1234 (-567)) (-144)) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3272 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-3706 (($ $ (-1234 (-567)) $) 57)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3230 (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3759 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4418)))) (-3702 (((-144) $ (-567)) NIL)) (-3703 (((-112) $ $) 90)) (-2567 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1101))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1101))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-3397 (((-645 (-144)) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) (-144)) 9)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 32 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| (-144) (-851)))) (-3523 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2513 (((-645 (-144)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-1958 (((-567) $) 47 (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-144) (-851)))) (-2576 (((-112) $ $ (-144)) 91)) (-4194 (((-772) $ $ (-144)) 88)) (-3751 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4307 (($ $) 41)) (-3585 (($ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3284 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3739 (((-1159) $) 43 (|has| (-144) (-1101)))) (-2842 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) 87 (|has| (-144) (-1101)))) (-2405 (((-144) $) NIL (|has| (-567) (-851)))) (-3424 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4271 (($ $ (-144)) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3564 (((-645 (-144)) $) NIL)) (-3240 (((-112) $) 15)) (-3347 (($) 10)) (-1783 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1234 (-567))) 25) (($ $ $) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-2811 (($ $ $ (-567)) 84 (|has| $ (-6 -4418)))) (-4303 (($ $) 20)) (-3880 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4142 (($ (-645 (-144))) NIL)) (-2260 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-4127 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| (-144) (-1101)))) (-2461 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2929 (((-112) $ $) 17 (|has| (-144) (-1101)))) (-2977 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2952 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2410 (((-772) $) 16 (|has| $ (-6 -4417))))) -(((-595 |#1|) (-1145) (-567)) (T -595)) -NIL -(-1145) -((-3593 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1095 |#4|)) 32))) -(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3593 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1095 |#4|))) (-15 -3593 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|)) (T -596)) -((-3593 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-3593 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1095 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3))))) -(-10 -7 (-15 -3593 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1095 |#4|))) (-15 -3593 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 72)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-1348 (($ $) 110)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1807 (((-863) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1177) |#1| (-410 (-567))) 243)) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4184 (((-112) $) NIL)) (-2937 (((-567) $) 63) (((-567) $ (-567)) 64)) (-2843 (((-112) $) NIL)) (-3275 (($ $ (-922)) 84)) (-4344 (($ (-1 |#1| (-567)) $) 81)) (-2014 (((-112) $) 26)) (-2821 (($ |#1| (-567)) 22) (($ $ (-1083) (-567)) NIL) (($ $ (-645 (-1083)) (-645 (-567))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) 76)) (-2487 (($ (-1027 (-844 (-567))) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-1576 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-2994 (((-3 $ "failed") $ $ (-112)) 109)) (-3144 (($ $ $) 117)) (-3430 (((-1121) $) NIL)) (-2556 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-2856 (((-1027 (-844 (-567))) $) 14)) (-3981 (($ $ (-567)) 47)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1783 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1113)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-1813 (((-567) $) NIL)) (-1546 (($ $) 48)) (-4127 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2253 ((|#1| $ (-567)) 61)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) 39 T CONST)) (-2793 ((|#1| $) NIL)) (-1324 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-3944 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-3265 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2379 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-4021 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-4034 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-4121 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-1740 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2401 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-1514 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3655 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-2230 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-3784 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-1545 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3197 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-3385 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-4002 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-3266 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-4338 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-2494 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-4140 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-4147 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3195 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-4019 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-2331 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-1710 (($) 30 T CONST)) (-1722 (($) 40 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2929 (((-112) $ $) 74)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) 92) (($ $ $) 73)) (-3024 (($ $ $) 89)) (** (($ $ (-922)) NIL) (($ $ (-772)) 112)) (* (($ (-922) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-597 |#1|) (-13 (-1245 |#1| (-567)) (-10 -8 (-15 -2487 ($ (-1027 (-844 (-567))) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2856 ((-1027 (-844 (-567))) $)) (-15 -2556 ((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1970 ($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2014 ((-112) $)) (-15 -4344 ($ (-1 |#1| (-567)) $)) (-15 -2994 ((-3 $ "failed") $ $ (-112))) (-15 -1348 ($ $)) (-15 -3144 ($ $ $)) (-15 -1807 ((-863) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1177) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $)) (-15 -4121 ($ $ |#1|)) (-15 -4034 ($ $ (-410 (-567)))) (-15 -1909 ($ $)) (-15 -1740 ($ $)) (-15 -3265 ($ $)) (-15 -1545 ($ $)) (-15 -2686 ($ $)) (-15 -2230 ($ $)) (-15 -4021 ($ $)) (-15 -1514 ($ $)) (-15 -3266 ($ $)) (-15 -2331 ($ $)) (-15 -3385 ($ $)) (-15 -3195 ($ $)) (-15 -2494 ($ $)) (-15 -4147 ($ $)) (-15 -3944 ($ $)) (-15 -3784 ($ $)) (-15 -1324 ($ $)) (-15 -3655 ($ $)) (-15 -2379 ($ $)) (-15 -2401 ($ $)) (-15 -4002 ($ $)) (-15 -4019 ($ $)) (-15 -3197 ($ $)) (-15 -3084 ($ $)) (-15 -4338 ($ $)) (-15 -4140 ($ $))) |%noBranch|))) (-1050)) (T -597)) -((-2014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-2487 (*1 *1 *2 *3) (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *3 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1050)) (-5 *1 (-597 *4)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1050)) (-5 *1 (-597 *3)))) (-4344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-597 *3)))) (-2994 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))) (-3144 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))) (-1807 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1027 (-844 (-567)))) (-5 *5 (-1177)) (-5 *7 (-410 (-567))) (-4 *6 (-1050)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4034 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1050)))) (-1909 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1740 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2686 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4021 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1514 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2331 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3385 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3195 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1324 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2401 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4019 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3197 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3084 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4338 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4140 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(-13 (-1245 |#1| (-567)) (-10 -8 (-15 -2487 ($ (-1027 (-844 (-567))) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2856 ((-1027 (-844 (-567))) $)) (-15 -2556 ((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1970 ($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2014 ((-112) $)) (-15 -4344 ($ (-1 |#1| (-567)) $)) (-15 -2994 ((-3 $ "failed") $ $ (-112))) (-15 -1348 ($ $)) (-15 -3144 ($ $ $)) (-15 -1807 ((-863) (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1177) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $)) (-15 -4121 ($ $ |#1|)) (-15 -4034 ($ $ (-410 (-567)))) (-15 -1909 ($ $)) (-15 -1740 ($ $)) (-15 -3265 ($ $)) (-15 -1545 ($ $)) (-15 -2686 ($ $)) (-15 -2230 ($ $)) (-15 -4021 ($ $)) (-15 -1514 ($ $)) (-15 -3266 ($ $)) (-15 -2331 ($ $)) (-15 -3385 ($ $)) (-15 -3195 ($ $)) (-15 -2494 ($ $)) (-15 -4147 ($ $)) (-15 -3944 ($ $)) (-15 -3784 ($ $)) (-15 -1324 ($ $)) (-15 -3655 ($ $)) (-15 -2379 ($ $)) (-15 -2401 ($ $)) (-15 -4002 ($ $)) (-15 -4019 ($ $)) (-15 -3197 ($ $)) (-15 -3084 ($ $)) (-15 -4338 ($ $)) (-15 -4140 ($ $))) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 65)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1970 (($ (-1157 |#1|)) 9)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) 48)) (-4184 (((-112) $) 58)) (-2937 (((-772) $) 63) (((-772) $ (-772)) 62)) (-2843 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-1157 |#1|) $) 29)) (-1772 (((-772)) 57 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 10 T CONST)) (-1722 (($) 14 T CONST)) (-2929 (((-112) $ $) 28)) (-3037 (($ $) 36) (($ $ $) 16)) (-3024 (($ $ $) 31)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-567)) 42))) -(((-598 |#1|) (-13 (-1050) (-111 |#1| |#1|) (-10 -8 (-15 -3468 ((-1157 |#1|) $)) (-15 -1970 ($ (-1157 |#1|))) (-15 -4184 ((-112) $)) (-15 -2937 ((-772) $)) (-15 -2937 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1050)) (T -598)) -((-3468 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-598 *3)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-2937 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))) -(-13 (-1050) (-111 |#1| |#1|) (-10 -8 (-15 -3468 ((-1157 |#1|) $)) (-15 -1970 ($ (-1157 |#1|))) (-15 -4184 ((-112) $)) (-15 -2937 ((-772) $)) (-15 -2937 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) -((-3822 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15))) -(((-599 |#1| |#2|) (-10 -7 (-15 -3822 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1217) (-1217)) (T -599)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))) -(-10 -7 (-15 -3822 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) -((-3822 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1157 |#2|)) 20) (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18))) -(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-602 |#2|))) (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1157 |#2|)))) (-1217) (-1217) (-1217)) (T -600)) -((-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8))))) -(-10 -7 (-15 -3822 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-602 |#2|))) (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1157 |#2|)))) -((-3509 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1177))) 57)) (-2818 (((-169 |#2|) |#3|) 121)) (-1936 ((|#3| (-169 |#2|)) 46)) (-3954 ((|#2| |#3|) 21)) (-1570 ((|#3| |#2|) 35))) -(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -1936 (|#3| (-169 |#2|))) (-15 -3954 (|#2| |#3|)) (-15 -1570 (|#3| |#2|)) (-15 -2818 ((-169 |#2|) |#3|)) (-15 -3509 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1177))))) (-559) (-13 (-433 |#1|) (-1003) (-1202)) (-13 (-433 (-169 |#1|)) (-1003) (-1202))) (T -601)) -((-3509 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1177))) (-4 *2 (-13 (-433 (-169 *5)) (-1003) (-1202))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1003) (-1202))))) (-2818 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1003) (-1202))) (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1202))))) (-1570 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1202))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1003) (-1202))))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1003) (-1202))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1202))))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1202))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1202))) (-5 *1 (-601 *4 *5 *2))))) -(-10 -7 (-15 -1936 (|#3| (-169 |#2|))) (-15 -3954 (|#2| |#3|)) (-15 -1570 (|#3| |#2|)) (-15 -2818 ((-169 |#2|) |#3|)) (-15 -3509 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1177))))) -((-3338 (($ (-1 (-112) |#1|) $) 17)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3270 (($ (-1 |#1| |#1|) |#1|) 9)) (-3318 (($ (-1 (-112) |#1|) $) 13)) (-3329 (($ (-1 (-112) |#1|) $) 15)) (-4142 (((-1157 |#1|) $) 18)) (-4127 (((-863) $) NIL))) -(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -3822 ($ (-1 |#1| |#1|) $)) (-15 -3318 ($ (-1 (-112) |#1|) $)) (-15 -3329 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3270 ($ (-1 |#1| |#1|) |#1|)) (-15 -4142 ((-1157 |#1|) $)))) (-1217)) (T -602)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) (-3329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) (-3270 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1217))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3822 ($ (-1 |#1| |#1|) $)) (-15 -3318 ($ (-1 (-112) |#1|) $)) (-15 -3329 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3270 ($ (-1 |#1| |#1|) |#1|)) (-15 -4142 ((-1157 |#1|) $)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772)) NIL (|has| |#1| (-23)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1542 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3485 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-1596 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3246 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-2202 (($ $ $) NIL (|has| |#1| (-1050)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3024 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-603 |#1| |#2|) (-1265 |#1|) (-1217) (-567)) (T -603)) -NIL -(-1265 |#1|) -((-2848 (((-1272) $ |#2| |#2|) 36)) (-3993 ((|#2| $) 23)) (-1958 ((|#2| $) 21)) (-3751 (($ (-1 |#3| |#3|) $) 32)) (-3822 (($ (-1 |#3| |#3|) $) 30)) (-2405 ((|#3| $) 26)) (-4271 (($ $ |#3|) 33)) (-2991 (((-112) |#3| $) 17)) (-3564 (((-645 |#3|) $) 15)) (-1783 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2848 ((-1272) |#1| |#2| |#2|)) (-15 -4271 (|#1| |#1| |#3|)) (-15 -2405 (|#3| |#1|)) (-15 -3993 (|#2| |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -2991 ((-112) |#3| |#1|)) (-15 -3564 ((-645 |#3|) |#1|)) (-15 -1783 (|#3| |#1| |#2|)) (-15 -1783 (|#3| |#1| |#2| |#3|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3822 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1101) (-1217)) (T -604)) -NIL -(-10 -8 (-15 -2848 ((-1272) |#1| |#2| |#2|)) (-15 -4271 (|#1| |#1| |#3|)) (-15 -2405 (|#3| |#1|)) (-15 -3993 (|#2| |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -2991 ((-112) |#3| |#1|)) (-15 -3564 ((-645 |#3|) |#1|)) (-15 -1783 (|#3| |#1| |#2|)) (-15 -1783 (|#3| |#1| |#2| |#3|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3822 (|#1| (-1 |#3| |#3|) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#2| (-1101)))) (-2848 (((-1272) $ |#1| |#1|) 41 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-3759 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) 52)) (-3397 (((-645 |#2|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-3993 ((|#1| $) 44 (|has| |#1| (-851)))) (-2513 (((-645 |#2|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-1958 ((|#1| $) 45 (|has| |#1| (-851)))) (-3751 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#2| (-1101)))) (-2732 (((-645 |#1|) $) 47)) (-2479 (((-112) |#1| $) 48)) (-3430 (((-1121) $) 21 (|has| |#2| (-1101)))) (-2405 ((|#2| $) 43 (|has| |#1| (-851)))) (-4271 (($ $ |#2|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4417))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#2| (-1101)))) (-2461 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#2| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-605 |#1| |#2|) (-140) (-1101) (-1217)) (T -605)) -((-3564 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) (-5 *2 (-645 *4)))) (-2479 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) (-5 *2 (-112)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) (-5 *2 (-645 *3)))) (-2991 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1101)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1217)) (-4 *2 (-1101)) (-4 *2 (-851)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1217)) (-4 *2 (-1101)) (-4 *2 (-851)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1101)) (-4 *3 (-851)) (-4 *2 (-1217)))) (-4271 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) (-2848 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) (-5 *2 (-1272))))) -(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -3564 ((-645 |t#2|) $)) (-15 -2479 ((-112) |t#1| $)) (-15 -2732 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1101)) (IF (|has| $ (-6 -4417)) (-15 -2991 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -1958 (|t#1| $)) (-15 -3993 (|t#1| $)) (-15 -2405 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -4271 ($ $ |t#2|)) (-15 -2848 ((-1272) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1101)) ((-614 (-863)) -2797 (|has| |#2| (-1101)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-1101) |has| |#2| (-1101)) ((-1217) . T)) -((-4127 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14))) +((-2018 (((-1273) (-1160)) 10))) +(((-585) (-10 -7 (-15 -2018 ((-1273) (-1160))))) (T -585)) +((-2018 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-585))))) +(-10 -7 (-15 -2018 ((-1273) (-1160)))) +((-4323 (((-588 |#2|) (-588 |#2|)) 42)) (-3317 (((-645 |#2|) (-588 |#2|)) 44)) (-2502 ((|#2| (-588 |#2|)) 50))) +(((-586 |#1| |#2|) (-10 -7 (-15 -4323 ((-588 |#2|) (-588 |#2|))) (-15 -3317 ((-645 |#2|) (-588 |#2|))) (-15 -2502 (|#2| (-588 |#2|)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1203))) (T -586)) +((-2502 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1203))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1203))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1203))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4))))) +(-10 -7 (-15 -4323 ((-588 |#2|) (-588 |#2|))) (-15 -3317 ((-645 |#2|) (-588 |#2|))) (-15 -2502 (|#2| (-588 |#2|)))) +((-3829 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30))) +(((-587 |#1| |#2|) (-10 -7 (-15 -3829 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3829 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3829 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587)) +((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1752 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -1752 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6))))) +(-10 -7 (-15 -3829 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3829 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3829 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 76)) (-2038 ((|#1| $) NIL)) (-1752 ((|#1| $) 30)) (-2357 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1328 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1382 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $) 31)) (-1419 (((-1160) $) NIL)) (-2940 (($ |#1| |#1|) 38) (($ |#1| (-1178)) 49 (|has| |#1| (-1040 (-1178))))) (-3430 (((-1122) $) NIL)) (-4159 (((-112) $) 35)) (-1593 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1178)) 89 (|has| |#1| (-902 (-1178))))) (-4132 (((-863) $) 112) (($ |#1|) 29)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 18 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 17) (($ $ $) NIL)) (-3033 (($ $ $) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL))) +(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -1328 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1752 (|#1| $)) (-15 -1382 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2357 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4159 ((-112) $)) (-15 -2940 ($ |#1| |#1|)) (-15 -1593 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1178))) (-15 -1593 (|#1| $ (-1178))) |%noBranch|) (IF (|has| |#1| (-1040 (-1178))) (-15 -2940 ($ |#1| (-1178))) |%noBranch|))) (-365)) (T -588)) +((-1328 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *2)) (|:| |logand| (-1174 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-1752 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *3)) (|:| |logand| (-1174 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2940 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1593 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1593 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1178)))) (-2940 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) (-4 *2 (-365))))) +(-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -1328 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1752 (|#1| $)) (-15 -1382 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2357 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4159 ((-112) $)) (-15 -2940 ($ |#1| |#1|)) (-15 -1593 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1178))) (-15 -1593 (|#1| $ (-1178))) |%noBranch|) (IF (|has| |#1| (-1040 (-1178))) (-15 -2940 ($ |#1| (-1178))) |%noBranch|))) +((-3308 (((-112) |#1|) 16)) (-2407 (((-3 |#1| "failed") |#1|) 14)) (-1600 (((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-1375 (((-112) |#1| (-772)) 19)) (-2310 ((|#1| |#1|) 43)) (-3561 ((|#1| |#1| (-772)) 46))) +(((-589 |#1|) (-10 -7 (-15 -1375 ((-112) |#1| (-772))) (-15 -1600 ((-3 |#1| "failed") |#1| (-772))) (-15 -1600 ((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|)) (-15 -3561 (|#1| |#1| (-772))) (-15 -3308 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1|)) (-15 -2310 (|#1| |#1|))) (-548)) (T -589)) +((-2310 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-2407 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3047 *3) (|:| -3458 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-1600 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1375 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -1375 ((-112) |#1| (-772))) (-15 -1600 ((-3 |#1| "failed") |#1| (-772))) (-15 -1600 ((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|)) (-15 -3561 (|#1| |#1| (-772))) (-15 -3308 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1|)) (-15 -2310 (|#1| |#1|))) +((-2657 (((-1174 |#1|) (-923)) 44))) +(((-590 |#1|) (-10 -7 (-15 -2657 ((-1174 |#1|) (-923)))) (-351)) (T -590)) +((-2657 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351))))) +(-10 -7 (-15 -2657 ((-1174 |#1|) (-923)))) +((-4323 (((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|)))) 27)) (-2416 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178)) 34 (|has| |#1| (-147)))) (-3317 (((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|)))) 19)) (-4393 (((-317 |#1|) (-410 (-954 |#1|)) (-1178)) 32 (|has| |#1| (-147)))) (-2502 (((-317 |#1|) (-588 (-410 (-954 |#1|)))) 21))) +(((-591 |#1|) (-10 -7 (-15 -4323 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3317 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2502 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2416 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -4393 ((-317 |#1|) (-410 (-954 |#1|)) (-1178)))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-640 (-567)))) (T -591)) +((-4393 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-954 *3)))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))) +(-10 -7 (-15 -4323 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3317 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2502 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2416 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -4393 ((-317 |#1|) (-410 (-954 |#1|)) (-1178)))) |%noBranch|)) +((-1691 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-907 (-567))) 72)) (-2427 (((-772) (-645 (-567))) 69))) +(((-592) (-10 -7 (-15 -2427 ((-772) (-645 (-567)))) (-15 -1691 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))) (T -592)) +((-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) +(-10 -7 (-15 -2427 ((-772) (-645 (-567)))) (-15 -1691 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))))) +((-1839 (((-645 |#5|) |#5| (-112)) 100)) (-1459 (((-112) |#5| (-645 |#5|)) 34))) +(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1839 ((-645 |#5|) |#5| (-112))) (-15 -1459 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -593)) +((-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8))))) +(-10 -7 (-15 -1839 ((-645 |#5|) |#5| (-112))) (-15 -1459 ((-112) |#5| (-645 |#5|)))) +((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-594) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -594)) +((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594))))) +(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $)))) +((-2403 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-4172 (($ $) 38)) (-3714 (($ $) NIL)) (-1757 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 68)) (-1918 (((-112) $ $ (-567)) 62)) (-4323 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-144) (-851))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-3279 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-3364 (($ $ (-1235 (-567)) $) 57)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-3238 (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) NIL)) (-1958 (((-112) $ $) 90)) (-2569 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-2777 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 9)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 32 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2266 (((-567) $) 47 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 91)) (-4197 (((-772) $ $ (-144)) 88)) (-3731 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3240 (($ $) 41)) (-3677 (($ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3289 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1419 (((-1160) $) 43 (|has| (-144) (-1102)))) (-2845 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) 87 (|has| (-144) (-1102)))) (-2409 (((-144) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3986 (($ $ (-144)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) NIL)) (-3572 (((-112) $) 15)) (-3498 (($) 10)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1235 (-567))) 25) (($ $ $) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1395 (($ $ $ (-567)) 84 (|has| $ (-6 -4419)))) (-4305 (($ $) 20)) (-3893 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) NIL)) (-2269 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-4132 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2936 (((-112) $ $) 17 (|has| (-144) (-1102)))) (-2984 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2958 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2414 (((-772) $) 16 (|has| $ (-6 -4418))))) +(((-595 |#1|) (-1146) (-567)) (T -595)) +NIL +(-1146) +((-3579 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|)) 32))) +(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|)) (T -596)) +((-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3))))) +(-10 -7 (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 72)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-3615 (($ $) 110)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3640 (((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567))) 243)) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2762 (((-112) $) NIL)) (-4384 (((-567) $) 63) (((-567) $ (-567)) 64)) (-1433 (((-112) $) NIL)) (-3807 (($ $ (-923)) 84)) (-2288 (($ (-1 |#1| (-567)) $) 81)) (-2843 (((-112) $) 26)) (-2824 (($ |#1| (-567)) 22) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 76)) (-2564 (($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3724 (((-3 $ "failed") $ $ (-112)) 109)) (-3667 (($ $ $) 117)) (-3430 (((-1122) $) NIL)) (-4125 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-3293 (((-1028 (-844 (-567))) $) 14)) (-2410 (($ $ (-567)) 47)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1787 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3077 (((-567) $) NIL)) (-2192 (($ $) 48)) (-4132 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-4136 ((|#1| $ (-567)) 61)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 39 T CONST)) (-2166 ((|#1| $) NIL)) (-3017 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-3287 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2674 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-2417 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2923 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-4389 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-2337 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3642 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-4182 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-1427 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-4003 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-2185 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-2819 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3548 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2045 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-2100 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2135 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-2454 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2931 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-2518 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-2822 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-1916 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2513 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-1785 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2359 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3168 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-4106 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-3727 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-1716 (($) 30 T CONST)) (-1728 (($) 40 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2936 (((-112) $ $) 74)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 92) (($ $ $) 73)) (-3033 (($ $ $) 89)) (** (($ $ (-923)) NIL) (($ $ (-772)) 112)) (* (($ (-923) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-597 |#1|) (-13 (-1246 |#1| (-567)) (-10 -8 (-15 -2564 ($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3293 ((-1028 (-844 (-567))) $)) (-15 -4125 ((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2843 ((-112) $)) (-15 -2288 ($ (-1 |#1| (-567)) $)) (-15 -3724 ((-3 $ "failed") $ $ (-112))) (-15 -3615 ($ $)) (-15 -3667 ($ $ $)) (-15 -3640 ((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (-15 -3642 ($ $ |#1|)) (-15 -2337 ($ $ (-410 (-567)))) (-15 -1427 ($ $)) (-15 -4182 ($ $)) (-15 -2417 ($ $)) (-15 -2100 ($ $)) (-15 -3287 ($ $)) (-15 -3548 ($ $)) (-15 -4389 ($ $)) (-15 -2185 ($ $)) (-15 -2518 ($ $)) (-15 -3727 ($ $)) (-15 -2454 ($ $)) (-15 -3168 ($ $)) (-15 -1916 ($ $)) (-15 -1785 ($ $)) (-15 -2674 ($ $)) (-15 -2045 ($ $)) (-15 -3017 ($ $)) (-15 -2819 ($ $)) (-15 -2923 ($ $)) (-15 -4003 ($ $)) (-15 -2931 ($ $)) (-15 -4106 ($ $)) (-15 -2135 ($ $)) (-15 -2359 ($ $)) (-15 -2822 ($ $)) (-15 -2513 ($ $))) |%noBranch|))) (-1051)) (T -597)) +((-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-2564 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) (-5 *1 (-597 *4)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-3724 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-3615 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3667 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3640 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1178)) (-5 *7 (-410 (-567))) (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3642 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1051)))) (-1427 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4182 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3548 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2518 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2454 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1916 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1785 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3017 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2819 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4003 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2931 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2822 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2513 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(-13 (-1246 |#1| (-567)) (-10 -8 (-15 -2564 ($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3293 ((-1028 (-844 (-567))) $)) (-15 -4125 ((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2843 ((-112) $)) (-15 -2288 ($ (-1 |#1| (-567)) $)) (-15 -3724 ((-3 $ "failed") $ $ (-112))) (-15 -3615 ($ $)) (-15 -3667 ($ $ $)) (-15 -3640 ((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (-15 -3642 ($ $ |#1|)) (-15 -2337 ($ $ (-410 (-567)))) (-15 -1427 ($ $)) (-15 -4182 ($ $)) (-15 -2417 ($ $)) (-15 -2100 ($ $)) (-15 -3287 ($ $)) (-15 -3548 ($ $)) (-15 -4389 ($ $)) (-15 -2185 ($ $)) (-15 -2518 ($ $)) (-15 -3727 ($ $)) (-15 -2454 ($ $)) (-15 -3168 ($ $)) (-15 -1916 ($ $)) (-15 -1785 ($ $)) (-15 -2674 ($ $)) (-15 -2045 ($ $)) (-15 -3017 ($ $)) (-15 -2819 ($ $)) (-15 -2923 ($ $)) (-15 -4003 ($ $)) (-15 -2931 ($ $)) (-15 -4106 ($ $)) (-15 -2135 ($ $)) (-15 -2359 ($ $)) (-15 -2822 ($ $)) (-15 -2513 ($ $))) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 65)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-1306 (($ (-1158 |#1|)) 9)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 48)) (-2762 (((-112) $) 58)) (-4384 (((-772) $) 63) (((-772) $ (-772)) 62)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-1158 |#1|) $) 29)) (-4221 (((-772)) 57 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 10 T CONST)) (-1728 (($) 14 T CONST)) (-2936 (((-112) $ $) 28)) (-3045 (($ $) 36) (($ $ $) 16)) (-3033 (($ $ $) 31)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-567)) 42))) +(((-598 |#1|) (-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3032 ((-1158 |#1|) $)) (-15 -1306 ($ (-1158 |#1|))) (-15 -2762 ((-112) $)) (-15 -4384 ((-772) $)) (-15 -4384 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1051)) (T -598)) +((-3032 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-4384 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))) +(-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3032 ((-1158 |#1|) $)) (-15 -1306 ($ (-1158 |#1|))) (-15 -2762 ((-112) $)) (-15 -4384 ((-772) $)) (-15 -4384 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) +((-3829 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15))) +(((-599 |#1| |#2|) (-10 -7 (-15 -3829 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1218) (-1218)) (T -599)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))) +(-10 -7 (-15 -3829 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) +((-3829 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|)) 20) (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18))) +(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|)))) (-1218) (-1218) (-1218)) (T -600)) +((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8))))) +(-10 -7 (-15 -3829 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|)))) +((-2198 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178))) 57)) (-3894 (((-169 |#2|) |#3|) 121)) (-1656 ((|#3| (-169 |#2|)) 46)) (-1332 ((|#2| |#3|) 21)) (-2975 ((|#3| |#2|) 35))) +(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -1656 (|#3| (-169 |#2|))) (-15 -1332 (|#2| |#3|)) (-15 -2975 (|#3| |#2|)) (-15 -3894 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178))))) (-559) (-13 (-433 |#1|) (-1004) (-1203)) (-13 (-433 (-169 |#1|)) (-1004) (-1203))) (T -601)) +((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1178))) (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1203))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1203))))) (-3894 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))) (-2975 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1203))))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) (-5 *1 (-601 *4 *5 *2))))) +(-10 -7 (-15 -1656 (|#3| (-169 |#2|))) (-15 -1332 (|#2| |#3|)) (-15 -2975 (|#3| |#2|)) (-15 -3894 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178))))) +((-3350 (($ (-1 (-112) |#1|) $) 17)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3291 (($ (-1 |#1| |#1|) |#1|) 9)) (-3326 (($ (-1 (-112) |#1|) $) 13)) (-3338 (($ (-1 (-112) |#1|) $) 15)) (-4147 (((-1158 |#1|) $) 18)) (-4132 (((-863) $) NIL))) +(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3350 ($ (-1 (-112) |#1|) $)) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -4147 ((-1158 |#1|) $)))) (-1218)) (T -602)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1218))))) +(-13 (-614 (-863)) (-10 -8 (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3350 ($ (-1 (-112) |#1|) $)) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -4147 ((-1158 |#1|) $)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-603 |#1| |#2|) (-1266 |#1|) (-1218) (-567)) (T -603)) +NIL +(-1266 |#1|) +((-1783 (((-1273) $ |#2| |#2|) 36)) (-4069 ((|#2| $) 23)) (-2266 ((|#2| $) 21)) (-3731 (($ (-1 |#3| |#3|) $) 32)) (-3829 (($ (-1 |#3| |#3|) $) 30)) (-2409 ((|#3| $) 26)) (-3986 (($ $ |#3|) 33)) (-1794 (((-112) |#3| $) 17)) (-2339 (((-645 |#3|) $) 15)) (-1787 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -1783 ((-1273) |#1| |#2| |#2|)) (-15 -3986 (|#1| |#1| |#3|)) (-15 -2409 (|#3| |#1|)) (-15 -4069 (|#2| |#1|)) (-15 -2266 (|#2| |#1|)) (-15 -1794 ((-112) |#3| |#1|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1102) (-1218)) (T -604)) +NIL +(-10 -8 (-15 -1783 ((-1273) |#1| |#2| |#2|)) (-15 -3986 (|#1| |#1| |#3|)) (-15 -2409 (|#3| |#1|)) (-15 -4069 (|#2| |#1|)) (-15 -2266 (|#2| |#1|)) (-15 -1794 ((-112) |#3| |#1|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-1783 (((-1273) $ |#1| |#1|) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3741 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 52)) (-2777 (((-645 |#2|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 44 (|has| |#1| (-851)))) (-2279 (((-645 |#2|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 45 (|has| |#1| (-851)))) (-3731 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#2| (-1102)))) (-1789 (((-645 |#1|) $) 47)) (-2996 (((-112) |#1| $) 48)) (-3430 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2409 ((|#2| $) 43 (|has| |#1| (-851)))) (-3986 (($ $ |#2|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4418))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-605 |#1| |#2|) (-140) (-1102) (-1218)) (T -605)) +((-2339 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-645 *4)))) (-2996 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-645 *3)))) (-1794 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) (-4 *2 (-1218)))) (-3986 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-1783 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-1273))))) +(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2339 ((-645 |t#2|) $)) (-15 -2996 ((-112) |t#1| $)) (-15 -1789 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1102)) (IF (|has| $ (-6 -4418)) (-15 -1794 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2266 (|t#1| $)) (-15 -4069 (|t#1| $)) (-15 -2409 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -3986 ($ $ |t#2|)) (-15 -1783 ((-1273) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1102)) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-1102) |has| |#2| (-1102)) ((-1218) . T)) +((-4132 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14))) (((-606) (-13 (-614 (-863)) (-493 (-129)))) (T -606)) NIL (-13 (-614 (-863)) (-493 (-129))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ (-1182)) NIL) (((-1182) $) NIL) (((-1216) $) 14) (($ (-645 (-1216))) 13)) (-1536 (((-645 (-1216)) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-607) (-13 (-1084) (-614 (-1216)) (-10 -8 (-15 -4127 ($ (-645 (-1216)))) (-15 -1536 ((-645 (-1216)) $))))) (T -607)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-607)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-607))))) -(-13 (-1084) (-614 (-1216)) (-10 -8 (-15 -4127 ($ (-645 (-1216)))) (-15 -1536 ((-645 (-1216)) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2720 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3316 (((-1267 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1267 (-690 |#1|)) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-4308 (((-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2245 (($) NIL T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3650 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2942 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2442 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1668 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2385 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2852 (((-1173 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2968 (($ $ (-922)) NIL)) (-2675 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3090 (((-1173 |#1|) $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1809 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3798 (((-1173 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-4037 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4025 (($ (-1267 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1267 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1979 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-2128 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3709 (($ $ (-922)) NIL)) (-3809 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2427 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3151 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1946 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3356 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2506 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2013 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2539 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1527 (((-1173 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2941 (($ $ (-922)) NIL)) (-3660 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2464 (((-1173 |#1|) $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2152 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-1837 (((-1173 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2690 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3739 (((-1159) $) NIL)) (-2972 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3657 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1121) $) NIL)) (-3630 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1783 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2446 (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-420 |#1|))) (((-1267 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $) (-1267 $)) NIL (|has| |#2| (-369 |#1|))) (((-1267 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3880 (($ (-1267 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1267 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1526 (((-645 (-953 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-953 |#1|)) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3387 (($ $ $) NIL)) (-4348 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4127 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL (|has| |#2| (-420 |#1|)))) (-2925 (((-645 (-1267 |#1|))) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1875 (($ $ $ $) NIL)) (-3947 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2351 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3411 (($ $ $) NIL)) (-4237 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3571 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2950 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1710 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) 24)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4127 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608)) -((-4127 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3))))) -(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4127 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-3673 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) 39)) (-2831 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL) (($) NIL)) (-2848 (((-1272) $ (-1159) (-1159)) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-1159) |#1|) 49)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#1| "failed") (-1159) $) 52)) (-2245 (($) NIL T CONST)) (-2888 (($ $ (-1159)) 25)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-2774 (((-3 |#1| "failed") (-1159) $) 53) (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (|has| $ (-6 -4417)))) (-3230 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-2499 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-2209 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) 38)) (-3759 ((|#1| $ (-1159) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-1159)) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-1792 (($ $) 54)) (-3815 (($ (-391)) 23) (($ (-391) (-1159)) 22)) (-1988 (((-391) $) 40)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-1159) $) NIL (|has| (-1159) (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417))) (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (((-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-1958 (((-1159) $) NIL (|has| (-1159) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1422 (((-645 (-1159)) $) 45)) (-1528 (((-112) (-1159) $) NIL)) (-3857 (((-1159) $) 41)) (-1881 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-2732 (((-645 (-1159)) $) NIL)) (-2479 (((-112) (-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 ((|#1| $) NIL (|has| (-1159) (-851)))) (-3424 (((-3 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) "failed") (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-645 (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 43)) (-1783 ((|#1| $ (-1159) |#1|) NIL) ((|#1| $ (-1159)) 48)) (-3253 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL) (($) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (((-772) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (((-772) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-4127 (((-863) $) 21)) (-2990 (($ $) 26)) (-4104 (((-112) $ $) NIL)) (-3911 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) (-1193 (-1159) |#1|) (-10 -8 (-6 -4417) (-15 -1792 ($ $)))) (-1101)) (T -609)) -((-1792 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1101))))) -(-13 (-366 (-391) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) (-1193 (-1159) |#1|) (-10 -8 (-6 -4417) (-15 -1792 ($ $)))) -((-3136 (((-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) 16)) (-1422 (((-645 |#2|) $) 20)) (-1528 (((-112) |#2| $) 12))) -(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -1422 ((-645 |#2|) |#1|)) (-15 -1528 ((-112) |#2| |#1|)) (-15 -3136 ((-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|))) (-611 |#2| |#3|) (-1101) (-1101)) (T -610)) -NIL -(-10 -8 (-15 -1422 ((-645 |#2|) |#1|)) (-15 -1528 ((-112) |#2| |#1|)) (-15 -3136 ((-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|))) -((-2399 (((-112) $ $) 19 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 56 (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) 62)) (-2245 (($) 7 T CONST)) (-2440 (($ $) 59 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 55 (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 57 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-1422 (((-645 |#1|) $) 64)) (-1528 (((-112) |#1| $) 65)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 40)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 41)) (-3430 (((-1121) $) 21 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 52)) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 42)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) 27 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 26 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 25 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 24 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3253 (($) 50) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 51)) (-4127 (((-863) $) 18 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 43)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-611 |#1| |#2|) (-140) (-1101) (-1101)) (T -611)) -((-1528 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-5 *2 (-112)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-5 *2 (-645 *3)))) (-2774 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) (-4013 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(-13 (-229 (-2 (|:| -1791 |t#1|) (|:| -4232 |t#2|))) (-10 -8 (-15 -1528 ((-112) |t#1| $)) (-15 -1422 ((-645 |t#1|) $)) (-15 -2774 ((-3 |t#2| "failed") |t#1| $)) (-15 -4013 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((-102) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) ((-614 (-863)) -2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-1101) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) ((-1217) . T)) -((-1387 (((-613 |#2|) |#1|) 17)) (-2614 (((-3 |#1| "failed") (-613 |#2|)) 21))) -(((-612 |#1| |#2|) (-10 -7 (-15 -1387 ((-613 |#2|) |#1|)) (-15 -2614 ((-3 |#1| "failed") (-613 |#2|)))) (-1101) (-1101)) (T -612)) -((-2614 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1101)) (-4 *2 (-1101)) (-5 *1 (-612 *2 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101))))) -(-10 -7 (-15 -1387 ((-613 |#2|) |#1|)) (-15 -2614 ((-3 |#1| "failed") (-613 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-4190 (((-3 (-1177) "failed") $) 48)) (-2712 (((-1272) $ (-772)) 24)) (-2567 (((-772) $) 23)) (-2652 (((-114) $) 12)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3627 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1177)) 35)) (-1582 (((-112) $ (-114)) 18) (((-112) $ (-1177)) 16)) (-4133 (((-772) $) 20)) (-3430 (((-1121) $) NIL)) (-3880 (((-893 (-567)) $) 96 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 103 (|has| |#1| (-615 (-893 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-4127 (((-863) $) 73)) (-4104 (((-112) $ $) NIL)) (-3011 (((-645 |#1|) $) 22)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 52)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 54))) -(((-613 |#1|) (-13 (-132) (-851) (-885 |#1|) (-10 -8 (-15 -2652 ((-114) $)) (-15 -3011 ((-645 |#1|) $)) (-15 -4133 ((-772) $)) (-15 -3627 ($ (-114) (-645 |#1|) (-772))) (-15 -3627 ($ (-1177))) (-15 -4190 ((-3 (-1177) "failed") $)) (-15 -1582 ((-112) $ (-114))) (-15 -1582 ((-112) $ (-1177))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1101)) (T -613)) -((-2652 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) (-3627 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1101)) (-5 *1 (-613 *5)))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) (-4190 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1101)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1101))))) -(-13 (-132) (-851) (-885 |#1|) (-10 -8 (-15 -2652 ((-114) $)) (-15 -3011 ((-645 |#1|) $)) (-15 -4133 ((-772) $)) (-15 -3627 ($ (-114) (-645 |#1|) (-772))) (-15 -3627 ($ (-1177))) (-15 -4190 ((-3 (-1177) "failed") $)) (-15 -1582 ((-112) $ (-114))) (-15 -1582 ((-112) $ (-1177))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -((-4127 ((|#1| $) 6))) -(((-614 |#1|) (-140) (-1217)) (T -614)) -((-4127 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1217))))) -(-13 (-10 -8 (-15 -4127 (|t#1| $)))) -((-3880 ((|#1| $) 6))) -(((-615 |#1|) (-140) (-1217)) (T -615)) -((-3880 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1217))))) -(-13 (-10 -8 (-15 -3880 (|t#1| $)))) -((-1587 (((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16))) -(((-616 |#1| |#2|) (-10 -7 (-15 -1587 ((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -1587 ((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567)))) (-1243 |#1|)) (T -616)) -((-1587 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-1173 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-1587 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-1173 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -1587 ((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -1587 ((-3 (-1173 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) -((-4127 (($ |#1|) 6))) -(((-617 |#1|) (-140) (-1217)) (T -617)) -((-4127 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1217))))) -(-13 (-10 -8 (-15 -4127 ($ |t#1|)))) -((-2399 (((-112) $ $) NIL)) (-3849 (($) 14 T CONST)) (-1474 (($) 15 T CONST)) (-1676 (($ $ $) 29)) (-1653 (($ $) 27)) (-3739 (((-1159) $) NIL)) (-2441 (($ $ $) 30)) (-3430 (((-1121) $) NIL)) (-2782 (($) 11 T CONST)) (-4149 (($ $ $) 31)) (-4127 (((-863) $) 35)) (-1699 (((-112) $ (|[\|\|]| -2782)) 24) (((-112) $ (|[\|\|]| -3849)) 26) (((-112) $ (|[\|\|]| -1474)) 21)) (-4104 (((-112) $ $) NIL)) (-1664 (($ $ $) 28)) (-2929 (((-112) $ $) 18))) -(((-618) (-13 (-968) (-10 -8 (-15 -3849 ($) -3280) (-15 -1699 ((-112) $ (|[\|\|]| -2782))) (-15 -1699 ((-112) $ (|[\|\|]| -3849))) (-15 -1699 ((-112) $ (|[\|\|]| -1474)))))) (T -618)) -((-3849 (*1 *1) (-5 *1 (-618))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2782)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3849)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1474)) (-5 *2 (-112)) (-5 *1 (-618))))) -(-13 (-968) (-10 -8 (-15 -3849 ($) -3280) (-15 -1699 ((-112) $ (|[\|\|]| -2782))) (-15 -1699 ((-112) $ (|[\|\|]| -3849))) (-15 -1699 ((-112) $ (|[\|\|]| -1474))))) -((-3880 (($ |#1|) 6))) -(((-619 |#1|) (-140) (-1217)) (T -619)) -((-3880 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1217))))) -(-13 (-10 -8 (-15 -3880 ($ |t#1|)))) -((-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) -(((-620 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-621 |#2|) (-1050)) (T -620)) -NIL -(-10 -8 (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-621 |#1|) (-140) (-1050)) (T -621)) -((-4127 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1050))))) -(-13 (-1050) (-649 |t#1|) (-10 -8 (-15 -4127 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3449 (((-567) $) NIL (|has| |#1| (-849)))) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-4357 (((-112) $) NIL (|has| |#1| (-849)))) (-2843 (((-112) $) NIL)) (-1441 ((|#1| $) 13)) (-2102 (((-112) $) NIL (|has| |#1| (-849)))) (-2010 (($ $ $) NIL (|has| |#1| (-849)))) (-2998 (($ $ $) NIL (|has| |#1| (-849)))) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1455 ((|#3| $) 15)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-1772 (((-772)) 20 T CONST)) (-4104 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-849)))) (-1710 (($) NIL T CONST)) (-1722 (($) 12 T CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3050 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -1441 (|#1| $)) (-15 -1455 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3050 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1441 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1455 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -1441 (|#1| $)) (-15 -1455 (|#3| $)))) -((-2151 ((|#2| |#2| (-1177) (-1177)) 16))) -(((-623 |#1| |#2|) (-10 -7 (-15 -2151 (|#2| |#2| (-1177) (-1177)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-960) (-29 |#1|))) (T -623)) -((-2151 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1202) (-960) (-29 *4)))))) -(-10 -7 (-15 -2151 (|#2| |#2| (-1177) (-1177)))) -((-2399 (((-112) $ $) 64)) (-2840 (((-112) $) 58)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3017 ((|#1| $) 55)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2887 (((-2 (|:| -4282 $) (|:| -4044 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) 27)) (-3153 (((-3 $ "failed") $) 88)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2937 (((-567) $) 22)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) 40)) (-2821 (($ |#1| (-567)) 24)) (-2980 ((|#1| $) 57)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ $) 93)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4197 (((-772) $) 115 (|has| |#1| (-365)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 114 (|has| |#1| (-365)))) (-1621 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1813 (((-567) $) 38)) (-3880 (((-410 |#2|) $) 47)) (-4127 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-2253 ((|#1| $ (-567)) 72)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 9 T CONST)) (-1722 (($) 14 T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2929 (((-112) $ $) 21)) (-3037 (($ $) 51) (($ $ $) NIL)) (-3024 (($ $ $) 90)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49))) -(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1039 |#2|) (-10 -8 (-15 -2014 ((-112) $)) (-15 -1813 ((-567) $)) (-15 -2937 ((-567) $)) (-15 -3006 ($ $)) (-15 -2980 (|#1| $)) (-15 -3017 (|#1| $)) (-15 -2253 (|#1| $ (-567))) (-15 -2821 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2887 ((-2 (|:| -4282 $) (|:| -4044 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1243 |#1|)) (T -624)) -((-2014 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1243 *3)))) (-1813 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1243 *3)))) (-2937 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1243 *3)))) (-3006 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2)))) (-2980 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2)))) (-3017 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2)))) (-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1243 *2)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1243 *2)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| -4282 (-624 *4 *5)) (|:| -4044 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))) -(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1039 |#2|) (-10 -8 (-15 -2014 ((-112) $)) (-15 -1813 ((-567) $)) (-15 -2937 ((-567) $)) (-15 -3006 ($ $)) (-15 -2980 (|#1| $)) (-15 -3017 (|#1| $)) (-15 -2253 (|#1| $ (-567))) (-15 -2821 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2887 ((-2 (|:| -4282 $) (|:| -4044 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) -((-3645 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-2516 ((|#6| |#6|) 48))) -(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2516 (|#6| |#6|)) (-15 -3645 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|) (-1110 |#1| |#2| |#3| |#4|)) (T -625)) -((-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *10 (-1110 *5 *6 *7 *8)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *2 (-1110 *3 *4 *5 *6))))) -(-10 -7 (-15 -2516 (|#6| |#6|)) (-15 -3645 ((-645 |#6|) (-645 |#4|) (-112)))) -((-2501 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-2737 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1173 |#3|)))) "failed") |#3| (-645 (-1173 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2166 (-645 (-2 (|:| |irr| |#4|) (|:| -1594 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73))) -(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2501 ((-112) |#3| (-772) (-645 |#3|))) (-15 -2737 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1173 |#3|)))) "failed") |#3| (-645 (-1173 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2166 (-645 (-2 (|:| |irr| |#4|) (|:| -1594 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-950 |#3| |#2| |#1|)) (T -626)) -((-2737 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2166 (-645 (-2 (|:| |irr| *10) (|:| -1594 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1173 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1173 *3))))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-950 *3 *7 *6))))) -(-10 -7 (-15 -2501 ((-112) |#3| (-772) (-645 |#3|))) (-15 -2737 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1173 |#3|)))) "failed") |#3| (-645 (-1173 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2166 (-645 (-2 (|:| |irr| |#4|) (|:| -1594 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) -((-2399 (((-112) $ $) NIL)) (-4100 (((-1136) $) 11)) (-4084 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-627) (-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $))))) (T -627)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-627)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-627))))) -(-13 (-1084) (-10 -8 (-15 -4084 ((-1136) $)) (-15 -4100 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-3259 (((-645 |#1|) $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3818 (($ $) 77)) (-3053 (((-665 |#1| |#2|) $) 60)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 81)) (-2431 (((-645 (-295 |#2|)) $ $) 42)) (-3430 (((-1121) $) NIL)) (-3927 (($ (-665 |#1| |#2|)) 56)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) 66) (((-1282 |#1| |#2|) $) NIL) (((-1287 |#1| |#2|) $) 74)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 61 T CONST)) (-3708 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-4201 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-1568 (((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $) 46)) (-2929 (((-112) $ $) 62)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52))) -(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -3927 ($ (-665 |#1| |#2|))) (-15 -3053 ((-665 |#1| |#2|) $)) (-15 -1568 ((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-1282 |#1| |#2|) $)) (-15 -4127 ((-1287 |#1| |#2|) $)) (-15 -3818 ($ $)) (-15 -3259 ((-645 |#1|) $)) (-15 -4201 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3708 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -2431 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-922)) (T -628)) -((-3927 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-922)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-894 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1287 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-922)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-922)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-2431 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))) -(-13 (-476) (-10 -8 (-15 -3927 ($ (-665 |#1| |#2|))) (-15 -3053 ((-665 |#1| |#2|) $)) (-15 -1568 ((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-1282 |#1| |#2|) $)) (-15 -4127 ((-1287 |#1| |#2|) $)) (-15 -3818 ($ $)) (-15 -3259 ((-645 |#1|) $)) (-15 -4201 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3708 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -2431 ((-645 (-295 |#2|)) $ $)))) -((-3645 (((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-3357 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-3204 (((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-4331 (((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-2147 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-3114 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29))) -(((-629 |#1| |#2|) (-10 -7 (-15 -3357 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3114 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -2147 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4331 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3204 ((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3645 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3645 ((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1177))) (T -629)) -((-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1147 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-629 *5 *6)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1147 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-4331 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-629 *5 *6)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1177))) (-5 *1 (-629 *3 *4)))) (-3114 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1177))) (-5 *1 (-629 *3 *4)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1177))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) -(-10 -7 (-15 -3357 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3114 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -2147 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4331 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3204 ((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3645 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3645 ((-645 (-1147 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) -((-3165 (($ $) 38)) (-3039 (($ $) 21)) (-3148 (($ $) 37)) (-3015 (($ $) 22)) (-3184 (($ $) 36)) (-3065 (($ $) 23)) (-1480 (($) 48)) (-3053 (($ $) 45)) (-1898 (($ $) 17)) (-2508 (($ $ (-1093 $)) 7) (($ $ (-1177)) 6)) (-3927 (($ $) 46)) (-2967 (($ $) 15)) (-3002 (($ $) 16)) (-3192 (($ $) 35)) (-3076 (($ $) 24)) (-3174 (($ $) 34)) (-3052 (($ $) 25)) (-3157 (($ $) 33)) (-3026 (($ $) 26)) (-3220 (($ $) 44)) (-3109 (($ $) 32)) (-3201 (($ $) 43)) (-3087 (($ $) 31)) (-3241 (($ $) 42)) (-3128 (($ $) 30)) (-3807 (($ $) 41)) (-3137 (($ $) 29)) (-3228 (($ $) 40)) (-3119 (($ $) 28)) (-3210 (($ $) 39)) (-3098 (($ $) 27)) (-3788 (($ $) 19)) (-3597 (($ $) 20)) (-3567 (($ $) 18)) (** (($ $ $) 47))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-1183)) NIL) (((-1183) $) NIL) (((-1217) $) 14) (($ (-645 (-1217))) 13)) (-1538 (((-645 (-1217)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-607) (-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -1538 ((-645 (-1217)) $))))) (T -607)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607))))) +(-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -1538 ((-645 (-1217)) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1268 (-690 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3337 (((-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3645 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1735 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2583 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3528 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2209 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4063 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1575 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2676 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1682 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1444 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3658 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1268 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1954 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1379 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3345 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2119 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2702 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4162 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3960 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3042 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3567 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3396 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4341 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1787 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2887 (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $) (-1268 $)) NIL (|has| |#2| (-369 |#1|))) (((-1268 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-4013 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4132 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL (|has| |#2| (-420 |#1|)))) (-2652 (((-645 (-1268 |#1|))) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2355 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1749 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2059 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608)) +((-4132 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3))))) +(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-4032 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) 39)) (-2835 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL) (($) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-1160) |#1|) 49)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#1| "failed") (-1160) $) 52)) (-2585 (($) NIL T CONST)) (-2828 (($ $ (-1160)) 25)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2539 (((-3 |#1| "failed") (-1160) $) 53) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (|has| $ (-6 -4418)))) (-3238 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2636 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) 38)) (-3741 ((|#1| $ (-1160) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-1160)) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3222 (($ $) 54)) (-3823 (($ (-391)) 23) (($ (-391) (-1160)) 22)) (-1996 (((-391) $) 40)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1391 (((-645 (-1160)) $) 45)) (-4251 (((-112) (-1160) $) NIL)) (-1892 (((-1160) $) 41)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 43)) (-1787 ((|#1| $ (-1160) |#1|) NIL) ((|#1| $ (-1160)) 48)) (-2718 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL) (($) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-4132 (((-863) $) 21)) (-1675 (($ $) 26)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-1194 (-1160) |#1|) (-10 -8 (-6 -4418) (-15 -3222 ($ $)))) (-1102)) (T -609)) +((-3222 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102))))) +(-13 (-366 (-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-1194 (-1160) |#1|) (-10 -8 (-6 -4418) (-15 -3222 ($ $)))) +((-4337 (((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 16)) (-1391 (((-645 |#2|) $) 20)) (-4251 (((-112) |#2| $) 12))) +(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -1391 ((-645 |#2|) |#1|)) (-15 -4251 ((-112) |#2| |#1|)) (-15 -4337 ((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|))) (-611 |#2| |#3|) (-1102) (-1102)) (T -610)) +NIL +(-10 -8 (-15 -1391 ((-645 |#2|) |#1|)) (-15 -4251 ((-112) |#2| |#1|)) (-15 -4337 ((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|))) +((-2403 (((-112) $ $) 19 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41)) (-3430 (((-1122) $) 21 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52)) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51)) (-4132 (((-863) $) 18 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-611 |#1| |#2|) (-140) (-1102) (-1102)) (T -611)) +((-4251 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-2539 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4019 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) +(-13 (-229 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))) (-10 -8 (-15 -4251 ((-112) |t#1| $)) (-15 -1391 ((-645 |t#1|) $)) (-15 -2539 ((-3 |t#2| "failed") |t#1| $)) (-15 -4019 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) ((-614 (-863)) -2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-1102) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) ((-1218) . T)) +((-3793 (((-613 |#2|) |#1|) 17)) (-1319 (((-3 |#1| "failed") (-613 |#2|)) 21))) +(((-612 |#1| |#2|) (-10 -7 (-15 -3793 ((-613 |#2|) |#1|)) (-15 -1319 ((-3 |#1| "failed") (-613 |#2|)))) (-1102) (-1102)) (T -612)) +((-1319 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-612 *2 *4)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) +(-10 -7 (-15 -3793 ((-613 |#2|) |#1|)) (-15 -1319 ((-3 |#1| "failed") (-613 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-1991 (((-3 (-1178) "failed") $) 48)) (-1526 (((-1273) $ (-772)) 24)) (-2569 (((-772) $) 23)) (-2654 (((-114) $) 12)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3632 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1178)) 35)) (-1854 (((-112) $ (-114)) 18) (((-112) $ (-1178)) 16)) (-4138 (((-772) $) 20)) (-3430 (((-1122) $) NIL)) (-3893 (((-894 (-567)) $) 96 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 103 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-4132 (((-863) $) 73)) (-1745 (((-112) $ $) NIL)) (-2799 (((-645 |#1|) $) 22)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 52)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 54))) +(((-613 |#1|) (-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2654 ((-114) $)) (-15 -2799 ((-645 |#1|) $)) (-15 -4138 ((-772) $)) (-15 -3632 ($ (-114) (-645 |#1|) (-772))) (-15 -3632 ($ (-1178))) (-15 -1991 ((-3 (-1178) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1102)) (T -613)) +((-2654 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-3632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) (-5 *1 (-613 *5)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1991 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102))))) +(-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2654 ((-114) $)) (-15 -2799 ((-645 |#1|) $)) (-15 -4138 ((-772) $)) (-15 -3632 ($ (-114) (-645 |#1|) (-772))) (-15 -3632 ($ (-1178))) (-15 -1991 ((-3 (-1178) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) +((-4132 ((|#1| $) 6))) +(((-614 |#1|) (-140) (-1218)) (T -614)) +((-4132 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1218))))) +(-13 (-10 -8 (-15 -4132 (|t#1| $)))) +((-3893 ((|#1| $) 6))) +(((-615 |#1|) (-140) (-1218)) (T -615)) +((-3893 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1218))))) +(-13 (-10 -8 (-15 -3893 (|t#1| $)))) +((-4282 (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16))) +(((-616 |#1| |#2|) (-10 -7 (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -616)) +((-4282 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-1174 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-4282 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5))))) +(-10 -7 (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) +((-4132 (($ |#1|) 6))) +(((-617 |#1|) (-140) (-1218)) (T -617)) +((-4132 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1218))))) +(-13 (-10 -8 (-15 -4132 ($ |t#1|)))) +((-2403 (((-112) $ $) NIL)) (-3858 (($) 14 T CONST)) (-1477 (($) 15 T CONST)) (-1677 (($ $ $) 29)) (-1657 (($ $) 27)) (-1419 (((-1160) $) NIL)) (-3661 (($ $ $) 30)) (-3430 (((-1122) $) NIL)) (-2786 (($) 11 T CONST)) (-1983 (($ $ $) 31)) (-4132 (((-863) $) 35)) (-1702 (((-112) $ (|[\|\|]| -2786)) 24) (((-112) $ (|[\|\|]| -3858)) 26) (((-112) $ (|[\|\|]| -1477)) 21)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 28)) (-2936 (((-112) $ $) 18))) +(((-618) (-13 (-969) (-10 -8 (-15 -3858 ($) -3286) (-15 -1702 ((-112) $ (|[\|\|]| -2786))) (-15 -1702 ((-112) $ (|[\|\|]| -3858))) (-15 -1702 ((-112) $ (|[\|\|]| -1477)))))) (T -618)) +((-3858 (*1 *1) (-5 *1 (-618))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2786)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1477)) (-5 *2 (-112)) (-5 *1 (-618))))) +(-13 (-969) (-10 -8 (-15 -3858 ($) -3286) (-15 -1702 ((-112) $ (|[\|\|]| -2786))) (-15 -1702 ((-112) $ (|[\|\|]| -3858))) (-15 -1702 ((-112) $ (|[\|\|]| -1477))))) +((-3893 (($ |#1|) 6))) +(((-619 |#1|) (-140) (-1218)) (T -619)) +((-3893 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1218))))) +(-13 (-10 -8 (-15 -3893 ($ |t#1|)))) +((-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) +(((-620 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-621 |#2|) (-1051)) (T -620)) +NIL +(-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-621 |#1|) (-140) (-1051)) (T -621)) +((-4132 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051))))) +(-13 (-1051) (-649 |t#1|) (-10 -8 (-15 -4132 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-1433 (((-112) $) NIL)) (-1448 ((|#1| $) 13)) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1460 ((|#3| $) 15)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-4221 (((-772)) 20 T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) 12 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3060 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622)) +((-3060 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3060 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1460 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) +((-2935 ((|#2| |#2| (-1178) (-1178)) 16))) +(((-623 |#1| |#2|) (-10 -7 (-15 -2935 (|#2| |#2| (-1178) (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -623)) +((-2935 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-29 *4)))))) +(-10 -7 (-15 -2935 (|#2| |#2| (-1178) (-1178)))) +((-2403 (((-112) $ $) 64)) (-2460 (((-112) $) 58)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2178 ((|#1| $) 55)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2743 (((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 27)) (-2109 (((-3 $ "failed") $) 88)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4384 (((-567) $) 22)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) 40)) (-2824 (($ |#1| (-567)) 24)) (-2989 ((|#1| $) 57)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) 93)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1990 (((-772) $) 115 (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 114 (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3077 (((-567) $) 38)) (-3893 (((-410 |#2|) $) 47)) (-4132 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-4136 ((|#1| $ (-567)) 72)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 9 T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) 21)) (-3045 (($ $) 51) (($ $ $) NIL)) (-3033 (($ $ $) 90)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49))) +(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -2843 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -4384 ((-567) $)) (-15 -3014 ($ $)) (-15 -2989 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -4136 (|#1| $ (-567))) (-15 -2824 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2743 ((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1244 |#1|)) (T -624)) +((-2843 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-4384 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-3014 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-2178 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1244 *2)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1244 *2)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -3654 (-624 *4 *5)) (|:| -4036 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))) +(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -2843 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -4384 ((-567) $)) (-15 -3014 ($ $)) (-15 -2989 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -4136 (|#1| $ (-567))) (-15 -2824 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2743 ((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) +((-3244 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-1368 ((|#6| |#6|) 48))) +(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1368 (|#6| |#6|)) (-15 -3244 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2| |#3| |#4|)) (T -625)) +((-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *10 (-1111 *5 *6 *7 *8)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6))))) +(-10 -7 (-15 -1368 (|#6| |#6|)) (-15 -3244 ((-645 |#6|) (-645 |#4|) (-112)))) +((-3896 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-3906 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73))) +(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3906 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-951 |#3| |#2| |#1|)) (T -626)) +((-3906 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3920 (-645 (-2 (|:| |irr| *10) (|:| -2625 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1174 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1174 *3))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-951 *3 *7 *6))))) +(-10 -7 (-15 -3896 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3906 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) +((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-627) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -627)) +((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627))))) +(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3592 (($ $) 77)) (-3063 (((-665 |#1| |#2|) $) 60)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 81)) (-3607 (((-645 (-295 |#2|)) $ $) 42)) (-3430 (((-1122) $) NIL)) (-3946 (($ (-665 |#1| |#2|)) 56)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 66) (((-1283 |#1| |#2|) $) NIL) (((-1288 |#1| |#2|) $) 74)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 61 T CONST)) (-3588 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-2382 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-2761 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) 46)) (-2936 (((-112) $ $) 62)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52))) +(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -3946 ($ (-665 |#1| |#2|))) (-15 -3063 ((-665 |#1| |#2|) $)) (-15 -2761 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1288 |#1| |#2|) $)) (-15 -3592 ($ $)) (-15 -3267 ((-645 |#1|) $)) (-15 -2382 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3588 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3607 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-923)) (T -628)) +((-3946 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-923)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-923)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3607 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) +(-13 (-476) (-10 -8 (-15 -3946 ($ (-665 |#1| |#2|))) (-15 -3063 ((-665 |#1| |#2|) $)) (-15 -2761 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1288 |#1| |#2|) $)) (-15 -3592 ($ $)) (-15 -3267 ((-645 |#1|) $)) (-15 -2382 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3588 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3607 ((-645 (-295 |#2|)) $ $)))) +((-3244 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-2251 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-1506 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-4359 (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-3716 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-2083 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29))) +(((-629 |#1| |#2|) (-10 -7 (-15 -2251 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2083 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3716 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4359 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -1506 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1178))) (T -629)) +((-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1178))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) +(-10 -7 (-15 -2251 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2083 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3716 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4359 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -1506 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) +((-3146 (($ $) 38)) (-3012 (($ $) 21)) (-3128 (($ $) 37)) (-2987 (($ $) 22)) (-3166 (($ $) 36)) (-3035 (($ $) 23)) (-1482 (($) 48)) (-3063 (($ $) 45)) (-1902 (($ $) 17)) (-2940 (($ $ (-1094 $)) 7) (($ $ (-1178)) 6)) (-3946 (($ $) 46)) (-2937 (($ $) 15)) (-2973 (($ $) 16)) (-3175 (($ $) 35)) (-3049 (($ $) 24)) (-3156 (($ $) 34)) (-3023 (($ $) 25)) (-3137 (($ $) 33)) (-2999 (($ $) 26)) (-3200 (($ $) 44)) (-3084 (($ $) 32)) (-3183 (($ $) 43)) (-3062 (($ $) 31)) (-3221 (($ $) 42)) (-3106 (($ $) 30)) (-3785 (($ $) 41)) (-3118 (($ $) 29)) (-3211 (($ $) 40)) (-3095 (($ $) 28)) (-3193 (($ $) 39)) (-3074 (($ $) 27)) (-2299 (($ $) 19)) (-2367 (($ $) 20)) (-1450 (($ $) 18)) (** (($ $ $) 47))) (((-630) (-140)) (T -630)) -((-3597 (*1 *1 *1) (-4 *1 (-630))) (-3788 (*1 *1 *1) (-4 *1 (-630))) (-3567 (*1 *1 *1) (-4 *1 (-630))) (-1898 (*1 *1 *1) (-4 *1 (-630))) (-3002 (*1 *1 *1) (-4 *1 (-630))) (-2967 (*1 *1 *1) (-4 *1 (-630)))) -(-13 (-960) (-1202) (-10 -8 (-15 -3597 ($ $)) (-15 -3788 ($ $)) (-15 -3567 ($ $)) (-15 -1898 ($ $)) (-15 -3002 ($ $)) (-15 -2967 ($ $)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-960) . T) ((-1202) . T) ((-1205) . T)) -((-2652 (((-114) (-114)) 88)) (-1898 ((|#2| |#2|) 28)) (-2508 ((|#2| |#2| (-1093 |#2|)) 84) ((|#2| |#2| (-1177)) 50)) (-2967 ((|#2| |#2|) 27)) (-3002 ((|#2| |#2|) 29)) (-2134 (((-112) (-114)) 33)) (-3788 ((|#2| |#2|) 24)) (-3597 ((|#2| |#2|) 26)) (-3567 ((|#2| |#2|) 25))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -3597 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3567 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -2508 (|#2| |#2| (-1177))) (-15 -2508 (|#2| |#2| (-1093 |#2|)))) (-559) (-13 (-433 |#1|) (-1003) (-1202))) (T -631)) -((-2508 (*1 *2 *2 *3) (-12 (-5 *3 (-1093 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1202))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-2508 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1202))))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-3567 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1202))))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1003) (-1202))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1202)))))) -(-10 -7 (-15 -2134 ((-112) (-114))) (-15 -2652 ((-114) (-114))) (-15 -3597 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3567 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -2508 (|#2| |#2| (-1177))) (-15 -2508 (|#2| |#2| (-1093 |#2|)))) -((-2669 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3066 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-4049 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-1358 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-2338 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-2922 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-4059 (((-1267 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-2834 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-1659 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-3044 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116))) -(((-632 |#1| |#2|) (-10 -7 (-15 -1358 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3066 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4049 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -4049 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2834 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4059 ((-1267 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3044 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2338 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1659 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2669 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1177)) (-455)) (T -632)) -((-2669 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-1659 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-2338 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3044 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1177))) (-5 *1 (-632 *5 *6)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1177))) (-4 *6 (-455)) (-5 *2 (-1267 *6)) (-5 *1 (-632 *5 *6)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1177))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1177))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-4049 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1177))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-2922 (*1 *2 *3) (-12 (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5))))) -(-10 -7 (-15 -1358 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3066 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4049 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -4049 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2834 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4059 ((-1267 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3044 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2338 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1659 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2669 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL)) (-2848 (((-1272) $ (-1159) (-1159)) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-52) $ (-1159) (-52)) 16) (((-52) $ (-1177) (-52)) 17)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 (-52) "failed") (-1159) $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-2774 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1159) $) NIL)) (-3230 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (((-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3759 (((-52) $ (-1159) (-52)) NIL (|has| $ (-6 -4418)))) (-3702 (((-52) $ (-1159)) NIL)) (-3397 (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1792 (($ $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-1159) $) NIL (|has| (-1159) (-851)))) (-2513 (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-1958 (((-1159) $) NIL (|has| (-1159) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4094 (($ (-391)) 9)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-1422 (((-645 (-1159)) $) NIL)) (-1528 (((-112) (-1159) $) NIL)) (-1881 (((-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL)) (-1330 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL)) (-2732 (((-645 (-1159)) $) NIL)) (-2479 (((-112) (-1159) $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-2405 (((-52) $) NIL (|has| (-1159) (-851)))) (-3424 (((-3 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) "failed") (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL)) (-4271 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (($ $ (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (($ $ (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-3564 (((-645 (-52)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 (((-52) $ (-1159)) 14) (((-52) $ (-1159) (-52)) NIL) (((-52) $ (-1177)) 15)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 (-52))) (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-633) (-13 (-1193 (-1159) (-52)) (-10 -8 (-15 -4094 ($ (-391))) (-15 -1792 ($ $)) (-15 -1783 ((-52) $ (-1177))) (-15 -4281 ((-52) $ (-1177) (-52)))))) (T -633)) -((-4094 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-1792 (*1 *1 *1) (-5 *1 (-633))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-633)))) (-4281 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1177)) (-5 *1 (-633))))) -(-13 (-1193 (-1159) (-52)) (-10 -8 (-15 -4094 ($ (-391))) (-15 -1792 ($ $)) (-15 -1783 ((-52) $ (-1177))) (-15 -4281 ((-52) $ (-1177) (-52))))) -((-3050 (($ $ |#2|) 10))) -(((-634 |#1| |#2|) (-10 -8 (-15 -3050 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#2|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4142 (($ $ $) 34)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-2367 (*1 *1 *1) (-4 *1 (-630))) (-2299 (*1 *1 *1) (-4 *1 (-630))) (-1450 (*1 *1 *1) (-4 *1 (-630))) (-1902 (*1 *1 *1) (-4 *1 (-630))) (-2973 (*1 *1 *1) (-4 *1 (-630))) (-2937 (*1 *1 *1) (-4 *1 (-630)))) +(-13 (-961) (-1203) (-10 -8 (-15 -2367 ($ $)) (-15 -2299 ($ $)) (-15 -1450 ($ $)) (-15 -1902 ($ $)) (-15 -2973 ($ $)) (-15 -2937 ($ $)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-961) . T) ((-1203) . T) ((-1206) . T)) +((-2654 (((-114) (-114)) 88)) (-1902 ((|#2| |#2|) 28)) (-2940 ((|#2| |#2| (-1094 |#2|)) 84) ((|#2| |#2| (-1178)) 50)) (-2937 ((|#2| |#2|) 27)) (-2973 ((|#2| |#2|) 29)) (-3797 (((-112) (-114)) 33)) (-2299 ((|#2| |#2|) 24)) (-2367 ((|#2| |#2|) 26)) (-1450 ((|#2| |#2|) 25))) +(((-631 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2367 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -2940 (|#2| |#2| (-1178))) (-15 -2940 (|#2| |#2| (-1094 |#2|)))) (-559) (-13 (-433 |#1|) (-1004) (-1203))) (T -631)) +((-2940 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))))) (-2973 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004) (-1203))))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203)))))) +(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2367 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -2940 (|#2| |#2| (-1178))) (-15 -2940 (|#2| |#2| (-1094 |#2|)))) +((-1429 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-4177 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-3360 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-3982 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-3125 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-2348 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-2225 (((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-3024 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-1512 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-2851 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116))) +(((-632 |#1| |#2|) (-10 -7 (-15 -3982 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2348 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -4177 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3024 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2225 ((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2851 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3125 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1512 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1429 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1178)) (-455)) (T -632)) +((-1429 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-1512 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3125 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-2851 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1178))) (-5 *1 (-632 *5 *6)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-1268 *6)) (-5 *1 (-632 *5 *6)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-3360 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3360 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-2348 (*1 *2 *3) (-12 (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5))))) +(-10 -7 (-15 -3982 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2348 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -4177 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3024 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2225 ((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2851 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3125 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1512 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1429 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-52) $ (-1160) (-52)) 16) (((-52) $ (-1178) (-52)) 17)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1160) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1160) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-52) $ (-1160) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1160)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-3222 (($ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4098 (($ (-391)) 9)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1160)) $) NIL)) (-4251 (((-112) (-1160) $) NIL)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2409 (((-52) $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1160)) 14) (((-52) $ (-1160) (-52)) NIL) (((-52) $ (-1178)) 15)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-633) (-13 (-1194 (-1160) (-52)) (-10 -8 (-15 -4098 ($ (-391))) (-15 -3222 ($ $)) (-15 -1787 ((-52) $ (-1178))) (-15 -4284 ((-52) $ (-1178) (-52)))))) (T -633)) +((-4098 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-3222 (*1 *1 *1) (-5 *1 (-633))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-633)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1178)) (-5 *1 (-633))))) +(-13 (-1194 (-1160) (-52)) (-10 -8 (-15 -4098 ($ (-391))) (-15 -3222 ($ $)) (-15 -1787 ((-52) $ (-1178))) (-15 -4284 ((-52) $ (-1178) (-52))))) +((-3060 (($ $ |#2|) 10))) +(((-634 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634)) +NIL +(-10 -8 (-15 -3060 (|#1| |#1| |#2|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4147 (($ $ $) 34)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-635 |#1|) (-140) (-172)) (T -635)) -((-4142 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4142 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3050 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2720 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3316 (((-1267 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1267 (-690 |#1|)) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-4308 (((-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2245 (($) NIL T CONST)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3650 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2942 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2442 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1668 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2385 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2852 (((-1173 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2968 (($ $ (-922)) NIL)) (-2675 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3090 (((-1173 |#1|) $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1809 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3798 (((-1173 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-4037 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4025 (($ (-1267 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1267 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1979 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-2128 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3709 (($ $ (-922)) NIL)) (-3809 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2427 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3151 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1946 (((-3 $ "failed")) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3356 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2506 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2013 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-2539 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1527 (((-1173 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2941 (($ $ (-922)) NIL)) (-3660 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2464 (((-1173 |#1|) $) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2152 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-1837 (((-1173 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2690 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3739 (((-1159) $) NIL)) (-2972 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3657 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1121) $) NIL)) (-3630 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1783 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2446 (((-690 |#1|) (-1267 $)) NIL (|has| |#2| (-420 |#1|))) (((-1267 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1267 $) (-1267 $)) NIL (|has| |#2| (-369 |#1|))) (((-1267 |#1|) $ (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3880 (($ (-1267 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1267 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1526 (((-645 (-953 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-953 |#1|)) (-1267 $)) NIL (|has| |#2| (-369 |#1|)))) (-3387 (($ $ $) NIL)) (-4348 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4127 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL (|has| |#2| (-420 |#1|)))) (-2925 (((-645 (-1267 |#1|))) NIL (-2797 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1875 (($ $ $ $) NIL)) (-3947 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2351 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3411 (($ $ $) NIL)) (-4237 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3571 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2950 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) 20)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4127 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636)) -((-4127 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3))))) -(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4127 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-2434 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1159)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-3799 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2434 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -3799 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2434 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1159)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -637)) -((-2434 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1159)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-3799 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1202) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3))))) -(-10 -7 (-15 -2434 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -3799 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2434 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1159)))) -((-2434 (((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1159)) 86) (((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 20) (((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|)))) 35)) (-3799 (((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 23) (((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|)))) 43))) -(((-638 |#1|) (-10 -7 (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|))))) (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3799 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|))))) (-15 -3799 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1159)))) (-455)) (T -638)) -((-2434 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-953 *6)))) (-5 *5 (-1159)) (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-3799 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-3799 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-953 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-953 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5)))))) -(-10 -7 (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|))))) (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3799 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|))))) (-15 -3799 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -2434 ((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1159)))) -((-2040 (((-3 (-1267 (-410 |#1|)) "failed") (-1267 |#2|) |#2|) 64 (-1653 (|has| |#1| (-365)))) (((-3 (-1267 |#1|) "failed") (-1267 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-3734 (((-112) (-1267 |#2|)) 33)) (-1849 (((-3 (-1267 |#1|) "failed") (-1267 |#2|)) 40))) -(((-639 |#1| |#2|) (-10 -7 (-15 -3734 ((-112) (-1267 |#2|))) (-15 -1849 ((-3 (-1267 |#1|) "failed") (-1267 |#2|))) (IF (|has| |#1| (-365)) (-15 -2040 ((-3 (-1267 |#1|) "failed") (-1267 |#2|) |#2|)) (-15 -2040 ((-3 (-1267 (-410 |#1|)) "failed") (-1267 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639)) -((-2040 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 *5)) (-1653 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1267 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-2040 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1267 *5)) (-5 *1 (-639 *5 *4)))) (-1849 (*1 *2 *3) (|partial| -12 (-5 *3 (-1267 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1267 *4)) (-5 *1 (-639 *4 *5)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-1267 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) -(-10 -7 (-15 -3734 ((-112) (-1267 |#2|))) (-15 -1849 ((-3 (-1267 |#1|) "failed") (-1267 |#2|))) (IF (|has| |#1| (-365)) (-15 -2040 ((-3 (-1267 |#1|) "failed") (-1267 |#2|) |#2|)) (-15 -2040 ((-3 (-1267 (-410 |#1|)) "failed") (-1267 |#2|) |#2|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-1868 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 39)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-640 |#1|) (-140) (-1050)) (T -640)) -((-1868 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1050)) (-5 *2 (-690 *4)))) (-1868 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1267 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -4138 (-690 *5)) (|:| |vec| (-1267 *5))))))) -(-13 (-1050) (-10 -8 (-15 -1868 ((-690 |t#1|) (-690 $))) (-15 -1868 ((-2 (|:| -4138 (-690 |t#1|)) (|:| |vec| (-1267 |t#1|))) (-690 $) (-1267 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 16 T CONST)) (-2929 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-641 |#1|) (-140) (-1059)) (T -641)) -NIL -(-13 (-647 |t#1|) (-1052 |t#1|)) -(((-102) . T) ((-614 (-863)) . T) ((-647 |#1|) . T) ((-1052 |#1|) . T) ((-1101) . T)) -((-4194 ((|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|) 17) ((|#2| (-645 |#1|) (-645 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|)) 12))) -(((-642 |#1| |#2|) (-10 -7 (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1101) (-1217)) (T -642)) -((-4194 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1101)) (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) (-4194 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1101)) (-4 *6 (-1217)) (-5 *1 (-642 *5 *6)))) (-4194 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1101)) (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) (-4194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1101)) (-4 *5 (-1217)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-4194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1101)) (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1101)) (-4 *6 (-1217)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))) -(-10 -7 (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4194 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4194 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) -((-2565 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-2499 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-3822 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2565 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3822 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1217) (-1217)) (T -643)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-643 *5 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1217)) (-4 *5 (-1217)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))) -(-10 -7 (-15 -2565 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3822 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) -((-3822 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1217) (-1217) (-1217)) (T -644)) -((-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8))))) -(-10 -7 (-15 -3822 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) NIL)) (-3991 ((|#1| $) NIL)) (-4280 (($ $) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3161 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-1332 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1831 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2337 (($ $ $) 37 (|has| |#1| (-1101)))) (-2324 (($ $ $) 41 (|has| |#1| (-1101)))) (-2310 (($ $ $) 44 (|has| |#1| (-1101)))) (-3502 (($ (-1 (-112) |#1|) $) NIL)) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3977 ((|#1| $) NIL)) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2417 (($ $) 23) (($ $ (-772)) NIL)) (-2300 (($ $) NIL (|has| |#1| (-1101)))) (-2440 (($ $) 36 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) NIL (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) NIL)) (-3230 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-1578 (((-112) $) NIL)) (-2567 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101))) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1641 (((-112) $) 11)) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3003 (($) 9 T CONST)) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-1812 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2276 (($ |#1|) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3250 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1330 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) 20) (($ $ (-772)) NIL)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3580 (((-112) $) NIL)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) 39)) (-3347 (($) 38)) (-1783 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1234 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-4126 (((-567) $ $) NIL)) (-2115 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-3340 (((-112) $) NIL)) (-1765 (($ $) NIL)) (-4367 (($ $) NIL (|has| $ (-6 -4418)))) (-4387 (((-772) $) NIL)) (-4263 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-3463 (($ |#1| $) 12)) (-3444 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2260 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2757 (($ $ $) 13)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-4224 (((-1159) $) 31 (|has| |#1| (-829))) (((-1159) $ (-112)) 32 (|has| |#1| (-829))) (((-1272) (-823) $) 33 (|has| |#1| (-829))) (((-1272) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -3003 ($) -3280) (-15 -1641 ((-112) $)) (-15 -3463 ($ |#1| $)) (-15 -2757 ($ $ $)) (IF (|has| |#1| (-1101)) (PROGN (-15 -2337 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2310 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1217)) (T -645)) -((-3003 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1217)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217)))) (-2757 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217)))) (-2337 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217)))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217)))) (-2310 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217))))) -(-13 (-667 |#1|) (-10 -8 (-15 -3003 ($) -3280) (-15 -1641 ((-112) $)) (-15 -3463 ($ |#1| $)) (-15 -2757 ($ $ $)) (IF (|has| |#1| (-1101)) (PROGN (-15 -2337 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2310 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 11) (($ (-1182)) NIL) (((-1182) $) NIL) ((|#1| $) 8)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-646 |#1|) (-13 (-1084) (-614 |#1|)) (-1101)) (T -646)) -NIL -(-13 (-1084) (-614 |#1|)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 16 T CONST)) (-2929 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-647 |#1|) (-140) (-1059)) (T -647)) -((-1710 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1059)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1059)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1059))))) -(-13 (-1101) (-10 -8 (-15 (-1710) ($) -3280) (-15 -2840 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2429 (($ |#1| |#1| $) 46)) (-2112 (((-112) $ (-772)) NIL)) (-3502 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-2300 (($ $) 48)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) 59 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 9 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 37)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) 50)) (-1330 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3060 ((|#1| $) 53)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 23)) (-3347 (($) 28)) (-1381 (((-112) $) 57)) (-3662 (((-645 (-2 (|:| -4232 |#1|) (|:| -3439 (-772)))) $) 69)) (-3253 (($) 26) (($ (-645 |#1|)) 19)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 20)) (-3880 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) NIL)) (-4127 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 24)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 71 (|has| |#1| (-1101)))) (-2410 (((-772) $) 17 (|has| $ (-6 -4417))))) -(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4417) (-15 -1381 ((-112) $)) (-15 -2429 ($ |#1| |#1| $)))) (-1101)) (T -648)) -((-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1101)))) (-2429 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1101))))) -(-13 (-696 |#1|) (-10 -8 (-6 -4417) (-15 -1381 ((-112) $)) (-15 -2429 ($ |#1| |#1| $)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27))) -(((-649 |#1|) (-140) (-1059)) (T -649)) +((-4147 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4147 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1268 (-690 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3337 (((-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3645 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1735 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2583 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3528 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2209 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4063 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1575 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2676 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1682 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1444 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3658 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1268 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1954 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1379 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3345 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2119 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2702 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4162 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3960 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3042 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3567 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3396 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4341 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1787 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2887 (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $) (-1268 $)) NIL (|has| |#2| (-369 |#1|))) (((-1268 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-4013 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4132 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL (|has| |#2| (-420 |#1|)))) (-2652 (((-645 (-1268 |#1|))) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2355 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1749 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2059 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636)) +((-4132 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3))))) +(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2677 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-1777 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136))) +(((-637 |#1| |#2|) (-10 -7 (-15 -2677 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1777 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2677 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -637)) +((-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1160)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3))))) +(-10 -7 (-15 -2677 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1777 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2677 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160)))) +((-2677 (((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160)) 86) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 20) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|)))) 35)) (-1777 (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 23) (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|)))) 43))) +(((-638 |#1|) (-10 -7 (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160)))) (-455)) (T -638)) +((-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1160)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-954 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5)))))) +(-10 -7 (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160)))) +((-4008 (((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|) 64 (-1657 (|has| |#1| (-365)))) (((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-4217 (((-112) (-1268 |#2|)) 33)) (-2241 (((-3 (-1268 |#1|) "failed") (-1268 |#2|)) 40))) +(((-639 |#1| |#2|) (-10 -7 (-15 -4217 ((-112) (-1268 |#2|))) (-15 -2241 ((-3 (-1268 |#1|) "failed") (-1268 |#2|))) (IF (|has| |#1| (-365)) (-15 -4008 ((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|)) (-15 -4008 ((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639)) +((-4008 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-1657 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1268 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-4008 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1268 *5)) (-5 *1 (-639 *5 *4)))) (-2241 (*1 *2 *3) (|partial| -12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1268 *4)) (-5 *1 (-639 *4 *5)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) +(-10 -7 (-15 -4217 ((-112) (-1268 |#2|))) (-15 -2241 ((-3 (-1268 |#1|) "failed") (-1268 |#2|))) (IF (|has| |#1| (-365)) (-15 -4008 ((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|)) (-15 -4008 ((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2630 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 39)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-640 |#1|) (-140) (-1051)) (T -640)) +((-2630 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) (-5 *2 (-690 *4)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1268 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 *5))))))) +(-13 (-1051) (-10 -8 (-15 -2630 ((-690 |t#1|) (-690 $))) (-15 -2630 ((-2 (|:| -2316 (-690 |t#1|)) (|:| |vec| (-1268 |t#1|))) (-690 $) (-1268 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-641 |#1|) (-140) (-1060)) (T -641)) +NIL +(-13 (-647 |t#1|) (-1053 |t#1|)) +(((-102) . T) ((-614 (-863)) . T) ((-647 |#1|) . T) ((-1053 |#1|) . T) ((-1102) . T)) +((-4197 ((|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|) 17) ((|#2| (-645 |#1|) (-645 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|)) 12))) +(((-642 |#1| |#2|) (-10 -7 (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1102) (-1218)) (T -642)) +((-4197 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-642 *5 *6)))) (-4197 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) (-4 *5 (-1218)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))) +(-10 -7 (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) +((-2788 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-3829 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2788 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1218) (-1218)) (T -643)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-643 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))) +(-10 -7 (-15 -2788 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) +((-3829 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21))) +(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1218) (-1218) (-1218)) (T -644)) +((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8))))) +(-10 -7 (-15 -3829 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) NIL (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2343 (($ $ $) 37 (|has| |#1| (-1102)))) (-2332 (($ $ $) 41 (|has| |#1| (-1102)))) (-2318 (($ $ $) 44 (|has| |#1| (-1102)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $) 23) (($ $ (-772)) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) 36 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1642 (((-112) $) 11)) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3011 (($) 9 T CONST)) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) 20) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 39)) (-3498 (($) 38)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-3465 (($ |#1| $) 12)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2760 (($ $ $) 13)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 31 (|has| |#1| (-829))) (((-1160) $ (-112)) 32 (|has| |#1| (-829))) (((-1273) (-823) $) 33 (|has| |#1| (-829))) (((-1273) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -3011 ($) -3286) (-15 -1642 ((-112) $)) (-15 -3465 ($ |#1| $)) (-15 -2760 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2343 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2318 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1218)) (T -645)) +((-3011 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1218)))) (-3465 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-2760 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))) (-2332 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218))))) +(-13 (-667 |#1|) (-10 -8 (-15 -3011 ($) -3286) (-15 -1642 ((-112) $)) (-15 -3465 ($ |#1| $)) (-15 -2760 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2343 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2318 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11) (($ (-1183)) NIL) (((-1183) $) NIL) ((|#1| $) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-646 |#1|) (-13 (-1085) (-614 |#1|)) (-1102)) (T -646)) +NIL +(-13 (-1085) (-614 |#1|)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-647 |#1|) (-140) (-1060)) (T -647)) +((-1716 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060))))) +(-13 (-1102) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2433 (($ |#1| |#1| $) 46)) (-3445 (((-112) $ (-772)) NIL)) (-2839 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2133 (($ $) 48)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 59 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 9 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 37)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 50)) (-2531 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1793 ((|#1| $) 53)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 23)) (-3498 (($) 28)) (-4084 (((-112) $) 57)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 69)) (-2718 (($) 26) (($ (-645 |#1|)) 19)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 20)) (-3893 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-4132 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 24)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 71 (|has| |#1| (-1102)))) (-2414 (((-772) $) 17 (|has| $ (-6 -4418))))) +(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4418) (-15 -4084 ((-112) $)) (-15 -2433 ($ |#1| |#1| $)))) (-1102)) (T -648)) +((-4084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))) (-2433 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102))))) +(-13 (-696 |#1|) (-10 -8 (-6 -4418) (-15 -4084 ((-112) $)) (-15 -2433 ($ |#1| |#1| $)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27))) +(((-649 |#1|) (-140) (-1060)) (T -649)) NIL (-13 (-21) (-647 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772) $) 17)) (-2088 (($ $ |#1|) 69)) (-3224 (($ $) 39)) (-3583 (($ $) 37)) (-3747 (((-3 |#1| "failed") $) 61)) (-2033 ((|#1| $) NIL)) (-2199 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-1808 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-1771 ((|#1| $ (-567)) 35)) (-3866 ((|#2| $ (-567)) 34)) (-3371 (($ (-1 |#1| |#1|) $) 41)) (-2753 (($ (-1 |#2| |#2|) $) 47)) (-2076 (($) 11)) (-3535 (($ |#1| |#2|) 24)) (-4130 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|)))) 25)) (-2077 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 14)) (-2130 (($ |#1| $) 71)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4326 (((-112) $ $) 76)) (-4127 (((-863) $) 21) (($ |#1|) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 27))) -(((-650 |#1| |#2| |#3|) (-13 (-1101) (-1039 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -2077 ((-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $)) (-15 -3535 ($ |#1| |#2|)) (-15 -4130 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))))) (-15 -3866 (|#2| $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -3583 ($ $)) (-15 -3224 ($ $)) (-15 -2371 ((-772) $)) (-15 -2076 ($)) (-15 -2088 ($ $ |#1|)) (-15 -2130 ($ |#1| $)) (-15 -2199 ($ |#1| |#2| $)) (-15 -2199 ($ $ $)) (-15 -4326 ((-112) $ $)) (-15 -2753 ($ (-1 |#2| |#2|) $)) (-15 -3371 ($ (-1 |#1| |#1|) $)))) (-1101) (-23) |#2|) (T -650)) -((-1808 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1101)) (-4 *6 (-23)) (-14 *7 *6))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4))) (-3535 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-4130 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))) (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1101)) (-14 *5 *2))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1101)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3583 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4))) (-2076 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-2088 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-2130 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-2199 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-2199 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) (-14 *4 *3))) (-4326 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4))) (-2753 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)))) (-3371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1101) (-1039 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -2077 ((-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $)) (-15 -3535 ($ |#1| |#2|)) (-15 -4130 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))))) (-15 -3866 (|#2| $ (-567))) (-15 -1771 (|#1| $ (-567))) (-15 -3583 ($ $)) (-15 -3224 ($ $)) (-15 -2371 ((-772) $)) (-15 -2076 ($)) (-15 -2088 ($ $ |#1|)) (-15 -2130 ($ |#1| $)) (-15 -2199 ($ |#1| |#2| $)) (-15 -2199 ($ $ $)) (-15 -4326 ((-112) $ $)) (-15 -2753 ($ (-1 |#2| |#2|) $)) (-15 -3371 ($ (-1 |#1| |#1|) $)))) -((-1958 (((-567) $) 31)) (-2842 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) 12)) (-2479 (((-112) (-567) $) 18)) (-2260 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL))) -(((-651 |#1| |#2|) (-10 -8 (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -1958 ((-567) |#1|)) (-15 -2732 ((-645 (-567)) |#1|)) (-15 -2479 ((-112) (-567) |#1|))) (-652 |#2|) (-1217)) (T -651)) -NIL -(-10 -8 (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -2260 (|#1| (-645 |#1|))) (-15 -2260 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -1958 ((-567) |#1|)) (-15 -2732 ((-645 (-567)) |#1|)) (-15 -2479 ((-112) (-567) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 71)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-652 |#1|) (-140) (-1217)) (T -652)) -((-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-2260 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) (-2260 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) (-2260 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-3822 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-2842 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1217)))) (-2842 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) (-4281 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1234 (-567))) (|has| *1 (-6 -4418)) (-4 *1 (-652 *2)) (-4 *2 (-1217))))) -(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2844 ($ (-772) |t#1|)) (-15 -2260 ($ $ |t#1|)) (-15 -2260 ($ |t#1| $)) (-15 -2260 ($ $ $)) (-15 -2260 ($ (-645 $))) (-15 -3822 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1783 ($ $ (-1234 (-567)))) (-15 -1558 ($ $ (-567))) (-15 -1558 ($ $ (-1234 (-567)))) (-15 -2842 ($ |t#1| $ (-567))) (-15 -2842 ($ $ $ (-567))) (IF (|has| $ (-6 -4418)) (-15 -4281 (|t#1| $ (-1234 (-567)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-1754 (((-3 |#2| "failed") |#3| |#2| (-1177) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) "failed") |#3| |#2| (-1177)) 44))) -(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) "failed") |#3| |#2| (-1177))) (-15 -1754 ((-3 |#2| "failed") |#3| |#2| (-1177) |#2| (-645 |#2|)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1202) (-960)) (-657 |#2|)) (T -653)) -((-1754 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-1754 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1177)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1202) (-960))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1975 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) "failed") |#3| |#2| (-1177))) (-15 -1754 ((-3 |#2| "failed") |#3| |#2| (-1177) |#2| (-645 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3126 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) NIL (|has| |#1| (-365)))) (-2035 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1385 (($ $ $) NIL (|has| |#1| (-365)))) (-2241 (($ $ $) NIL (|has| |#1| (-365)))) (-3107 (($ $ $) NIL (|has| |#1| (-365)))) (-1899 (($ $ $) NIL (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-2843 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) NIL)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2752 (((-772) $) NIL)) (-3308 (($ $ $) NIL (|has| |#1| (-365)))) (-3819 (($ $ $) NIL (|has| |#1| (-365)))) (-1634 (($ $ $) NIL (|has| |#1| (-365)))) (-4188 (($ $ $) NIL (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1783 ((|#1| $ |#1|) NIL)) (-4355 (($ $ $) NIL (|has| |#1| (-365)))) (-1813 (((-772) $) NIL)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-2351 ((|#1| $ |#1| |#1|) NIL)) (-3406 (($ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($) NIL)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) 17)) (-1669 (($ $ |#1|) 69)) (-1764 (($ $) 39)) (-3584 (($ $) 37)) (-3753 (((-3 |#1| "failed") $) 61)) (-2038 ((|#1| $) NIL)) (-2205 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2570 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-4108 ((|#1| $ (-567)) 35)) (-3202 ((|#2| $ (-567)) 34)) (-3496 (($ (-1 |#1| |#1|) $) 41)) (-2728 (($ (-1 |#2| |#2|) $) 47)) (-2004 (($) 11)) (-3940 (($ |#1| |#2|) 24)) (-2943 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|)))) 25)) (-3938 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 14)) (-1601 (($ |#1| $) 71)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1846 (((-112) $ $) 76)) (-4132 (((-863) $) 21) (($ |#1|) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 27))) +(((-650 |#1| |#2| |#3|) (-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3938 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2943 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))))) (-15 -3202 (|#2| $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -3584 ($ $)) (-15 -1764 ($ $)) (-15 -2375 ((-772) $)) (-15 -2004 ($)) (-15 -1669 ($ $ |#1|)) (-15 -1601 ($ |#1| $)) (-15 -2205 ($ |#1| |#2| $)) (-15 -2205 ($ $ $)) (-15 -1846 ((-112) $ $)) (-15 -2728 ($ (-1 |#2| |#2|) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)))) (-1102) (-23) |#2|) (T -650)) +((-2570 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-3940 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1102)) (-14 *5 *2))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3584 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2004 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1669 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1601 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2205 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2205 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1846 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3938 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2943 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))))) (-15 -3202 (|#2| $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -3584 ($ $)) (-15 -1764 ($ $)) (-15 -2375 ((-772) $)) (-15 -2004 ($)) (-15 -1669 ($ $ |#1|)) (-15 -1601 ($ |#1| $)) (-15 -2205 ($ |#1| |#2| $)) (-15 -2205 ($ $ $)) (-15 -1846 ((-112) $ $)) (-15 -2728 ($ (-1 |#2| |#2|) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)))) +((-2266 (((-567) $) 31)) (-2845 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) 12)) (-2996 (((-112) (-567) $) 18)) (-2269 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL))) +(((-651 |#1| |#2|) (-10 -8 (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2266 ((-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2996 ((-112) (-567) |#1|))) (-652 |#2|) (-1218)) (T -651)) +NIL +(-10 -8 (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2266 ((-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2996 ((-112) (-567) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-652 |#1|) (-140) (-1218)) (T -652)) +((-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-2269 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-2845 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2845 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1235 (-567))) (|has| *1 (-6 -4419)) (-4 *1 (-652 *2)) (-4 *2 (-1218))))) +(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2846 ($ (-772) |t#1|)) (-15 -2269 ($ $ |t#1|)) (-15 -2269 ($ |t#1| $)) (-15 -2269 ($ $ $)) (-15 -2269 ($ (-645 $))) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1787 ($ $ (-1235 (-567)))) (-15 -1560 ($ $ (-567))) (-15 -1560 ($ $ (-1235 (-567)))) (-15 -2845 ($ |t#1| $ (-567))) (-15 -2845 ($ $ $ (-567))) (IF (|has| $ (-6 -4419)) (-15 -4284 (|t#1| $ (-1235 (-567)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-3018 (((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178)) 44))) +(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178))) (-15 -3018 ((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961)) (-657 |#2|)) (T -653)) +((-3018 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1203) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))) +(-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178))) (-15 -3018 ((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) NIL (|has| |#1| (-365)))) (-3931 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) NIL)) (-4116 (($ $ $) NIL (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) NIL)) (-2974 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-654 |#1|) (-657 |#1|) (-233)) (T -654)) NIL (-657 |#1|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3126 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) NIL (|has| |#1| (-365)))) (-2035 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1385 (($ $ $) NIL (|has| |#1| (-365)))) (-2241 (($ $ $) NIL (|has| |#1| (-365)))) (-3107 (($ $ $) NIL (|has| |#1| (-365)))) (-1899 (($ $ $) NIL (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-2843 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) NIL)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2752 (((-772) $) NIL)) (-3308 (($ $ $) NIL (|has| |#1| (-365)))) (-3819 (($ $ $) NIL (|has| |#1| (-365)))) (-1634 (($ $ $) NIL (|has| |#1| (-365)))) (-4188 (($ $ $) NIL (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1783 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4355 (($ $ $) NIL (|has| |#1| (-365)))) (-1813 (((-772) $) NIL)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-2351 ((|#1| $ |#1| |#1|) NIL)) (-3406 (($ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($) NIL)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -1621 ($ $))))) (T -655)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) NIL (|has| |#1| (-365)))) (-3931 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4116 (($ $ $) NIL (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) NIL)) (-2974 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -1593 ($ $))))) (T -655)) NIL (-13 (-657 |#1|) (-287 |#2| |#2|)) -((-3126 (($ $) 29)) (-3406 (($ $) 27)) (-2636 (($) 13))) -(((-656 |#1| |#2|) (-10 -8 (-15 -3126 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2636 (|#1|))) (-657 |#2|) (-1050)) (T -656)) -NIL -(-10 -8 (-15 -3126 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2636 (|#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3126 (($ $) 87 (|has| |#1| (-365)))) (-2644 (($ $ $) 89 (|has| |#1| (-365)))) (-2035 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-1385 (($ $ $) 50 (|has| |#1| (-365)))) (-2241 (($ $ $) 51 (|has| |#1| (-365)))) (-3107 (($ $ $) 53 (|has| |#1| (-365)))) (-1899 (($ $ $) 48 (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 47 (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 52 (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2033 (((-567) $) 79 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 75)) (-3006 (($ $) 69)) (-3153 (((-3 $ "failed") $) 37)) (-4334 (($ $) 60 (|has| |#1| (-455)))) (-2843 (((-112) $) 35)) (-2821 (($ |#1| (-772)) 67)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 62 (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63 (|has| |#1| (-559)))) (-2752 (((-772) $) 71)) (-3308 (($ $ $) 57 (|has| |#1| (-365)))) (-3819 (($ $ $) 58 (|has| |#1| (-365)))) (-1634 (($ $ $) 46 (|has| |#1| (-365)))) (-4188 (($ $ $) 55 (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 54 (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 59 (|has| |#1| (-365)))) (-2980 ((|#1| $) 70)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1783 ((|#1| $ |#1|) 92)) (-4355 (($ $ $) 86 (|has| |#1| (-365)))) (-1813 (((-772) $) 72)) (-4385 ((|#1| $) 61 (|has| |#1| (-455)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 73)) (-3468 (((-645 |#1|) $) 66)) (-2253 ((|#1| $ (-772)) 68)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-2351 ((|#1| $ |#1| |#1|) 65)) (-3406 (($ $) 90)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($) 91)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-657 |#1|) (-140) (-1050)) (T -657)) -((-2636 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) (-2644 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1050)) (-4 *3 (-365)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4355 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2636 ($)) (-15 -3406 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2644 ($ $ $)) (-15 -2035 ($ $ (-772))) (-15 -3126 ($ $)) (-15 -4355 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-287 |#1| |#1|) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-853 |#1|) . T)) -((-4083 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-2703 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19))) -(((-658 |#1| |#2|) (-10 -7 (-15 -2703 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2703 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -4083 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1243 |#1|)) (T -658)) -((-4083 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6)))))) -(-10 -7 (-15 -2703 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2703 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -4083 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3126 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) 28 (|has| |#1| (-365)))) (-2035 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1385 (($ $ $) NIL (|has| |#1| (-365)))) (-2241 (($ $ $) NIL (|has| |#1| (-365)))) (-3107 (($ $ $) NIL (|has| |#1| (-365)))) (-1899 (($ $ $) NIL (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-2843 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) NIL)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2752 (((-772) $) NIL)) (-3308 (($ $ $) NIL (|has| |#1| (-365)))) (-3819 (($ $ $) NIL (|has| |#1| (-365)))) (-1634 (($ $ $) NIL (|has| |#1| (-365)))) (-4188 (($ $ $) NIL (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1783 ((|#1| $ |#1|) 24)) (-4355 (($ $ $) 33 (|has| |#1| (-365)))) (-1813 (((-772) $) NIL)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-2351 ((|#1| $ |#1| |#1|) 23)) (-3406 (($ $) NIL)) (-1710 (($) 21 T CONST)) (-1722 (($) 8 T CONST)) (-2636 (($) NIL)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-659 |#1| |#2|) (-657 |#1|) (-1050) (-1 |#1| |#1|)) (T -659)) +((-1676 (($ $) 29)) (-2974 (($ $) 27)) (-2637 (($) 13))) +(((-656 |#1| |#2|) (-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -2974 (|#1| |#1|)) (-15 -2637 (|#1|))) (-657 |#2|) (-1051)) (T -656)) +NIL +(-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -2974 (|#1| |#1|)) (-15 -2637 (|#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1676 (($ $) 87 (|has| |#1| (-365)))) (-4014 (($ $ $) 89 (|has| |#1| (-365)))) (-3931 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2336 (($ $ $) 50 (|has| |#1| (-365)))) (-2210 (($ $ $) 51 (|has| |#1| (-365)))) (-2785 (($ $ $) 53 (|has| |#1| (-365)))) (-2680 (($ $ $) 48 (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 47 (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 52 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2038 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3014 (($ $) 69)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 60 (|has| |#1| (-455)))) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 67)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 62 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63 (|has| |#1| (-559)))) (-2656 (((-772) $) 71)) (-1778 (($ $ $) 57 (|has| |#1| (-365)))) (-3683 (($ $ $) 58 (|has| |#1| (-365)))) (-1739 (($ $ $) 46 (|has| |#1| (-365)))) (-3053 (($ $ $) 55 (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 54 (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 59 (|has| |#1| (-365)))) (-2989 ((|#1| $) 70)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) 92)) (-4116 (($ $ $) 86 (|has| |#1| (-365)))) (-3077 (((-772) $) 72)) (-4358 ((|#1| $) 61 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3032 (((-645 |#1|) $) 66)) (-4136 ((|#1| $ (-772)) 68)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2355 ((|#1| $ |#1| |#1|) 65)) (-2974 (($ $) 90)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($) 91)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-657 |#1|) (-140) (-1051)) (T -657)) +((-2637 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-2974 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-4014 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) (-1676 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2637 ($)) (-15 -2974 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4014 ($ $ $)) (-15 -3931 ($ $ (-772))) (-15 -1676 ($ $)) (-15 -4116 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-287 |#1| |#1|) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-853 |#1|) . T)) +((-3744 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-2706 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19))) +(((-658 |#1| |#2|) (-10 -7 (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -3744 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -658)) +((-3744 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6)))))) +(-10 -7 (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -3744 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) 28 (|has| |#1| (-365)))) (-3931 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) 24)) (-4116 (($ $ $) 33 (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) 23)) (-2974 (($ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 8 T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-659 |#1| |#2|) (-657 |#1|) (-1051) (-1 |#1| |#1|)) (T -659)) NIL (-657 |#1|) -((-2644 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2035 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-4355 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-660 |#1| |#2|) (-10 -7 (-15 -2644 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2035 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4355 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660)) -((-4355 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-2035 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-2644 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4))))) -(-10 -7 (-15 -2644 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2035 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4355 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2465 (($ $ $) 9))) -(((-661 |#1|) (-10 -8 (-15 -2465 (|#1| |#1| |#1|))) (-662)) (T -661)) -NIL -(-10 -8 (-15 -2465 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2421 (($ $) 10)) (-2465 (($ $ $) 8)) (-2929 (((-112) $ $) 6)) (-2455 (($ $ $) 9))) +((-4014 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3931 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-4116 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-660 |#1| |#2|) (-10 -7 (-15 -4014 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3931 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4116 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660)) +((-4116 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-3931 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-4014 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4))))) +(-10 -7 (-15 -4014 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3931 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4116 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2470 (($ $ $) 9))) +(((-661 |#1|) (-10 -8 (-15 -2470 (|#1| |#1| |#1|))) (-662)) (T -661)) +NIL +(-10 -8 (-15 -2470 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2425 (($ $) 10)) (-2470 (($ $ $) 8)) (-2936 (((-112) $ $) 6)) (-2458 (($ $ $) 9))) (((-662) (-140)) (T -662)) -((-2421 (*1 *1 *1) (-4 *1 (-662))) (-2455 (*1 *1 *1 *1) (-4 *1 (-662))) (-2465 (*1 *1 *1 *1) (-4 *1 (-662)))) -(-13 (-102) (-10 -8 (-15 -2421 ($ $)) (-15 -2455 ($ $ $)) (-15 -2465 ($ $ $)))) +((-2425 (*1 *1 *1) (-4 *1 (-662))) (-2458 (*1 *1 *1 *1) (-4 *1 (-662))) (-2470 (*1 *1 *1 *1) (-4 *1 (-662)))) +(-13 (-102) (-10 -8 (-15 -2425 ($ $)) (-15 -2458 ($ $ $)) (-15 -2470 ($ $ $)))) (((-102) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 15)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1441 ((|#1| $) 23)) (-2010 (($ $ $) NIL (|has| |#1| (-792)))) (-2998 (($ $ $) NIL (|has| |#1| (-792)))) (-3739 (((-1159) $) 48)) (-3430 (((-1121) $) NIL)) (-1455 ((|#3| $) 24)) (-4127 (((-863) $) 43)) (-4104 (((-112) $ $) 22)) (-1710 (($) 10 T CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2929 (((-112) $ $) 20)) (-2977 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2952 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3050 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3037 (($ $) 17) (($ $ $) NIL)) (-3024 (($ $ $) 29)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -1441 (|#1| $)) (-15 -1455 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3050 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1441 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1455 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))))) -(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -1441 (|#1| $)) (-15 -1455 (|#3| $)))) -((-2658 (((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|)) 33))) -(((-664 |#1|) (-10 -7 (-15 -2658 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|)))) (-910)) (T -664)) -((-2658 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 *4))) (-5 *3 (-1173 *4)) (-4 *4 (-910)) (-5 *1 (-664 *4))))) -(-10 -7 (-15 -2658 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3259 (((-645 |#1|) $) 84)) (-3376 (($ $ (-772)) 94)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3323 (((-1291 |#1| |#2|) (-1291 |#1| |#2|) $) 50)) (-3747 (((-3 (-673 |#1|) "failed") $) NIL)) (-2033 (((-673 |#1|) $) NIL)) (-3006 (($ $) 93)) (-4183 (((-772) $) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ (-673 |#1|) |#2|) 70)) (-3818 (($ $) 89)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-3626 (((-1291 |#1| |#2|) (-1291 |#1| |#2|) $) 49)) (-2165 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2969 (((-673 |#1|) $) NIL)) (-2980 ((|#2| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2631 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-1813 (((-772) $) 91)) (-4142 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-4127 (((-863) $) NIL) (($ |#1|) 76) (((-1282 |#1| |#2|) $) 60) (((-1291 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-673 |#1|)) NIL)) (-3686 ((|#2| (-1291 |#1| |#2|) $) 45)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 23 T CONST)) (-1568 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2408 (((-3 $ "failed") (-1282 |#1| |#2|)) 62)) (-1611 (($ (-673 |#1|)) 14)) (-2929 (((-112) $ $) 46)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) 68) (($ $ $) NIL)) (-3024 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL))) -(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -2408 ((-3 $ "failed") (-1282 |#1| |#2|))) (-15 -4142 ($ (-673 |#1|) (-673 |#1|))) (-15 -4142 ($ (-673 |#1|) $)) (-15 -4142 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665)) -((-2408 (*1 *1 *2) (|partial| -12 (-5 *2 (-1282 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-4142 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172))))) -(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -2408 ((-3 $ "failed") (-1282 |#1| |#2|))) (-15 -4142 ($ (-673 |#1|) (-673 |#1|))) (-15 -4142 ($ (-673 |#1|) $)) (-15 -4142 ($ $ (-673 |#1|))))) -((-2871 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3161 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3502 (($ (-1 (-112) |#2|) $) 29)) (-3224 (($ $) 67)) (-2300 (($ $) 78)) (-2774 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2499 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-2567 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-2844 (($ (-772) |#2|) 65)) (-1812 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3523 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3822 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2276 (($ |#2|) 15)) (-1330 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-3424 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2115 (($ $ (-1234 (-567))) 51) (($ $ (-567)) 44)) (-2811 (($ $ $ (-567)) 74)) (-4303 (($ $) 72)) (-2952 (((-112) $ $) 80))) -(((-666 |#1| |#2|) (-10 -8 (-15 -2276 (|#1| |#2|)) (-15 -2115 (|#1| |#1| (-567))) (-15 -2115 (|#1| |#1| (-1234 (-567)))) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1330 (|#1| |#2| |#1| (-567))) (-15 -1330 (|#1| |#1| |#1| (-567))) (-15 -1812 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3502 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -2811 (|#1| |#1| |#1| (-567))) (-15 -3224 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2844 (|#1| (-772) |#2|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4303 (|#1| |#1|))) (-667 |#2|) (-1217)) (T -666)) -NIL -(-10 -8 (-15 -2276 (|#1| |#2|)) (-15 -2115 (|#1| |#1| (-567))) (-15 -2115 (|#1| |#1| (-1234 (-567)))) (-15 -2774 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1330 (|#1| |#2| |#1| (-567))) (-15 -1330 (|#1| |#1| |#1| (-567))) (-15 -1812 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3502 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#2| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3523 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2871 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2567 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2567 ((-567) |#2| |#1|)) (-15 -2567 ((-567) |#2| |#1| (-567))) (-15 -3523 (|#1| |#1| |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -2811 (|#1| |#1| |#1| (-567))) (-15 -3224 (|#1| |#1|)) (-15 -3161 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2499 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3424 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2844 (|#1| (-772) |#2|)) (-15 -3822 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4303 (|#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-3991 ((|#1| $) 66)) (-4280 (($ $) 68)) (-2848 (((-1272) $ (-567) (-567)) 98 (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 53 (|has| $ (-6 -4418)))) (-2871 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3161 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4418)))) (-1332 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1831 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-3502 (($ (-1 (-112) |#1|) $) 130)) (-3338 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4417)))) (-3977 ((|#1| $) 67)) (-2245 (($) 7 T CONST)) (-3224 (($ $) 145 (|has| $ (-6 -4418)))) (-3583 (($ $) 135)) (-2417 (($ $) 74) (($ $ (-772)) 72)) (-2300 (($ $) 132 (|has| |#1| (-1101)))) (-2440 (($ $) 100 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 131 (|has| |#1| (-1101))) (($ (-1 (-112) |#1|) $) 126)) (-3230 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4417))) (($ |#1| $) 101 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3759 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 88)) (-1578 (((-112) $) 84)) (-2567 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1101))) (((-567) |#1| $) 139 (|has| |#1| (-1101))) (((-567) (-1 (-112) |#1|) $) 138)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) 109)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 96 (|has| (-567) (-851)))) (-2010 (($ $ $) 148 (|has| |#1| (-851)))) (-1812 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3523 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 95 (|has| (-567) (-851)))) (-2998 (($ $ $) 149 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2276 (($ |#1|) 123)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3250 ((|#1| $) 71) (($ $ (-772)) 69)) (-1330 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-2842 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-2732 (((-645 (-567)) $) 93)) (-2479 (((-112) (-567) $) 92)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 77) (($ $ (-772)) 75)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4271 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-3580 (((-112) $) 85)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 91)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1234 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4126 (((-567) $ $) 45)) (-2115 (($ $ (-1234 (-567))) 125) (($ $ (-567)) 124)) (-1558 (($ $ (-1234 (-567))) 115) (($ $ (-567)) 114)) (-3340 (((-112) $) 47)) (-1765 (($ $) 63)) (-4367 (($ $) 60 (|has| $ (-6 -4418)))) (-4387 (((-772) $) 64)) (-4263 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 144 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 108)) (-3444 (($ $ $) 62) (($ $ |#1|) 61)) (-2260 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 151 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 152 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) 150 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-667 |#1|) (-140) (-1217)) (T -667)) -((-2276 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1217))))) -(-13 (-1150 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -2276 ($ |t#1|)))) -(((-34) . T) ((-102) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1011 |#1|) . T) ((-1101) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-1150 |#1|) . T) ((-1217) . T) ((-1255 |#1|) . T)) -((-1754 (((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-645 (-645 |#1|)) (-645 (-1267 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-690 |#1|) (-645 (-1267 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-645 (-645 |#1|)) (-1267 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|)) 14)) (-1979 (((-772) (-690 |#1|) (-1267 |#1|)) 30)) (-4315 (((-3 (-1267 |#1|) "failed") (-690 |#1|) (-1267 |#1|)) 24)) (-3191 (((-112) (-690 |#1|) (-1267 |#1|)) 27))) -(((-668 |#1|) (-10 -7 (-15 -1754 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|))) (-15 -1754 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-645 (-645 |#1|)) (-1267 |#1|))) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-690 |#1|) (-645 (-1267 |#1|)))) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-645 (-645 |#1|)) (-645 (-1267 |#1|)))) (-15 -4315 ((-3 (-1267 |#1|) "failed") (-690 |#1|) (-1267 |#1|))) (-15 -3191 ((-112) (-690 |#1|) (-1267 |#1|))) (-15 -1979 ((-772) (-690 |#1|) (-1267 |#1|)))) (-365)) (T -668)) -((-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-4315 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1267 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1267 *5) "failed")) (|:| -1975 (-645 (-1267 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1267 *5))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1267 *5) "failed")) (|:| -1975 (-645 (-1267 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1267 *5))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1267 *5) "failed")) (|:| -1975 (-645 (-1267 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1267 *5)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1267 *5) "failed")) (|:| -1975 (-645 (-1267 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1267 *5))))) -(-10 -7 (-15 -1754 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|))) (-15 -1754 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-645 (-645 |#1|)) (-1267 |#1|))) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-690 |#1|) (-645 (-1267 |#1|)))) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|))))) (-645 (-645 |#1|)) (-645 (-1267 |#1|)))) (-15 -4315 ((-3 (-1267 |#1|) "failed") (-690 |#1|) (-1267 |#1|))) (-15 -3191 ((-112) (-690 |#1|) (-1267 |#1|))) (-15 -1979 ((-772) (-690 |#1|) (-1267 |#1|)))) -((-1754 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|) 60)) (-1979 (((-772) |#4| |#3|) 18)) (-4315 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3191 (((-112) |#4| |#3|) 14))) -(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1754 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|)) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -4315 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3191 ((-112) |#4| |#3|)) (-15 -1979 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4418))) (-13 (-375 |#1|) (-10 -7 (-6 -4418))) (-688 |#1| |#2| |#3|)) (T -669)) -((-1979 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3191 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-4315 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4418)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-1754 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1975 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-1754 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(-10 -7 (-15 -1754 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|)) (-15 -1754 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -4315 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3191 ((-112) |#4| |#3|)) (-15 -1979 ((-772) |#4| |#3|))) -((-1977 (((-2 (|:| |particular| (-3 (-1267 (-410 |#4|)) "failed")) (|:| -1975 (-645 (-1267 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1977 ((-2 (|:| |particular| (-3 (-1267 (-410 |#4|)) "failed")) (|:| -1975 (-645 (-1267 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -670)) -((-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1267 (-410 *8)) "failed")) (|:| -1975 (-645 (-1267 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8))))) -(-10 -7 (-15 -1977 ((-2 (|:| |particular| (-3 (-1267 (-410 |#4|)) "failed")) (|:| -1975 (-645 (-1267 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2720 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4290 ((|#2| $) NIL)) (-2449 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3316 (((-1267 (-690 |#2|))) NIL) (((-1267 (-690 |#2|)) (-1267 $)) NIL)) (-2038 (((-112) $) NIL)) (-4308 (((-1267 $)) 44)) (-2112 (((-112) $ (-772)) NIL)) (-1644 (($ |#2|) NIL)) (-2245 (($) NIL T CONST)) (-2838 (($ $) NIL (|has| |#2| (-308)))) (-1938 (((-240 |#1| |#2|) $ (-567)) NIL)) (-2747 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3650 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-2942 (((-690 |#2|)) NIL) (((-690 |#2|) (-1267 $)) NIL)) (-2442 ((|#2| $) NIL)) (-1668 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1267 $)) NIL)) (-2385 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-2852 (((-1173 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-2968 (($ $ (-922)) NIL)) (-2675 ((|#2| $) NIL)) (-3090 (((-1173 |#2|) $) NIL (|has| |#2| (-559)))) (-1809 ((|#2|) NIL) ((|#2| (-1267 $)) NIL)) (-3798 (((-1173 |#2|) $) NIL)) (-4037 (((-112)) NIL)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-4025 (($ (-1267 |#2|)) NIL) (($ (-1267 |#2|) (-1267 $)) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1979 (((-772) $) NIL (|has| |#2| (-559))) (((-922)) 45)) (-3702 ((|#2| $ (-567) (-567)) NIL)) (-2128 (((-112)) NIL)) (-3709 (($ $ (-922)) NIL)) (-3397 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL)) (-2978 (((-772) $) NIL (|has| |#2| (-559)))) (-2407 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-4313 (((-772) $) NIL)) (-3809 (((-112)) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2570 ((|#2| $) NIL (|has| |#2| (-6 (-4419 "*"))))) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-2109 (($ (-645 (-645 |#2|))) NIL)) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1633 (((-645 (-645 |#2|)) $) NIL)) (-2427 (((-112)) NIL)) (-3151 (((-112)) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2651 (((-3 (-2 (|:| |particular| $) (|:| -1975 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-1946 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-3356 (((-690 |#2|)) NIL) (((-690 |#2|) (-1267 $)) NIL)) (-2506 ((|#2| $) NIL)) (-2013 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1267 $)) NIL)) (-2539 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-1527 (((-1173 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-2941 (($ $ (-922)) NIL)) (-3660 ((|#2| $) NIL)) (-2464 (((-1173 |#2|) $) NIL (|has| |#2| (-559)))) (-2152 ((|#2|) NIL) ((|#2| (-1267 $)) NIL)) (-1837 (((-1173 |#2|) $) NIL)) (-2690 (((-112)) NIL)) (-3739 (((-1159) $) NIL)) (-2972 (((-112)) NIL)) (-3657 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-2634 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3430 (((-1121) $) NIL)) (-3630 (((-112)) NIL)) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3256 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-1621 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1997 ((|#2| $) NIL)) (-1449 (($ (-645 |#2|)) NIL)) (-4116 (((-112) $) NIL)) (-2156 (((-240 |#1| |#2|) $) NIL)) (-2880 ((|#2| $) NIL (|has| |#2| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4303 (($ $) NIL)) (-2446 (((-690 |#2|) (-1267 $)) NIL) (((-1267 |#2|) $) NIL) (((-690 |#2|) (-1267 $) (-1267 $)) NIL) (((-1267 |#2|) $ (-1267 $)) 33)) (-3880 (($ (-1267 |#2|)) NIL) (((-1267 |#2|) $) NIL)) (-1526 (((-645 (-953 |#2|))) NIL) (((-645 (-953 |#2|)) (-1267 $)) NIL)) (-3387 (($ $ $) NIL)) (-4348 (((-112)) NIL)) (-1454 (((-240 |#1| |#2|) $ (-567)) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 43)) (-2925 (((-645 (-1267 |#2|))) NIL (|has| |#2| (-559)))) (-1875 (($ $ $ $) NIL)) (-3947 (((-112)) NIL)) (-2351 (($ (-690 |#2|) $) NIL)) (-2461 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-3411 (($ $ $) NIL)) (-4237 (((-112)) NIL)) (-3571 (((-112)) NIL)) (-2950 (((-112)) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-671 |#1| |#2|) (-13 (-1124 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) (-922) (-172)) (T -671)) -NIL -(-13 (-1124 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2173 (((-645 (-1136)) $) 10)) (-4127 (((-863) $) 16) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-672) (-13 (-1084) (-10 -8 (-15 -2173 ((-645 (-1136)) $))))) (T -672)) -((-2173 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-672))))) -(-13 (-1084) (-10 -8 (-15 -2173 ((-645 (-1136)) $)))) -((-2399 (((-112) $ $) NIL)) (-3259 (((-645 |#1|) $) NIL)) (-2956 (($ $) 67)) (-2803 (((-112) $) NIL)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3106 (((-3 $ "failed") (-820 |#1|)) 27)) (-3418 (((-112) (-820 |#1|)) 17)) (-1529 (($ (-820 |#1|)) 28)) (-1697 (((-112) $ $) 36)) (-2334 (((-922) $) 43)) (-2944 (($ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2703 (((-645 $) (-820 |#1|)) 19)) (-4127 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-4104 (((-112) $ $) NIL)) (-3203 (((-59 (-645 $)) (-645 |#1|) (-922)) 72)) (-3530 (((-645 $) (-645 |#1|) (-922)) 76)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 68)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 46))) -(((-673 |#1|) (-13 (-851) (-1039 |#1|) (-10 -8 (-15 -2803 ((-112) $)) (-15 -2944 ($ $)) (-15 -2956 ($ $)) (-15 -2334 ((-922) $)) (-15 -1697 ((-112) $ $)) (-15 -4127 ((-820 |#1|) $)) (-15 -4127 ((-678 |#1|) $)) (-15 -2703 ((-645 $) (-820 |#1|))) (-15 -3418 ((-112) (-820 |#1|))) (-15 -1529 ($ (-820 |#1|))) (-15 -3106 ((-3 $ "failed") (-820 |#1|))) (-15 -3259 ((-645 |#1|) $)) (-15 -3203 ((-59 (-645 $)) (-645 |#1|) (-922))) (-15 -3530 ((-645 $) (-645 |#1|) (-922))))) (-851)) (T -673)) -((-2803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2956 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-1697 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3106 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) -(-13 (-851) (-1039 |#1|) (-10 -8 (-15 -2803 ((-112) $)) (-15 -2944 ($ $)) (-15 -2956 ($ $)) (-15 -2334 ((-922) $)) (-15 -1697 ((-112) $ $)) (-15 -4127 ((-820 |#1|) $)) (-15 -4127 ((-678 |#1|) $)) (-15 -2703 ((-645 $) (-820 |#1|))) (-15 -3418 ((-112) (-820 |#1|))) (-15 -1529 ($ (-820 |#1|))) (-15 -3106 ((-3 $ "failed") (-820 |#1|))) (-15 -3259 ((-645 |#1|) $)) (-15 -3203 ((-59 (-645 $)) (-645 |#1|) (-922))) (-15 -3530 ((-645 $) (-645 |#1|) (-922))))) -((-3794 ((|#2| $) 103)) (-4280 (($ $) 124)) (-2112 (((-112) $ (-772)) 35)) (-2417 (($ $) 112) (($ $ (-772)) 115)) (-1578 (((-112) $) 125)) (-4343 (((-645 $) $) 99)) (-4218 (((-112) $ $) 95)) (-1904 (((-112) $ (-772)) 33)) (-3993 (((-567) $) 69)) (-1958 (((-567) $) 68)) (-1596 (((-112) $ (-772)) 31)) (-2915 (((-112) $) 101)) (-3250 ((|#2| $) 116) (($ $ (-772)) 120)) (-2842 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-2732 (((-645 (-567)) $) 67)) (-2479 (((-112) (-567) $) 61)) (-2405 ((|#2| $) NIL) (($ $ (-772)) 111)) (-3981 (($ $ (-567)) 128)) (-3580 (((-112) $) 127)) (-3256 (((-112) (-1 (-112) |#2|) $) 44)) (-3564 (((-645 |#2|) $) 48)) (-1783 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1234 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-4126 (((-567) $ $) 94)) (-1558 (($ $ (-1234 (-567))) 81) (($ $ (-567)) 75)) (-3340 (((-112) $) 90)) (-1765 (($ $) 108)) (-4387 (((-772) $) 107)) (-4263 (($ $) 106)) (-4142 (($ (-645 |#2|)) 55)) (-1546 (($ $) 129)) (-3602 (((-645 $) $) 93)) (-2588 (((-112) $ $) 92)) (-2461 (((-112) (-1 (-112) |#2|) $) 43)) (-2929 (((-112) $ $) 20)) (-2410 (((-772) $) 41))) -(((-674 |#1| |#2|) (-10 -8 (-15 -1546 (|#1| |#1|)) (-15 -3981 (|#1| |#1| (-567))) (-15 -1578 ((-112) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -3564 ((-645 |#2|) |#1|)) (-15 -2479 ((-112) (-567) |#1|)) (-15 -2732 ((-645 (-567)) |#1|)) (-15 -1958 ((-567) |#1|)) (-15 -3993 ((-567) |#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -1765 (|#1| |#1|)) (-15 -4387 ((-772) |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3250 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "last")) (-15 -3250 (|#2| |#1|)) (-15 -2417 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| "rest")) (-15 -2417 (|#1| |#1|)) (-15 -2405 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "first")) (-15 -2405 (|#2| |#1|)) (-15 -4218 ((-112) |#1| |#1|)) (-15 -2588 ((-112) |#1| |#1|)) (-15 -4126 ((-567) |#1| |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3794 (|#2| |#1|)) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772)))) (-675 |#2|) (-1217)) (T -674)) -NIL -(-10 -8 (-15 -1546 (|#1| |#1|)) (-15 -3981 (|#1| |#1| (-567))) (-15 -1578 ((-112) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -3564 ((-645 |#2|) |#1|)) (-15 -2479 ((-112) (-567) |#1|)) (-15 -2732 ((-645 (-567)) |#1|)) (-15 -1958 ((-567) |#1|)) (-15 -3993 ((-567) |#1|)) (-15 -4142 (|#1| (-645 |#2|))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -1558 (|#1| |#1| (-567))) (-15 -1558 (|#1| |#1| (-1234 (-567)))) (-15 -2842 (|#1| |#2| |#1| (-567))) (-15 -2842 (|#1| |#1| |#1| (-567))) (-15 -1765 (|#1| |#1|)) (-15 -4387 ((-772) |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3250 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "last")) (-15 -3250 (|#2| |#1|)) (-15 -2417 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| "rest")) (-15 -2417 (|#1| |#1|)) (-15 -2405 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "first")) (-15 -2405 (|#2| |#1|)) (-15 -4218 ((-112) |#1| |#1|)) (-15 -2588 ((-112) |#1| |#1|)) (-15 -4126 ((-567) |#1| |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3794 (|#2| |#1|)) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3256 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-3991 ((|#1| $) 66)) (-4280 (($ $) 68)) (-2848 (((-1272) $ (-567) (-567)) 98 (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 53 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1831 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 103)) (-3977 ((|#1| $) 67)) (-2245 (($) 7 T CONST)) (-2392 (($ $) 125)) (-2417 (($ $) 74) (($ $ (-772)) 72)) (-2440 (($ $) 100 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 101 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 104)) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3759 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 88)) (-1578 (((-112) $) 84)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3432 (((-772) $) 124)) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) 109)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 96 (|has| (-567) (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 95 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-2791 (($ $) 127)) (-3928 (((-112) $) 128)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3250 ((|#1| $) 71) (($ $ (-772)) 69)) (-2842 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-2732 (((-645 (-567)) $) 93)) (-2479 (((-112) (-567) $) 92)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-4053 ((|#1| $) 126)) (-2405 ((|#1| $) 77) (($ $ (-772)) 75)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4271 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-3981 (($ $ (-567)) 123)) (-3580 (((-112) $) 85)) (-1990 (((-112) $) 129)) (-3067 (((-112) $) 130)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 91)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1234 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4126 (((-567) $ $) 45)) (-1558 (($ $ (-1234 (-567))) 115) (($ $ (-567)) 114)) (-3340 (((-112) $) 47)) (-1765 (($ $) 63)) (-4367 (($ $) 60 (|has| $ (-6 -4418)))) (-4387 (((-772) $) 64)) (-4263 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 108)) (-3444 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-2260 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-1546 (($ $) 122)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-675 |#1|) (-140) (-1217)) (T -675)) -((-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-1990 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-2791 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217)))) (-2392 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) (-1546 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217))))) -(-13 (-1150 |t#1|) (-10 -8 (-15 -3230 ($ (-1 (-112) |t#1|) $)) (-15 -3338 ($ (-1 (-112) |t#1|) $)) (-15 -3067 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -3928 ((-112) $)) (-15 -2791 ($ $)) (-15 -4053 (|t#1| $)) (-15 -2392 ($ $)) (-15 -3432 ((-772) $)) (-15 -3981 ($ $ (-567))) (-15 -1546 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1150 |#1|) . T) ((-1217) . T) ((-1255 |#1|) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2402 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1050)))) (-2112 (((-112) $ (-772)) NIL)) (-2740 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-2245 (($) NIL T CONST)) (-2199 (($ $ $) 60 (|has| |#1| (-1050)))) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2104 (((-1267 (-772)) $) 12)) (-4209 (($ (-1177) $ $) 37)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1984 (($ (-772)) 57 (|has| |#1| (-1050)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-772) (-772) (-772)) 46)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4142 (($ (-645 (-645 (-645 |#1|)))) 70)) (-4127 (($ (-959 (-959 (-959 |#1|)))) 23) (((-959 (-959 (-959 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1050)) (PROGN (-15 -2402 ($ (-772) (-772) (-772))) (-15 -1984 ($ (-772))) (-15 -2199 ($ $ $))) |%noBranch|) (-15 -4142 ($ (-645 (-645 (-645 |#1|))))) (-15 -1783 (|#1| $ (-772) (-772) (-772))) (-15 -2740 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4127 ($ (-959 (-959 (-959 |#1|))))) (-15 -4127 ((-959 (-959 (-959 |#1|))) $)) (-15 -4209 ($ (-1177) $ $)) (-15 -2104 ((-1267 (-772)) $)))) (-1101)) (T -676)) -((-2402 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) (-4 *3 (-1101)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) (-4 *3 (-1101)))) (-2199 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1050)) (-4 *2 (-1101)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1101)) (-5 *1 (-676 *3)))) (-1783 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1101)))) (-2740 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1101)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-4 *3 (-1101)) (-5 *1 (-676 *3)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1101)))) (-4209 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-676 *3)) (-4 *3 (-1101)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-1267 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1101))))) -(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1050)) (PROGN (-15 -2402 ($ (-772) (-772) (-772))) (-15 -1984 ($ (-772))) (-15 -2199 ($ $ $))) |%noBranch|) (-15 -4142 ($ (-645 (-645 (-645 |#1|))))) (-15 -1783 (|#1| $ (-772) (-772) (-772))) (-15 -2740 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4127 ($ (-959 (-959 (-959 |#1|))))) (-15 -4127 ((-959 (-959 (-959 |#1|))) $)) (-15 -4209 ($ (-1177) $ $)) (-15 -2104 ((-1267 (-772)) $)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3146 (((-486) $) 10)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 19) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 12)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-677) (-13 (-1084) (-10 -8 (-15 -3146 ((-486) $)) (-15 -1998 ((-1136) $))))) (T -677)) -((-3146 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-677))))) -(-13 (-1084) (-10 -8 (-15 -3146 ((-486) $)) (-15 -1998 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-3259 (((-645 |#1|) $) 15)) (-2956 (($ $) 19)) (-2803 (((-112) $) 20)) (-3747 (((-3 |#1| "failed") $) 23)) (-2033 ((|#1| $) 21)) (-2417 (($ $) 37)) (-3818 (($ $) 25)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1697 (((-112) $ $) 47)) (-2334 (((-922) $) 40)) (-2944 (($ $) 18)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 ((|#1| $) 36)) (-4127 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 13)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-678 |#1|) (-13 (-851) (-1039 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4127 ((-820 |#1|) $)) (-15 -2405 (|#1| $)) (-15 -2944 ($ $)) (-15 -2334 ((-922) $)) (-15 -1697 ((-112) $ $)) (-15 -3818 ($ $)) (-15 -2417 ($ $)) (-15 -2803 ((-112) $)) (-15 -2956 ($ $)) (-15 -3259 ((-645 |#1|) $)))) (-851)) (T -678)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2405 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-1697 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2956 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1039 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4127 ((-820 |#1|) $)) (-15 -2405 (|#1| $)) (-15 -2944 ($ $)) (-15 -2334 ((-922) $)) (-15 -1697 ((-112) $ $)) (-15 -3818 ($ $)) (-15 -2417 ($ $)) (-15 -2803 ((-112) $)) (-15 -2956 ($ $)) (-15 -3259 ((-645 |#1|) $)))) -((-3506 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-3838 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12))) -(((-679 |#1|) (-10 -7 (-15 -3838 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3506 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1101)) (T -679)) -((-3506 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1101)) (-5 *1 (-679 *2)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1101)) (-5 *1 (-679 *2))))) -(-10 -7 (-15 -3838 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3506 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) -((-4155 ((|#2| |#1| |#2|) 9)) (-4141 ((|#1| |#1| |#2|) 8))) -(((-680 |#1| |#2|) (-10 -7 (-15 -4141 (|#1| |#1| |#2|)) (-15 -4155 (|#2| |#1| |#2|))) (-1101) (-1101)) (T -680)) -((-4155 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) (-4141 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(-10 -7 (-15 -4141 (|#1| |#1| |#2|)) (-15 -4155 (|#2| |#1| |#2|))) -((-2192 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2192 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1101) (-1101) (-1101)) (T -681)) -((-2192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)) (-5 *1 (-681 *5 *6 *2))))) -(-10 -7 (-15 -2192 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-3568 (((-1216) $) 21)) (-3519 (((-645 (-1216)) $) 19)) (-2758 (($ (-645 (-1216)) (-1216)) 14)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 29) (($ (-1182)) NIL) (((-1182) $) NIL) (((-1216) $) 22) (($ (-1119)) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-682) (-13 (-1084) (-614 (-1216)) (-10 -8 (-15 -4127 ($ (-1119))) (-15 -2758 ($ (-645 (-1216)) (-1216))) (-15 -3519 ((-645 (-1216)) $)) (-15 -3568 ((-1216) $))))) (T -682)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-682)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1216))) (-5 *3 (-1216)) (-5 *1 (-682)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-682)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-682))))) -(-13 (-1084) (-614 (-1216)) (-10 -8 (-15 -4127 ($ (-1119))) (-15 -2758 ($ (-645 (-1216)) (-1216))) (-15 -3519 ((-645 (-1216)) $)) (-15 -3568 ((-1216) $)))) -((-3506 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-1786 (((-1 |#1|) |#1|) 8)) (-3970 ((|#1| |#1|) 23)) (-4358 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4127 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26))) -(((-683 |#1|) (-10 -7 (-15 -1786 ((-1 |#1|) |#1|)) (-15 -4127 ((-1 |#1|) |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|))) (-15 -4358 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3970 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3506 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1101)) (T -683)) -((-3506 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1101)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1101)) (-5 *1 (-683 *4)))) (-3970 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1101)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1101)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1101)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1101)))) (-1786 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1101))))) -(-10 -7 (-15 -1786 ((-1 |#1|) |#1|)) (-15 -4127 ((-1 |#1|) |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|))) (-15 -4358 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3970 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3506 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) -((-3994 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2332 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3280 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1663 (((-1 |#2| |#1|) |#2|) 11))) -(((-684 |#1| |#2|) (-10 -7 (-15 -1663 ((-1 |#2| |#1|) |#2|)) (-15 -2332 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3280 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3994 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1101) (-1101)) (T -684)) -((-3994 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1101)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1101)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-1663 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1101)) (-4 *3 (-1101))))) -(-10 -7 (-15 -1663 ((-1 |#2| |#1|) |#2|)) (-15 -2332 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3280 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3994 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3442 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4210 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3447 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1870 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2759 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -4210 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3447 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1870 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2759 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3442 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1101) (-1101) (-1101)) (T -685)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1101)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1101)) (-4 *6 (-1101)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1101)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1101)) (-4 *4 (-1101)) (-4 *6 (-1101)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) -(-10 -7 (-15 -4210 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3447 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1870 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2759 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3442 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2499 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3822 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3822 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3822 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2499 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1050) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1050) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686)) -((-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1050)) (-4 *2 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) -(-10 -7 (-15 -3822 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3822 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2499 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1314 (($ (-772) (-772)) 43)) (-1420 (($ $ $) 71)) (-1650 (($ |#3|) 66) (($ $) 67)) (-2449 (((-112) $) 38)) (-3103 (($ $ (-567) (-567)) 82)) (-3878 (($ $ (-567) (-567)) 83)) (-1581 (($ $ (-567) (-567) (-567) (-567)) 88)) (-3132 (($ $) 69)) (-2038 (((-112) $) 15)) (-2638 (($ $ (-567) (-567) $) 89)) (-4281 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-1644 (($ (-772) |#2|) 53)) (-2109 (($ (-645 (-645 |#2|))) 51)) (-1633 (((-645 (-645 |#2|)) $) 78)) (-1853 (($ $ $) 70)) (-2387 (((-3 $ "failed") $ |#2|) 121)) (-1783 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-1449 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-4116 (((-112) $) 28)) (-4127 (($ |#4|) 61) (((-863) $) NIL)) (-3777 (((-112) $) 40)) (-3050 (($ $ |#2|) 123)) (-3037 (($ $ $) 93) (($ $) 96)) (-3024 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3050 (|#1| |#1| |#2|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -2638 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1581 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -3878 (|#1| |#1| (-567) (-567))) (-15 -3103 (|#1| |#1| (-567) (-567))) (-15 -4281 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1783 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1633 ((-645 (-645 |#2|)) |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1650 (|#1| |#1|)) (-15 -1650 (|#1| |#3|)) (-15 -4127 (|#1| |#4|)) (-15 -1449 (|#1| (-645 |#1|))) (-15 -1449 (|#1| (-645 |#2|))) (-15 -1644 (|#1| (-772) |#2|)) (-15 -2109 (|#1| (-645 (-645 |#2|)))) (-15 -1314 (|#1| (-772) (-772))) (-15 -3777 ((-112) |#1|)) (-15 -2449 ((-112) |#1|)) (-15 -4116 ((-112) |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -4281 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1050) (-375 |#2|) (-375 |#2|)) (T -687)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3050 (|#1| |#1| |#2|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -2638 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1581 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -3878 (|#1| |#1| (-567) (-567))) (-15 -3103 (|#1| |#1| (-567) (-567))) (-15 -4281 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1783 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1633 ((-645 (-645 |#2|)) |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1650 (|#1| |#1|)) (-15 -1650 (|#1| |#3|)) (-15 -4127 (|#1| |#4|)) (-15 -1449 (|#1| (-645 |#1|))) (-15 -1449 (|#1| (-645 |#2|))) (-15 -1644 (|#1| (-772) |#2|)) (-15 -2109 (|#1| (-645 (-645 |#2|)))) (-15 -1314 (|#1| (-772) (-772))) (-15 -3777 ((-112) |#1|)) (-15 -2449 ((-112) |#1|)) (-15 -4116 ((-112) |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -4281 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) (-567)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-1314 (($ (-772) (-772)) 98)) (-1420 (($ $ $) 88)) (-1650 (($ |#2|) 92) (($ $) 91)) (-2449 (((-112) $) 100)) (-3103 (($ $ (-567) (-567)) 84)) (-3878 (($ $ (-567) (-567)) 83)) (-1581 (($ $ (-567) (-567) (-567) (-567)) 82)) (-3132 (($ $) 90)) (-2038 (((-112) $) 102)) (-2112 (((-112) $ (-772)) 8)) (-2638 (($ $ (-567) (-567) $) 81)) (-4281 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-3056 (($ $ (-567) |#2|) 43)) (-1814 (($ $ (-567) |#3|) 42)) (-1644 (($ (-772) |#1|) 96)) (-2245 (($) 7 T CONST)) (-2838 (($ $) 68 (|has| |#1| (-308)))) (-1938 ((|#2| $ (-567)) 47)) (-1979 (((-772) $) 67 (|has| |#1| (-559)))) (-3759 ((|#1| $ (-567) (-567) |#1|) 44)) (-3702 ((|#1| $ (-567) (-567)) 49)) (-3397 (((-645 |#1|) $) 31)) (-2978 (((-772) $) 66 (|has| |#1| (-559)))) (-2407 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-4313 (((-772) $) 52)) (-2844 (($ (-772) (-772) |#1|) 58)) (-4325 (((-772) $) 51)) (-1904 (((-112) $ (-772)) 9)) (-2570 ((|#1| $) 63 (|has| |#1| (-6 (-4419 "*"))))) (-2971 (((-567) $) 56)) (-2970 (((-567) $) 54)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4289 (((-567) $) 55)) (-2233 (((-567) $) 53)) (-2109 (($ (-645 (-645 |#1|))) 97)) (-3751 (($ (-1 |#1| |#1|) $) 35)) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1633 (((-645 (-645 |#1|)) $) 87)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2634 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-1853 (($ $ $) 89)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) 57)) (-2387 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-1449 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-4116 (((-112) $) 101)) (-2880 ((|#1| $) 64 (|has| |#1| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-1454 ((|#3| $ (-567)) 46)) (-4127 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3777 (((-112) $) 99)) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-3050 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3037 (($ $ $) 79) (($ $) 78)) (-3024 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-688 |#1| |#2| |#3|) (-140) (-1050) (-375 |t#1|) (-375 |t#1|)) (T -688)) -((-2038 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1314 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1644 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4127 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-1650 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-1650 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3132 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1853 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1783 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4281 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3103 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3878 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1581 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2638 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3037 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1050)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2387 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2838 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) (-2634 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -2038 ((-112) $)) (-15 -4116 ((-112) $)) (-15 -2449 ((-112) $)) (-15 -3777 ((-112) $)) (-15 -1314 ($ (-772) (-772))) (-15 -2109 ($ (-645 (-645 |t#1|)))) (-15 -1644 ($ (-772) |t#1|)) (-15 -1449 ($ (-645 |t#1|))) (-15 -1449 ($ (-645 $))) (-15 -4127 ($ |t#3|)) (-15 -1650 ($ |t#2|)) (-15 -1650 ($ $)) (-15 -3132 ($ $)) (-15 -1853 ($ $ $)) (-15 -1420 ($ $ $)) (-15 -1633 ((-645 (-645 |t#1|)) $)) (-15 -1783 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -4281 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -3103 ($ $ (-567) (-567))) (-15 -3878 ($ $ (-567) (-567))) (-15 -1581 ($ $ (-567) (-567) (-567) (-567))) (-15 -2638 ($ $ (-567) (-567) $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3037 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2387 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3050 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2838 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1979 ((-772) $)) (-15 -2978 ((-772) $)) (-15 -2407 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4419 "*"))) (PROGN (-15 -2880 (|t#1| $)) (-15 -2570 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2634 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-57 |#1| |#2| |#3|) . T) ((-1217) . T)) -((-2838 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-1979 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-2978 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-2407 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-2827 (((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-2570 ((|#1| |#4|) 57)) (-1749 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-2634 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3965 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-3231 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-4359 ((|#4| |#4| (-567) (-567)) 60)) (-4253 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-2880 ((|#1| |#4|) 103)) (-3406 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559))))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2880 (|#1| |#4|)) (-15 -2570 (|#1| |#4|)) (-15 -4359 (|#4| |#4| (-567) (-567))) (-15 -3231 (|#4| |#4| |#1| (-567) (-567))) (-15 -4253 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1979 ((-772) |#4|)) (-15 -2978 ((-772) |#4|)) (-15 -2407 ((-645 |#3|) |#4|)) (-15 -3965 (|#4| |#4|)) (-15 -1749 ((-3 |#4| "failed") |#4|)) (-15 -3406 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2838 (|#4| |#4|)) (-15 -2827 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2634 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689)) -((-2634 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2827 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1749 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2407 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1979 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-4253 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3231 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-4359 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-2570 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-2880 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))) -(-10 -7 (-15 -2880 (|#1| |#4|)) (-15 -2570 (|#1| |#4|)) (-15 -4359 (|#4| |#4| (-567) (-567))) (-15 -3231 (|#4| |#4| |#1| (-567) (-567))) (-15 -4253 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1979 ((-772) |#4|)) (-15 -2978 ((-772) |#4|)) (-15 -2407 ((-645 |#3|) |#4|)) (-15 -3965 (|#4| |#4|)) (-15 -1749 ((-3 |#4| "failed") |#4|)) (-15 -3406 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2838 (|#4| |#4|)) (-15 -2827 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2634 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772) (-772)) 64)) (-1420 (($ $ $) NIL)) (-1650 (($ (-1267 |#1|)) NIL) (($ $) NIL)) (-2449 (((-112) $) NIL)) (-3103 (($ $ (-567) (-567)) 22)) (-3878 (($ $ (-567) (-567)) NIL)) (-1581 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3132 (($ $) NIL)) (-2038 (((-112) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2638 (($ $ (-567) (-567) $) NIL)) (-4281 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3056 (($ $ (-567) (-1267 |#1|)) NIL)) (-1814 (($ $ (-567) (-1267 |#1|)) NIL)) (-1644 (($ (-772) |#1|) 37)) (-2245 (($) NIL T CONST)) (-2838 (($ $) 46 (|has| |#1| (-308)))) (-1938 (((-1267 |#1|) $ (-567)) NIL)) (-1979 (((-772) $) 48 (|has| |#1| (-559)))) (-3759 ((|#1| $ (-567) (-567) |#1|) 69)) (-3702 ((|#1| $ (-567) (-567)) NIL)) (-3397 (((-645 |#1|) $) NIL)) (-2978 (((-772) $) 50 (|has| |#1| (-559)))) (-2407 (((-645 (-1267 |#1|)) $) 53 (|has| |#1| (-559)))) (-4313 (((-772) $) 32)) (-2844 (($ (-772) (-772) |#1|) 28)) (-4325 (((-772) $) 33)) (-1904 (((-112) $ (-772)) NIL)) (-2570 ((|#1| $) 44 (|has| |#1| (-6 (-4419 "*"))))) (-2971 (((-567) $) 10)) (-2970 (((-567) $) 11)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4289 (((-567) $) 14)) (-2233 (((-567) $) 65)) (-2109 (($ (-645 (-645 |#1|))) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1633 (((-645 (-645 |#1|)) $) 76)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2634 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-1853 (($ $ $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4271 (($ $ |#1|) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-1449 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1267 |#1|)) 70)) (-4116 (((-112) $) NIL)) (-2880 ((|#1| $) 42 (|has| |#1| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-1454 (((-1267 |#1|) $ (-567)) NIL)) (-4127 (($ (-1267 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $ $) NIL) (($ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1267 |#1|) $ (-1267 |#1|)) NIL) (((-1267 |#1|) (-1267 |#1|) $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-690 |#1|) (-13 (-688 |#1| (-1267 |#1|) (-1267 |#1|)) (-10 -8 (-15 -1449 ($ (-1267 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2634 ((-3 $ "failed") $)) |%noBranch|))) (-1050)) (T -690)) -((-2634 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1050)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1050)) (-5 *1 (-690 *3))))) -(-13 (-688 |#1| (-1267 |#1|) (-1267 |#1|)) (-10 -8 (-15 -1449 ($ (-1267 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2634 ((-3 $ "failed") $)) |%noBranch|))) -((-2598 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-3604 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-3027 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-2920 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-2043 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-3540 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-1706 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46))) -(((-691 |#1|) (-10 -7 (-15 -1706 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2920 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2043 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2043 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3540 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -3604 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2598 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3027 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1050)) (T -691)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-691 *4)))) (-3027 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-691 *4)))) (-2598 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-3604 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-3540 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-2043 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-2043 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-2920 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-1706 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(-10 -7 (-15 -1706 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2920 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2043 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2043 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3540 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -3604 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2598 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3027 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) -((-3747 (((-3 |#1| "failed") $) 18)) (-2033 ((|#1| $) NIL)) (-1981 (($) 7 T CONST)) (-1648 (($ |#1|) 8)) (-4127 (($ |#1|) 16) (((-863) $) 23)) (-1699 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1981)) 11)) (-2519 ((|#1| $) 15))) -(((-692 |#1|) (-13 (-1262) (-1039 |#1|) (-614 (-863)) (-10 -8 (-15 -1648 ($ |#1|)) (-15 -1699 ((-112) $ (|[\|\|]| |#1|))) (-15 -1699 ((-112) $ (|[\|\|]| -1981))) (-15 -2519 (|#1| $)) (-15 -1981 ($) -3280))) (-614 (-863))) (T -692)) -((-1648 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1981)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-2519 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1981 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(-13 (-1262) (-1039 |#1|) (-614 (-863)) (-10 -8 (-15 -1648 ($ |#1|)) (-15 -1699 ((-112) $ (|[\|\|]| |#1|))) (-15 -1699 ((-112) $ (|[\|\|]| -1981))) (-15 -2519 (|#1| $)) (-15 -1981 ($) -3280))) -((-3470 ((|#2| |#2| |#4|) 33)) (-1730 (((-690 |#2|) |#3| |#4|) 39)) (-3582 (((-690 |#2|) |#2| |#4|) 38)) (-2820 (((-1267 |#2|) |#2| |#4|) 16)) (-3908 ((|#2| |#3| |#4|) 32)) (-1345 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-2552 (((-690 |#2|) |#2| |#4| (-772)) 49))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2820 ((-1267 |#2|) |#2| |#4|)) (-15 -3908 (|#2| |#3| |#4|)) (-15 -3470 (|#2| |#2| |#4|)) (-15 -3582 ((-690 |#2|) |#2| |#4|)) (-15 -2552 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1730 ((-690 |#2|) |#3| |#4|)) (-15 -1345 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1101) (-901 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4417)))) (T -693)) -((-1345 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1101)) (-4 *7 (-901 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417)))))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-4 *6 (-901 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1101)) (-4 *3 (-901 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417)))))) (-3582 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-4 *3 (-901 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-3470 (*1 *2 *2 *3) (-12 (-4 *4 (-1101)) (-4 *2 (-901 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4417)))))) (-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-4 *2 (-901 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-2820 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-4 *3 (-901 *5)) (-5 *2 (-1267 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) -(-10 -7 (-15 -2820 ((-1267 |#2|) |#2| |#4|)) (-15 -3908 (|#2| |#3| |#4|)) (-15 -3470 (|#2| |#2| |#4|)) (-15 -3582 ((-690 |#2|) |#2| |#4|)) (-15 -2552 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1730 ((-690 |#2|) |#3| |#4|)) (-15 -1345 ((-690 |#2|) |#3| |#4| (-772) (-772)))) -((-1572 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-1704 ((|#1| (-690 |#2|)) 9)) (-1972 (((-690 |#1|) (-690 |#2|)) 18))) -(((-694 |#1| |#2|) (-10 -7 (-15 -1704 (|#1| (-690 |#2|))) (-15 -1972 ((-690 |#1|) (-690 |#2|))) (-15 -1572 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-993 |#1|)) (T -694)) -((-1572 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4))))) -(-10 -7 (-15 -1704 (|#1| (-690 |#2|))) (-15 -1972 ((-690 |#1|) (-690 |#2|))) (-15 -1572 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-2981 (((-690 (-700))) NIL) (((-690 (-700)) (-1267 $)) NIL)) (-4290 (((-700) $) NIL)) (-3165 (($ $) NIL (|has| (-700) (-1202)))) (-3039 (($ $) NIL (|has| (-700) (-1202)))) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-3081 (($ $) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-2833 (((-421 $) $) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-2714 (($ $) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1202))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-2373 (((-112) $ $) NIL (|has| (-700) (-308)))) (-2371 (((-772)) NIL (|has| (-700) (-370)))) (-3148 (($ $) NIL (|has| (-700) (-1202)))) (-3015 (($ $) NIL (|has| (-700) (-1202)))) (-3184 (($ $) NIL (|has| (-700) (-1202)))) (-3065 (($ $) NIL (|has| (-700) (-1202)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1039 (-410 (-567)))))) (-2033 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1039 (-410 (-567)))))) (-4025 (($ (-1267 (-700))) NIL) (($ (-1267 (-700)) (-1267 $)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2344 (($ $ $) NIL (|has| (-700) (-308)))) (-1937 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1267 $)) NIL)) (-1868 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-700))) (|:| |vec| (-1267 (-700)))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-2499 (((-3 $ "failed") (-410 (-1173 (-700)))) NIL (|has| (-700) (-365))) (($ (-1173 (-700))) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2724 (((-700) $) 29)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-1426 (((-112) $) NIL (|has| (-700) (-548)))) (-2242 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-1979 (((-922)) NIL)) (-1378 (($) NIL (|has| (-700) (-370)))) (-2355 (($ $ $) NIL (|has| (-700) (-308)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-3005 (($) NIL (|has| (-700) (-351)))) (-4284 (((-112) $) NIL (|has| (-700) (-351)))) (-4112 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-4341 (((-112) $) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-3539 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1061)) (|has| (-700) (-1202))))) (-1480 (($) NIL (|has| (-700) (-1202)))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-700) (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-700) (-887 (-567))))) (-2937 (((-834 (-922)) $) NIL (|has| (-700) (-351))) (((-922) $) NIL (|has| (-700) (-351)))) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1202))))) (-2896 (((-700) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-2612 (((-1173 (-700)) $) NIL (|has| (-700) (-365)))) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3822 (($ (-1 (-700) (-700)) $) NIL)) (-3425 (((-922) $) NIL (|has| (-700) (-370)))) (-3053 (($ $) NIL (|has| (-700) (-1202)))) (-2488 (((-1173 (-700)) $) NIL)) (-2735 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| (-700) (-365)))) (-2701 (($) NIL (|has| (-700) (-351)) CONST)) (-3763 (($ (-922)) NIL (|has| (-700) (-370)))) (-2293 (($) NIL)) (-2736 (((-700) $) 31)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| (-700) (-308)))) (-2771 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-700) (-351)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-2703 (((-421 $) $) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| (-700) (-308)))) (-2387 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-3927 (($ $) NIL (|has| (-700) (-1202)))) (-2631 (($ $ (-1177) (-700)) NIL (|has| (-700) (-517 (-1177) (-700)))) (($ $ (-645 (-1177)) (-645 (-700))) NIL (|has| (-700) (-517 (-1177) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-4197 (((-772) $) NIL (|has| (-700) (-308)))) (-1783 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| (-700) (-308)))) (-1999 (((-700)) NIL) (((-700) (-1267 $)) NIL)) (-3942 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-1621 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-1177)) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3337 (((-690 (-700)) (-1267 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-2530 (((-1173 (-700))) NIL)) (-3192 (($ $) NIL (|has| (-700) (-1202)))) (-3076 (($ $) NIL (|has| (-700) (-1202)))) (-3057 (($) NIL (|has| (-700) (-351)))) (-3174 (($ $) NIL (|has| (-700) (-1202)))) (-3052 (($ $) NIL (|has| (-700) (-1202)))) (-3157 (($ $) NIL (|has| (-700) (-1202)))) (-3026 (($ $) NIL (|has| (-700) (-1202)))) (-2446 (((-690 (-700)) (-1267 $)) NIL) (((-1267 (-700)) $) NIL) (((-690 (-700)) (-1267 $) (-1267 $)) NIL) (((-1267 (-700)) $ (-1267 $)) NIL)) (-3880 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1023))) (((-169 (-381)) $) NIL (|has| (-700) (-1023))) (((-893 (-381)) $) NIL (|has| (-700) (-615 (-893 (-381))))) (((-893 (-567)) $) NIL (|has| (-700) (-615 (-893 (-567))))) (($ (-1173 (-700))) NIL) (((-1173 (-700)) $) NIL) (($ (-1267 (-700))) NIL) (((-1267 (-700)) $) NIL)) (-2073 (($ $) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-910))) (|has| (-700) (-351))))) (-3046 (($ (-700) (-700)) 12)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2797 (|has| (-700) (-1039 (-410 (-567)))) (|has| (-700) (-365))))) (-1467 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2797 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-910))) (|has| (-700) (-145))))) (-3116 (((-1173 (-700)) $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) NIL)) (-3220 (($ $) NIL (|has| (-700) (-1202)))) (-3109 (($ $) NIL (|has| (-700) (-1202)))) (-4380 (((-112) $ $) NIL)) (-3201 (($ $) NIL (|has| (-700) (-1202)))) (-3087 (($ $) NIL (|has| (-700) (-1202)))) (-3241 (($ $) NIL (|has| (-700) (-1202)))) (-3128 (($ $) NIL (|has| (-700) (-1202)))) (-3011 (((-700) $) NIL (|has| (-700) (-1202)))) (-3807 (($ $) NIL (|has| (-700) (-1202)))) (-3137 (($ $) NIL (|has| (-700) (-1202)))) (-3228 (($ $) NIL (|has| (-700) (-1202)))) (-3119 (($ $) NIL (|has| (-700) (-1202)))) (-3210 (($ $) NIL (|has| (-700) (-1202)))) (-3098 (($ $) NIL (|has| (-700) (-1202)))) (-4137 (($ $) NIL (|has| (-700) (-1061)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-1177)) NIL (|has| (-700) (-901 (-1177)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-700) (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1202))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1202)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365))))) -(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -4127 ($ (-169 (-381)))) (-15 -4127 ($ (-169 (-567)))) (-15 -4127 ($ (-169 (-700)))) (-15 -4127 ($ (-169 (-702)))) (-15 -4127 ((-169 (-381)) $))))) (T -695)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695))))) -(-13 (-390) (-166 (-700)) (-10 -8 (-15 -4127 ($ (-169 (-381)))) (-15 -4127 ($ (-169 (-567)))) (-15 -4127 ($ (-169 (-700)))) (-15 -4127 ($ (-169 (-702)))) (-15 -4127 ((-169 (-381)) $)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2300 (($ $) 63)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3662 (((-645 (-2 (|:| -4232 |#1|) (|:| -3439 (-772)))) $) 62)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-696 |#1|) (-140) (-1101)) (T -696)) -((-1330 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1101)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1101)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1101)) (-5 *2 (-645 (-2 (|:| -4232 *3) (|:| -3439 (-772)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -1330 ($ |t#1| $ (-772))) (-15 -2300 ($ $)) (-15 -3662 ((-645 (-2 (|:| -4232 |t#1|) (|:| -3439 (-772)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2608 (((-645 |#1|) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) (-567)) 66)) (-3123 ((|#1| |#1| (-567)) 62)) (-2771 ((|#1| |#1| |#1| (-567)) 46)) (-2703 (((-645 |#1|) |#1| (-567)) 49)) (-3666 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-1876 (((-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) |#1| (-567)) 61))) -(((-697 |#1|) (-10 -7 (-15 -2771 (|#1| |#1| |#1| (-567))) (-15 -3123 (|#1| |#1| (-567))) (-15 -2703 ((-645 |#1|) |#1| (-567))) (-15 -1876 ((-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) |#1| (-567))) (-15 -2608 ((-645 |#1|) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) (-567))) (-15 -3666 (|#1| |#1| (-567) |#1| (-567)))) (-1243 (-567))) (T -697)) -((-3666 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -2703 *5) (|:| -1813 (-567))))) (-5 *4 (-567)) (-4 *5 (-1243 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2703 *3) (|:| -1813 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1243 *4)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1243 *4)))) (-3123 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3)))) (-2771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3))))) -(-10 -7 (-15 -2771 (|#1| |#1| |#1| (-567))) (-15 -3123 (|#1| |#1| (-567))) (-15 -2703 ((-645 |#1|) |#1| (-567))) (-15 -1876 ((-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) |#1| (-567))) (-15 -2608 ((-645 |#1|) (-645 (-2 (|:| -2703 |#1|) (|:| -1813 (-567)))) (-567))) (-15 -3666 (|#1| |#1| (-567) |#1| (-567)))) -((-2439 (((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3392 (((-1134 (-225)) (-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264))) 56) (((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264))) 58) (((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264))) 60)) (-1573 (((-1134 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-645 (-264))) NIL)) (-1833 (((-1134 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264))) 61))) -(((-698) (-10 -7 (-15 -3392 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -3392 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -3392 ((-1134 (-225)) (-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -1833 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -1573 ((-1134 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -2439 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698)) -((-2439 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-1573 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-698)))) (-1833 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-698)))) (-3392 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-3392 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-698)))) (-3392 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-698))))) -(-10 -7 (-15 -3392 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -3392 ((-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -3392 ((-1134 (-225)) (-1134 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -1833 ((-1134 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1095 (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -1573 ((-1134 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1095 (-225)) (-645 (-264)))) (-15 -2439 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-2703 (((-421 (-1173 |#4|)) (-1173 |#4|)) 86) (((-421 |#4|) |#4|) 270))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4|)) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|)))) (-851) (-794) (-351) (-950 |#3| |#2| |#1|)) (T -699)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4|)) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 100)) (-2660 (((-567) $) 34)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1873 (($ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) NIL)) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL)) (-2245 (($) NIL T CONST)) (-2273 (($ $) NIL)) (-3747 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-2033 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2344 (($ $ $) 112)) (-3153 (((-3 $ "failed") $) 103)) (-2355 (($ $ $) 111)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3735 (((-922)) 93) (((-922) (-922)) 92)) (-4357 (((-112) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-2937 (((-567) $) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL)) (-2896 (($ $) NIL)) (-2102 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2934 (((-567) (-567)) 97) (((-567)) 98)) (-2010 (($ $ $) NIL) (($) NIL (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2375 (((-567) (-567)) 95) (((-567)) 96)) (-2998 (($ $ $) NIL) (($) NIL (-12 (-1653 (|has| $ (-6 -4400))) (-1653 (|has| $ (-6 -4408)))))) (-2145 (((-567) $) 17)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 107)) (-3507 (((-922) (-567)) NIL (|has| $ (-6 -4408)))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL)) (-1842 (($ $) NIL)) (-2319 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-922)) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) 108)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4250 (((-567) $) 24)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 110)) (-3435 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4408)))) (-3676 (((-922) (-567)) NIL (|has| $ (-6 -4408)))) (-3880 (((-381) $) NIL) (((-225) $) NIL) (((-893 (-381)) $) NIL)) (-4127 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-1772 (((-772)) 122 T CONST)) (-1847 (($ (-567) (-567) (-922)) 59)) (-1687 (($ $) NIL)) (-4009 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4408)))) (-4104 (((-112) $ $) NIL)) (-3074 (((-922)) 46) (((-922) (-922)) 94)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL)) (-1710 (($) 37 T CONST)) (-1722 (($) 18 T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 99)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 121)) (-3050 (($ $ $) 81)) (-3037 (($ $) 118) (($ $ $) 119)) (-3024 (($ $ $) 117)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-700) (-13 (-407) (-390) (-365) (-1039 (-381)) (-1039 (-410 (-567))) (-147) (-10 -8 (-15 -3735 ((-922) (-922))) (-15 -3735 ((-922))) (-15 -3074 ((-922) (-922))) (-15 -2375 ((-567) (-567))) (-15 -2375 ((-567))) (-15 -2934 ((-567) (-567))) (-15 -2934 ((-567))) (-15 -4127 ((-381) $)) (-15 -4127 ($ (-702))) (-15 -2145 ((-567) $)) (-15 -4250 ((-567) $)) (-15 -1847 ($ (-567) (-567) (-922)))))) (T -700)) -((-4250 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3735 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2375 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2934 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-1847 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-5 *1 (-700))))) -(-13 (-407) (-390) (-365) (-1039 (-381)) (-1039 (-410 (-567))) (-147) (-10 -8 (-15 -3735 ((-922) (-922))) (-15 -3735 ((-922))) (-15 -3074 ((-922) (-922))) (-15 -2375 ((-567) (-567))) (-15 -2375 ((-567))) (-15 -2934 ((-567) (-567))) (-15 -2934 ((-567))) (-15 -4127 ((-381) $)) (-15 -4127 ($ (-702))) (-15 -2145 ((-567) $)) (-15 -4250 ((-567) $)) (-15 -1847 ($ (-567) (-567) (-922))))) -((-2495 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-2838 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-3012 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-3311 (((-690 |#1|) (-690 |#1|)) 68)) (-2827 (((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|) 87))) -(((-701 |#1|) (-10 -7 (-15 -3311 ((-690 |#1|) (-690 |#1|))) (-15 -2838 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3012 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2495 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2827 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|))) (-308)) (T -701)) -((-2827 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-2495 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3012 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2838 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3311 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(-10 -7 (-15 -3311 ((-690 |#1|) (-690 |#1|))) (-15 -2838 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3012 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2495 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2827 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-2478 (($ $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3262 (($ $ $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL)) (-4125 (($ $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) 31)) (-2033 (((-567) $) 29)) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL)) (-1426 (((-112) $) NIL)) (-2242 (((-410 (-567)) $) NIL)) (-1378 (($ $) NIL) (($) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3816 (($ $ $ $) NIL)) (-1411 (($ $ $) NIL)) (-4357 (((-112) $) NIL)) (-2057 (($ $ $) NIL)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-2843 (((-112) $) NIL)) (-2904 (((-112) $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-2102 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3383 (($ $ $ $) NIL)) (-2010 (($ $ $) NIL)) (-1624 (((-922) (-922)) 10) (((-922)) 9)) (-2998 (($ $ $) NIL)) (-1466 (($ $) NIL)) (-2334 (($ $) NIL)) (-2735 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3382 (($ $ $) NIL)) (-2701 (($) NIL T CONST)) (-2281 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1520 (($ $) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL) (($ $ (-772)) NIL)) (-2303 (($ $) NIL)) (-4303 (($ $) NIL)) (-3880 (((-225) $) NIL) (((-381) $) NIL) (((-893 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-1772 (((-772)) NIL T CONST)) (-2722 (((-112) $ $) NIL)) (-2092 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-3074 (($) NIL)) (-4380 (((-112) $ $) NIL)) (-1944 (($ $ $ $) NIL)) (-4137 (($ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL) (($ $ (-772)) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-702) (-13 (-390) (-548) (-10 -8 (-15 -1624 ((-922) (-922))) (-15 -1624 ((-922))) (-15 -4127 ((-317 $) (-317 (-567))))))) (T -702)) -((-1624 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))) (-1624 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702))))) -(-13 (-390) (-548) (-10 -8 (-15 -1624 ((-922) (-922))) (-15 -1624 ((-922))) (-15 -4127 ((-317 $) (-317 (-567)))))) -((-2452 (((-1 |#4| |#2| |#3|) |#1| (-1177) (-1177)) 19)) (-2059 (((-1 |#4| |#2| |#3|) (-1177)) 12))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2059 ((-1 |#4| |#2| |#3|) (-1177))) (-15 -2452 ((-1 |#4| |#2| |#3|) |#1| (-1177) (-1177)))) (-615 (-539)) (-1217) (-1217) (-1217)) (T -703)) -((-2452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1177)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217)) (-4 *7 (-1217)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217)) (-4 *7 (-1217))))) -(-10 -7 (-15 -2059 ((-1 |#4| |#2| |#3|) (-1177))) (-15 -2452 ((-1 |#4| |#2| |#3|) |#1| (-1177) (-1177)))) -((-4158 (((-1 (-225) (-225) (-225)) |#1| (-1177) (-1177)) 43) (((-1 (-225) (-225)) |#1| (-1177)) 48))) -(((-704 |#1|) (-10 -7 (-15 -4158 ((-1 (-225) (-225)) |#1| (-1177))) (-15 -4158 ((-1 (-225) (-225) (-225)) |#1| (-1177) (-1177)))) (-615 (-539))) (T -704)) -((-4158 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1177)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -4158 ((-1 (-225) (-225)) |#1| (-1177))) (-15 -4158 ((-1 (-225) (-225) (-225)) |#1| (-1177) (-1177)))) -((-2610 (((-1177) |#1| (-1177) (-645 (-1177))) 10) (((-1177) |#1| (-1177) (-1177) (-1177)) 13) (((-1177) |#1| (-1177) (-1177)) 12) (((-1177) |#1| (-1177)) 11))) -(((-705 |#1|) (-10 -7 (-15 -2610 ((-1177) |#1| (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-1177) (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-645 (-1177))))) (-615 (-539))) (T -705)) -((-2610 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1177))) (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2610 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2610 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2610 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -2610 ((-1177) |#1| (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-1177) (-1177))) (-15 -2610 ((-1177) |#1| (-1177) (-645 (-1177))))) -((-3395 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-706 |#1| |#2|) (-10 -7 (-15 -3395 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1217) (-1217)) (T -706)) -((-3395 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1217)) (-4 *4 (-1217))))) -(-10 -7 (-15 -3395 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1784 (((-1 |#3| |#2|) (-1177)) 11)) (-2452 (((-1 |#3| |#2|) |#1| (-1177)) 21))) -(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -1784 ((-1 |#3| |#2|) (-1177))) (-15 -2452 ((-1 |#3| |#2|) |#1| (-1177)))) (-615 (-539)) (-1217) (-1217)) (T -707)) -((-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217))))) -(-10 -7 (-15 -1784 ((-1 |#3| |#2|) (-1177))) (-15 -2452 ((-1 |#3| |#2|) |#1| (-1177)))) -((-3492 (((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1267 (-645 (-1173 |#3|))) |#3|) 95)) (-2304 (((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-3156 (((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1173 |#4|)) (-1267 (-645 (-1173 |#3|))) |#3|) 47))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3156 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1173 |#4|)) (-1267 (-645 (-1173 |#3|))) |#3|)) (-15 -2304 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -3492 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1267 (-645 (-1173 |#3|))) |#3|))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -708)) -((-3492 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1173 *13))) (-5 *3 (-1173 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1267 (-645 (-1173 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-950 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-2304 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1173 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-950 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1173 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1173 *12)))) (-3156 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1173 *11))) (-5 *3 (-1173 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1267 (-645 (-1173 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11))))) -(-10 -7 (-15 -3156 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1173 |#4|)) (-1267 (-645 (-1173 |#3|))) |#3|)) (-15 -2304 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -3492 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-645 |#2|) (-645 (-1173 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1267 (-645 (-1173 |#3|))) |#3|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3006 (($ $) 48)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-2821 (($ |#1| (-772)) 46)) (-2752 (((-772) $) 50)) (-2980 ((|#1| $) 49)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1813 (((-772) $) 51)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2253 ((|#1| $ (-772)) 47)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-709 |#1|) (-140) (-1050)) (T -709)) -((-1813 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050))))) -(-13 (-1050) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1813 ((-772) $)) (-15 -2752 ((-772) $)) (-15 -2980 (|t#1| $)) (-15 -3006 ($ $)) (-15 -2253 (|t#1| $ (-772))) (-15 -2821 ($ |t#1| (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3822 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3822 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1243 |#1|) (-1243 (-410 |#2|)) (-559) (-1243 |#4|) (-1243 (-410 |#5|))) (T -710)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1243 *5)) (-4 *2 (-1243 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1243 (-410 *6))) (-4 *8 (-1243 *7))))) -(-10 -7 (-15 -3822 (|#6| (-1 |#4| |#1|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2222 (((-1159) (-863)) 39)) (-4015 (((-1272) (-1159)) 32)) (-3631 (((-1159) (-863)) 28)) (-3754 (((-1159) (-863)) 29)) (-4127 (((-863) $) NIL) (((-1159) (-863)) 27)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-711) (-13 (-1101) (-10 -7 (-15 -4127 ((-1159) (-863))) (-15 -3631 ((-1159) (-863))) (-15 -3754 ((-1159) (-863))) (-15 -2222 ((-1159) (-863))) (-15 -4015 ((-1272) (-1159)))))) (T -711)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-711))))) -(-13 (-1101) (-10 -7 (-15 -4127 ((-1159) (-863))) (-15 -3631 ((-1159) (-863))) (-15 -3754 ((-1159) (-863))) (-15 -2222 ((-1159) (-863))) (-15 -4015 ((-1272) (-1159))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL)) (-2499 (($ |#1| |#2|) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2542 ((|#2| $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4207 (((-3 $ "failed") $ $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -2542 (|#2| $)) (-15 -4127 (|#1| $)) (-15 -2499 ($ |#1| |#2|)) (-15 -4207 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712)) -((-2542 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4127 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4207 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-365) (-10 -8 (-15 -2542 (|#2| $)) (-15 -4127 (|#1| $)) (-15 -2499 ($ |#1| |#2|)) (-15 -4207 ((-3 $ "failed") $ $)))) -((-2399 (((-112) $ $) 92)) (-2840 (((-112) $) 36)) (-3455 (((-1267 |#1|) $ (-772)) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-2476 (($ (-1173 |#1|)) NIL)) (-2670 (((-1173 $) $ (-1083)) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1083))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3412 (($ $ $) NIL (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2371 (((-772)) 56 (|has| |#1| (-370)))) (-1404 (($ $ (-772)) NIL)) (-3229 (($ $ (-772)) NIL)) (-1930 ((|#2| |#2|) 52)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1083) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1083) $) NIL)) (-3621 (($ $ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) 40)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2499 (($ |#2|) 50)) (-3153 (((-3 $ "failed") $) 102)) (-1378 (($) 61 (|has| |#1| (-370)))) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-1580 (($ $ $) NIL)) (-1307 (($ $ $) NIL (|has| |#1| (-559)))) (-1950 (((-2 (|:| -3686 |#1|) (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-1594 (((-959 $)) 94)) (-2543 (($ $ |#1| (-772) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1083) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1083) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ $) NIL (|has| |#1| (-559)))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1152)))) (-2832 (($ (-1173 |#1|) (-1083)) NIL) (($ (-1173 $) (-1083)) NIL)) (-3275 (($ $ (-772)) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) 88) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1083)) NIL) (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-2542 ((|#2|) 53)) (-2752 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3345 (($ (-1 (-772) (-772)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1317 (((-1173 |#1|) $) NIL)) (-1902 (((-3 (-1083) "failed") $) NIL)) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-2488 ((|#2| $) 49)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) 34)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1083)) (|:| -4250 (-772))) "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) NIL (|has| |#1| (-1152)) CONST)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3063 (($ $) 93 (|has| |#1| (-351)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1083) |#1|) NIL) (($ $ (-645 (-1083)) (-645 |#1|)) NIL) (($ $ (-1083) $) NIL) (($ $ (-645 (-1083)) (-645 $)) NIL)) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-1859 (((-3 $ "failed") $ (-772)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 103 (|has| |#1| (-365)))) (-1999 (($ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1621 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1813 (((-772) $) 38) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1083) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-1794 (((-959 $)) 42)) (-2868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4127 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1083)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) 73) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 25 T CONST)) (-3225 (((-1267 |#1|) $) 86)) (-1486 (($ (-1267 |#1|)) 60)) (-1722 (($) 8 T CONST)) (-2636 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2760 (((-1267 |#1|) $) NIL)) (-2929 (((-112) $ $) 79)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) 82) (($ $ $) NIL)) (-3024 (($ $ $) 39)) (** (($ $ (-922)) NIL) (($ $ (-772)) 97)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-713 |#1| |#2|) (-13 (-1243 |#1|) (-617 |#2|) (-10 -8 (-15 -1930 (|#2| |#2|)) (-15 -2542 (|#2|)) (-15 -2499 ($ |#2|)) (-15 -2488 (|#2| $)) (-15 -3225 ((-1267 |#1|) $)) (-15 -1486 ($ (-1267 |#1|))) (-15 -2760 ((-1267 |#1|) $)) (-15 -1594 ((-959 $))) (-15 -1794 ((-959 $))) (IF (|has| |#1| (-351)) (-15 -3063 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1050) (-1243 |#1|)) (T -713)) -((-1930 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1243 *3)))) (-2542 (*1 *2) (-12 (-4 *2 (-1243 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) (-2499 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1243 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *2 (-1243 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) (-3225 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-1267 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1243 *3)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1050)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1243 *3)))) (-2760 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-1267 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1243 *3)))) (-1594 (*1 *2) (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1243 *3)))) (-1794 (*1 *2) (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1243 *3)))) (-3063 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1050)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1243 *2))))) -(-13 (-1243 |#1|) (-617 |#2|) (-10 -8 (-15 -1930 (|#2| |#2|)) (-15 -2542 (|#2|)) (-15 -2499 ($ |#2|)) (-15 -2488 (|#2| $)) (-15 -3225 ((-1267 |#1|) $)) (-15 -1486 ($ (-1267 |#1|))) (-15 -2760 ((-1267 |#1|) $)) (-15 -1594 ((-959 $))) (-15 -1794 ((-959 $))) (IF (|has| |#1| (-351)) (-15 -3063 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 ((|#1| $) 13)) (-3430 (((-1121) $) NIL)) (-4250 ((|#2| $) 12)) (-4142 (($ |#1| |#2|) 16)) (-4127 (((-863) $) NIL) (($ (-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) 15) (((-2 (|:| -3763 |#1|) (|:| -4250 |#2|)) $) 14)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 11))) -(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) (-10 -8 (-15 -4250 (|#2| $)) (-15 -3763 (|#1| $)) (-15 -4142 ($ |#1| |#2|)))) (-851) (-1101) (-1 (-112) (-2 (|:| -3763 |#1|) (|:| -4250 |#2|)) (-2 (|:| -3763 |#1|) (|:| -4250 |#2|)))) (T -714)) -((-4250 (*1 *2 *1) (-12 (-4 *2 (-1101)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -3763 *3) (|:| -4250 *2)) (-2 (|:| -3763 *3) (|:| -4250 *2)))))) (-3763 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1101)) (-14 *4 (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *3)) (-2 (|:| -3763 *2) (|:| -4250 *3)))))) (-4142 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1101)) (-14 *4 (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *3)) (-2 (|:| -3763 *2) (|:| -4250 *3))))))) -(-13 (-851) (-493 (-2 (|:| -3763 |#1|) (|:| -4250 |#2|))) (-10 -8 (-15 -4250 (|#2| $)) (-15 -3763 (|#1| $)) (-15 -4142 ($ |#1| |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 66)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2033 ((|#1| $) NIL) (((-114) $) 39)) (-3153 (((-3 $ "failed") $) 106)) (-2835 ((|#2| (-114) |#2|) 93)) (-2843 (((-112) $) NIL)) (-1684 (($ |#1| (-363 (-114))) 14)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3705 (($ $ (-1 |#2| |#2|)) 65)) (-2428 (($ $ (-1 |#2| |#2|)) 44)) (-1783 ((|#2| $ |#2|) 33)) (-1672 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4127 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) 37 T CONST)) (-4104 (((-112) $ $) NIL)) (-3406 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1710 (($) 21 T CONST)) (-1722 (($) 9 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) 48) (($ $ $) NIL)) (-3024 (($ $ $) 83)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-715 |#1| |#2|) (-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3406 ($ $)) (-15 -3406 ($ $ $)) (-15 -1672 (|#1| |#1|))) |%noBranch|) (-15 -2428 ($ $ (-1 |#2| |#2|))) (-15 -3705 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -2835 (|#2| (-114) |#2|)) (-15 -1684 ($ |#1| (-363 (-114)))))) (-1050) (-649 |#1|)) (T -715)) -((-3406 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3406 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-1672 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2428 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-2835 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1050)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2))))) -(-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3406 ($ $)) (-15 -3406 ($ $ $)) (-15 -1672 (|#1| |#1|))) |%noBranch|) (-15 -2428 ($ $ (-1 |#2| |#2|))) (-15 -3705 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -2835 (|#2| (-114) |#2|)) (-15 -1684 ($ |#1| (-363 (-114)))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 33)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2499 (($ |#1| |#2|) 25)) (-3153 (((-3 $ "failed") $) 51)) (-2843 (((-112) $) 35)) (-2542 ((|#2| $) 12)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 52)) (-3430 (((-1121) $) NIL)) (-4207 (((-3 $ "failed") $ $) 50)) (-4127 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-1772 (((-772)) 28 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 16 T CONST)) (-1722 (($) 30 T CONST)) (-2929 (((-112) $ $) 41)) (-3037 (($ $) 46) (($ $ $) 40)) (-3024 (($ $ $) 43)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20))) -(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1050) (-10 -8 (-15 -2542 (|#2| $)) (-15 -4127 (|#1| $)) (-15 -2499 ($ |#1| |#2|)) (-15 -4207 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 $ "failed") $)) (-15 -2933 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716)) -((-3153 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2542 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4127 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4207 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2933 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1050) (-10 -8 (-15 -2542 (|#2| $)) (-15 -4127 (|#1| $)) (-15 -2499 ($ |#1| |#2|)) (-15 -4207 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 $ "failed") $)) (-15 -2933 ($ $)))) -((* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-717 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-718 |#2|) (-172)) (T -717)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 15)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-1448 ((|#1| $) 23)) (-1354 (($ $ $) NIL (|has| |#1| (-792)))) (-2981 (($ $ $) NIL (|has| |#1| (-792)))) (-1419 (((-1160) $) 48)) (-3430 (((-1122) $) NIL)) (-1460 ((|#3| $) 24)) (-4132 (((-863) $) 43)) (-1745 (((-112) $ $) 22)) (-1716 (($) 10 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2936 (((-112) $ $) 20)) (-2984 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2958 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3060 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3045 (($ $) 17) (($ $ $) NIL)) (-3033 (($ $ $) 29)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663)) +((-3060 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3060 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1460 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))))) +(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) +((-2832 (((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|)) 33))) +(((-664 |#1|) (-10 -7 (-15 -2832 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|)))) (-911)) (T -664)) +((-2832 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-911)) (-5 *1 (-664 *4))))) +(-10 -7 (-15 -2832 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 84)) (-2721 (($ $ (-772)) 94)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2885 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 50)) (-3753 (((-3 (-673 |#1|) "failed") $) NIL)) (-2038 (((-673 |#1|) $) NIL)) (-3014 (($ $) 93)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-673 |#1|) |#2|) 70)) (-3592 (($ $) 89)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 49)) (-1901 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-673 |#1|) $) NIL)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-3077 (((-772) $) 91)) (-4147 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-4132 (((-863) $) NIL) (($ |#1|) 76) (((-1283 |#1| |#2|) $) 60) (((-1292 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-673 |#1|)) NIL)) (-3694 ((|#2| (-1292 |#1| |#2|) $) 45)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 23 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1428 (((-3 $ "failed") (-1283 |#1| |#2|)) 62)) (-4363 (($ (-673 |#1|)) 14)) (-2936 (((-112) $ $) 46)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) 68) (($ $ $) NIL)) (-3033 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL))) +(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -1428 ((-3 $ "failed") (-1283 |#1| |#2|))) (-15 -4147 ($ (-673 |#1|) (-673 |#1|))) (-15 -4147 ($ (-673 |#1|) $)) (-15 -4147 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665)) +((-1428 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-4147 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4147 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172))))) +(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -1428 ((-3 $ "failed") (-1283 |#1| |#2|))) (-15 -4147 ($ (-673 |#1|) (-673 |#1|))) (-15 -4147 ($ (-673 |#1|) $)) (-15 -4147 ($ $ (-673 |#1|))))) +((-2496 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1394 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2839 (($ (-1 (-112) |#2|) $) 29)) (-1764 (($ $) 67)) (-2133 (($ $) 78)) (-2539 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-2569 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-2846 (($ (-772) |#2|) 65)) (-2966 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4135 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3829 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2284 (($ |#2|) 15)) (-2531 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3670 (($ $ (-1235 (-567))) 51) (($ $ (-567)) 44)) (-1395 (($ $ $ (-567)) 74)) (-4305 (($ $) 72)) (-2958 (((-112) $ $) 80))) +(((-666 |#1| |#2|) (-10 -8 (-15 -2284 (|#1| |#2|)) (-15 -3670 (|#1| |#1| (-567))) (-15 -3670 (|#1| |#1| (-1235 (-567)))) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2531 (|#1| |#2| |#1| (-567))) (-15 -2531 (|#1| |#1| |#1| (-567))) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -1764 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2846 (|#1| (-772) |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) (-667 |#2|) (-1218)) (T -666)) +NIL +(-10 -8 (-15 -2284 (|#1| |#2|)) (-15 -3670 (|#1| |#1| (-567))) (-15 -3670 (|#1| |#1| (-1235 (-567)))) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2531 (|#1| |#2| |#1| (-567))) (-15 -2531 (|#1| |#1| |#1| (-567))) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -1764 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2846 (|#1| (-772) |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-2496 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1394 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4419)))) (-4396 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 130)) (-3350 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4418)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-1764 (($ $) 145 (|has| $ (-6 -4419)))) (-3584 (($ $) 135)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2133 (($ $) 132 (|has| |#1| (-1102)))) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 131 (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 126)) (-3238 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4418))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2569 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1102))) (((-567) |#1| $) 139 (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) 138)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-1354 (($ $ $) 148 (|has| |#1| (-851)))) (-2966 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-4135 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-2981 (($ $ $) 149 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2284 (($ |#1|) 123)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2531 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-3323 (((-112) $) 85)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-3670 (($ $ (-1235 (-567))) 125) (($ $ (-567)) 124)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 144 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62) (($ $ |#1|) 61)) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 151 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 152 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 150 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-667 |#1|) (-140) (-1218)) (T -667)) +((-2284 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1218))))) +(-13 (-1151 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -2284 ($ |t#1|)))) +(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1012 |#1|) . T) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1151 |#1|) . T) ((-1218) . T) ((-1256 |#1|) . T)) +((-3018 (((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)) 14)) (-1954 (((-772) (-690 |#1|) (-1268 |#1|)) 30)) (-3141 (((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|)) 24)) (-2879 (((-112) (-690 |#1|) (-1268 |#1|)) 27))) +(((-668 |#1|) (-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|))) (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|)))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|)))) (-15 -3141 ((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|))) (-15 -2879 ((-112) (-690 |#1|) (-1268 |#1|))) (-15 -1954 ((-772) (-690 |#1|) (-1268 |#1|)))) (-365)) (T -668)) +((-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-3141 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1268 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1268 *5)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1268 *5))))) +(-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|))) (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|)))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|)))) (-15 -3141 ((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|))) (-15 -2879 ((-112) (-690 |#1|) (-1268 |#1|))) (-15 -1954 ((-772) (-690 |#1|) (-1268 |#1|)))) +((-3018 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|) 60)) (-1954 (((-772) |#4| |#3|) 18)) (-3141 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2879 (((-112) |#4| |#3|) 14))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|)) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3141 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2879 ((-112) |#4| |#3|)) (-15 -1954 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4419))) (-13 (-375 |#1|) (-10 -7 (-6 -4419))) (-688 |#1| |#2| |#3|)) (T -669)) +((-1954 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2879 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3141 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4419)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-3018 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2623 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-3018 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) +(-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|)) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3141 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2879 ((-112) |#4| |#3|)) (-15 -1954 ((-772) |#4| |#3|))) +((-2770 (((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -670)) +((-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 (-410 *8)) "failed")) (|:| -2623 (-645 (-1268 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8))))) +(-10 -7 (-15 -2770 ((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4293 ((|#2| $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#2|))) NIL) (((-1268 (-690 |#2|)) (-1268 $)) NIL)) (-1948 (((-112) $) NIL)) (-3337 (((-1268 $)) 44)) (-3445 (((-112) $ (-772)) NIL)) (-3536 (($ |#2|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) NIL (|has| |#2| (-308)))) (-1944 (((-240 |#1| |#2|) $ (-567)) NIL)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3645 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-1735 (((-690 |#2|)) NIL) (((-690 |#2|) (-1268 $)) NIL)) (-2583 ((|#2| $) NIL)) (-3528 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1268 $)) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-4063 (((-1174 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#2| $) NIL)) (-1575 (((-1174 |#2|) $) NIL (|has| |#2| (-559)))) (-2676 ((|#2|) NIL) ((|#2| (-1268 $)) NIL)) (-1682 (((-1174 |#2|) $) NIL)) (-1444 (((-112)) NIL)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3658 (($ (-1268 |#2|)) NIL) (($ (-1268 |#2|) (-1268 $)) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1954 (((-772) $) NIL (|has| |#2| (-559))) (((-923)) 45)) (-3680 ((|#2| $ (-567) (-567)) NIL)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL)) (-1940 (((-772) $) NIL (|has| |#2| (-559)))) (-1325 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-3633 (((-772) $) NIL)) (-4353 (((-112)) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#2| $) NIL (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#2|))) NIL)) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1603 (((-645 (-645 |#2|)) $) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3345 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-2119 (((-690 |#2|)) NIL) (((-690 |#2|) (-1268 $)) NIL)) (-2726 ((|#2| $) NIL)) (-2702 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1268 $)) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-4162 (((-1174 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#2| $) NIL)) (-3960 (((-1174 |#2|) $) NIL (|has| |#2| (-559)))) (-3042 ((|#2|) NIL) ((|#2| (-1268 $)) NIL)) (-3567 (((-1174 |#2|) $) NIL)) (-3396 (((-112)) NIL)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL)) (-3070 (((-112)) NIL)) (-4341 (((-112)) NIL)) (-1401 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1877 ((|#2| $) NIL)) (-3068 (($ (-645 |#2|)) NIL)) (-3339 (((-112) $) NIL)) (-2213 (((-240 |#1| |#2|) $) NIL)) (-4083 ((|#2| $) NIL (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-2887 (((-690 |#2|) (-1268 $)) NIL) (((-1268 |#2|) $) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $ (-1268 $)) 33)) (-3893 (($ (-1268 |#2|)) NIL) (((-1268 |#2|) $) NIL)) (-4013 (((-645 (-954 |#2|))) NIL) (((-645 (-954 |#2|)) (-1268 $)) NIL)) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL)) (-2237 (((-240 |#1| |#2|) $ (-567)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 43)) (-2652 (((-645 (-1268 |#2|))) NIL (|has| |#2| (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL)) (-2355 (($ (-690 |#2|) $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL)) (-1749 (((-112)) NIL)) (-2059 (((-112)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-671 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) (-923) (-172)) (T -671)) +NIL +(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2559 (((-645 (-1137)) $) 10)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-672) (-13 (-1085) (-10 -8 (-15 -2559 ((-645 (-1137)) $))))) (T -672)) +((-2559 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672))))) +(-13 (-1085) (-10 -8 (-15 -2559 ((-645 (-1137)) $)))) +((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) NIL)) (-2963 (($ $) 67)) (-3164 (((-112) $) NIL)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-2708 (((-3 $ "failed") (-820 |#1|)) 27)) (-1638 (((-112) (-820 |#1|)) 17)) (-4347 (($ (-820 |#1|)) 28)) (-4175 (((-112) $ $) 36)) (-1699 (((-923) $) 43)) (-2950 (($ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2706 (((-645 $) (-820 |#1|)) 19)) (-4132 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-1745 (((-112) $ $) NIL)) (-1396 (((-59 (-645 $)) (-645 |#1|) (-923)) 72)) (-1605 (((-645 $) (-645 |#1|) (-923)) 76)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 68)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 46))) +(((-673 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 -3164 ((-112) $)) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ((-678 |#1|) $)) (-15 -2706 ((-645 $) (-820 |#1|))) (-15 -1638 ((-112) (-820 |#1|))) (-15 -4347 ($ (-820 |#1|))) (-15 -2708 ((-3 $ "failed") (-820 |#1|))) (-15 -3267 ((-645 |#1|) $)) (-15 -1396 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -1605 ((-645 $) (-645 |#1|) (-923))))) (-851)) (T -673)) +((-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2950 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-4347 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-2708 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-1396 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) +(-13 (-851) (-1040 |#1|) (-10 -8 (-15 -3164 ((-112) $)) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ((-678 |#1|) $)) (-15 -2706 ((-645 $) (-820 |#1|))) (-15 -1638 ((-112) (-820 |#1|))) (-15 -4347 ($ (-820 |#1|))) (-15 -2708 ((-3 $ "failed") (-820 |#1|))) (-15 -3267 ((-645 |#1|) $)) (-15 -1396 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -1605 ((-645 $) (-645 |#1|) (-923))))) +((-3802 ((|#2| $) 103)) (-4283 (($ $) 124)) (-3445 (((-112) $ (-772)) 35)) (-2421 (($ $) 112) (($ $ (-772)) 115)) (-1399 (((-112) $) 125)) (-2182 (((-645 $) $) 99)) (-3512 (((-112) $ $) 95)) (-2077 (((-112) $ (-772)) 33)) (-4069 (((-567) $) 69)) (-2266 (((-567) $) 68)) (-2863 (((-112) $ (-772)) 31)) (-2769 (((-112) $) 101)) (-3257 ((|#2| $) 116) (($ $ (-772)) 120)) (-2845 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-1789 (((-645 (-567)) $) 67)) (-2996 (((-112) (-567) $) 61)) (-2409 ((|#2| $) NIL) (($ $ (-772)) 111)) (-2410 (($ $ (-567)) 128)) (-3323 (((-112) $) 127)) (-3025 (((-112) (-1 (-112) |#2|) $) 44)) (-2339 (((-645 |#2|) $) 48)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1235 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-2658 (((-567) $ $) 94)) (-1560 (($ $ (-1235 (-567))) 81) (($ $ (-567)) 75)) (-3900 (((-112) $) 90)) (-1644 (($ $) 108)) (-3344 (((-772) $) 107)) (-1503 (($ $) 106)) (-4147 (($ (-645 |#2|)) 55)) (-2192 (($ $) 129)) (-1531 (((-645 $) $) 93)) (-3606 (((-112) $ $) 92)) (-1853 (((-112) (-1 (-112) |#2|) $) 43)) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 41))) +(((-674 |#1| |#2|) (-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -2410 (|#1| |#1| (-567))) (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -2339 ((-645 |#2|) |#1|)) (-15 -2996 ((-112) (-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2266 ((-567) |#1|)) (-15 -4069 ((-567) |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -2658 ((-567) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) (-675 |#2|) (-1218)) (T -674)) +NIL +(-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -2410 (|#1| |#1| (-567))) (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -2339 ((-645 |#2|) |#1|)) (-15 -2996 ((-112) (-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2266 ((-567) |#1|)) (-15 -4069 ((-567) |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -2658 ((-567) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 103)) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2584 (($ $) 125)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 104)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-3532 (((-772) $) 124)) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-3381 (($ $) 127)) (-1406 (((-112) $) 128)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2249 ((|#1| $) 126)) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-2410 (($ $ (-567)) 123)) (-3323 (((-112) $) 85)) (-2418 (((-112) $) 129)) (-4320 (((-112) $) 130)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-2192 (($ $) 122)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-675 |#1|) (-140) (-1218)) (T -675)) +((-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3381 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-2584 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218))))) +(-13 (-1151 |t#1|) (-10 -8 (-15 -3238 ($ (-1 (-112) |t#1|) $)) (-15 -3350 ($ (-1 (-112) |t#1|) $)) (-15 -4320 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -1406 ((-112) $)) (-15 -3381 ($ $)) (-15 -2249 (|t#1| $)) (-15 -2584 ($ $)) (-15 -3532 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1151 |#1|) . T) ((-1218) . T) ((-1256 |#1|) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4117 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1051)))) (-3445 (((-112) $ (-772)) NIL)) (-4234 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-2585 (($) NIL T CONST)) (-2205 (($ $ $) 60 (|has| |#1| (-1051)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4178 (((-1268 (-772)) $) 12)) (-3780 (($ (-1178) $ $) 37)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2001 (($ (-772)) 57 (|has| |#1| (-1051)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-772) (-772) (-772)) 46)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4147 (($ (-645 (-645 (-645 |#1|)))) 70)) (-4132 (($ (-960 (-960 (-960 |#1|)))) 23) (((-960 (-960 (-960 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -4117 ($ (-772) (-772) (-772))) (-15 -2001 ($ (-772))) (-15 -2205 ($ $ $))) |%noBranch|) (-15 -4147 ($ (-645 (-645 (-645 |#1|))))) (-15 -1787 (|#1| $ (-772) (-772) (-772))) (-15 -4234 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4132 ($ (-960 (-960 (-960 |#1|))))) (-15 -4132 ((-960 (-960 (-960 |#1|))) $)) (-15 -3780 ($ (-1178) $ $)) (-15 -4178 ((-1268 (-772)) $)))) (-1102)) (T -676)) +((-4117 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-2205 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-1787 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-4234 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-3780 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-1268 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) +(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -4117 ($ (-772) (-772) (-772))) (-15 -2001 ($ (-772))) (-15 -2205 ($ $ $))) |%noBranch|) (-15 -4147 ($ (-645 (-645 (-645 |#1|))))) (-15 -1787 (|#1| $ (-772) (-772) (-772))) (-15 -4234 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4132 ($ (-960 (-960 (-960 |#1|))))) (-15 -4132 ((-960 (-960 (-960 |#1|))) $)) (-15 -3780 ($ (-1178) $ $)) (-15 -4178 ((-1268 (-772)) $)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2724 (((-486) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-677) (-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -2006 ((-1137) $))))) (T -677)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677))))) +(-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -2006 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 15)) (-2963 (($ $) 19)) (-3164 (((-112) $) 20)) (-3753 (((-3 |#1| "failed") $) 23)) (-2038 ((|#1| $) 21)) (-2421 (($ $) 37)) (-3592 (($ $) 25)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-4175 (((-112) $ $) 47)) (-1699 (((-923) $) 40)) (-2950 (($ $) 18)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) 36)) (-4132 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 13)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-678 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -2409 (|#1| $)) (-15 -2950 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -3592 ($ $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -2963 ($ $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -678)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2409 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2950 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851))))) +(-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -2409 (|#1| $)) (-15 -2950 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -3592 ($ $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -2963 ($ $)) (-15 -3267 ((-645 |#1|) $)))) +((-3140 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-3859 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12))) +(((-679 |#1|) (-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3140 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1102)) (T -679)) +((-3140 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2))))) +(-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3140 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) +((-4160 ((|#2| |#1| |#2|) 9)) (-4145 ((|#1| |#1| |#2|) 8))) +(((-680 |#1| |#2|) (-10 -7 (-15 -4145 (|#1| |#1| |#2|)) (-15 -4160 (|#2| |#1| |#2|))) (-1102) (-1102)) (T -680)) +((-4160 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(-10 -7 (-15 -4145 (|#1| |#1| |#2|)) (-15 -4160 (|#2| |#1| |#2|))) +((-2199 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2199 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1102) (-1102) (-1102)) (T -681)) +((-2199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2))))) +(-10 -7 (-15 -2199 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 21)) (-3527 (((-645 (-1217)) $) 19)) (-3003 (($ (-645 (-1217)) (-1217)) 14)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 29) (($ (-1183)) NIL) (((-1183) $) NIL) (((-1217) $) 22) (($ (-1120)) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-682) (-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-1120))) (-15 -3003 ($ (-645 (-1217)) (-1217))) (-15 -3527 ((-645 (-1217)) $)) (-15 -3570 ((-1217) $))))) (T -682)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1217))) (-5 *3 (-1217)) (-5 *1 (-682)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-682)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-682))))) +(-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-1120))) (-15 -3003 ($ (-645 (-1217)) (-1217))) (-15 -3527 ((-645 (-1217)) $)) (-15 -3570 ((-1217) $)))) +((-3140 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-3928 (((-1 |#1|) |#1|) 8)) (-3979 ((|#1| |#1|) 23)) (-1344 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4132 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26))) +(((-683 |#1|) (-10 -7 (-15 -3928 ((-1 |#1|) |#1|)) (-15 -4132 ((-1 |#1|) |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|))) (-15 -1344 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3979 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3140 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1102)) (T -683)) +((-3140 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) (-5 *1 (-683 *4)))) (-3979 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102))))) +(-10 -7 (-15 -3928 ((-1 |#1|) |#1|)) (-15 -4132 ((-1 |#1|) |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|))) (-15 -1344 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3979 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3140 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) +((-4202 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2662 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3286 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1959 (((-1 |#2| |#1|) |#2|) 11))) +(((-684 |#1| |#2|) (-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -2662 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3286 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4202 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1102) (-1102)) (T -684)) +((-4202 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1102))))) +(-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -2662 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3286 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4202 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2303 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3874 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1547 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2823 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3628 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3874 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1547 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2823 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2303 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1102) (-1102) (-1102)) (T -685)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) +(-10 -7 (-15 -3874 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1547 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2823 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2303 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2477 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3829 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3829 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2477 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1051) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1051) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686)) +((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) +(-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3829 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2477 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-1316 (($ (-772) (-772)) 43)) (-1467 (($ $ $) 71)) (-3094 (($ |#3|) 66) (($ $) 67)) (-1981 (((-112) $) 38)) (-3709 (($ $ (-567) (-567)) 82)) (-2897 (($ $ (-567) (-567)) 83)) (-1736 (($ $ (-567) (-567) (-567) (-567)) 88)) (-3888 (($ $) 69)) (-1948 (((-112) $) 15)) (-1697 (($ $ (-567) (-567) $) 89)) (-4284 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-3536 (($ (-772) |#2|) 53)) (-2114 (($ (-645 (-645 |#2|))) 51)) (-1603 (((-645 (-645 |#2|)) $) 78)) (-1418 (($ $ $) 70)) (-2391 (((-3 $ "failed") $ |#2|) 121)) (-1787 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3068 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-3339 (((-112) $) 28)) (-4132 (($ |#4|) 61) (((-863) $) NIL)) (-2619 (((-112) $) 40)) (-3060 (($ $ |#2|) 123)) (-3045 (($ $ $) 93) (($ $) 96)) (-3033 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#2|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1736 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2897 (|#1| |#1| (-567) (-567))) (-15 -3709 (|#1| |#1| (-567) (-567))) (-15 -4284 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1787 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1603 ((-645 (-645 |#2|)) |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#3|)) (-15 -4132 (|#1| |#4|)) (-15 -3068 (|#1| (-645 |#1|))) (-15 -3068 (|#1| (-645 |#2|))) (-15 -3536 (|#1| (-772) |#2|)) (-15 -2114 (|#1| (-645 (-645 |#2|)))) (-15 -1316 (|#1| (-772) (-772))) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1051) (-375 |#2|) (-375 |#2|)) (T -687)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#2|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1736 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2897 (|#1| |#1| (-567) (-567))) (-15 -3709 (|#1| |#1| (-567) (-567))) (-15 -4284 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1787 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1603 ((-645 (-645 |#2|)) |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#3|)) (-15 -4132 (|#1| |#4|)) (-15 -3068 (|#1| (-645 |#1|))) (-15 -3068 (|#1| (-645 |#2|))) (-15 -3536 (|#1| (-772) |#2|)) (-15 -2114 (|#1| (-645 (-645 |#2|)))) (-15 -1316 (|#1| (-772) (-772))) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) 98)) (-1467 (($ $ $) 88)) (-3094 (($ |#2|) 92) (($ $) 91)) (-1981 (((-112) $) 100)) (-3709 (($ $ (-567) (-567)) 84)) (-2897 (($ $ (-567) (-567)) 83)) (-1736 (($ $ (-567) (-567) (-567) (-567)) 82)) (-3888 (($ $) 90)) (-1948 (((-112) $) 102)) (-3445 (((-112) $ (-772)) 8)) (-1697 (($ $ (-567) (-567) $) 81)) (-4284 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-2615 (($ $ (-567) |#2|) 43)) (-1961 (($ $ (-567) |#3|) 42)) (-3536 (($ (-772) |#1|) 96)) (-2585 (($) 7 T CONST)) (-2233 (($ $) 68 (|has| |#1| (-308)))) (-1944 ((|#2| $ (-567)) 47)) (-1954 (((-772) $) 67 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) 44)) (-3680 ((|#1| $ (-567) (-567)) 49)) (-2777 (((-645 |#1|) $) 31)) (-1940 (((-772) $) 66 (|has| |#1| (-559)))) (-1325 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-3633 (((-772) $) 52)) (-2846 (($ (-772) (-772) |#1|) 58)) (-3643 (((-772) $) 51)) (-2077 (((-112) $ (-772)) 9)) (-2031 ((|#1| $) 63 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 56)) (-4043 (((-567) $) 54)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 55)) (-2646 (((-567) $) 53)) (-2114 (($ (-645 (-645 |#1|))) 97)) (-3731 (($ (-1 |#1| |#1|) $) 35)) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1603 (((-645 (-645 |#1|)) $) 87)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-1418 (($ $ $) 89)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) 57)) (-2391 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3068 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-3339 (((-112) $) 101)) (-4083 ((|#1| $) 64 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2237 ((|#3| $ (-567)) 46)) (-4132 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 99)) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3045 (($ $ $) 79) (($ $) 78)) (-3033 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-688 |#1| |#2| |#3|) (-140) (-1051) (-375 |t#1|) (-375 |t#1|)) (T -688)) +((-1948 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1316 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3536 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-3094 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3888 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1418 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1467 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1787 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4284 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3709 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2897 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1736 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1697 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-1401 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -1948 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -1316 ($ (-772) (-772))) (-15 -2114 ($ (-645 (-645 |t#1|)))) (-15 -3536 ($ (-772) |t#1|)) (-15 -3068 ($ (-645 |t#1|))) (-15 -3068 ($ (-645 $))) (-15 -4132 ($ |t#3|)) (-15 -3094 ($ |t#2|)) (-15 -3094 ($ $)) (-15 -3888 ($ $)) (-15 -1418 ($ $ $)) (-15 -1467 ($ $ $)) (-15 -1603 ((-645 (-645 |t#1|)) $)) (-15 -1787 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -4284 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -3709 ($ $ (-567) (-567))) (-15 -2897 ($ $ (-567) (-567))) (-15 -1736 ($ $ (-567) (-567) (-567) (-567))) (-15 -1697 ($ $ (-567) (-567) $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2233 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1954 ((-772) $)) (-15 -1940 ((-772) $)) (-15 -1325 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4420 "*"))) (PROGN (-15 -4083 (|t#1| $)) (-15 -2031 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1401 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-57 |#1| |#2| |#3|) . T) ((-1218) . T)) +((-2233 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-1954 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-1940 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-1325 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-2500 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-2031 ((|#1| |#4|) 57)) (-3692 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-1401 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3216 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-4112 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-3310 ((|#4| |#4| (-567) (-567)) 60)) (-2857 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-4083 ((|#1| |#4|) 103)) (-2974 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559))))) +(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#1| |#4|)) (-15 -2031 (|#1| |#4|)) (-15 -3310 (|#4| |#4| (-567) (-567))) (-15 -4112 (|#4| |#4| |#1| (-567) (-567))) (-15 -2857 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (-15 -1325 ((-645 |#3|) |#4|)) (-15 -3216 (|#4| |#4|)) (-15 -3692 ((-3 |#4| "failed") |#4|)) (-15 -2974 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2233 (|#4| |#4|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689)) +((-1401 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2500 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2974 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3692 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3216 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2857 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-4112 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3310 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-2031 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))) +(-10 -7 (-15 -4083 (|#1| |#4|)) (-15 -2031 (|#1| |#4|)) (-15 -3310 (|#4| |#4| (-567) (-567))) (-15 -4112 (|#4| |#4| |#1| (-567) (-567))) (-15 -2857 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (-15 -1325 ((-645 |#3|) |#4|)) (-15 -3216 (|#4| |#4|)) (-15 -3692 ((-3 |#4| "failed") |#4|)) (-15 -2974 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2233 (|#4| |#4|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) 64)) (-1467 (($ $ $) NIL)) (-3094 (($ (-1268 |#1|)) NIL) (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) 22)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-1268 |#1|)) NIL)) (-1961 (($ $ (-567) (-1268 |#1|)) NIL)) (-3536 (($ (-772) |#1|) 37)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 46 (|has| |#1| (-308)))) (-1944 (((-1268 |#1|) $ (-567)) NIL)) (-1954 (((-772) $) 48 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) 69)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) 50 (|has| |#1| (-559)))) (-1325 (((-645 (-1268 |#1|)) $) 53 (|has| |#1| (-559)))) (-3633 (((-772) $) 32)) (-2846 (($ (-772) (-772) |#1|) 28)) (-3643 (((-772) $) 33)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) 44 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 10)) (-4043 (((-567) $) 11)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 14)) (-2646 (((-567) $) 65)) (-2114 (($ (-645 (-645 |#1|))) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) 76)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1268 |#1|)) 70)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) 42 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2237 (((-1268 |#1|) $ (-567)) NIL)) (-4132 (($ (-1268 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1268 |#1|) $ (-1268 |#1|)) NIL) (((-1268 |#1|) (-1268 |#1|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-690 |#1|) (-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 -3068 ($ (-1268 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 $ "failed") $)) |%noBranch|))) (-1051)) (T -690)) +((-1401 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3))))) +(-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 -3068 ($ (-1268 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 $ "failed") $)) |%noBranch|))) +((-2278 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-1732 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-4248 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-2122 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-4344 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-3239 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-3544 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46))) +(((-691 |#1|) (-10 -7 (-15 -3544 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2122 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3239 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1732 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2278 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4248 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1051)) (T -691)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-4248 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-2278 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1732 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-3239 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4344 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4344 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-2122 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-3544 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(-10 -7 (-15 -3544 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2122 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3239 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1732 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2278 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4248 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) +((-3753 (((-3 |#1| "failed") $) 18)) (-2038 ((|#1| $) NIL)) (-1986 (($) 7 T CONST)) (-2844 (($ |#1|) 8)) (-4132 (($ |#1|) 16) (((-863) $) 23)) (-1702 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1986)) 11)) (-2523 ((|#1| $) 15))) +(((-692 |#1|) (-13 (-1263) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2844 ($ |#1|)) (-15 -1702 ((-112) $ (|[\|\|]| |#1|))) (-15 -1702 ((-112) $ (|[\|\|]| -1986))) (-15 -2523 (|#1| $)) (-15 -1986 ($) -3286))) (-614 (-863))) (T -692)) +((-2844 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1986)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-2523 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1986 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) +(-13 (-1263) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2844 ($ |#1|)) (-15 -1702 ((-112) $ (|[\|\|]| |#1|))) (-15 -1702 ((-112) $ (|[\|\|]| -1986))) (-15 -2523 (|#1| $)) (-15 -1986 ($) -3286))) +((-1998 ((|#2| |#2| |#4|) 33)) (-1816 (((-690 |#2|) |#3| |#4|) 39)) (-3499 (((-690 |#2|) |#2| |#4|) 38)) (-4141 (((-1268 |#2|) |#2| |#4|) 16)) (-3283 ((|#2| |#3| |#4|) 32)) (-3383 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-1906 (((-690 |#2|) |#2| |#4| (-772)) 49))) +(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4141 ((-1268 |#2|) |#2| |#4|)) (-15 -3283 (|#2| |#3| |#4|)) (-15 -1998 (|#2| |#2| |#4|)) (-15 -3499 ((-690 |#2|) |#2| |#4|)) (-15 -1906 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1816 ((-690 |#2|) |#3| |#4|)) (-15 -3383 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1102) (-902 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4418)))) (T -693)) +((-3383 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))) (-1816 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-1906 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))) (-3499 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-1998 (*1 *2 *2 *3) (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-3283 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-4141 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1268 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418))))))) +(-10 -7 (-15 -4141 ((-1268 |#2|) |#2| |#4|)) (-15 -3283 (|#2| |#3| |#4|)) (-15 -1998 (|#2| |#2| |#4|)) (-15 -3499 ((-690 |#2|) |#2| |#4|)) (-15 -1906 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1816 ((-690 |#2|) |#3| |#4|)) (-15 -3383 ((-690 |#2|) |#3| |#4| (-772) (-772)))) +((-1989 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-3354 ((|#1| (-690 |#2|)) 9)) (-4304 (((-690 |#1|) (-690 |#2|)) 18))) +(((-694 |#1| |#2|) (-10 -7 (-15 -3354 (|#1| (-690 |#2|))) (-15 -4304 ((-690 |#1|) (-690 |#2|))) (-15 -1989 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-994 |#1|)) (T -694)) +((-1989 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4))))) +(-10 -7 (-15 -3354 (|#1| (-690 |#2|))) (-15 -4304 ((-690 |#1|) (-690 |#2|))) (-15 -1989 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2141 (((-690 (-700))) NIL) (((-690 (-700)) (-1268 $)) NIL)) (-4293 (((-700) $) NIL)) (-3146 (($ $) NIL (|has| (-700) (-1203)))) (-3012 (($ $) NIL (|has| (-700) (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3248 (($ $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2908 (((-421 $) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2716 (($ $) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3609 (((-112) $ $) NIL (|has| (-700) (-308)))) (-2375 (((-772)) NIL (|has| (-700) (-370)))) (-3128 (($ $) NIL (|has| (-700) (-1203)))) (-2987 (($ $) NIL (|has| (-700) (-1203)))) (-3166 (($ $) NIL (|has| (-700) (-1203)))) (-3035 (($ $) NIL (|has| (-700) (-1203)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-2038 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-3658 (($ (-1268 (-700))) NIL) (($ (-1268 (-700)) (-1268 $)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2349 (($ $ $) NIL (|has| (-700) (-308)))) (-1811 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1268 $)) NIL)) (-2630 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-700))) (|:| |vec| (-1268 (-700)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-2477 (((-3 $ "failed") (-410 (-1174 (-700)))) NIL (|has| (-700) (-365))) (($ (-1174 (-700))) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2727 (((-700) $) 29)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-1862 (((-112) $) NIL (|has| (-700) (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-700) (-370)))) (-2360 (($ $ $) NIL (|has| (-700) (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-3431 (($) NIL (|has| (-700) (-351)))) (-2722 (((-112) $) NIL (|has| (-700) (-351)))) (-4225 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-3184 (((-112) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-4351 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1062)) (|has| (-700) (-1203))))) (-1482 (($) NIL (|has| (-700) (-1203)))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-700) (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-700) (-888 (-567))))) (-4384 (((-834 (-923)) $) NIL (|has| (-700) (-351))) (((-923) $) NIL (|has| (-700) (-351)))) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203))))) (-2475 (((-700) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-4206 (((-1174 (-700)) $) NIL (|has| (-700) (-365)))) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 (-700) (-700)) $) NIL)) (-4249 (((-923) $) NIL (|has| (-700) (-370)))) (-3063 (($ $) NIL (|has| (-700) (-1203)))) (-2465 (((-1174 (-700)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| (-700) (-365)))) (-2672 (($) NIL (|has| (-700) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-700) (-370)))) (-2825 (($) NIL)) (-2739 (((-700) $) 31)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-700) (-308)))) (-2774 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-700) (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-2706 (((-421 $) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-700) (-308)))) (-2391 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-3946 (($ $) NIL (|has| (-700) (-1203)))) (-2631 (($ $ (-1178) (-700)) NIL (|has| (-700) (-517 (-1178) (-700)))) (($ $ (-645 (-1178)) (-645 (-700))) NIL (|has| (-700) (-517 (-1178) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-1990 (((-772) $) NIL (|has| (-700) (-308)))) (-1787 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-700) (-308)))) (-3788 (((-700)) NIL) (((-700) (-1268 $)) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-1593 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-1866 (((-690 (-700)) (-1268 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-3341 (((-1174 (-700))) NIL)) (-3175 (($ $) NIL (|has| (-700) (-1203)))) (-3049 (($ $) NIL (|has| (-700) (-1203)))) (-1527 (($) NIL (|has| (-700) (-351)))) (-3156 (($ $) NIL (|has| (-700) (-1203)))) (-3023 (($ $) NIL (|has| (-700) (-1203)))) (-3137 (($ $) NIL (|has| (-700) (-1203)))) (-2999 (($ $) NIL (|has| (-700) (-1203)))) (-2887 (((-690 (-700)) (-1268 $)) NIL) (((-1268 (-700)) $) NIL) (((-690 (-700)) (-1268 $) (-1268 $)) NIL) (((-1268 (-700)) $ (-1268 $)) NIL)) (-3893 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1024))) (((-169 (-381)) $) NIL (|has| (-700) (-1024))) (((-894 (-381)) $) NIL (|has| (-700) (-615 (-894 (-381))))) (((-894 (-567)) $) NIL (|has| (-700) (-615 (-894 (-567))))) (($ (-1174 (-700))) NIL) (((-1174 (-700)) $) NIL) (($ (-1268 (-700))) NIL) (((-1268 (-700)) $) NIL)) (-1823 (($ $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-351))))) (-3056 (($ (-700) (-700)) 12)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2800 (|has| (-700) (-1040 (-410 (-567)))) (|has| (-700) (-365))))) (-1903 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-145))))) (-2155 (((-1174 (-700)) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL)) (-3200 (($ $) NIL (|has| (-700) (-1203)))) (-3084 (($ $) NIL (|has| (-700) (-1203)))) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) NIL (|has| (-700) (-1203)))) (-3062 (($ $) NIL (|has| (-700) (-1203)))) (-3221 (($ $) NIL (|has| (-700) (-1203)))) (-3106 (($ $) NIL (|has| (-700) (-1203)))) (-2799 (((-700) $) NIL (|has| (-700) (-1203)))) (-3785 (($ $) NIL (|has| (-700) (-1203)))) (-3118 (($ $) NIL (|has| (-700) (-1203)))) (-3211 (($ $) NIL (|has| (-700) (-1203)))) (-3095 (($ $) NIL (|has| (-700) (-1203)))) (-3193 (($ $) NIL (|has| (-700) (-1203)))) (-3074 (($ $) NIL (|has| (-700) (-1203)))) (-2219 (($ $) NIL (|has| (-700) (-1062)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-700) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1203))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365))))) +(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -4132 ($ (-169 (-381)))) (-15 -4132 ($ (-169 (-567)))) (-15 -4132 ($ (-169 (-700)))) (-15 -4132 ($ (-169 (-702)))) (-15 -4132 ((-169 (-381)) $))))) (T -695)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695))))) +(-13 (-390) (-166 (-700)) (-10 -8 (-15 -4132 ($ (-169 (-381)))) (-15 -4132 ($ (-169 (-567)))) (-15 -4132 ($ (-169 (-700)))) (-15 -4132 ($ (-169 (-702)))) (-15 -4132 ((-169 (-381)) $)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-696 |#1|) (-140) (-1102)) (T -696)) +((-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| -4237 *3) (|:| -3439 (-772)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -2531 ($ |t#1| $ (-772))) (-15 -2133 ($ $)) (-15 -2334 ((-645 (-2 (|:| -4237 |t#1|) (|:| -3439 (-772)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-3970 (((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567)) 66)) (-1380 ((|#1| |#1| (-567)) 62)) (-2774 ((|#1| |#1| |#1| (-567)) 46)) (-2706 (((-645 |#1|) |#1| (-567)) 49)) (-1454 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-2244 (((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567)) 61))) +(((-697 |#1|) (-10 -7 (-15 -2774 (|#1| |#1| |#1| (-567))) (-15 -1380 (|#1| |#1| (-567))) (-15 -2706 ((-645 |#1|) |#1| (-567))) (-15 -2244 ((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567))) (-15 -3970 ((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567))) (-15 -1454 (|#1| |#1| (-567) |#1| (-567)))) (-1244 (-567))) (T -697)) +((-1454 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -2706 *5) (|:| -3077 (-567))))) (-5 *4 (-567)) (-4 *5 (-1244 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3077 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1244 *4)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1244 *4)))) (-1380 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))) (-2774 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3))))) +(-10 -7 (-15 -2774 (|#1| |#1| |#1| (-567))) (-15 -1380 (|#1| |#1| (-567))) (-15 -2706 ((-645 |#1|) |#1| (-567))) (-15 -2244 ((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567))) (-15 -3970 ((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567))) (-15 -1454 (|#1| |#1| (-567) |#1| (-567)))) +((-3554 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3964 (((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 56) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 58) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 60)) (-2092 (((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264))) NIL)) (-3207 (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 61))) +(((-698) (-10 -7 (-15 -3964 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3207 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2092 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3554 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698)) +((-3554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-2092 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3207 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3964 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-3964 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3964 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698))))) +(-10 -7 (-15 -3964 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3207 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2092 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3554 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|)) 86) (((-421 |#4|) |#4|) 270))) +(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) (-851) (-794) (-351) (-951 |#3| |#2| |#1|)) (T -699)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 100)) (-3093 (((-567) $) 34)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-2585 (($) NIL T CONST)) (-2535 (($ $) NIL)) (-3753 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-2038 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2349 (($ $ $) 112)) (-2109 (((-3 $ "failed") $) 103)) (-2360 (($ $ $) 111)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 93) (((-923) (-923)) 92)) (-4336 (((-112) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-4384 (((-567) $) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-2475 (($ $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4048 (((-567) (-567)) 97) (((-567)) 98)) (-1354 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2645 (((-567) (-567)) 95) (((-567)) 96)) (-2981 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 17)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 107)) (-3214 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL)) (-2780 (($ $) NIL)) (-2327 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 108)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 24)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 110)) (-3038 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-4223 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) NIL)) (-4132 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-4221 (((-772)) 122 T CONST)) (-2057 (($ (-567) (-567) (-923)) 59)) (-1423 (($ $) NIL)) (-2547 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 46) (((-923) (-923)) 94)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 18 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 99)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 121)) (-3060 (($ $ $) 81)) (-3045 (($ $) 118) (($ $ $) 119)) (-3033 (($ $ $) 117)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-700) (-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3725 ((-923) (-923))) (-15 -3725 ((-923))) (-15 -3047 ((-923) (-923))) (-15 -2645 ((-567) (-567))) (-15 -2645 ((-567))) (-15 -4048 ((-567) (-567))) (-15 -4048 ((-567))) (-15 -4132 ((-381) $)) (-15 -4132 ($ (-702))) (-15 -2148 ((-567) $)) (-15 -3458 ((-567) $)) (-15 -2057 ($ (-567) (-567) (-923)))))) (T -700)) +((-3458 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3725 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2645 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4048 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-2057 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700))))) +(-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3725 ((-923) (-923))) (-15 -3725 ((-923))) (-15 -3047 ((-923) (-923))) (-15 -2645 ((-567) (-567))) (-15 -2645 ((-567))) (-15 -4048 ((-567) (-567))) (-15 -4048 ((-567))) (-15 -4132 ((-381) $)) (-15 -4132 ($ (-702))) (-15 -2148 ((-567) $)) (-15 -3458 ((-567) $)) (-15 -2057 ($ (-567) (-567) (-923))))) +((-3832 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-2233 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-2924 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-4061 (((-690 |#1|) (-690 |#1|)) 68)) (-2500 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 87))) +(((-701 |#1|) (-10 -7 (-15 -4061 ((-690 |#1|) (-690 |#1|))) (-15 -2233 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2924 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3832 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) (-308)) (T -701)) +((-2500 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-3832 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) +(-10 -7 (-15 -4061 ((-690 |#1|) (-690 |#1|))) (-15 -2233 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2924 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3832 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 31)) (-2038 (((-567) $) 29)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($ $) NIL) (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) NIL)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) NIL)) (-1354 (($ $ $) NIL)) (-2911 (((-923) (-923)) 10) (((-923)) 9)) (-2981 (($ $ $) NIL)) (-1446 (($ $) NIL)) (-1699 (($ $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-2277 (($ $) NIL)) (-4305 (($ $) NIL)) (-3893 (((-225) $) NIL) (((-381) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) NIL)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL) (($ $ (-772)) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) +(((-702) (-13 (-390) (-548) (-10 -8 (-15 -2911 ((-923) (-923))) (-15 -2911 ((-923))) (-15 -4132 ((-317 $) (-317 (-567))))))) (T -702)) +((-2911 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2911 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702))))) +(-13 (-390) (-548) (-10 -8 (-15 -2911 ((-923) (-923))) (-15 -2911 ((-923))) (-15 -4132 ((-317 $) (-317 (-567)))))) +((-2245 (((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178)) 19)) (-3178 (((-1 |#4| |#2| |#3|) (-1178)) 12))) +(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3178 ((-1 |#4| |#2| |#3|) (-1178))) (-15 -2245 ((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178)))) (-615 (-539)) (-1218) (-1218) (-1218)) (T -703)) +((-2245 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *7 (-1218)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *7 (-1218))))) +(-10 -7 (-15 -3178 ((-1 |#4| |#2| |#3|) (-1178))) (-15 -2245 ((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178)))) +((-1338 (((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178)) 43) (((-1 (-225) (-225)) |#1| (-1178)) 48))) +(((-704 |#1|) (-10 -7 (-15 -1338 ((-1 (-225) (-225)) |#1| (-1178))) (-15 -1338 ((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178)))) (-615 (-539))) (T -704)) +((-1338 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) +(-10 -7 (-15 -1338 ((-1 (-225) (-225)) |#1| (-1178))) (-15 -1338 ((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178)))) +((-2614 (((-1178) |#1| (-1178) (-645 (-1178))) 10) (((-1178) |#1| (-1178) (-1178) (-1178)) 13) (((-1178) |#1| (-1178) (-1178)) 12) (((-1178) |#1| (-1178)) 11))) +(((-705 |#1|) (-10 -7 (-15 -2614 ((-1178) |#1| (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-645 (-1178))))) (-615 (-539))) (T -705)) +((-2614 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))) +(-10 -7 (-15 -2614 ((-1178) |#1| (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-645 (-1178))))) +((-3408 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3408 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1218) (-1218)) (T -706)) +((-3408 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1218)) (-4 *4 (-1218))))) +(-10 -7 (-15 -3408 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3739 (((-1 |#3| |#2|) (-1178)) 11)) (-2245 (((-1 |#3| |#2|) |#1| (-1178)) 21))) +(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-1 |#3| |#2|) (-1178))) (-15 -2245 ((-1 |#3| |#2|) |#1| (-1178)))) (-615 (-539)) (-1218) (-1218)) (T -707)) +((-2245 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218))))) +(-10 -7 (-15 -3739 ((-1 |#3| |#2|) (-1178))) (-15 -2245 ((-1 |#3| |#2|) |#1| (-1178)))) +((-4292 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|) 95)) (-2383 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-2368 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|) 47))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2368 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|)) (-15 -2383 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -4292 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -708)) +((-4292 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1174 *13))) (-5 *3 (-1174 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1268 (-645 (-1174 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-2383 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1174 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1174 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1174 *12)))) (-2368 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1174 *11))) (-5 *3 (-1174 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1268 (-645 (-1174 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11))))) +(-10 -7 (-15 -2368 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|)) (-15 -2383 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -4292 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 48)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 46)) (-2656 (((-772) $) 50)) (-2989 ((|#1| $) 49)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 (((-772) $) 51)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-4136 ((|#1| $ (-772)) 47)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-709 |#1|) (-140) (-1051)) (T -709)) +((-3077 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051))))) +(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3077 ((-772) $)) (-15 -2656 ((-772) $)) (-15 -2989 (|t#1| $)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ (-772))) (-15 -2824 ($ |t#1| (-772))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3829 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1244 |#1|) (-1244 (-410 |#2|)) (-559) (-1244 |#4|) (-1244 (-410 |#5|))) (T -710)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1244 *5)) (-4 *2 (-1244 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1244 (-410 *6))) (-4 *8 (-1244 *7))))) +(-10 -7 (-15 -3829 (|#6| (-1 |#4| |#1|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1730 (((-1160) (-863)) 39)) (-4022 (((-1273) (-1160)) 32)) (-1378 (((-1160) (-863)) 28)) (-2362 (((-1160) (-863)) 29)) (-4132 (((-863) $) NIL) (((-1160) (-863)) 27)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-711) (-13 (-1102) (-10 -7 (-15 -4132 ((-1160) (-863))) (-15 -1378 ((-1160) (-863))) (-15 -2362 ((-1160) (-863))) (-15 -1730 ((-1160) (-863))) (-15 -4022 ((-1273) (-1160)))))) (T -711)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-711))))) +(-13 (-1102) (-10 -7 (-15 -4132 ((-1160) (-863))) (-15 -1378 ((-1160) (-863))) (-15 -2362 ((-1160) (-863))) (-15 -1730 ((-1160) (-863))) (-15 -4022 ((-1273) (-1160))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2477 (($ |#1| |#2|) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 ((|#2| $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1771 (((-3 $ "failed") $ $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712)) +((-2211 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-365) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)))) +((-2403 (((-112) $ $) 92)) (-2460 (((-112) $) 36)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) NIL (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2375 (((-772)) 56 (|has| |#1| (-370)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2126 ((|#2| |#2|) 52)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 40)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2477 (($ |#2|) 50)) (-2109 (((-3 $ "failed") $) 102)) (-1348 (($) 61 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) NIL (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2625 (((-960 $)) 94)) (-2320 (($ $ |#1| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 88) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2211 ((|#2|) 53)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2465 ((|#2| $) 49)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) 34)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4031 (($ $) 93 (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 103 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) 38) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-3791 (((-960 $)) 42)) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1084)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) 73) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 25 T CONST)) (-1871 (((-1268 |#1|) $) 86)) (-3965 (($ (-1268 |#1|)) 60)) (-1728 (($) 8 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3710 (((-1268 |#1|) $) NIL)) (-2936 (((-112) $ $) 79)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 82) (($ $ $) NIL)) (-3033 (($ $ $) 39)) (** (($ $ (-923)) NIL) (($ $ (-772)) 97)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-713 |#1| |#2|) (-13 (-1244 |#1|) (-617 |#2|) (-10 -8 (-15 -2126 (|#2| |#2|)) (-15 -2211 (|#2|)) (-15 -2477 ($ |#2|)) (-15 -2465 (|#2| $)) (-15 -1871 ((-1268 |#1|) $)) (-15 -3965 ($ (-1268 |#1|))) (-15 -3710 ((-1268 |#1|) $)) (-15 -2625 ((-960 $))) (-15 -3791 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -4031 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1051) (-1244 |#1|)) (T -713)) +((-2126 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))) (-2211 (*1 *2) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-2477 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-1871 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3710 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-2625 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3791 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-4031 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1244 *2))))) +(-13 (-1244 |#1|) (-617 |#2|) (-10 -8 (-15 -2126 (|#2| |#2|)) (-15 -2211 (|#2|)) (-15 -2477 ($ |#2|)) (-15 -2465 (|#2| $)) (-15 -1871 ((-1268 |#1|) $)) (-15 -3965 ($ (-1268 |#1|))) (-15 -3710 ((-1268 |#1|) $)) (-15 -2625 ((-960 $))) (-15 -3791 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -4031 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 ((|#1| $) 13)) (-3430 (((-1122) $) NIL)) (-3458 ((|#2| $) 12)) (-4147 (($ |#1| |#2|) 16)) (-4132 (((-863) $) NIL) (($ (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) 15) (((-2 (|:| -3768 |#1|) (|:| -3458 |#2|)) $) 14)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 11))) +(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) (-10 -8 (-15 -3458 (|#2| $)) (-15 -3768 (|#1| $)) (-15 -4147 ($ |#1| |#2|)))) (-851) (-1102) (-1 (-112) (-2 (|:| -3768 |#1|) (|:| -3458 |#2|)) (-2 (|:| -3768 |#1|) (|:| -3458 |#2|)))) (T -714)) +((-3458 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *2)) (-2 (|:| -3768 *3) (|:| -3458 *2)))))) (-3768 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) (-2 (|:| -3768 *2) (|:| -3458 *3)))))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) (-2 (|:| -3768 *2) (|:| -3458 *3))))))) +(-13 (-851) (-493 (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) (-10 -8 (-15 -3458 (|#2| $)) (-15 -3768 (|#1| $)) (-15 -4147 ($ |#1| |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 66)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2038 ((|#1| $) NIL) (((-114) $) 39)) (-2109 (((-3 $ "failed") $) 106)) (-1929 ((|#2| (-114) |#2|) 93)) (-1433 (((-112) $) NIL)) (-2371 (($ |#1| (-363 (-114))) 14)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1361 (($ $ (-1 |#2| |#2|)) 65)) (-3456 (($ $ (-1 |#2| |#2|)) 44)) (-1787 ((|#2| $ |#2|) 33)) (-2665 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4132 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 37 T CONST)) (-1745 (((-112) $ $) NIL)) (-2974 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1716 (($) 21 T CONST)) (-1728 (($) 9 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 48) (($ $ $) NIL)) (-3033 (($ $ $) 83)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-715 |#1| |#2|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#2| |#2|))) (-15 -1361 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#2| (-114) |#2|)) (-15 -2371 ($ |#1| (-363 (-114)))))) (-1051) (-649 |#1|)) (T -715)) +((-2974 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2665 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2))))) +(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#2| |#2|))) (-15 -1361 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#2| (-114) |#2|)) (-15 -2371 ($ |#1| (-363 (-114)))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 33)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ |#1| |#2|) 25)) (-2109 (((-3 $ "failed") $) 51)) (-1433 (((-112) $) 35)) (-2211 ((|#2| $) 12)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 52)) (-3430 (((-1122) $) NIL)) (-1771 (((-3 $ "failed") $ $) 50)) (-4132 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-4221 (((-772)) 28 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 16 T CONST)) (-1728 (($) 30 T CONST)) (-2936 (((-112) $ $) 41)) (-3045 (($ $) 46) (($ $ $) 40)) (-3033 (($ $ $) 43)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20))) +(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1051) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716)) +((-2109 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2211 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2939 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1051) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)))) +((* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-717 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-718 |#2|) (-172)) (T -717)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-718 |#1|) (-140) (-172)) (T -718)) NIL (-13 (-111 |t#1| |t#1|) (-641 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-4125 (($ |#1|) 17) (($ $ |#1|) 20)) (-3719 (($ |#1|) 18) (($ $ |#1|) 21)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2843 (((-112) $) NIL)) (-2849 (($ |#1| |#1| |#1| |#1|) 8)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 16)) (-3430 (((-1121) $) NIL)) (-2631 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-4127 (((-863) $) 39)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 9 T CONST)) (-2929 (((-112) $ $) 48)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14))) -(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -2849 ($ |#1| |#1| |#1| |#1|)) (-15 -4125 ($ |#1|)) (-15 -3719 ($ |#1|)) (-15 -3153 ($)) (-15 -4125 ($ $ |#1|)) (-15 -3719 ($ $ |#1|)) (-15 -3153 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719)) -((-2849 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4125 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3719 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3153 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3153 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3))))) -(-13 (-476) (-10 -8 (-15 -2849 ($ |#1| |#1| |#1| |#1|)) (-15 -4125 ($ |#1|)) (-15 -3719 ($ |#1|)) (-15 -3153 ($)) (-15 -4125 ($ $ |#1|)) (-15 -3719 ($ $ |#1|)) (-15 -3153 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|))))) -((-2968 (($ $ (-922)) 21)) (-2941 (($ $ (-922)) 22)) (** (($ $ (-922)) 10))) -(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2941 (|#1| |#1| (-922))) (-15 -2968 (|#1| |#1| (-922)))) (-721)) (T -720)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2941 (|#1| |#1| (-922))) (-15 -2968 (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2968 (($ $ (-922)) 16)) (-2941 (($ $ (-922)) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 17))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-4130 (($ |#1|) 17) (($ $ |#1|) 20)) (-2172 (($ |#1|) 18) (($ $ |#1|) 21)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1433 (((-112) $) NIL)) (-3705 (($ |#1| |#1| |#1| |#1|) 8)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 16)) (-3430 (((-1122) $) NIL)) (-2631 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 39)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 9 T CONST)) (-2936 (((-112) $ $) 48)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14))) +(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -3705 ($ |#1| |#1| |#1| |#1|)) (-15 -4130 ($ |#1|)) (-15 -2172 ($ |#1|)) (-15 -2109 ($)) (-15 -4130 ($ $ |#1|)) (-15 -2172 ($ $ |#1|)) (-15 -2109 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719)) +((-3705 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4130 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2172 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2109 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3))))) +(-13 (-476) (-10 -8 (-15 -3705 ($ |#1| |#1| |#1| |#1|)) (-15 -4130 ($ |#1|)) (-15 -2172 ($ |#1|)) (-15 -2109 ($)) (-15 -4130 ($ $ |#1|)) (-15 -2172 ($ $ |#1|)) (-15 -2109 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|))))) +((-2586 (($ $ (-923)) 21)) (-3450 (($ $ (-923)) 22)) (** (($ $ (-923)) 10))) +(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) (-721)) (T -720)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2586 (($ $ (-923)) 16)) (-3450 (($ $ (-923)) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 17))) (((-721) (-140)) (T -721)) -((* (*1 *1 *1 *1) (-4 *1 (-721))) (-2968 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) (-2941 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922))))) -(-13 (-1101) (-10 -8 (-15 * ($ $ $)) (-15 -2968 ($ $ (-922))) (-15 -2941 ($ $ (-922))) (-15 ** ($ $ (-922))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2968 (($ $ (-922)) NIL) (($ $ (-772)) 21)) (-2843 (((-112) $) 10)) (-2941 (($ $ (-922)) NIL) (($ $ (-772)) 22)) (** (($ $ (-922)) NIL) (($ $ (-772)) 16))) -(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -2941 (|#1| |#1| (-772))) (-15 -2968 (|#1| |#1| (-772))) (-15 -2843 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2941 (|#1| |#1| (-922))) (-15 -2968 (|#1| |#1| (-922)))) (-723)) (T -722)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -2941 (|#1| |#1| (-772))) (-15 -2968 (|#1| |#1| (-772))) (-15 -2843 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2941 (|#1| |#1| (-922))) (-15 -2968 (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2385 (((-3 $ "failed") $) 18)) (-2968 (($ $ (-922)) 16) (($ $ (-772)) 23)) (-3153 (((-3 $ "failed") $) 20)) (-2843 (((-112) $) 24)) (-2539 (((-3 $ "failed") $) 19)) (-2941 (($ $ (-922)) 15) (($ $ (-772)) 22)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1722 (($) 25 T CONST)) (-2929 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17))) +((* (*1 *1 *1 *1) (-4 *1 (-721))) (-2586 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))) +(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 -2586 ($ $ (-923))) (-15 -3450 ($ $ (-923))) (-15 ** ($ $ (-923))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2586 (($ $ (-923)) NIL) (($ $ (-772)) 21)) (-1433 (((-112) $) 10)) (-3450 (($ $ (-923)) NIL) (($ $ (-772)) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) 16))) +(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3450 (|#1| |#1| (-772))) (-15 -2586 (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) (-723)) (T -722)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3450 (|#1| |#1| (-772))) (-15 -2586 (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2209 (((-3 $ "failed") $) 18)) (-2586 (($ $ (-923)) 16) (($ $ (-772)) 23)) (-2109 (((-3 $ "failed") $) 20)) (-1433 (((-112) $) 24)) (-3080 (((-3 $ "failed") $) 19)) (-3450 (($ $ (-923)) 15) (($ $ (-772)) 22)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17))) (((-723) (-140)) (T -723)) -((-1722 (*1 *1) (-4 *1 (-723))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-2968 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-2941 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3153 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2539 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2385 (*1 *1 *1) (|partial| -4 *1 (-723)))) -(-13 (-721) (-10 -8 (-15 (-1722) ($) -3280) (-15 -2843 ((-112) $)) (-15 -2968 ($ $ (-772))) (-15 -2941 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -3153 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $)) (-15 -2385 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-721) . T) ((-1101) . T)) -((-2371 (((-772)) 42)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-2499 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-3153 (((-3 $ "failed") $) 73)) (-1378 (($) 47)) (-2896 ((|#2| $) 21)) (-1394 (($) 18)) (-1621 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3337 (((-690 |#2|) (-1267 $) (-1 |#2| |#2|)) 68)) (-3880 (((-1267 |#2|) $) NIL) (($ (-1267 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3116 ((|#3| $) 39)) (-1975 (((-1267 $)) 36))) -(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1378 (|#1|)) (-15 -2371 ((-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3337 ((-690 |#2|) (-1267 |#1|) (-1 |#2| |#2|))) (-15 -2499 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3880 (|#1| |#3|)) (-15 -2499 (|#1| |#3|)) (-15 -1394 (|#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 (|#3| |#1|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -1975 ((-1267 |#1|))) (-15 -3116 (|#3| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1243 |#2|)) (T -724)) -((-2371 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5))))) -(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1378 (|#1|)) (-15 -2371 ((-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3337 ((-690 |#2|) (-1267 |#1|) (-1 |#2| |#2|))) (-15 -2499 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3880 (|#1| |#3|)) (-15 -2499 (|#1| |#3|)) (-15 -1394 (|#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -3880 (|#3| |#1|)) (-15 -3880 (|#1| (-1267 |#2|))) (-15 -3880 ((-1267 |#2|) |#1|)) (-15 -1975 ((-1267 |#1|))) (-15 -3116 (|#3| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -3153 ((-3 |#1| "failed") |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-1312 (($ $) 103 (|has| |#1| (-365)))) (-2318 (((-112) $) 105 (|has| |#1| (-365)))) (-2981 (((-690 |#1|) (-1267 $)) 53) (((-690 |#1|)) 68)) (-4290 ((|#1| $) 59)) (-3581 (((-1190 (-922) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 122 (|has| |#1| (-365)))) (-2833 (((-421 $) $) 123 (|has| |#1| (-365)))) (-2373 (((-112) $ $) 113 (|has| |#1| (-365)))) (-2371 (((-772)) 96 (|has| |#1| (-370)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2033 (((-567) $) 177 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 174)) (-4025 (($ (-1267 |#1|) (-1267 $)) 55) (($ (-1267 |#1|)) 71)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2344 (($ $ $) 117 (|has| |#1| (-365)))) (-1937 (((-690 |#1|) $ (-1267 $)) 60) (((-690 |#1|) $) 66)) (-1868 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2499 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-3153 (((-3 $ "failed") $) 37)) (-1979 (((-922)) 61)) (-1378 (($) 99 (|has| |#1| (-370)))) (-2355 (($ $ $) 116 (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-3005 (($) 157 (|has| |#1| (-351)))) (-4284 (((-112) $) 158 (|has| |#1| (-351)))) (-4112 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-4341 (((-112) $) 124 (|has| |#1| (-365)))) (-2937 (((-922) $) 160 (|has| |#1| (-351))) (((-834 (-922)) $) 146 (|has| |#1| (-351)))) (-2843 (((-112) $) 35)) (-2896 ((|#1| $) 58)) (-3641 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-2612 ((|#2| $) 51 (|has| |#1| (-365)))) (-3425 (((-922) $) 98 (|has| |#1| (-370)))) (-2488 ((|#2| $) 164)) (-2735 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 125 (|has| |#1| (-365)))) (-2701 (($) 151 (|has| |#1| (-351)) CONST)) (-3763 (($ (-922)) 97 (|has| |#1| (-370)))) (-3430 (((-1121) $) 11)) (-1394 (($) 168)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 110 (|has| |#1| (-365)))) (-2771 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) 154 (|has| |#1| (-351)))) (-2703 (((-421 $) $) 121 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 118 (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-4197 (((-772) $) 114 (|has| |#1| (-365)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 115 (|has| |#1| (-365)))) (-1999 ((|#1| (-1267 $)) 54) ((|#1|) 67)) (-3942 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1621 (($ $) 145 (-2797 (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2797 (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1177)) 141 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-645 (-1177))) 140 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-1177) (-772)) 139 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 (-772))) 138 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3337 (((-690 |#1|) (-1267 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2530 ((|#2|) 167)) (-3057 (($) 156 (|has| |#1| (-351)))) (-2446 (((-1267 |#1|) $ (-1267 $)) 57) (((-690 |#1|) (-1267 $) (-1267 $)) 56) (((-1267 |#1|) $) 73) (((-690 |#1|) (-1267 $)) 72)) (-3880 (((-1267 |#1|) $) 70) (($ (-1267 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-1467 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3116 ((|#2| $) 52)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1975 (((-1267 $)) 74)) (-4380 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $) 144 (-2797 (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2797 (-1664 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1177)) 137 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-645 (-1177))) 136 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-1177) (-772)) 135 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 (-772))) 134 (-1664 (|has| |#1| (-901 (-1177))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 129 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) -(((-725 |#1| |#2|) (-140) (-172) (-1243 |t#1|)) (T -725)) -((-1394 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1243 *2)))) (-2530 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) (-2499 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1243 *3)))) (-3880 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1243 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) (-2499 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-1267 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1243 *5)) (-5 *2 (-690 *5))))) -(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1394 ($)) (-15 -2530 (|t#2|)) (-15 -2499 ($ |t#2|)) (-15 -3880 ($ |t#2|)) (-15 -2488 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2499 ((-3 $ "failed") (-410 |t#2|))) (-15 -3337 ((-690 |t#1|) (-1267 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2797 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2797 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2797 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177)))) ((-921) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) -2797 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| |#1| (-351)) ((-1221) -2797 (|has| |#1| (-351)) (|has| |#1| (-365)))) -((-2245 (($) 11)) (-3153 (((-3 $ "failed") $) 14)) (-2843 (((-112) $) 10)) (** (($ $ (-922)) NIL) (($ $ (-772)) 20))) -(((-726 |#1|) (-10 -8 (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -2843 ((-112) |#1|)) (-15 -2245 (|#1|)) (-15 ** (|#1| |#1| (-922)))) (-727)) (T -726)) -NIL -(-10 -8 (-15 -3153 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -2843 ((-112) |#1|)) (-15 -2245 (|#1|)) (-15 ** (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2245 (($) 19 T CONST)) (-3153 (((-3 $ "failed") $) 16)) (-2843 (((-112) $) 18)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1722 (($) 20 T CONST)) (-2929 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15))) +((-1728 (*1 *1) (-4 *1 (-723))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-2586 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-2109 (*1 *1 *1) (|partial| -4 *1 (-723))) (-3080 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2209 (*1 *1 *1) (|partial| -4 *1 (-723)))) +(-13 (-721) (-10 -8 (-15 (-1728) ($) -3286) (-15 -1433 ((-112) $)) (-15 -2586 ($ $ (-772))) (-15 -3450 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -2109 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2209 ((-3 $ "failed") $)))) +(((-102) . T) ((-614 (-863)) . T) ((-721) . T) ((-1102) . T)) +((-2375 (((-772)) 42)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-2477 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-2109 (((-3 $ "failed") $) 73)) (-1348 (($) 47)) (-2475 ((|#2| $) 21)) (-1398 (($) 18)) (-1593 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1866 (((-690 |#2|) (-1268 $) (-1 |#2| |#2|)) 68)) (-3893 (((-1268 |#2|) $) NIL) (($ (-1268 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2155 ((|#3| $) 39)) (-2623 (((-1268 $)) 36))) +(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1348 (|#1|)) (-15 -2375 ((-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1866 ((-690 |#2|) (-1268 |#1|) (-1 |#2| |#2|))) (-15 -2477 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3893 (|#1| |#3|)) (-15 -2477 (|#1| |#3|)) (-15 -1398 (|#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 (|#3| |#1|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2623 ((-1268 |#1|))) (-15 -2155 (|#3| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1244 |#2|)) (T -724)) +((-2375 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5))))) +(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1348 (|#1|)) (-15 -2375 ((-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1866 ((-690 |#2|) (-1268 |#1|) (-1 |#2| |#2|))) (-15 -2477 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3893 (|#1| |#3|)) (-15 -2477 (|#1| |#3|)) (-15 -1398 (|#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 (|#3| |#1|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2623 ((-1268 |#1|))) (-15 -2155 (|#3| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-4381 (($ $) 103 (|has| |#1| (-365)))) (-3949 (((-112) $) 105 (|has| |#1| (-365)))) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 123 (|has| |#1| (-365)))) (-3609 (((-112) $ $) 113 (|has| |#1| (-365)))) (-2375 (((-772)) 96 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2038 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2349 (($ $ $) 117 (|has| |#1| (-365)))) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2477 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| |#1| (-370)))) (-2360 (($ $ $) 116 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-3431 (($) 157 (|has| |#1| (-351)))) (-2722 (((-112) $) 158 (|has| |#1| (-351)))) (-4225 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3184 (((-112) $) 124 (|has| |#1| (-365)))) (-4384 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-3972 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-4249 (((-923) $) 98 (|has| |#1| (-370)))) (-2465 ((|#2| $) 164)) (-2740 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125 (|has| |#1| (-365)))) (-2672 (($) 151 (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| |#1| (-370)))) (-3430 (((-1122) $) 11)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| |#1| (-351)))) (-2706 (((-421 $) $) 121 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-1990 (((-772) $) 114 (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| |#1| (-365)))) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2491 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1593 (($ $) 145 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) 141 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178))) 140 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1178) (-772)) 139 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-772))) 138 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3341 ((|#2|) 167)) (-1527 (($) 156 (|has| |#1| (-351)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3816 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 144 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) 137 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178))) 136 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1178) (-772)) 135 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-772))) 134 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) +(((-725 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -725)) +((-1398 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1244 *2)))) (-3341 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-2477 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) (-3893 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-2477 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1244 *5)) (-5 *2 (-690 *5))))) +(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1398 ($)) (-15 -3341 (|t#2|)) (-15 -2477 ($ |t#2|)) (-15 -3893 ($ |t#2|)) (-15 -2465 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2477 ((-3 $ "failed") (-410 |t#2|))) (-15 -1866 ((-690 |t#1|) (-1268 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2800 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2800 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178)))) ((-922) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-351)) ((-1222) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)))) +((-2585 (($) 11)) (-2109 (((-3 $ "failed") $) 14)) (-1433 (((-112) $) 10)) (** (($ $ (-923)) NIL) (($ $ (-772)) 20))) +(((-726 |#1|) (-10 -8 (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 ** (|#1| |#1| (-923)))) (-727)) (T -726)) +NIL +(-10 -8 (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 ** (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-1433 (((-112) $) 18)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15))) (((-727) (-140)) (T -727)) -((-1722 (*1 *1) (-4 *1 (-727))) (-2245 (*1 *1) (-4 *1 (-727))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-3153 (*1 *1 *1) (|partial| -4 *1 (-727)))) -(-13 (-1113) (-10 -8 (-15 (-1722) ($) -3280) (-15 -2245 ($) -3280) (-15 -2843 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -3153 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1113) . T) ((-1101) . T)) -((-3643 (((-2 (|:| -4176 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1800 (((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4336 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-3349 (((-2 (|:| |poly| |#2|) (|:| -4176 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48))) -(((-728 |#1| |#2|) (-10 -7 (-15 -1800 ((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3643 ((-2 (|:| -4176 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4336 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-2 (|:| |poly| |#2|) (|:| -4176 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1243 |#1|)) (T -728)) -((-3349 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4176 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1243 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4176 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4176 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))) -(-10 -7 (-15 -1800 ((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3643 ((-2 (|:| -4176 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4336 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-2 (|:| |poly| |#2|) (|:| -4176 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) -((-3622 ((|#7| (-645 |#5|) |#6|) NIL)) (-3822 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3822 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3622 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1050) (-1050) (-950 |#4| |#2| |#1|) (-950 |#5| |#3| |#1|)) (T -729)) -((-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1050)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-950 *8 *6 *5)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1050)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-950 *8 *6 *5))))) -(-10 -7 (-15 -3822 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3622 (|#7| (-645 |#5|) |#6|))) -((-3822 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3822 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1050) (-950 |#5| |#3| |#1|) (-950 |#5| |#4| |#2|)) (T -730)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1050)) (-4 *2 (-950 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-950 *9 *7 *5))))) -(-10 -7 (-15 -3822 (|#7| (-1 |#2| |#1|) |#6|))) -((-2703 (((-421 |#4|) |#4|) 42))) -(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177))))) (-308) (-950 (-953 |#3|) |#1| |#2|)) (T -731)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-950 (-953 *6) *4 *5))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-865 |#1|)) $) NIL)) (-2670 (((-1173 $) $ (-865 |#1|)) NIL) (((-1173 |#2|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1312 (($ $) NIL (|has| |#2| (-559)))) (-2318 (((-112) $) NIL (|has| |#2| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL (|has| |#2| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-3621 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#2| (-910)))) (-2543 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#2|) (-865 |#1|)) NIL) (($ (-1173 $) (-865 |#1|)) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-865 |#1|)) NIL)) (-2752 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3345 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-3 (-865 |#1|) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#2| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4250 (-772))) "failed") $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#2| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-1999 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1621 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1813 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))))) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-732 |#1| |#2|) (-950 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1177)) (-1050)) (T -732)) -NIL -(-950 |#2| (-534 (-865 |#1|)) (-865 |#1|)) -((-2873 (((-2 (|:| -2825 (-953 |#3|)) (|:| -1504 (-953 |#3|))) |#4|) 14)) (-1939 ((|#4| |#4| |#2|) 33)) (-4172 ((|#4| (-410 (-953 |#3|)) |#2|) 64)) (-4346 ((|#4| (-1173 (-953 |#3|)) |#2|) 77)) (-3458 ((|#4| (-1173 |#4|) |#2|) 51)) (-4086 ((|#4| |#4| |#2|) 54)) (-2703 (((-421 |#4|) |#4|) 40))) -(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2873 ((-2 (|:| -2825 (-953 |#3|)) (|:| -1504 (-953 |#3|))) |#4|)) (-15 -4086 (|#4| |#4| |#2|)) (-15 -3458 (|#4| (-1173 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -4346 (|#4| (-1173 (-953 |#3|)) |#2|)) (-15 -4172 (|#4| (-410 (-953 |#3|)) |#2|)) (-15 -2703 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)))) (-559) (-950 (-410 (-953 |#3|)) |#1| |#2|)) (T -733)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5)))) (-4172 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-953 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 (-953 *6))) (-4 *6 (-559)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *6 (-559)))) (-4086 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -2825 (-953 *6)) (|:| -1504 (-953 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5))))) -(-10 -7 (-15 -2873 ((-2 (|:| -2825 (-953 |#3|)) (|:| -1504 (-953 |#3|))) |#4|)) (-15 -4086 (|#4| |#4| |#2|)) (-15 -3458 (|#4| (-1173 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -4346 (|#4| (-1173 (-953 |#3|)) |#2|)) (-15 -4172 (|#4| (-410 (-953 |#3|)) |#2|)) (-15 -2703 ((-421 |#4|) |#4|))) -((-2703 (((-421 |#4|) |#4|) 54))) -(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-950 (-410 |#3|) |#1| |#2|)) (T -734)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-950 (-410 *6) *4 *5))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4|))) -((-3822 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18))) -(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1050) (-1050) (-727)) (T -735)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7))))) -(-10 -7 (-15 -3822 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 38)) (-4268 (((-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|))) $) 39)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2033 ((|#2| $) NIL) ((|#1| $) NIL)) (-3006 (($ $) 104 (|has| |#2| (-851)))) (-3153 (((-3 $ "failed") $) 87)) (-1378 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) 72)) (-2604 (((-645 $) $) 54)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| |#2|) 17)) (-3822 (($ (-1 |#1| |#1|) $) 70)) (-3425 (((-922) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2969 ((|#2| $) 103 (|has| |#2| (-851)))) (-2980 ((|#1| $) 102 (|has| |#2| (-851)))) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|)))) 11)) (-3468 (((-645 |#1|) $) 56)) (-2253 ((|#1| $ |#2|) 117)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 12 T CONST)) (-1722 (($) 46 T CONST)) (-2929 (((-112) $ $) 107)) (-3037 (($ $) 63) (($ $ $) NIL)) (-3024 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-736 |#1| |#2|) (-13 (-1050) (-1039 |#2|) (-1039 |#1|) (-10 -8 (-15 -2821 ($ |#1| |#2|)) (-15 -2253 (|#1| $ |#2|)) (-15 -4127 ($ (-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|))))) (-15 -4268 ((-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|))) $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (-15 -2014 ((-112) $)) (-15 -3468 ((-645 |#1|) $)) (-15 -2604 ((-645 $) $)) (-15 -4183 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2969 (|#2| $)) (-15 -2980 (|#1| $)) (-15 -3006 ($ $))) |%noBranch|))) (-1050) (-727)) (T -736)) -((-2821 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-727)))) (-2253 (*1 *2 *1 *3) (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3686 *3) (|:| -2282 *4)))) (-4 *3 (-1050)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3686 *3) (|:| -2282 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2969 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1050)))) (-2980 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-3006 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1050)) (-4 *3 (-727))))) -(-13 (-1050) (-1039 |#2|) (-1039 |#1|) (-10 -8 (-15 -2821 ($ |#1| |#2|)) (-15 -2253 (|#1| $ |#2|)) (-15 -4127 ($ (-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|))))) (-15 -4268 ((-645 (-2 (|:| -3686 |#1|) (|:| -2282 |#2|))) $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (-15 -2014 ((-112) $)) (-15 -3468 ((-645 |#1|) $)) (-15 -2604 ((-645 $) $)) (-15 -4183 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2969 (|#2| $)) (-15 -2980 (|#1| $)) (-15 -3006 ($ $))) |%noBranch|))) -((-2399 (((-112) $ $) 19)) (-4240 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4020 (($ $ $) 73)) (-4202 (((-112) $ $) 74)) (-2112 (((-112) $ (-772)) 8)) (-4150 (($ (-645 |#1|)) 69) (($) 68)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2300 (($ $) 63)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) 65)) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22)) (-1877 (($ $ $) 70)) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1121) $) 21)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3662 (((-645 (-2 (|:| -4232 |#1|) (|:| -3439 (-772)))) $) 62)) (-1739 (($ $ |#1|) 72) (($ $ $) 71)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4127 (((-863) $) 18)) (-2768 (($ (-645 |#1|)) 67) (($) 66)) (-4104 (((-112) $ $) 23)) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20)) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-737 |#1|) (-140) (-1101)) (T -737)) -NIL -(-13 (-696 |t#1|) (-1099 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-696 |#1|) . T) ((-1099 |#1|) . T) ((-1101) . T) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-4240 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-4020 (($ $ $) 99)) (-4202 (((-112) $ $) 107)) (-2112 (((-112) $ (-772)) NIL)) (-4150 (($ (-645 |#1|)) 26) (($) 17)) (-3502 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-2300 (($ $) 85)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) 70 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4417))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 32 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) 106)) (-1487 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) 38)) (-3136 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 89)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1877 (($ $ $) 97)) (-1881 ((|#1| $) 62)) (-1330 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3430 (((-1121) $) NIL)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3060 ((|#1| $) 61)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 56)) (-3347 (($) 14)) (-3662 (((-645 (-2 (|:| -4232 |#1|) (|:| -3439 (-772)))) $) 55)) (-1739 (($ $ |#1|) NIL) (($ $ $) 98)) (-3253 (($) 16) (($ (-645 |#1|)) 25)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 79)) (-3880 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 22)) (-4127 (((-863) $) 49)) (-2768 (($ (-645 |#1|)) 27) (($) 18)) (-4104 (((-112) $ $) NIL)) (-3911 (($ (-645 |#1|)) 24)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 103)) (-2410 (((-772) $) 67 (|has| $ (-6 -4417))))) -(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1487 ($)) (-15 -1487 ($ |#1|)) (-15 -1487 ($ (-645 |#1|))) (-15 -2513 ((-645 |#1|) $)) (-15 -3230 ($ |#1| $ (-567))) (-15 -3230 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2774 ($ |#1| $ (-567))) (-15 -2774 ($ (-1 (-112) |#1|) $ (-567))))) (-1101)) (T -738)) -((-1487 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1101)))) (-1487 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1101)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-738 *3)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1101)))) (-3230 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1101)))) (-3230 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1101)) (-5 *1 (-738 *4)))) (-2774 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1101)))) (-2774 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1101)) (-5 *1 (-738 *4))))) -(-13 (-737 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1487 ($)) (-15 -1487 ($ |#1|)) (-15 -1487 ($ (-645 |#1|))) (-15 -2513 ((-645 |#1|) $)) (-15 -3230 ($ |#1| $ (-567))) (-15 -3230 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2774 ($ |#1| $ (-567))) (-15 -2774 ($ (-1 (-112) |#1|) $ (-567))))) -((-4132 (((-1272) (-1159)) 8))) -(((-739) (-10 -7 (-15 -4132 ((-1272) (-1159))))) (T -739)) -((-4132 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-739))))) -(-10 -7 (-15 -4132 ((-1272) (-1159)))) -((-3267 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15))) -(((-740 |#1|) (-10 -7 (-15 -3267 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740)) -((-3267 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) -(-10 -7 (-15 -3267 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 |#2|) $) 148)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-1312 (($ $) 140 (|has| |#1| (-559)))) (-2318 (((-112) $) 138 (|has| |#1| (-559)))) (-3165 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-2714 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-3184 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-3006 (($ $) 132)) (-3153 (((-3 $ "failed") $) 37)) (-3736 (((-953 |#1|) $ (-772)) 110) (((-953 |#1|) $ (-772) (-772)) 109)) (-4184 (((-112) $) 149)) (-1480 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-2014 (((-112) $) 130)) (-2821 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-3822 (($ (-1 |#1| |#1|) $) 129)) (-3053 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 127)) (-2980 ((|#1| $) 126)) (-3739 (((-1159) $) 10)) (-1576 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) 11)) (-3981 (($ $ (-772)) 115)) (-2387 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3927 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-1621 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-1813 (((-534 |#2|) $) 128)) (-3192 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 150)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2253 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-1467 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 139 (|has| |#1| (-559)))) (-3201 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-741 |#1| |#2|) (-140) (-1050) (-851)) (T -741)) -((-2253 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) (-4 *2 (-851)))) (-2253 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-851)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) (-4 *2 (-851)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-2937 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2937 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)) (-5 *2 (-953 *4)))) (-3736 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)) (-5 *2 (-953 *4)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567))))))) -(-13 (-901 |t#2|) (-974 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -2253 ($ $ |t#2| (-772))) (-15 -2253 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -3981 ($ $ (-772))) (-15 -2821 ($ $ |t#2| (-772))) (-15 -2821 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -2937 ((-772) $ |t#2|)) (-15 -2937 ((-772) $ |t#2| (-772))) (-15 -3736 ((-953 |t#1|) $ (-772))) (-15 -3736 ((-953 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $ |t#2|)) (-6 (-1003)) (-6 (-1202))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 |#2|) . T) ((-974 |#1| #0# |#2|) . T) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567))))) -((-2703 (((-421 (-1173 |#4|)) (-1173 |#4|)) 30) (((-421 |#4|) |#4|) 26))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 |#4|) |#4|)) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-950 |#3| |#2| |#1|)) (T -742)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) -(-10 -7 (-15 -2703 ((-421 |#4|) |#4|)) (-15 -2703 ((-421 (-1173 |#4|)) (-1173 |#4|)))) -((-2689 (((-421 |#4|) |#4| |#2|) 142)) (-2161 (((-421 |#4|) |#4|) NIL)) (-2833 (((-421 (-1173 |#4|)) (-1173 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-4279 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2703 (-1173 |#4|)) (|:| -4250 (-567)))))) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-1689 (((-1173 |#3|) (-1173 |#3|) (-567)) 168)) (-3592 (((-645 (-772)) (-1173 |#4|) (-645 |#2|) (-772)) 75)) (-2488 (((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-1173 |#3|) (-1173 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-2275 (((-2 (|:| |upol| (-1173 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567))))) (|:| |ctpol| |#3|)) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-4226 (((-2 (|:| -1867 (-1173 |#4|)) (|:| |polval| (-1173 |#3|))) (-1173 |#4|) (-1173 |#3|) (-567)) 72)) (-2718 (((-567) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567))))) 164)) (-4337 ((|#4| (-567) (-421 |#4|)) 73)) (-3830 (((-112) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567))))) NIL))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2833 ((-421 |#4|) |#4|)) (-15 -2833 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -2161 ((-421 |#4|) |#4|)) (-15 -2718 ((-567) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))))) (-15 -2689 ((-421 |#4|) |#4| |#2|)) (-15 -4226 ((-2 (|:| -1867 (-1173 |#4|)) (|:| |polval| (-1173 |#3|))) (-1173 |#4|) (-1173 |#3|) (-567))) (-15 -4279 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2703 (-1173 |#4|)) (|:| -4250 (-567)))))) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2275 ((-2 (|:| |upol| (-1173 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567))))) (|:| |ctpol| |#3|)) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -4337 (|#4| (-567) (-421 |#4|))) (-15 -3830 ((-112) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))))) (-15 -2488 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-1173 |#3|) (-1173 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3592 ((-645 (-772)) (-1173 |#4|) (-645 |#2|) (-772))) (-15 -1689 ((-1173 |#3|) (-1173 |#3|) (-567)))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -743)) -((-1689 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-3592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-2488 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1173 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-950 *11 *9 *10)) (-5 *2 (-645 (-1173 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1173 *5)))) (-3830 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -2703 (-1173 *6)) (|:| -4250 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-4337 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-950 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-2275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1173 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -2703 (-1173 *8)) (|:| -4250 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -2703 (-1173 *9)) (|:| -4250 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1173 *9)))) (-4226 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| -1867 (-1173 *9)) (|:| |polval| (-1173 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1173 *9)) (-5 *4 (-1173 *8)))) (-2689 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2703 (-1173 *6)) (|:| -4250 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2161 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5))))) -(-10 -7 (-15 -2833 ((-421 |#4|) |#4|)) (-15 -2833 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -2161 ((-421 |#4|) |#4|)) (-15 -2718 ((-567) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))))) (-15 -2689 ((-421 |#4|) |#4| |#2|)) (-15 -4226 ((-2 (|:| -1867 (-1173 |#4|)) (|:| |polval| (-1173 |#3|))) (-1173 |#4|) (-1173 |#3|) (-567))) (-15 -4279 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2703 (-1173 |#4|)) (|:| -4250 (-567)))))) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2275 ((-2 (|:| |upol| (-1173 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567))))) (|:| |ctpol| |#3|)) (-1173 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -4337 (|#4| (-567) (-421 |#4|))) (-15 -3830 ((-112) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))) (-645 (-2 (|:| -2703 (-1173 |#3|)) (|:| -4250 (-567)))))) (-15 -2488 ((-3 (-645 (-1173 |#4|)) "failed") (-1173 |#4|) (-1173 |#3|) (-1173 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3592 ((-645 (-772)) (-1173 |#4|) (-645 |#2|) (-772))) (-15 -1689 ((-1173 |#3|) (-1173 |#3|) (-567)))) -((-3709 (($ $ (-922)) 17))) -(((-744 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| |#1| (-922)))) (-745 |#2|) (-172)) (T -744)) -NIL -(-10 -8 (-15 -3709 (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-2968 (($ $ (-922)) 31)) (-3709 (($ $ (-922)) 38)) (-2941 (($ $ (-922)) 32)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-3387 (($ $ $) 28)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1875 (($ $ $ $) 29)) (-3411 (($ $ $) 27)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-1728 (*1 *1) (-4 *1 (-727))) (-2585 (*1 *1) (-4 *1 (-727))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-2109 (*1 *1 *1) (|partial| -4 *1 (-727)))) +(-13 (-1114) (-10 -8 (-15 (-1728) ($) -3286) (-15 -2585 ($) -3286) (-15 -1433 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -2109 ((-3 $ "failed") $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1114) . T) ((-1102) . T)) +((-4250 (((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4323 (((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3737 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-2532 (((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48))) +(((-728 |#1| |#2|) (-10 -7 (-15 -4323 ((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4250 ((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3737 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -728)) +((-2532 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4180 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4180 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4180 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))) +(-10 -7 (-15 -4323 ((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4250 ((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3737 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) +((-3629 ((|#7| (-645 |#5|) |#6|) NIL)) (-3829 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3829 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3629 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1051) (-1051) (-951 |#4| |#2| |#1|) (-951 |#5| |#3| |#1|)) (T -729)) +((-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5))))) +(-10 -7 (-15 -3829 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3629 (|#7| (-645 |#5|) |#6|))) +((-3829 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3829 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1051) (-951 |#5| |#3| |#1|) (-951 |#5| |#4| |#2|)) (T -730)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-951 *9 *7 *5))))) +(-10 -7 (-15 -3829 (|#7| (-1 |#2| |#1|) |#6|))) +((-2706 (((-421 |#4|) |#4|) 42))) +(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-308) (-951 (-954 |#3|) |#1| |#2|)) (T -731)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-951 (-954 *6) *4 *5))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-732 |#1| |#2|) (-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1178)) (-1051)) (T -732)) +NIL +(-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) +((-1518 (((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|) 14)) (-3876 ((|#4| |#4| |#2|) 33)) (-3250 ((|#4| (-410 (-954 |#3|)) |#2|) 64)) (-2508 ((|#4| (-1174 (-954 |#3|)) |#2|) 77)) (-3275 ((|#4| (-1174 |#4|) |#2|) 51)) (-2802 ((|#4| |#4| |#2|) 54)) (-2706 (((-421 |#4|) |#4|) 40))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1518 ((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|)) (-15 -2802 (|#4| |#4| |#2|)) (-15 -3275 (|#4| (-1174 |#4|) |#2|)) (-15 -3876 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1174 (-954 |#3|)) |#2|)) (-15 -3250 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)))) (-559) (-951 (-410 (-954 |#3|)) |#1| |#2|)) (T -733)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) (-3250 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-954 *6))) (-4 *6 (-559)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))) (-3876 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)))) (-2802 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -4016 (-954 *6)) (|:| -3589 (-954 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5))))) +(-10 -7 (-15 -1518 ((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|)) (-15 -2802 (|#4| |#4| |#2|)) (-15 -3275 (|#4| (-1174 |#4|) |#2|)) (-15 -3876 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1174 (-954 |#3|)) |#2|)) (-15 -3250 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2706 ((-421 |#4|) |#4|))) +((-2706 (((-421 |#4|) |#4|) 54))) +(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-951 (-410 |#3|) |#1| |#2|)) (T -734)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-951 (-410 *6) *4 *5))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) +((-3829 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18))) +(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1051) (-1051) (-727)) (T -735)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7))))) +(-10 -7 (-15 -3829 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 38)) (-1843 (((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $) 39)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2038 ((|#2| $) NIL) ((|#1| $) NIL)) (-3014 (($ $) 104 (|has| |#2| (-851)))) (-2109 (((-3 $ "failed") $) 87)) (-1348 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 72)) (-1709 (((-645 $) $) 54)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| |#2|) 17)) (-3829 (($ (-1 |#1| |#1|) $) 70)) (-4249 (((-923) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2976 ((|#2| $) 103 (|has| |#2| (-851)))) (-2989 ((|#1| $) 102 (|has| |#2| (-851)))) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|)))) 11)) (-3032 (((-645 |#1|) $) 56)) (-4136 ((|#1| $ |#2|) 117)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-1728 (($) 46 T CONST)) (-2936 (((-112) $ $) 107)) (-3045 (($ $) 63) (($ $ $) NIL)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-736 |#1| |#2|) (-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2824 ($ |#1| |#2|)) (-15 -4136 (|#1| $ |#2|)) (-15 -4132 ($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))))) (-15 -1843 ((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -2843 ((-112) $)) (-15 -3032 ((-645 |#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2976 (|#2| $)) (-15 -2989 (|#1| $)) (-15 -3014 ($ $))) |%noBranch|))) (-1051) (-727)) (T -736)) +((-2824 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2976 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1051)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) (-4 *3 (-727))))) +(-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2824 ($ |#1| |#2|)) (-15 -4136 (|#1| $ |#2|)) (-15 -4132 ($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))))) (-15 -1843 ((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -2843 ((-112) $)) (-15 -3032 ((-645 |#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2976 (|#2| $)) (-15 -2989 (|#1| $)) (-15 -3014 ($ $))) |%noBranch|))) +((-2403 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4287 (($ $ $) 73)) (-2493 (((-112) $ $) 74)) (-3445 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 65)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 70)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-4071 (($ $ |#1|) 72) (($ $ $) 71)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18)) (-2772 (($ (-645 |#1|)) 67) (($) 66)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-737 |#1|) (-140) (-1102)) (T -737)) +NIL +(-13 (-696 |t#1|) (-1100 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-4287 (($ $ $) 99)) (-2493 (((-112) $ $) 107)) (-3445 (((-112) $ (-772)) NIL)) (-4155 (($ (-645 |#1|)) 26) (($) 17)) (-2839 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2133 (($ $) 85)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 70 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4418))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 32 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 106)) (-4082 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) 38)) (-4337 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 89)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 97)) (-1566 ((|#1| $) 62)) (-2531 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1793 ((|#1| $) 61)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 56)) (-3498 (($) 14)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 55)) (-4071 (($ $ |#1|) NIL) (($ $ $) 98)) (-2718 (($) 16) (($ (-645 |#1|)) 25)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 79)) (-3893 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 22)) (-4132 (((-863) $) 49)) (-2772 (($ (-645 |#1|)) 27) (($) 18)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 |#1|)) 24)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 103)) (-2414 (((-772) $) 67 (|has| $ (-6 -4418))))) +(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4082 ($)) (-15 -4082 ($ |#1|)) (-15 -4082 ($ (-645 |#1|))) (-15 -2279 ((-645 |#1|) $)) (-15 -3238 ($ |#1| $ (-567))) (-15 -3238 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2539 ($ |#1| $ (-567))) (-15 -2539 ($ (-1 (-112) |#1|) $ (-567))))) (-1102)) (T -738)) +((-4082 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-4082 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) (-3238 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-3238 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4))))) +(-13 (-737 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4082 ($)) (-15 -4082 ($ |#1|)) (-15 -4082 ($ (-645 |#1|))) (-15 -2279 ((-645 |#1|) $)) (-15 -3238 ($ |#1| $ (-567))) (-15 -3238 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2539 ($ |#1| $ (-567))) (-15 -2539 ($ (-1 (-112) |#1|) $ (-567))))) +((-4139 (((-1273) (-1160)) 8))) +(((-739) (-10 -7 (-15 -4139 ((-1273) (-1160))))) (T -739)) +((-4139 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-739))))) +(-10 -7 (-15 -4139 ((-1273) (-1160)))) +((-1389 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15))) +(((-740 |#1|) (-10 -7 (-15 -1389 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740)) +((-1389 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) +(-10 -7 (-15 -1389 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#2|) $) 148)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-4381 (($ $) 140 (|has| |#1| (-559)))) (-3949 (((-112) $) 138 (|has| |#1| (-559)))) (-3146 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3014 (($ $) 132)) (-2109 (((-3 $ "failed") $) 37)) (-3717 (((-954 |#1|) $ (-772)) 110) (((-954 |#1|) $ (-772) (-772)) 109)) (-2762 (((-112) $) 149)) (-1482 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) 130)) (-2824 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-3829 (($ (-1 |#1| |#1|) $) 129)) (-3063 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 127)) (-2989 ((|#1| $) 126)) (-1419 (((-1160) $) 10)) (-2416 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) 11)) (-2410 (($ $ (-772)) 115)) (-2391 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3946 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-1593 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-3077 (((-534 |#2|) $) 128)) (-3175 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 150)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4136 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-1903 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 139 (|has| |#1| (-559)))) (-3183 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-741 |#1| |#2|) (-140) (-1051) (-851)) (T -741)) +((-4136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-4384 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *2 (-772)))) (-4384 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-3717 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-2416 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567))))))) +(-13 (-902 |t#2|) (-975 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -4136 ($ $ |t#2| (-772))) (-15 -4136 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -2410 ($ $ (-772))) (-15 -2824 ($ $ |t#2| (-772))) (-15 -2824 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -4384 ((-772) $ |t#2|)) (-15 -4384 ((-772) $ |t#2| (-772))) (-15 -3717 ((-954 |t#1|) $ (-772))) (-15 -3717 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |t#2|)) (-6 (-1004)) (-6 (-1203))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 |#2|) . T) ((-975 |#1| #0# |#2|) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567))))) +((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|)) 30) (((-421 |#4|) |#4|) 26))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -742)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) +(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) +((-3309 (((-421 |#4|) |#4| |#2|) 142)) (-1478 (((-421 |#4|) |#4|) NIL)) (-2908 (((-421 (-1174 |#4|)) (-1174 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-3558 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-1524 (((-1174 |#3|) (-1174 |#3|) (-567)) 168)) (-3191 (((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772)) 75)) (-2465 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-1532 (((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-3115 (((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567)) 72)) (-1943 (((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) 164)) (-2714 ((|#4| (-567) (-421 |#4|)) 73)) (-2177 (((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) NIL))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2908 ((-421 |#4|) |#4|)) (-15 -2908 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1478 ((-421 |#4|) |#4|)) (-15 -1943 ((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -3309 ((-421 |#4|) |#4| |#2|)) (-15 -3115 ((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -1532 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2714 (|#4| (-567) (-421 |#4|))) (-15 -2177 ((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -2465 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3191 ((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772))) (-15 -1524 ((-1174 |#3|) (-1174 |#3|) (-567)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -743)) +((-1524 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3191 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-2465 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) (-5 *2 (-645 (-1174 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) (-2177 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 *8)) (|:| -3458 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-3558 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 *9)) (|:| -3458 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)))) (-3115 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| -2517 (-1174 *9)) (|:| |polval| (-1174 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8)))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))) +(-10 -7 (-15 -2908 ((-421 |#4|) |#4|)) (-15 -2908 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1478 ((-421 |#4|) |#4|)) (-15 -1943 ((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -3309 ((-421 |#4|) |#4| |#2|)) (-15 -3115 ((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -1532 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2714 (|#4| (-567) (-421 |#4|))) (-15 -2177 ((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -2465 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3191 ((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772))) (-15 -1524 ((-1174 |#3|) (-1174 |#3|) (-567)))) +((-3719 (($ $ (-923)) 17))) +(((-744 |#1| |#2|) (-10 -8 (-15 -3719 (|#1| |#1| (-923)))) (-745 |#2|) (-172)) (T -744)) +NIL +(-10 -8 (-15 -3719 (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2586 (($ $ (-923)) 31)) (-3719 (($ $ (-923)) 38)) (-3450 (($ $ (-923)) 32)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-745 |#1|) (-140) (-172)) (T -745)) -((-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) -(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -3709 ($ $ (-922))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-4260 (((-1036) (-690 (-225)) (-567) (-112) (-567)) 25)) (-1715 (((-1036) (-690 (-225)) (-567) (-112) (-567)) 24))) -(((-746) (-10 -7 (-15 -1715 ((-1036) (-690 (-225)) (-567) (-112) (-567))) (-15 -4260 ((-1036) (-690 (-225)) (-567) (-112) (-567))))) (T -746)) -((-4260 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-746)))) (-1715 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-746))))) -(-10 -7 (-15 -1715 ((-1036) (-690 (-225)) (-567) (-112) (-567))) (-15 -4260 ((-1036) (-690 (-225)) (-567) (-112) (-567)))) -((-1690 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-2551 (((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-4195 (((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) 32))) -(((-747) (-10 -7 (-15 -4195 ((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -2551 ((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1690 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747)) -((-1690 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1036)) (-5 *1 (-747)))) (-2551 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1036)) (-5 *1 (-747)))) (-4195 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *2 (-1036)) (-5 *1 (-747))))) -(-10 -7 (-15 -4195 ((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -2551 ((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1690 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))))) -((-3740 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 34)) (-2561 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 33)) (-2231 (((-1036) (-567) (-690 (-225)) (-567)) 32)) (-3020 (((-1036) (-567) (-690 (-225)) (-567)) 31)) (-3025 (((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-3514 (((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-3360 (((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3248 (((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-1308 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2107 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-3841 (((-1036) (-567) (-690 (-225)) (-567)) 22)) (-2664 (((-1036) (-567) (-690 (-225)) (-567)) 21))) -(((-748) (-10 -7 (-15 -2664 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3841 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2107 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1308 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3248 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3360 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3514 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3025 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3020 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2231 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2561 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -3740 ((-1036) (-567) (-567) (-690 (-225)) (-567))))) (T -748)) -((-3740 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2561 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2231 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3020 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3025 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3514 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3360 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3248 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-1308 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2107 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3841 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2664 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748))))) -(-10 -7 (-15 -2664 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3841 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2107 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1308 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3248 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3360 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3514 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3025 ((-1036) (-567) (-567) (-1159) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3020 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2231 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -2561 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -3740 ((-1036) (-567) (-567) (-690 (-225)) (-567)))) -((-3681 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3570 (((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-3939 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2593 (((-1036) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-3520 (((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-2927 (((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-2149 (((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-3342 (((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-3431 (((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) 38)) (-2806 (((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) 37)) (-3795 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) 33)) (-3462 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) 32))) -(((-749) (-10 -7 (-15 -3462 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3795 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -2806 ((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3431 ((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3342 ((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2149 ((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2927 ((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3520 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2593 ((-1036) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -3939 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -3570 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3681 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749)) -((-3681 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3570 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3939 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2593 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3520 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2927 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2149 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3342 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3431 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2806 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3795 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3462 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *2 (-1036)) (-5 *1 (-749))))) -(-10 -7 (-15 -3462 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3795 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -2806 ((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3431 ((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867))))) (-15 -3342 ((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2149 ((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2927 ((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3520 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2593 ((-1036) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -3939 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -3570 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3681 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))))) -((-2779 (((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2558 (((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2535 (((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-4371 (((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-1830 (((-1036) (-225) (-567) (-567) (-1159) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3363 (((-1036) (-225) (-567) (-567) (-225) (-1159) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1439 (((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-1953 (((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-750) (-10 -7 (-15 -1953 ((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1439 ((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3363 ((-1036) (-225) (-567) (-567) (-225) (-1159) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1830 ((-1036) (-225) (-567) (-567) (-1159) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4371 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2535 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -2558 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -2558 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -2779 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750)) -((-2779 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-2558 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-2558 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1036)) (-5 *1 (-750)))) (-2535 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-4371 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1036)) (-5 *1 (-750)))) (-1830 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1159)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-3363 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1159)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-1439 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-1953 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(-10 -7 (-15 -1953 ((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1439 ((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3363 ((-1036) (-225) (-567) (-567) (-225) (-1159) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1830 ((-1036) (-225) (-567) (-567) (-1159) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4371 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2535 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -2558 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -2558 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -2779 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-3379 (((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-4243 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1159) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-2329 (((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23))) -(((-751) (-10 -7 (-15 -2329 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4243 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1159) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3379 ((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751)) -((-3379 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-751)))) (-4243 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1159)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1036)) (-5 *1 (-751)))) (-2329 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-751))))) -(-10 -7 (-15 -2329 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4243 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1159) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3379 ((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)))) -((-3213 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-1605 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-2011 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-3549 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2511 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3170 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-1336 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-3553 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-1861 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-4222 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21))) -(((-752) (-10 -7 (-15 -4222 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1861 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3553 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1336 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3170 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2511 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3549 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2011 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -1605 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -3213 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752)) -((-3213 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1605 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-2011 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3549 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-2511 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3170 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1336 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3553 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1861 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-4222 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752))))) -(-10 -7 (-15 -4222 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1861 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3553 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1336 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3170 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2511 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3549 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2011 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -1605 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -3213 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)))) -((-1660 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-2497 (((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-2090 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-2044 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-2615 (((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-1874 (((-1036) (-1159) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-1666 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-2215 (((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-3930 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-2383 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-1496 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-4038 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-3982 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-4233 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-3140 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-4211 (((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-3483 (((-1036) (-567) (-690 (-225)) (-225) (-567)) 24)) (-4276 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21))) -(((-753) (-10 -7 (-15 -4276 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3483 ((-1036) (-567) (-690 (-225)) (-225) (-567))) (-15 -4211 ((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3140 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -4233 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -3982 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -4038 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1496 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -2383 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -3930 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2215 ((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -1666 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -1874 ((-1036) (-1159) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2615 ((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2090 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2497 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1660 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753)) -((-1660 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2497 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2090 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2044 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2615 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1874 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1666 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2215 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3930 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2383 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1496 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-4038 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3982 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-4233 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3140 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-4211 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3483 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-4276 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753))))) -(-10 -7 (-15 -4276 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3483 ((-1036) (-567) (-690 (-225)) (-225) (-567))) (-15 -4211 ((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3140 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -4233 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -3982 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -4038 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1496 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -2383 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -3930 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2215 ((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -1666 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -1874 ((-1036) (-1159) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2615 ((-1036) (-1159) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2090 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2497 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1660 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)))) -((-1890 (((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-2627 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2004 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-3767 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-3434 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3950 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3380 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4000 (((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-754) (-10 -7 (-15 -4000 ((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3380 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3950 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -3434 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -3767 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -2004 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2627 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -1890 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754)) -((-1890 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-2627 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-2004 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3767 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3434 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3950 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3380 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-4000 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754))))) -(-10 -7 (-15 -4000 ((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3380 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3950 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -3434 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -3767 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -2004 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2627 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -1890 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)))) -((-1548 (((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-1361 (((-1036) (-1159) (-1159) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-2657 (((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3803 (((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-2869 (((-1036) (-1159) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-1461 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-1761 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-2580 (((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-1541 (((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-2195 (((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32))) -(((-755) (-10 -7 (-15 -2195 ((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1541 ((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -2580 ((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -1761 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1461 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2869 ((-1036) (-1159) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3803 ((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2657 ((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1361 ((-1036) (-1159) (-1159) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1548 ((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755)) -((-1548 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-1361 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2657 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3803 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2869 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-1461 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-1761 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2580 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-1541 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2195 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-755))))) -(-10 -7 (-15 -2195 ((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1541 ((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -2580 ((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -1761 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1461 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2869 ((-1036) (-1159) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3803 ((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2657 ((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1361 ((-1036) (-1159) (-1159) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1548 ((-1036) (-1159) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) -((-4017 (((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-3328 (((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-1353 (((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-2885 (((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-1505 (((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-3155 (((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-4085 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2897 (((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-1510 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-1508 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-3874 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 25)) (-3858 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2867 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1893 (((-1036) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3741 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 21))) -(((-756) (-10 -7 (-15 -3741 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -1893 ((-1036) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2867 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3858 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3874 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -1508 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -1510 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2897 ((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4085 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3155 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1505 ((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2885 ((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1353 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -1353 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3328 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4017 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756)) -((-4017 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3328 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1353 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1353 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2885 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1505 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3155 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-4085 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2897 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1510 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1508 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3874 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3858 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2867 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1893 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3741 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756))))) -(-10 -7 (-15 -3741 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -1893 ((-1036) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2867 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3858 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3874 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -1508 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -1510 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2897 ((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4085 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3155 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1505 ((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2885 ((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1353 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -1353 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3328 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4017 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) -((-2204 (((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2507 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-2987 (((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1707 (((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-2804 (((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-2333 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-1595 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-3193 (((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-1942 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-3611 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-1675 (((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22))) -(((-757) (-10 -7 (-15 -1675 ((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3611 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1942 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3193 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1595 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2333 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2804 ((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1707 ((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2987 ((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2507 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2204 ((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757)) -((-2204 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2507 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2987 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1707 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2804 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2333 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1595 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3193 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1942 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3611 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1675 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-757))))) -(-10 -7 (-15 -1675 ((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3611 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1942 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3193 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1595 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2333 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2804 ((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1707 ((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2987 ((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2507 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2204 ((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))))) -((-2577 (((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-3327 (((-1036) (-1159) (-567) (-567) (-690 (-225))) 28)) (-2935 (((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-1352 (((-1036) (-567) (-567) (-567) (-690 (-225))) 21))) -(((-758) (-10 -7 (-15 -1352 ((-1036) (-567) (-567) (-567) (-690 (-225)))) (-15 -2935 ((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -3327 ((-1036) (-1159) (-567) (-567) (-690 (-225)))) (-15 -2577 ((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758)) -((-2577 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758)))) (-3327 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758)))) (-2935 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-758)))) (-1352 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758))))) -(-10 -7 (-15 -1352 ((-1036) (-567) (-567) (-567) (-690 (-225)))) (-15 -2935 ((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -3327 ((-1036) (-1159) (-567) (-567) (-690 (-225)))) (-15 -2577 ((-1036) (-1159) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))))) -((-2366 (((-1036) (-225) (-225) (-225) (-225) (-567)) 62)) (-3949 (((-1036) (-225) (-225) (-225) (-567)) 61)) (-2854 (((-1036) (-225) (-225) (-225) (-567)) 60)) (-2667 (((-1036) (-225) (-225) (-567)) 59)) (-1844 (((-1036) (-225) (-567)) 58)) (-2140 (((-1036) (-225) (-567)) 57)) (-3260 (((-1036) (-225) (-567)) 56)) (-3701 (((-1036) (-225) (-567)) 55)) (-1632 (((-1036) (-225) (-567)) 54)) (-1468 (((-1036) (-225) (-567)) 53)) (-3966 (((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567)) 52)) (-1679 (((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567)) 51)) (-1383 (((-1036) (-225) (-567)) 50)) (-1823 (((-1036) (-225) (-567)) 49)) (-3317 (((-1036) (-225) (-567)) 48)) (-1327 (((-1036) (-225) (-567)) 47)) (-4238 (((-1036) (-567) (-225) (-169 (-225)) (-567) (-1159) (-567)) 46)) (-3209 (((-1036) (-1159) (-169 (-225)) (-1159) (-567)) 45)) (-2926 (((-1036) (-1159) (-169 (-225)) (-1159) (-567)) 44)) (-1374 (((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567)) 43)) (-3110 (((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567)) 42)) (-4365 (((-1036) (-225) (-567)) 39)) (-4208 (((-1036) (-225) (-567)) 38)) (-3765 (((-1036) (-225) (-567)) 37)) (-2219 (((-1036) (-225) (-567)) 36)) (-2798 (((-1036) (-225) (-567)) 35)) (-3985 (((-1036) (-225) (-567)) 34)) (-2340 (((-1036) (-225) (-567)) 33)) (-2829 (((-1036) (-225) (-567)) 32)) (-2853 (((-1036) (-225) (-567)) 31)) (-3640 (((-1036) (-225) (-567)) 30)) (-2278 (((-1036) (-225) (-225) (-225) (-567)) 29)) (-1720 (((-1036) (-225) (-567)) 28)) (-3532 (((-1036) (-225) (-567)) 27)) (-3948 (((-1036) (-225) (-567)) 26)) (-3955 (((-1036) (-225) (-567)) 25)) (-3882 (((-1036) (-225) (-567)) 24)) (-3531 (((-1036) (-169 (-225)) (-567)) 21))) -(((-759) (-10 -7 (-15 -3531 ((-1036) (-169 (-225)) (-567))) (-15 -3882 ((-1036) (-225) (-567))) (-15 -3955 ((-1036) (-225) (-567))) (-15 -3948 ((-1036) (-225) (-567))) (-15 -3532 ((-1036) (-225) (-567))) (-15 -1720 ((-1036) (-225) (-567))) (-15 -2278 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3640 ((-1036) (-225) (-567))) (-15 -2853 ((-1036) (-225) (-567))) (-15 -2829 ((-1036) (-225) (-567))) (-15 -2340 ((-1036) (-225) (-567))) (-15 -3985 ((-1036) (-225) (-567))) (-15 -2798 ((-1036) (-225) (-567))) (-15 -2219 ((-1036) (-225) (-567))) (-15 -3765 ((-1036) (-225) (-567))) (-15 -4208 ((-1036) (-225) (-567))) (-15 -4365 ((-1036) (-225) (-567))) (-15 -3110 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1374 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -2926 ((-1036) (-1159) (-169 (-225)) (-1159) (-567))) (-15 -3209 ((-1036) (-1159) (-169 (-225)) (-1159) (-567))) (-15 -4238 ((-1036) (-567) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1327 ((-1036) (-225) (-567))) (-15 -3317 ((-1036) (-225) (-567))) (-15 -1823 ((-1036) (-225) (-567))) (-15 -1383 ((-1036) (-225) (-567))) (-15 -1679 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -3966 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1468 ((-1036) (-225) (-567))) (-15 -1632 ((-1036) (-225) (-567))) (-15 -3701 ((-1036) (-225) (-567))) (-15 -3260 ((-1036) (-225) (-567))) (-15 -2140 ((-1036) (-225) (-567))) (-15 -1844 ((-1036) (-225) (-567))) (-15 -2667 ((-1036) (-225) (-225) (-567))) (-15 -2854 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3949 ((-1036) (-225) (-225) (-225) (-567))) (-15 -2366 ((-1036) (-225) (-225) (-225) (-225) (-567))))) (T -759)) -((-2366 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3949 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2854 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2667 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3260 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3966 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1679 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4238 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1159)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3209 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1159)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2926 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1159)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1374 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3110 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2278 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(-10 -7 (-15 -3531 ((-1036) (-169 (-225)) (-567))) (-15 -3882 ((-1036) (-225) (-567))) (-15 -3955 ((-1036) (-225) (-567))) (-15 -3948 ((-1036) (-225) (-567))) (-15 -3532 ((-1036) (-225) (-567))) (-15 -1720 ((-1036) (-225) (-567))) (-15 -2278 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3640 ((-1036) (-225) (-567))) (-15 -2853 ((-1036) (-225) (-567))) (-15 -2829 ((-1036) (-225) (-567))) (-15 -2340 ((-1036) (-225) (-567))) (-15 -3985 ((-1036) (-225) (-567))) (-15 -2798 ((-1036) (-225) (-567))) (-15 -2219 ((-1036) (-225) (-567))) (-15 -3765 ((-1036) (-225) (-567))) (-15 -4208 ((-1036) (-225) (-567))) (-15 -4365 ((-1036) (-225) (-567))) (-15 -3110 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1374 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -2926 ((-1036) (-1159) (-169 (-225)) (-1159) (-567))) (-15 -3209 ((-1036) (-1159) (-169 (-225)) (-1159) (-567))) (-15 -4238 ((-1036) (-567) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1327 ((-1036) (-225) (-567))) (-15 -3317 ((-1036) (-225) (-567))) (-15 -1823 ((-1036) (-225) (-567))) (-15 -1383 ((-1036) (-225) (-567))) (-15 -1679 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -3966 ((-1036) (-225) (-169 (-225)) (-567) (-1159) (-567))) (-15 -1468 ((-1036) (-225) (-567))) (-15 -1632 ((-1036) (-225) (-567))) (-15 -3701 ((-1036) (-225) (-567))) (-15 -3260 ((-1036) (-225) (-567))) (-15 -2140 ((-1036) (-225) (-567))) (-15 -1844 ((-1036) (-225) (-567))) (-15 -2667 ((-1036) (-225) (-225) (-567))) (-15 -2854 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3949 ((-1036) (-225) (-225) (-225) (-567))) (-15 -2366 ((-1036) (-225) (-225) (-225) (-225) (-567)))) -((-1453 (((-1272)) 21)) (-1961 (((-1159)) 32)) (-1375 (((-1159)) 31)) (-4215 (((-1105) (-1177) (-690 (-567))) 46) (((-1105) (-1177) (-690 (-225))) 42)) (-3505 (((-112)) 19)) (-1364 (((-1159) (-1159)) 35))) -(((-760) (-10 -7 (-15 -1375 ((-1159))) (-15 -1961 ((-1159))) (-15 -1364 ((-1159) (-1159))) (-15 -4215 ((-1105) (-1177) (-690 (-225)))) (-15 -4215 ((-1105) (-1177) (-690 (-567)))) (-15 -3505 ((-112))) (-15 -1453 ((-1272))))) (T -760)) -((-1453 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-760)))) (-3505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-690 (-567))) (-5 *2 (-1105)) (-5 *1 (-760)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-690 (-225))) (-5 *2 (-1105)) (-5 *1 (-760)))) (-1364 (*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760)))) (-1961 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760)))) (-1375 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760))))) -(-10 -7 (-15 -1375 ((-1159))) (-15 -1961 ((-1159))) (-15 -1364 ((-1159) (-1159))) (-15 -4215 ((-1105) (-1177) (-690 (-225)))) (-15 -4215 ((-1105) (-1177) (-690 (-567)))) (-15 -3505 ((-112))) (-15 -1453 ((-1272)))) -((-3387 (($ $ $) 10)) (-1875 (($ $ $ $) 9)) (-3411 (($ $ $) 12))) -(((-761 |#1|) (-10 -8 (-15 -3411 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| |#1|))) (-762)) (T -761)) -NIL -(-10 -8 (-15 -3411 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-2968 (($ $ (-922)) 31)) (-2941 (($ $ (-922)) 32)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-3387 (($ $ $) 28)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1875 (($ $ $ $) 29)) (-3411 (($ $ $) 27)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) +((-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) +(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -3719 ($ $ (-923))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2404 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 25)) (-3116 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 24))) +(((-746) (-10 -7 (-15 -3116 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2404 ((-1037) (-690 (-225)) (-567) (-112) (-567))))) (T -746)) +((-2404 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))) (-3116 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746))))) +(-10 -7 (-15 -3116 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2404 ((-1037) (-690 (-225)) (-567) (-112) (-567)))) +((-1620 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-1825 (((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-3004 (((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 32))) +(((-747) (-10 -7 (-15 -3004 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1825 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1620 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747)) +((-1620 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-1825 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-3004 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-747))))) +(-10 -7 (-15 -3004 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1825 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1620 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))))) +((-3398 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 34)) (-3673 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 33)) (-3631 (((-1037) (-567) (-690 (-225)) (-567)) 32)) (-1313 (((-1037) (-567) (-690 (-225)) (-567)) 31)) (-1801 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-1473 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-1384 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3546 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-2044 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-3177 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1847 (((-1037) (-567) (-690 (-225)) (-567)) 22)) (-2212 (((-1037) (-567) (-690 (-225)) (-567)) 21))) +(((-748) (-10 -7 (-15 -2212 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1847 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3177 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3546 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1384 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1473 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1313 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3631 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3673 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3398 ((-1037) (-567) (-567) (-690 (-225)) (-567))))) (T -748)) +((-3398 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3673 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3631 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1313 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1801 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1473 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1384 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3546 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2044 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3177 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1847 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2212 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748))))) +(-10 -7 (-15 -2212 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1847 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3177 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3546 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1384 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1473 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1313 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3631 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3673 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3398 ((-1037) (-567) (-567) (-690 (-225)) (-567)))) +((-3766 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1654 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-4354 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2893 (((-1037) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-1963 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-1662 (((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-2734 (((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-4173 (((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-3440 (((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 38)) (-2231 (((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 37)) (-1510 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 33)) (-3636 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 32))) +(((-749) (-10 -7 (-15 -3636 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1510 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -2231 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -3440 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -4173 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1662 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1963 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -4354 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1654 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3766 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749)) +((-3766 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1654 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-4354 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2893 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1963 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1662 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2734 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-4173 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3440 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2231 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1510 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3636 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749))))) +(-10 -7 (-15 -3636 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1510 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -2231 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -3440 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -4173 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1662 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1963 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -4354 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1654 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3766 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))))) +((-1832 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4342 (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2587 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-3952 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-4091 (((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1742 (((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3468 (((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-2905 (((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-750) (-10 -7 (-15 -2905 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3468 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -1742 ((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4091 ((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3952 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2587 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -1832 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750)) +((-1832 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4342 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4342 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2587 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3952 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4091 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-1742 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3468 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2905 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) +(-10 -7 (-15 -2905 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3468 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -1742 ((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4091 ((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3952 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2587 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -1832 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3040 (((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-3981 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-3560 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23))) +(((-751) (-10 -7 (-15 -3560 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3981 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3040 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751)) +((-3040 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))) (-3981 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) (-5 *1 (-751)))) (-3560 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-751))))) +(-10 -7 (-15 -3560 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3981 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3040 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)))) +((-4189 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-3883 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-3676 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-3316 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2060 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3943 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-1855 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-3649 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-1985 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-2713 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21))) +(((-752) (-10 -7 (-15 -2713 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1985 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3649 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1855 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3943 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2060 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3676 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -3883 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4189 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752)) +((-4189 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3883 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3676 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3316 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2060 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3943 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1855 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3649 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1985 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2713 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752))))) +(-10 -7 (-15 -2713 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1985 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3649 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1855 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3943 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2060 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3676 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -3883 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4189 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)))) +((-1618 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-3506 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-1882 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-1329 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-1409 (((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-2036 (((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-3996 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-2137 (((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-1596 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-3225 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-4056 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-1543 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-4390 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-2488 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-3294 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-4001 (((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-1917 (((-1037) (-567) (-690 (-225)) (-225) (-567)) 24)) (-3361 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21))) +(((-753) (-10 -7 (-15 -3361 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1917 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -4001 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3294 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2488 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -4390 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1543 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4056 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3225 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -1596 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2137 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -2036 ((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1409 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1329 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1882 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3506 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1618 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753)) +((-1618 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3506 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1882 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1329 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1409 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2036 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3996 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2137 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1596 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3225 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4056 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1543 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4390 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2488 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3294 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4001 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3361 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753))))) +(-10 -7 (-15 -3361 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1917 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -4001 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3294 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2488 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -4390 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1543 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4056 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3225 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -1596 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2137 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -2036 ((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1409 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1329 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1882 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3506 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1618 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)))) +((-3233 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-2112 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4318 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-4029 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-2930 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2123 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3169 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2731 (((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-754) (-10 -7 (-15 -2731 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3169 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2123 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2930 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4029 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -4318 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2112 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3233 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754)) +((-3233 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2112 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4318 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4029 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2930 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2123 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-3169 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2731 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) +(-10 -7 (-15 -2731 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3169 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2123 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2930 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4029 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -4318 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2112 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3233 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)))) +((-4238 (((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-2746 (((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-2735 (((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3854 (((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-2263 (((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-1496 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-2485 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-1964 (((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-3020 (((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-1759 (((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32))) +(((-755) (-10 -7 (-15 -1759 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3020 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -1964 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2485 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1496 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2263 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3854 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2735 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2746 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4238 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755)) +((-4238 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2746 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2735 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3854 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2263 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1496 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2485 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1964 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3020 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1759 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-755))))) +(-10 -7 (-15 -1759 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3020 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -1964 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2485 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1496 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2263 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3854 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2735 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2746 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4238 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) +((-3975 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-2206 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-2938 (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-3376 (((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-3691 (((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-2276 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-2681 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2592 (((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3016 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-2816 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-2556 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 25)) (-3801 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2054 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-3420 (((-1037) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3497 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 21))) +(((-756) (-10 -7 (-15 -3497 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3420 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2054 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3801 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2556 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2816 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3016 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2681 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2276 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -3691 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -3376 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2206 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3975 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756)) +((-3975 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2206 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2938 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2938 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3376 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3691 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2276 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2681 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2592 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3016 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2816 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2556 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3801 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2054 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3420 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3497 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756))))) +(-10 -7 (-15 -3497 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3420 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2054 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3801 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2556 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2816 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3016 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2681 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2276 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -3691 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -3376 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2206 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3975 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) +((-3301 (((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2834 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-1577 (((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3622 (((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-2046 (((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-2792 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-2745 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-2980 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-4190 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-3723 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-2909 (((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22))) +(((-757) (-10 -7 (-15 -2909 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3723 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4190 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2980 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2792 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2046 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3622 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1577 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2834 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3301 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757)) +((-3301 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2834 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1577 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3622 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2046 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2792 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2745 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2980 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-4190 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3723 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2909 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-757))))) +(-10 -7 (-15 -2909 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3723 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4190 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2980 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2792 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2046 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3622 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1577 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2834 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3301 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))))) +((-1549 (((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-2102 (((-1037) (-1160) (-567) (-567) (-690 (-225))) 28)) (-4171 (((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-2833 (((-1037) (-567) (-567) (-567) (-690 (-225))) 21))) +(((-758) (-10 -7 (-15 -2833 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -4171 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2102 ((-1037) (-1160) (-567) (-567) (-690 (-225)))) (-15 -1549 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758)) +((-1549 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2102 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-4171 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2833 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758))))) +(-10 -7 (-15 -2833 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -4171 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2102 ((-1037) (-1160) (-567) (-567) (-690 (-225)))) (-15 -1549 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))))) +((-4302 (((-1037) (-225) (-225) (-225) (-225) (-567)) 62)) (-2028 (((-1037) (-225) (-225) (-225) (-567)) 61)) (-4316 (((-1037) (-225) (-225) (-225) (-567)) 60)) (-2479 (((-1037) (-225) (-225) (-567)) 59)) (-2970 (((-1037) (-225) (-567)) 58)) (-4368 (((-1037) (-225) (-567)) 57)) (-2002 (((-1037) (-225) (-567)) 56)) (-4211 (((-1037) (-225) (-567)) 55)) (-1474 (((-1037) (-225) (-567)) 54)) (-1994 (((-1037) (-225) (-567)) 53)) (-3311 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 52)) (-1962 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 51)) (-2858 (((-1037) (-225) (-567)) 50)) (-1535 (((-1037) (-225) (-567)) 49)) (-3976 (((-1037) (-225) (-567)) 48)) (-2176 (((-1037) (-225) (-567)) 47)) (-1744 (((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567)) 46)) (-2013 (((-1037) (-1160) (-169 (-225)) (-1160) (-567)) 45)) (-1554 (((-1037) (-1160) (-169 (-225)) (-1160) (-567)) 44)) (-1827 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 43)) (-2978 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 42)) (-4037 (((-1037) (-225) (-567)) 39)) (-1876 (((-1037) (-225) (-567)) 38)) (-3806 (((-1037) (-225) (-567)) 37)) (-1392 (((-1037) (-225) (-567)) 36)) (-2670 (((-1037) (-225) (-567)) 35)) (-1635 (((-1037) (-225) (-567)) 34)) (-2008 (((-1037) (-225) (-567)) 33)) (-2696 (((-1037) (-225) (-567)) 32)) (-4185 (((-1037) (-225) (-567)) 31)) (-3847 (((-1037) (-225) (-567)) 30)) (-1746 (((-1037) (-225) (-225) (-225) (-567)) 29)) (-2335 (((-1037) (-225) (-567)) 28)) (-1826 (((-1037) (-225) (-567)) 27)) (-1920 (((-1037) (-225) (-567)) 26)) (-1447 (((-1037) (-225) (-567)) 25)) (-2557 (((-1037) (-225) (-567)) 24)) (-1719 (((-1037) (-169 (-225)) (-567)) 21))) +(((-759) (-10 -7 (-15 -1719 ((-1037) (-169 (-225)) (-567))) (-15 -2557 ((-1037) (-225) (-567))) (-15 -1447 ((-1037) (-225) (-567))) (-15 -1920 ((-1037) (-225) (-567))) (-15 -1826 ((-1037) (-225) (-567))) (-15 -2335 ((-1037) (-225) (-567))) (-15 -1746 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3847 ((-1037) (-225) (-567))) (-15 -4185 ((-1037) (-225) (-567))) (-15 -2696 ((-1037) (-225) (-567))) (-15 -2008 ((-1037) (-225) (-567))) (-15 -1635 ((-1037) (-225) (-567))) (-15 -2670 ((-1037) (-225) (-567))) (-15 -1392 ((-1037) (-225) (-567))) (-15 -3806 ((-1037) (-225) (-567))) (-15 -1876 ((-1037) (-225) (-567))) (-15 -4037 ((-1037) (-225) (-567))) (-15 -2978 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1827 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1554 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -2013 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -1744 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -2176 ((-1037) (-225) (-567))) (-15 -3976 ((-1037) (-225) (-567))) (-15 -1535 ((-1037) (-225) (-567))) (-15 -2858 ((-1037) (-225) (-567))) (-15 -1962 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -3311 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1994 ((-1037) (-225) (-567))) (-15 -1474 ((-1037) (-225) (-567))) (-15 -4211 ((-1037) (-225) (-567))) (-15 -2002 ((-1037) (-225) (-567))) (-15 -4368 ((-1037) (-225) (-567))) (-15 -2970 ((-1037) (-225) (-567))) (-15 -2479 ((-1037) (-225) (-225) (-567))) (-15 -4316 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2028 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4302 ((-1037) (-225) (-225) (-225) (-225) (-567))))) (T -759)) +((-4302 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2028 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4316 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2479 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3311 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1962 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1744 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1160)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2013 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1554 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1827 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2978 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1746 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(-10 -7 (-15 -1719 ((-1037) (-169 (-225)) (-567))) (-15 -2557 ((-1037) (-225) (-567))) (-15 -1447 ((-1037) (-225) (-567))) (-15 -1920 ((-1037) (-225) (-567))) (-15 -1826 ((-1037) (-225) (-567))) (-15 -2335 ((-1037) (-225) (-567))) (-15 -1746 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3847 ((-1037) (-225) (-567))) (-15 -4185 ((-1037) (-225) (-567))) (-15 -2696 ((-1037) (-225) (-567))) (-15 -2008 ((-1037) (-225) (-567))) (-15 -1635 ((-1037) (-225) (-567))) (-15 -2670 ((-1037) (-225) (-567))) (-15 -1392 ((-1037) (-225) (-567))) (-15 -3806 ((-1037) (-225) (-567))) (-15 -1876 ((-1037) (-225) (-567))) (-15 -4037 ((-1037) (-225) (-567))) (-15 -2978 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1827 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1554 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -2013 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -1744 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -2176 ((-1037) (-225) (-567))) (-15 -3976 ((-1037) (-225) (-567))) (-15 -1535 ((-1037) (-225) (-567))) (-15 -2858 ((-1037) (-225) (-567))) (-15 -1962 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -3311 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1994 ((-1037) (-225) (-567))) (-15 -1474 ((-1037) (-225) (-567))) (-15 -4211 ((-1037) (-225) (-567))) (-15 -2002 ((-1037) (-225) (-567))) (-15 -4368 ((-1037) (-225) (-567))) (-15 -2970 ((-1037) (-225) (-567))) (-15 -2479 ((-1037) (-225) (-225) (-567))) (-15 -4316 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2028 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4302 ((-1037) (-225) (-225) (-225) (-225) (-567)))) +((-2143 (((-1273)) 21)) (-2567 (((-1160)) 32)) (-1927 (((-1160)) 31)) (-3234 (((-1106) (-1178) (-690 (-567))) 46) (((-1106) (-1178) (-690 (-225))) 42)) (-3508 (((-112)) 19)) (-3299 (((-1160) (-1160)) 35))) +(((-760) (-10 -7 (-15 -1927 ((-1160))) (-15 -2567 ((-1160))) (-15 -3299 ((-1160) (-1160))) (-15 -3234 ((-1106) (-1178) (-690 (-225)))) (-15 -3234 ((-1106) (-1178) (-690 (-567)))) (-15 -3508 ((-112))) (-15 -2143 ((-1273))))) (T -760)) +((-2143 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-760)))) (-3508 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))) (-2567 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))) (-1927 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760))))) +(-10 -7 (-15 -1927 ((-1160))) (-15 -2567 ((-1160))) (-15 -3299 ((-1160) (-1160))) (-15 -3234 ((-1106) (-1178) (-690 (-225)))) (-15 -3234 ((-1106) (-1178) (-690 (-567)))) (-15 -3508 ((-112))) (-15 -2143 ((-1273)))) +((-1485 (($ $ $) 10)) (-2153 (($ $ $ $) 9)) (-2214 (($ $ $) 12))) +(((-761 |#1|) (-10 -8 (-15 -2214 (|#1| |#1| |#1|)) (-15 -1485 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1| |#1|))) (-762)) (T -761)) +NIL +(-10 -8 (-15 -2214 (|#1| |#1| |#1|)) (-15 -1485 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2586 (($ $ (-923)) 31)) (-3450 (($ $ (-923)) 32)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) (((-762) (-140)) (T -762)) -((-1875 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-3387 (*1 *1 *1 *1) (-4 *1 (-762))) (-3411 (*1 *1 *1 *1) (-4 *1 (-762)))) -(-13 (-21) (-721) (-10 -8 (-15 -1875 ($ $ $ $)) (-15 -3387 ($ $ $)) (-15 -3411 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-1101) . T)) -((-4127 (((-863) $) NIL) (($ (-567)) 10))) -(((-763 |#1|) (-10 -8 (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-764)) (T -763)) -NIL -(-10 -8 (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-2385 (((-3 $ "failed") $) 43)) (-2968 (($ $ (-922)) 31) (($ $ (-772)) 38)) (-3153 (((-3 $ "failed") $) 41)) (-2843 (((-112) $) 37)) (-2539 (((-3 $ "failed") $) 42)) (-2941 (($ $ (-922)) 32) (($ $ (-772)) 39)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-3387 (($ $ $) 28)) (-4127 (((-863) $) 12) (($ (-567)) 34)) (-1772 (((-772)) 35 T CONST)) (-4104 (((-112) $ $) 9)) (-1875 (($ $ $ $) 29)) (-3411 (($ $ $) 27)) (-1710 (($) 19 T CONST)) (-1722 (($) 36 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 33) (($ $ (-772)) 40)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) +((-2153 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-1485 (*1 *1 *1 *1) (-4 *1 (-762))) (-2214 (*1 *1 *1 *1) (-4 *1 (-762)))) +(-13 (-21) (-721) (-10 -8 (-15 -2153 ($ $ $ $)) (-15 -1485 ($ $ $)) (-15 -2214 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-1102) . T)) +((-4132 (((-863) $) NIL) (($ (-567)) 10))) +(((-763 |#1|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-764)) (T -763)) +NIL +(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2209 (((-3 $ "failed") $) 43)) (-2586 (($ $ (-923)) 31) (($ $ (-772)) 38)) (-2109 (((-3 $ "failed") $) 41)) (-1433 (((-112) $) 37)) (-3080 (((-3 $ "failed") $) 42)) (-3450 (($ $ (-923)) 32) (($ $ (-772)) 39)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12) (($ (-567)) 34)) (-4221 (((-772)) 35 T CONST)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-1728 (($) 36 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33) (($ $ (-772)) 40)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) (((-764) (-140)) (T -764)) -((-1772 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764))))) -(-13 (-762) (-723) (-10 -8 (-15 -1772 ((-772)) -3280) (-15 -4127 ($ (-567))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-723) . T) ((-762) . T) ((-1101) . T)) -((-3852 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-1456 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-3116 (((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1177)) 20) (((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19))) -(((-765 |#1|) (-10 -7 (-15 -3116 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -3116 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1177))) (-15 -1456 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3852 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765)) -((-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1177)) (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3116 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -3116 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1177))) (-15 -1456 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3852 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) -((-4145 (((-174 (-567)) |#1|) 27))) -(((-766 |#1|) (-10 -7 (-15 -4145 ((-174 (-567)) |#1|))) (-407)) (T -766)) -((-4145 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))) -(-10 -7 (-15 -4145 ((-174 (-567)) |#1|))) -((-3308 ((|#1| |#1| |#1|) 28)) (-3819 ((|#1| |#1| |#1|) 27)) (-1634 ((|#1| |#1| |#1|) 38)) (-4188 ((|#1| |#1| |#1|) 34)) (-4097 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1751 (((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|) 26))) -(((-767 |#1| |#2|) (-10 -7 (-15 -1751 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3308 (|#1| |#1| |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -1634 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767)) -((-1634 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-4188 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-4097 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3308 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3819 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1751 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))) -(-10 -7 (-15 -1751 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3308 (|#1| |#1| |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -1634 (|#1| |#1| |#1|))) -((-2315 (((-692 (-1225)) $ (-1225)) 26)) (-4285 (((-692 (-552)) $ (-552)) 25)) (-1949 (((-772) $ (-128)) 27)) (-2198 (((-692 (-129)) $ (-129)) 24)) (-1391 (((-692 (-1225)) $) 12)) (-4011 (((-692 (-1223)) $) 8)) (-2384 (((-692 (-1222)) $) 10)) (-3760 (((-692 (-552)) $) 13)) (-1996 (((-692 (-550)) $) 9)) (-3150 (((-692 (-549)) $) 11)) (-4171 (((-772) $ (-128)) 7)) (-3288 (((-692 (-129)) $) 14)) (-2766 (((-112) $) 31)) (-2086 (((-692 $) |#1| (-955)) 32)) (-2990 (($ $) 6))) -(((-768 |#1|) (-140) (-1101)) (T -768)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-955)) (-4 *3 (-1101)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(-13 (-579) (-10 -8 (-15 -2086 ((-692 $) |t#1| (-955))) (-15 -2766 ((-112) $)))) +((-4221 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764))))) +(-13 (-762) (-723) (-10 -8 (-15 -4221 ((-772)) -3286) (-15 -4132 ($ (-567))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-723) . T) ((-762) . T) ((-1102) . T)) +((-1393 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-2330 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-2155 (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178)) 20) (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19))) +(((-765 |#1|) (-10 -7 (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178))) (-15 -2330 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -1393 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765)) +((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1178)) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) +(-10 -7 (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178))) (-15 -2330 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -1393 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) +((-1579 (((-174 (-567)) |#1|) 27))) +(((-766 |#1|) (-10 -7 (-15 -1579 ((-174 (-567)) |#1|))) (-407)) (T -766)) +((-1579 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))) +(-10 -7 (-15 -1579 ((-174 (-567)) |#1|))) +((-1778 ((|#1| |#1| |#1|) 28)) (-3683 ((|#1| |#1| |#1|) 27)) (-1739 ((|#1| |#1| |#1|) 38)) (-3053 ((|#1| |#1| |#1|) 34)) (-2446 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2720 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 26))) +(((-767 |#1| |#2|) (-10 -7 (-15 -2720 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767)) +((-1739 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2446 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1778 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3683 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2720 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))) +(-10 -7 (-15 -2720 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|))) +((-3835 (((-692 (-1226)) $ (-1226)) 26)) (-2841 (((-692 (-552)) $ (-552)) 25)) (-3597 (((-772) $ (-128)) 27)) (-3887 (((-692 (-129)) $ (-129)) 24)) (-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-3157 (((-112) $) 31)) (-1476 (((-692 $) |#1| (-956)) 32)) (-1675 (($ $) 6))) +(((-768 |#1|) (-140) (-1102)) (T -768)) +((-1476 (*1 *2 *3 *4) (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(-13 (-579) (-10 -8 (-15 -1476 ((-692 $) |t#1| (-956))) (-15 -3157 ((-112) $)))) (((-173) . T) ((-530) . T) ((-579) . T) ((-861) . T)) -((-2910 (((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-1593 (((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-1999 (((-567)) 85))) -(((-769 |#1| |#2|) (-10 -7 (-15 -1999 ((-567))) (-15 -1593 ((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -2910 ((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1243 (-567)) (-412 (-567) |#1|)) (T -769)) -((-2910 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1243 *3)) (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-1593 (*1 *2) (-12 (-4 *3 (-1243 (-567))) (-5 *2 (-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-1999 (*1 *2) (-12 (-4 *3 (-1243 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3))))) -(-10 -7 (-15 -1999 ((-567))) (-15 -1593 ((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -2910 ((-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) -((-2399 (((-112) $ $) NIL)) (-2033 (((-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 20) (($ (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-770) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4127 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4127 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2033 ((-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770))))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4127 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4127 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2033 ((-3 (|:| |nia| (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-2372 (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))) 18) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177))) 17)) (-1754 (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))) 20) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177))) 19))) -(((-771 |#1|) (-10 -7 (-15 -2372 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -2372 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))))) (-559)) (T -771)) -((-1754 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5))))) -(-10 -7 (-15 -2372 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -2372 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2825 (($ $ $) 10)) (-3460 (((-3 $ "failed") $ $) 15)) (-4125 (($ $ (-567)) 11)) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($ $) NIL)) (-2355 (($ $ $) NIL)) (-2843 (((-112) $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2771 (($ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 6 T CONST)) (-1722 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL))) -(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2355 ($ $ $)) (-15 -2344 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -2573 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -2387 ((-3 $ "failed") $ $)) (-15 -4125 ($ $ (-567))) (-15 -1378 ($ $)) (-6 (-4419 "*"))))) (T -772)) -((-2355 (*1 *1 *1 *1) (-5 *1 (-772))) (-2344 (*1 *1 *1 *1) (-5 *1 (-772))) (-2771 (*1 *1 *1 *1) (-5 *1 (-772))) (-2573 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1598 (-772)) (|:| -1608 (-772)))) (-5 *1 (-772)))) (-2387 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-1378 (*1 *1 *1) (-5 *1 (-772)))) -(-13 (-794) (-727) (-10 -8 (-15 -2355 ($ $ $)) (-15 -2344 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -2573 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -2387 ((-3 $ "failed") $ $)) (-15 -4125 ($ $ (-567))) (-15 -1378 ($ $)) (-6 (-4419 "*")))) +((-3454 (((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-3675 (((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-3788 (((-567)) 85))) +(((-769 |#1| |#2|) (-10 -7 (-15 -3788 ((-567))) (-15 -3675 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -3454 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1244 (-567)) (-412 (-567) |#1|)) (T -769)) +((-3454 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3675 (*1 *2) (-12 (-4 *3 (-1244 (-567))) (-5 *2 (-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-3788 (*1 *2) (-12 (-4 *3 (-1244 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3))))) +(-10 -7 (-15 -3788 ((-567))) (-15 -3675 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -3454 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) +((-2403 (((-112) $ $) NIL)) (-2038 (((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-770) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2038 ((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770))))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2038 ((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-3549 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 18) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178))) 17)) (-3018 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 20) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178))) 19))) +(((-771 |#1|) (-10 -7 (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) (-559)) (T -771)) +((-3018 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5))))) +(-10 -7 (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) 10)) (-3472 (((-3 $ "failed") $ $) 15)) (-4130 (($ $ (-567)) 11)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2774 (($ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 6 T CONST)) (-1728 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL))) +(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2774 ($ $ $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2391 ((-3 $ "failed") $ $)) (-15 -4130 ($ $ (-567))) (-15 -1348 ($ $)) (-6 (-4420 "*"))))) (T -772)) +((-2360 (*1 *1 *1 *1) (-5 *1 (-772))) (-2349 (*1 *1 *1 *1) (-5 *1 (-772))) (-2774 (*1 *1 *1 *1) (-5 *1 (-772))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3102 (-772)) (|:| -4194 (-772)))) (-5 *1 (-772)))) (-2391 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-1348 (*1 *1 *1) (-5 *1 (-772)))) +(-13 (-794) (-727) (-10 -8 (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2774 ($ $ $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2391 ((-3 $ "failed") $ $)) (-15 -4130 ($ $ (-567))) (-15 -1348 ($ $)) (-6 (-4420 "*")))) ((|Integer|) (>= |#1| 0)) -((-1754 (((-3 |#2| "failed") |#2| |#2| (-114) (-1177)) 37))) -(((-773 |#1| |#2|) (-10 -7 (-15 -1754 ((-3 |#2| "failed") |#2| |#2| (-114) (-1177)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1202) (-960))) (T -773)) -((-1754 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1202) (-960)))))) -(-10 -7 (-15 -1754 ((-3 |#2| "failed") |#2| |#2| (-114) (-1177)))) -((-4127 (((-775) |#1|) 8))) -(((-774 |#1|) (-10 -7 (-15 -4127 ((-775) |#1|))) (-1217)) (T -774)) -((-4127 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1217))))) -(-10 -7 (-15 -4127 ((-775) |#1|))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 7)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9))) -(((-775) (-1101)) (T -775)) -NIL -(-1101) -((-2896 ((|#2| |#4|) 35))) -(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2896 (|#2| |#4|))) (-455) (-1243 |#1|) (-725 |#1| |#2|) (-1243 |#3|)) (T -776)) -((-2896 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1243 *5))))) -(-10 -7 (-15 -2896 (|#2| |#4|))) -((-3153 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3891 (((-1272) (-1159) (-1159) |#4| |#5|) 33)) (-1646 ((|#4| |#4| |#5|) 74)) (-3004 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|) 79)) (-3694 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|) 16))) -(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3153 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1646 (|#4| |#4| |#5|)) (-15 -3004 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -3891 ((-1272) (-1159) (-1159) |#4| |#5|)) (-15 -3694 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -777)) -((-3694 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3891 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1159)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1066 *6 *7 *8)) (-5 *2 (-1272)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1072 *6 *7 *8 *4)))) (-3004 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1646 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1066 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1072 *4 *5 *6 *2)))) (-3153 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(-10 -7 (-15 -3153 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1646 (|#4| |#4| |#5|)) (-15 -3004 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -3891 ((-1272) (-1159) (-1159) |#4| |#5|)) (-15 -3694 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|))) -((-3747 (((-3 (-1173 (-1173 |#1|)) "failed") |#4|) 53)) (-1373 (((-645 |#4|) |#4|) 24)) (-2529 ((|#4| |#4|) 19))) -(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1373 ((-645 |#4|) |#4|)) (-15 -3747 ((-3 (-1173 (-1173 |#1|)) "failed") |#4|)) (-15 -2529 (|#4| |#4|))) (-351) (-330 |#1|) (-1243 |#2|) (-1243 |#3|) (-922)) (T -778)) -((-2529 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1243 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1243 *5)) (-14 *6 (-922)))) (-3747 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1243 *5)) (-5 *2 (-1173 (-1173 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1243 *6)) (-14 *7 (-922)))) (-1373 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1243 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1243 *6)) (-14 *7 (-922))))) -(-10 -7 (-15 -1373 ((-645 |#4|) |#4|)) (-15 -3747 ((-3 (-1173 (-1173 |#1|)) "failed") |#4|)) (-15 -2529 (|#4| |#4|))) -((-3667 (((-2 (|:| |deter| (-645 (-1173 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1173 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-2783 (((-645 (-772)) |#1|) 20))) -(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3667 ((-2 (|:| |deter| (-645 (-1173 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1173 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -2783 ((-645 (-772)) |#1|))) (-1243 |#4|) (-794) (-851) (-308) (-950 |#4| |#2| |#3|)) (T -779)) -((-2783 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1243 *6)) (-4 *7 (-950 *6 *4 *5)))) (-3667 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1243 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-950 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1173 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1173 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10))))) -(-10 -7 (-15 -3667 ((-2 (|:| |deter| (-645 (-1173 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1173 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -2783 ((-645 (-772)) |#1|))) -((-3623 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-2489 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-3116 (((-953 (-410 (-567))) (-690 (-410 (-567))) (-1177)) 18) (((-953 (-410 (-567))) (-690 (-410 (-567)))) 17))) -(((-780 |#1|) (-10 -7 (-15 -3116 ((-953 (-410 (-567))) (-690 (-410 (-567))))) (-15 -3116 ((-953 (-410 (-567))) (-690 (-410 (-567))) (-1177))) (-15 -2489 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3623 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780)) -((-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1177)) (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3116 ((-953 (-410 (-567))) (-690 (-410 (-567))))) (-15 -3116 ((-953 (-410 (-567))) (-690 (-410 (-567))) (-1177))) (-15 -2489 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3623 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 36)) (-2845 (((-645 |#2|) $) NIL)) (-2670 (((-1173 $) $ |#2|) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-4280 (($ $) 30)) (-2450 (((-112) $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3412 (($ $ $) 110 (|has| |#1| (-559)))) (-1661 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177))))) (((-3 $ "failed") (-953 (-567))) NIL (-2797 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177)))))) (((-3 $ "failed") (-953 |#1|)) NIL (-2797 (-12 (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-993 (-567))))))) (((-3 (-1126 |#1| |#2|) "failed") $) 21)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#2| $) NIL) (($ (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177))))) (($ (-953 (-567))) NIL (-2797 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177)))))) (($ (-953 |#1|)) NIL (-2797 (-12 (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-993 (-567))))))) (((-1126 |#1| |#2|) $) NIL)) (-3621 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-3006 (($ $) NIL) (($ $ |#2|) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2197 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4101 (((-112) $) NIL)) (-1950 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 81)) (-2211 (($ $) 136 (|has| |#1| (-455)))) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-3967 (($ $) NIL (|has| |#1| (-559)))) (-1804 (($ $) NIL (|has| |#1| (-559)))) (-2365 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4052 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2543 (($ $ |#1| (-534 |#2|) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) 57)) (-4183 (((-772) $) NIL)) (-2847 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2054 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-4146 ((|#2| $) 22)) (-2832 (($ (-1173 |#1|) |#2|) NIL) (($ (-1173 $) |#2|) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3605 (($ $ $) 63)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#2|) NIL)) (-1729 (((-112) $) NIL)) (-2752 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-3558 (((-772) $) 23)) (-3345 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-3 |#2| "failed") $) NIL)) (-4254 (($ $) NIL (|has| |#1| (-455)))) (-1371 (($ $) NIL (|has| |#1| (-455)))) (-2687 (((-645 $) $) NIL)) (-1470 (($ $) 39)) (-1652 (($ $) NIL (|has| |#1| (-455)))) (-1976 (((-645 $) $) 43)) (-4203 (($ $) 41)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2307 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1951 (-772))) $ $) 96)) (-3693 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $) 78) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $ |#2|) NIL)) (-4354 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $) NIL) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $ |#2|) NIL)) (-2602 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1711 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3739 (((-1159) $) NIL)) (-2707 (($ $ $) 125 (|has| |#1| (-559)))) (-1547 (((-645 $) $) 32)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| |#2|) (|:| -4250 (-772))) "failed") $) NIL)) (-2815 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-1626 (($ $ $) NIL)) (-2701 (($ $) 24)) (-1835 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-1471 (($ $ $) NIL)) (-3146 (($ $) 26)) (-3430 (((-1121) $) NIL)) (-2965 (((-2 (|:| -2771 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-3770 (((-2 (|:| -2771 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-2943 (((-112) $) 56)) (-2955 ((|#1| $) 58)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-3987 (((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-2901 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3997 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-1999 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1621 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1813 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-3945 (($ $) NIL)) (-4283 (($ $) 35)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177))))) (($ (-953 (-567))) NIL (-2797 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1177))) (-1653 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1177)))))) (($ (-953 |#1|)) NIL (|has| |#2| (-615 (-1177)))) (((-1159) $) NIL (-12 (|has| |#1| (-1039 (-567))) (|has| |#2| (-615 (-1177))))) (((-953 |#1|) $) NIL (|has| |#2| (-615 (-1177))))) (-4385 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-953 |#1|) $) NIL (|has| |#2| (-615 (-1177)))) (((-1126 |#1| |#2|) $) 18) (($ (-1126 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 13 T CONST)) (-4330 (((-3 (-112) "failed") $ $) NIL)) (-1722 (($) 37 T CONST)) (-2541 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-2279 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2636 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) 75)) (-3024 (($ $ $) 85)) (** (($ $ (-922)) NIL) (($ $ (-772)) 70)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-781 |#1| |#2|) (-13 (-1066 |#1| (-534 |#2|) |#2|) (-614 (-1126 |#1| |#2|)) (-1039 (-1126 |#1| |#2|))) (-1050) (-851)) (T -781)) -NIL -(-13 (-1066 |#1| (-534 |#2|) |#2|) (-614 (-1126 |#1| |#2|)) (-1039 (-1126 |#1| |#2|))) -((-3822 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) -(((-782 |#1| |#2|) (-10 -7 (-15 -3822 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1050) (-1050)) (T -782)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))) -(-10 -7 (-15 -3822 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 12)) (-3455 (((-1267 |#1|) $ (-772)) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-2476 (($ (-1173 |#1|)) NIL)) (-2670 (((-1173 $) $ (-1083)) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1083))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3388 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-3412 (($ $ $) 50 (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1404 (($ $ (-772)) NIL)) (-3229 (($ $ (-772)) NIL)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1083) "failed") $) NIL) (((-3 (-1173 |#1|) "failed") $) 10)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1083) $) NIL) (((-1173 |#1|) $) NIL)) (-3621 (($ $ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-1580 (($ $ $) NIL)) (-1307 (($ $ $) 87 (|has| |#1| (-559)))) (-1950 (((-2 (|:| -3686 |#1|) (|:| -1598 $) (|:| -1608 $)) $ $) 86 (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-772) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1083) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1083) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ $) NIL (|has| |#1| (-559)))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1152)))) (-2832 (($ (-1173 |#1|) (-1083)) NIL) (($ (-1173 $) (-1083)) NIL)) (-3275 (($ $ (-772)) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-3605 (($ $ $) 27)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1083)) NIL) (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-2752 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3345 (($ (-1 (-772) (-772)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1317 (((-1173 |#1|) $) NIL)) (-1902 (((-3 (-1083) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2307 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1951 (-772))) $ $) 37)) (-2223 (($ $ $) 41)) (-3398 (($ $ $) 47)) (-3693 (((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $) 46)) (-3739 (((-1159) $) NIL)) (-2707 (($ $ $) 56 (|has| |#1| (-559)))) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1083)) (|:| -4250 (-772))) "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) NIL (|has| |#1| (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2965 (((-2 (|:| -2771 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-3770 (((-2 (|:| -2771 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-4177 (((-2 (|:| -3621 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-1627 (((-2 (|:| -3621 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-2943 (((-112) $) 13)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4196 (($ $ (-772) |#1| $) 26)) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-3987 (((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-2466 (((-2 (|:| -3621 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1083) |#1|) NIL) (($ $ (-645 (-1083)) (-645 |#1|)) NIL) (($ $ (-1083) $) NIL) (($ $ (-645 (-1083)) (-645 $)) NIL)) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-1859 (((-3 $ "failed") $ (-772)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1999 (($ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1621 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1813 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1083) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-2868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1083)) NIL) (((-1173 |#1|) $) 7) (($ (-1173 |#1|)) 8) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 28 T CONST)) (-1722 (($) 32 T CONST)) (-2636 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) 40) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-783 |#1|) (-13 (-1243 |#1|) (-614 (-1173 |#1|)) (-1039 (-1173 |#1|)) (-10 -8 (-15 -4196 ($ $ (-772) |#1| $)) (-15 -3605 ($ $ $)) (-15 -2307 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1951 (-772))) $ $)) (-15 -2223 ($ $ $)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3398 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -3388 ((-645 $) $ $)) (-15 -2707 ($ $ $)) (-15 -3987 ((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3770 ((-2 (|:| -2771 $) (|:| |coef1| $)) $ $)) (-15 -2965 ((-2 (|:| -2771 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3621 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1627 ((-2 (|:| -3621 |#1|) (|:| |coef1| $)) $ $)) (-15 -4177 ((-2 (|:| -3621 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1050)) (T -783)) -((-4196 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-3605 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-2307 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -1951 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-2223 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-3693 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3686 *3) (|:| |gap| (-772)) (|:| -1598 (-783 *3)) (|:| -1608 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-3398 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-3388 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-2707 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1050)))) (-3987 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2771 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-3770 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2771 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-2965 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2771 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-2466 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3621 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-1627 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3621 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-4177 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3621 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))) -(-13 (-1243 |#1|) (-614 (-1173 |#1|)) (-1039 (-1173 |#1|)) (-10 -8 (-15 -4196 ($ $ (-772) |#1| $)) (-15 -3605 ($ $ $)) (-15 -2307 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1951 (-772))) $ $)) (-15 -2223 ($ $ $)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3398 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -3388 ((-645 $) $ $)) (-15 -2707 ($ $ $)) (-15 -3987 ((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3770 ((-2 (|:| -2771 $) (|:| |coef1| $)) $ $)) (-15 -2965 ((-2 (|:| -2771 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3621 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1627 ((-2 (|:| -3621 |#1|) (|:| |coef1| $)) $ $)) (-15 -4177 ((-2 (|:| -3621 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3021 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-4023 ((|#1| (-772) |#1|) 23)) (-3771 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567))))))) -(((-784 |#1|) (-10 -7 (-15 -4023 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3771 (|#1| (-772) |#1|)) (-15 -3021 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784)) -((-3021 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-4023 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -4023 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3771 (|#1| (-772) |#1|)) (-15 -3021 (|#1| (-772) |#1|))) |%noBranch|)) -((-2399 (((-112) $ $) 7)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) 86)) (-3645 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) 102) (((-112) $) 98)) (-4124 ((|#4| |#4| $) 93)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 127)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2417 (((-3 $ "failed") $) 83)) (-4042 ((|#4| |#4| $) 90)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3670 ((|#4| |#4| $) 88)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) 106)) (-2091 (((-112) |#4| $) 137)) (-2605 (((-112) |#4| $) 134)) (-4136 (((-112) |#4| $) 138) (((-112) $) 135)) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) 105) (((-112) $) 104)) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 128)) (-3250 (((-3 |#4| "failed") $) 84)) (-1424 (((-645 $) |#4| $) 130)) (-3536 (((-3 (-112) (-645 $)) |#4| $) 133)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1877 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2702 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2200 (((-645 |#4|) $) 108)) (-2815 (((-112) |#4| $) 100) (((-112) $) 96)) (-1626 ((|#4| |#4| $) 91)) (-1835 (((-112) $ $) 111)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) 101) (((-112) $) 97)) (-1471 ((|#4| |#4| $) 92)) (-3430 (((-1121) $) 11)) (-2405 (((-3 |#4| "failed") $) 85)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3454 (((-3 $ "failed") $ |#4|) 79)) (-3981 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-1813 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-2961 (($ $) 89)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4191 (((-772) $) 77 (|has| |#3| (-370)))) (-4104 (((-112) $ $) 9)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3175 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) 82)) (-3620 (((-112) |#4| $) 136)) (-3113 (((-112) |#3| $) 81)) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-785 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -785)) -NIL -(-13 (-1072 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1101) . T) ((-1210 |#1| |#2| |#3| |#4|) . T) ((-1217) . T)) -((-2850 (((-3 (-381) "failed") (-317 |#1|) (-922)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-953 |#1|)) (-922)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-953 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-953 |#1|) (-922)) 31 (|has| |#1| (-1050))) (((-3 (-381) "failed") (-953 |#1|)) 30 (|has| |#1| (-1050)))) (-3900 (((-381) (-317 |#1|) (-922)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-953 |#1|)) (-922)) 91 (|has| |#1| (-559))) (((-381) (-410 (-953 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-953 |#1|) (-922)) 86 (|has| |#1| (-1050))) (((-381) (-953 |#1|)) 85 (|has| |#1| (-1050))) (((-381) |#1| (-922)) 76) (((-381) |#1|) 22)) (-2648 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-922)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)) 28 (|has| |#1| (-1050))) (((-3 (-169 (-381)) "failed") (-953 |#1|)) 26 (|has| |#1| (-1050))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2619 (((-169 (-381)) (-317 (-169 |#1|)) (-922)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-922)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 |#1|)) (-922)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-953 |#1|) (-922)) 84 (|has| |#1| (-1050))) (((-169 (-381)) (-953 |#1|)) 83 (|has| |#1| (-1050))) (((-169 (-381)) (-953 (-169 |#1|)) (-922)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-953 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-922)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-922)) 27) (((-169 (-381)) |#1|) 25))) -(((-786 |#1|) (-10 -7 (-15 -3900 ((-381) |#1|)) (-15 -3900 ((-381) |#1| (-922))) (-15 -2619 ((-169 (-381)) |#1|)) (-15 -2619 ((-169 (-381)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2619 ((-169 (-381)) (-169 |#1|))) (-15 -2619 ((-169 (-381)) (-169 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -2619 ((-169 (-381)) (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3900 ((-381) (-953 |#1|))) (-15 -3900 ((-381) (-953 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-953 |#1|))) (-15 -2619 ((-169 (-381)) (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3900 ((-381) (-410 (-953 |#1|)))) (-15 -3900 ((-381) (-410 (-953 |#1|)) (-922))) (-15 -2619 ((-169 (-381)) (-410 (-953 |#1|)))) (-15 -2619 ((-169 (-381)) (-410 (-953 |#1|)) (-922))) (-15 -2619 ((-169 (-381)) (-410 (-953 (-169 |#1|))))) (-15 -2619 ((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3900 ((-381) (-317 |#1|))) (-15 -3900 ((-381) (-317 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-317 |#1|))) (-15 -2619 ((-169 (-381)) (-317 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2619 ((-169 (-381)) (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-953 |#1|))) (-15 -2850 ((-3 (-381) "failed") (-953 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-410 (-953 |#1|)))) (-15 -2850 ((-3 (-381) "failed") (-410 (-953 |#1|)) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-317 |#1|))) (-15 -2850 ((-3 (-381) "failed") (-317 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786)) -((-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2648 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3900 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2))))) -(-10 -7 (-15 -3900 ((-381) |#1|)) (-15 -3900 ((-381) |#1| (-922))) (-15 -2619 ((-169 (-381)) |#1|)) (-15 -2619 ((-169 (-381)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2619 ((-169 (-381)) (-169 |#1|))) (-15 -2619 ((-169 (-381)) (-169 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -2619 ((-169 (-381)) (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3900 ((-381) (-953 |#1|))) (-15 -3900 ((-381) (-953 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-953 |#1|))) (-15 -2619 ((-169 (-381)) (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3900 ((-381) (-410 (-953 |#1|)))) (-15 -3900 ((-381) (-410 (-953 |#1|)) (-922))) (-15 -2619 ((-169 (-381)) (-410 (-953 |#1|)))) (-15 -2619 ((-169 (-381)) (-410 (-953 |#1|)) (-922))) (-15 -2619 ((-169 (-381)) (-410 (-953 (-169 |#1|))))) (-15 -2619 ((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3900 ((-381) (-317 |#1|))) (-15 -3900 ((-381) (-317 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-317 |#1|))) (-15 -2619 ((-169 (-381)) (-317 |#1|) (-922))) (-15 -2619 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2619 ((-169 (-381)) (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-953 |#1|))) (-15 -2850 ((-3 (-381) "failed") (-953 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-410 (-953 |#1|)))) (-15 -2850 ((-3 (-381) "failed") (-410 (-953 |#1|)) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -2850 ((-3 (-381) "failed") (-317 |#1|))) (-15 -2850 ((-3 (-381) "failed") (-317 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-922))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2648 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) -((-2639 (((-922) (-1159)) 92)) (-3769 (((-3 (-381) "failed") (-1159)) 36)) (-1607 (((-381) (-1159)) 34)) (-3723 (((-922) (-1159)) 63)) (-3918 (((-1159) (-922)) 75)) (-3598 (((-1159) (-922)) 62))) -(((-787) (-10 -7 (-15 -3598 ((-1159) (-922))) (-15 -3723 ((-922) (-1159))) (-15 -3918 ((-1159) (-922))) (-15 -2639 ((-922) (-1159))) (-15 -1607 ((-381) (-1159))) (-15 -3769 ((-3 (-381) "failed") (-1159))))) (T -787)) -((-3769 (*1 *2 *3) (|partial| -12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-787)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-922)) (-5 *1 (-787)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1159)) (-5 *1 (-787)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-922)) (-5 *1 (-787)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1159)) (-5 *1 (-787))))) -(-10 -7 (-15 -3598 ((-1159) (-922))) (-15 -3723 ((-922) (-1159))) (-15 -3918 ((-1159) (-922))) (-15 -2639 ((-922) (-1159))) (-15 -1607 ((-381) (-1159))) (-15 -3769 ((-3 (-381) "failed") (-1159)))) -((-2399 (((-112) $ $) 7)) (-3069 (((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 16) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 14)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-3018 (((-3 |#2| "failed") |#2| |#2| (-114) (-1178)) 37))) +(((-773 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 |#2| "failed") |#2| |#2| (-114) (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -773)) +((-3018 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1203) (-961)))))) +(-10 -7 (-15 -3018 ((-3 |#2| "failed") |#2| |#2| (-114) (-1178)))) +((-4132 (((-775) |#1|) 8))) +(((-774 |#1|) (-10 -7 (-15 -4132 ((-775) |#1|))) (-1218)) (T -774)) +((-4132 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1218))))) +(-10 -7 (-15 -4132 ((-775) |#1|))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9))) +(((-775) (-1102)) (T -775)) +NIL +(-1102) +((-2475 ((|#2| |#4|) 35))) +(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#2| |#4|))) (-455) (-1244 |#1|) (-725 |#1| |#2|) (-1244 |#3|)) (T -776)) +((-2475 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1244 *5))))) +(-10 -7 (-15 -2475 (|#2| |#4|))) +((-2109 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2217 (((-1273) (-1160) (-1160) |#4| |#5|) 33)) (-3762 ((|#4| |#4| |#5|) 74)) (-3321 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 79)) (-1413 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 16))) +(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2109 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3762 (|#4| |#4| |#5|)) (-15 -3321 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2217 ((-1273) (-1160) (-1160) |#4| |#5|)) (-15 -1413 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -777)) +((-1413 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2217 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1160)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1273)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))) (-3321 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3762 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1073 *4 *5 *6 *2)))) (-2109 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(-10 -7 (-15 -2109 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3762 (|#4| |#4| |#5|)) (-15 -3321 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2217 ((-1273) (-1160) (-1160) |#4| |#5|)) (-15 -1413 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|))) +((-3753 (((-3 (-1174 (-1174 |#1|)) "failed") |#4|) 53)) (-3518 (((-645 |#4|) |#4|) 24)) (-3253 ((|#4| |#4|) 19))) +(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3518 ((-645 |#4|) |#4|)) (-15 -3753 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -3253 (|#4| |#4|))) (-351) (-330 |#1|) (-1244 |#2|) (-1244 |#3|) (-923)) (T -778)) +((-3253 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1244 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1244 *5)) (-14 *6 (-923)))) (-3753 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6)) (-14 *7 (-923)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6)) (-14 *7 (-923))))) +(-10 -7 (-15 -3518 ((-645 |#4|) |#4|)) (-15 -3753 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -3253 (|#4| |#4|))) +((-1572 (((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-3817 (((-645 (-772)) |#1|) 20))) +(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1572 ((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3817 ((-645 (-772)) |#1|))) (-1244 |#4|) (-794) (-851) (-308) (-951 |#4| |#2| |#3|)) (T -779)) +((-3817 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *6)) (-4 *7 (-951 *6 *4 *5)))) (-1572 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1244 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-951 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1174 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10))))) +(-10 -7 (-15 -1572 ((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3817 ((-645 (-772)) |#1|))) +((-3064 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-1442 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-2155 (((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178)) 18) (((-954 (-410 (-567))) (-690 (-410 (-567)))) 17))) +(((-780 |#1|) (-10 -7 (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178))) (-15 -1442 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3064 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780)) +((-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1178)) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) +(-10 -7 (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178))) (-15 -1442 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3064 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 36)) (-2847 (((-645 |#2|) $) NIL)) (-2675 (((-1174 $) $ |#2|) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-4283 (($ $) 30)) (-2061 (((-112) $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) 110 (|has| |#1| (-559)))) (-1734 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (((-3 $ "failed") (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (((-3 $ "failed") (-954 |#1|)) NIL (-2800 (-12 (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-994 (-567))))))) (((-3 (-1127 |#1| |#2|) "failed") $) 21)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (($ (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (($ (-954 |#1|)) NIL (-2800 (-12 (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-994 (-567))))))) (((-1127 |#1| |#2|) $) NIL)) (-2951 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-3014 (($ $) NIL) (($ $ |#2|) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3786 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1479 (((-112) $) NIL)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 81)) (-2872 (($ $) 136 (|has| |#1| (-455)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-3411 (($ $) NIL (|has| |#1| (-559)))) (-3395 (($ $) NIL (|has| |#1| (-559)))) (-4205 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1824 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2320 (($ $ |#1| (-534 |#2|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) 57)) (-2695 (((-772) $) NIL)) (-1664 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2689 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-1679 ((|#2| $) 22)) (-2836 (($ (-1174 |#1|) |#2|) NIL) (($ (-1174 $) |#2|) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1838 (($ $ $) 63)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-1721 (((-112) $) NIL)) (-2656 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2991 (((-772) $) 23)) (-3273 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3046 (((-3 |#2| "failed") $) NIL)) (-2964 (($ $) NIL (|has| |#1| (-455)))) (-4146 (($ $) NIL (|has| |#1| (-455)))) (-3388 (((-645 $) $) NIL)) (-4040 (($ $) 39)) (-2091 (($ $) NIL (|has| |#1| (-455)))) (-2719 (((-645 $) $) 43)) (-1359 (($ $) 41)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 96)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 78) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) NIL) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#2|) NIL)) (-1491 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2767 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1419 (((-1160) $) NIL)) (-2272 (($ $ $) 125 (|has| |#1| (-559)))) (-2300 (((-645 $) $) 32)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-772))) "failed") $) NIL)) (-1791 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3159 (($ $ $) NIL)) (-2672 (($ $) 24)) (-3392 (((-112) $ $) NIL)) (-2554 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-4164 (($ $ $) NIL)) (-2724 (($ $) 26)) (-3430 (((-1122) $) NIL)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-2949 (((-112) $) 56)) (-2962 ((|#1| $) 58)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-1772 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3288 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-3788 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2804 (($ $) NIL)) (-2606 (($ $) 35)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (($ (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (($ (-954 |#1|)) NIL (|has| |#2| (-615 (-1178)))) (((-1160) $) NIL (-12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1178))))) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1178))))) (-4358 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1178)))) (((-1127 |#1| |#2|) $) 18) (($ (-1127 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 13 T CONST)) (-4222 (((-3 (-112) "failed") $ $) NIL)) (-1728 (($) 37 T CONST)) (-2097 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-1875 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 75)) (-3033 (($ $ $) 85)) (** (($ $ (-923)) NIL) (($ $ (-772)) 70)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-781 |#1| |#2|) (-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851)) (T -781)) +NIL +(-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|))) +((-3829 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3829 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1051) (-1051)) (T -782)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))) +(-10 -7 (-15 -3829 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 12)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1623 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-2323 (($ $ $) 50 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL) (((-3 (-1174 |#1|) "failed") $) 10)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL) (((-1174 |#1|) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) 87 (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) 86 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1838 (($ $ $) 27)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $) 37)) (-1860 (($ $ $) 41)) (-3304 (($ $ $) 47)) (-2521 (((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 46)) (-1419 (((-1160) $) NIL)) (-2272 (($ $ $) 56 (|has| |#1| (-559)))) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-3475 (((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-2076 (((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-2949 (((-112) $) 13)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3110 (($ $ (-772) |#1| $) 26)) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-4107 (((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1084)) NIL) (((-1174 |#1|) $) 7) (($ (-1174 |#1|)) 8) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 28 T CONST)) (-1728 (($) 32 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 40) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-783 |#1|) (-13 (-1244 |#1|) (-614 (-1174 |#1|)) (-1040 (-1174 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#1| $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $)) (-15 -1860 ($ $ $)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3304 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -1623 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -4107 ((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2076 ((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $)) (-15 -3475 ((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1051)) (T -783)) +((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-1838 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-1451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -2673 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-1860 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-2521 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3694 *3) (|:| |gap| (-772)) (|:| -3102 (-783 *3)) (|:| -4194 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-3304 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-1623 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4348 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3521 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4107 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3475 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) +(-13 (-1244 |#1|) (-614 (-1174 |#1|)) (-1040 (-1174 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#1| $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $)) (-15 -1860 ($ $ $)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3304 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -1623 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -4107 ((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2076 ((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $)) (-15 -3475 ((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1440 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-3444 ((|#1| (-772) |#1|) 23)) (-3227 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567))))))) +(((-784 |#1|) (-10 -7 (-15 -3444 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3227 (|#1| (-772) |#1|)) (-15 -1440 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784)) +((-1440 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3227 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3444 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3444 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3227 (|#1| (-772) |#1|)) (-15 -1440 (|#1| (-772) |#1|))) |%noBranch|)) +((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-785 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -785)) +NIL +(-13 (-1073 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T)) +((-3794 (((-3 (-381) "failed") (-317 |#1|) (-923)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-954 |#1|)) (-923)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-954 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-954 |#1|) (-923)) 31 (|has| |#1| (-1051))) (((-3 (-381) "failed") (-954 |#1|)) 30 (|has| |#1| (-1051)))) (-3875 (((-381) (-317 |#1|) (-923)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-954 |#1|)) (-923)) 91 (|has| |#1| (-559))) (((-381) (-410 (-954 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-954 |#1|) (-923)) 86 (|has| |#1| (-1051))) (((-381) (-954 |#1|)) 85 (|has| |#1| (-1051))) (((-381) |#1| (-923)) 76) (((-381) |#1|) 22)) (-4328 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-923)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)) 28 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 |#1|)) 26 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2622 (((-169 (-381)) (-317 (-169 |#1|)) (-923)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-923)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|)) (-923)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-954 |#1|) (-923)) 84 (|has| |#1| (-1051))) (((-169 (-381)) (-954 |#1|)) 83 (|has| |#1| (-1051))) (((-169 (-381)) (-954 (-169 |#1|)) (-923)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-954 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-923)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-923)) 27) (((-169 (-381)) |#1|) 25))) +(((-786 |#1|) (-10 -7 (-15 -3875 ((-381) |#1|)) (-15 -3875 ((-381) |#1| (-923))) (-15 -2622 ((-169 (-381)) |#1|)) (-15 -2622 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2622 ((-169 (-381)) (-169 |#1|))) (-15 -2622 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3875 ((-381) (-954 |#1|))) (-15 -3875 ((-381) (-954 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 |#1|))) (-15 -2622 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3875 ((-381) (-410 (-954 |#1|)))) (-15 -3875 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3875 ((-381) (-317 |#1|))) (-15 -3875 ((-381) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 |#1|))) (-15 -2622 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-954 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786)) +((-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3875 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3875 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2))))) +(-10 -7 (-15 -3875 ((-381) |#1|)) (-15 -3875 ((-381) |#1| (-923))) (-15 -2622 ((-169 (-381)) |#1|)) (-15 -2622 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2622 ((-169 (-381)) (-169 |#1|))) (-15 -2622 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3875 ((-381) (-954 |#1|))) (-15 -3875 ((-381) (-954 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 |#1|))) (-15 -2622 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3875 ((-381) (-410 (-954 |#1|)))) (-15 -3875 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3875 ((-381) (-317 |#1|))) (-15 -3875 ((-381) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 |#1|))) (-15 -2622 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-954 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) +((-1809 (((-923) (-1160)) 92)) (-4240 (((-3 (-381) "failed") (-1160)) 36)) (-4099 (((-381) (-1160)) 34)) (-2588 (((-923) (-1160)) 63)) (-2947 (((-1160) (-923)) 75)) (-2480 (((-1160) (-923)) 62))) +(((-787) (-10 -7 (-15 -2480 ((-1160) (-923))) (-15 -2588 ((-923) (-1160))) (-15 -2947 ((-1160) (-923))) (-15 -1809 ((-923) (-1160))) (-15 -4099 ((-381) (-1160))) (-15 -4240 ((-3 (-381) "failed") (-1160))))) (T -787)) +((-4240 (*1 *2 *3) (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787))))) +(-10 -7 (-15 -2480 ((-1160) (-923))) (-15 -2588 ((-923) (-1160))) (-15 -2947 ((-1160) (-923))) (-15 -1809 ((-923) (-1160))) (-15 -4099 ((-381) (-1160))) (-15 -4240 ((-3 (-381) "failed") (-1160)))) +((-2403 (((-112) $ $) 7)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 16) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 14)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-788) (-140)) (T -788)) -((-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036)))))) (-3069 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1036)) (-5 *3 (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036)))))) (-3069 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1036)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1101) (-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3069 ((-1036) (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) (|:| |extra| (-1036))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3069 ((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2544 (((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381))) 55) (((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381))) 52)) (-3973 (((-1272) (-1267 (-381)) (-567) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381))) 61)) (-1750 (((-1272) (-1267 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381))) 50)) (-3700 (((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381))) 63) (((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381))) 62))) -(((-789) (-10 -7 (-15 -3700 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -3700 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)))) (-15 -1750 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -2544 ((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -2544 ((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)))) (-15 -3973 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))))) (T -789)) -((-3973 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789)))) (-2544 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381)))) (-5 *7 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789)))) (-2544 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381)))) (-5 *7 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789)))) (-1750 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789)))) (-3700 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789)))) (-3700 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) (-5 *1 (-789))))) -(-10 -7 (-15 -3700 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -3700 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)))) (-15 -1750 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -2544 ((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)))) (-15 -2544 ((-1272) (-1267 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381))) (-381) (-1267 (-381)) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)) (-1267 (-381)))) (-15 -3973 ((-1272) (-1267 (-381)) (-567) (-381) (-381) (-567) (-1 (-1272) (-1267 (-381)) (-1267 (-381)) (-381))))) -((-3936 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-2234 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-1884 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-2051 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-1726 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-4212 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-3164 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-4175 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-1928 (((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39))) -(((-790) (-10 -7 (-15 -1928 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4175 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3164 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4212 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2051 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2234 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1726 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1884 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3936 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790)) -((-3936 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1884 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1726 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2234 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2051 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4212 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3164 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4175 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1928 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567))))) -(-10 -7 (-15 -1928 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4175 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3164 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4212 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2051 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2234 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1726 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1884 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3936 ((-2 (|:| -3794 (-381)) (|:| -2053 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)))) -((-2550 (((-1212 |#1|) |#1| (-225) (-567)) 69))) -(((-791 |#1|) (-10 -7 (-15 -2550 ((-1212 |#1|) |#1| (-225) (-567)))) (-975)) (T -791)) -((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1212 *3)) (-5 *1 (-791 *3)) (-4 *3 (-975))))) -(-10 -7 (-15 -2550 ((-1212 |#1|) |#1| (-225) (-567)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 25)) (-3460 (((-3 $ "failed") $ $) 27)) (-2245 (($) 24 T CONST)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 23 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3037 (($ $ $) 31) (($ $) 30)) (-3024 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26) (($ (-567) $) 29))) +((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037)))))) (-3355 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037)))))) (-3355 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3355 ((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3355 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2455 (((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381))) 55) (((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 52)) (-2778 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 61)) (-3777 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 50)) (-4054 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381))) 63) (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 62))) +(((-789) (-10 -7 (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -3777 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -2778 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))))) (T -789)) +((-2778 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-2455 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-2455 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-3777 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-4054 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-4054 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789))))) +(-10 -7 (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -3777 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -2778 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))))) +((-4035 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-2709 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-3734 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-3662 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-1456 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-4133 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-1671 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-3394 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-3100 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39))) +(((-790) (-10 -7 (-15 -3100 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3394 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1671 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4133 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3662 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2709 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1456 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3734 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4035 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790)) +((-4035 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3734 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1456 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2709 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3662 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4133 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1671 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3394 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3100 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567))))) +(-10 -7 (-15 -3100 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3394 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1671 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4133 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3662 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2709 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1456 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3734 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4035 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)))) +((-1692 (((-1213 |#1|) |#1| (-225) (-567)) 69))) +(((-791 |#1|) (-10 -7 (-15 -1692 ((-1213 |#1|) |#1| (-225) (-567)))) (-976)) (T -791)) +((-1692 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1213 *3)) (-5 *1 (-791 *3)) (-4 *3 (-976))))) +(-10 -7 (-15 -1692 ((-1213 |#1|) |#1| (-225) (-567)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3045 (($ $ $) 31) (($ $) 30)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29))) (((-792) (-140)) (T -792)) NIL (-13 (-796) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 25)) (-2245 (($) 24 T CONST)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 23 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3024 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) (((-793) (-140)) (T -793)) NIL (-13 (-795) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-795) . T) ((-851) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 25)) (-2825 (($ $ $) 28)) (-3460 (((-3 $ "failed") $ $) 27)) (-2245 (($) 24 T CONST)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 23 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3024 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-795) . T) ((-851) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-4016 (($ $ $) 28)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) (((-794) (-140)) (T -794)) -((-2825 (*1 *1 *1 *1) (-4 *1 (-794)))) -(-13 (-796) (-10 -8 (-15 -2825 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3024 (($ $ $) 21)) (* (($ (-922) $) 22))) +((-4016 (*1 *1 *1 *1) (-4 *1 (-794)))) +(-13 (-796) (-10 -8 (-15 -4016 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22))) (((-795) (-140)) (T -795)) NIL (-13 (-851) (-25)) -(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 25)) (-3460 (((-3 $ "failed") $ $) 27)) (-2245 (($) 24 T CONST)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 23 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3024 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26))) +(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) (((-796) (-140)) (T -796)) NIL (-13 (-793) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-851) . T) ((-1101) . T)) -((-2840 (((-112) $) 42)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-2240 (((-3 (-410 (-567)) "failed") $) 78)) (-1426 (((-112) $) 72)) (-2242 (((-410 (-567)) $) 76)) (-2896 ((|#2| $) 26)) (-3822 (($ (-1 |#2| |#2|) $) 23)) (-2933 (($ $) 58)) (-3880 (((-539) $) 67)) (-2073 (($ $) 21)) (-4127 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-1772 (((-772)) 10)) (-4137 ((|#2| $) 71)) (-2929 (((-112) $ $) 30)) (-2952 (((-112) $ $) 69)) (-3037 (($ $) 32) (($ $ $) NIL)) (-3024 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-797 |#1| |#2|) (-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797)) -((-1772 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4))))) -(-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2371 (((-772)) 58 (|has| |#1| (-370)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-2033 (((-567) $) 99 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 95)) (-3153 (((-3 $ "failed") $) 37)) (-2724 ((|#1| $) 84)) (-2240 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-1426 (((-112) $) 73 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-1378 (($) 61 (|has| |#1| (-370)))) (-2843 (((-112) $) 35)) (-2283 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2896 ((|#1| $) 76)) (-2010 (($ $ $) 67 (|has| |#1| (-851)))) (-2998 (($ $ $) 66 (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) 86)) (-3425 (((-922) $) 60 (|has| |#1| (-370)))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 70 (|has| |#1| (-365)))) (-3763 (($ (-922)) 59 (|has| |#1| (-370)))) (-1935 ((|#1| $) 81)) (-4122 ((|#1| $) 82)) (-4324 ((|#1| $) 83)) (-2979 ((|#1| $) 77)) (-1340 ((|#1| $) 78)) (-4217 ((|#1| $) 79)) (-3800 ((|#1| $) 80)) (-3430 (((-1121) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) 87 (|has| |#1| (-517 (-1177) |#1|)))) (-1783 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3880 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-2073 (($ $) 85)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1039 (-410 (-567)))))) (-1467 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4137 ((|#1| $) 74 (|has| |#1| (-1061)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 64 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 63 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 65 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-851) . T) ((-1102) . T)) +((-2460 (((-112) $) 42)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-2085 (((-3 (-410 (-567)) "failed") $) 78)) (-1862 (((-112) $) 72)) (-2331 (((-410 (-567)) $) 76)) (-2475 ((|#2| $) 26)) (-3829 (($ (-1 |#2| |#2|) $) 23)) (-2939 (($ $) 58)) (-3893 (((-539) $) 67)) (-1823 (($ $) 21)) (-4132 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 10)) (-2219 ((|#2| $) 71)) (-2936 (((-112) $ $) 30)) (-2958 (((-112) $ $) 69)) (-3045 (($ $) 32) (($ $ $) NIL)) (-3033 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-797 |#1| |#2|) (-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797)) +((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4))))) +(-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2375 (((-772)) 58 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-2038 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 95)) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 84)) (-2085 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-1862 (((-112) $) 73 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-1348 (($) 61 (|has| |#1| (-370)))) (-1433 (((-112) $) 35)) (-3899 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2475 ((|#1| $) 76)) (-1354 (($ $ $) 67 (|has| |#1| (-851)))) (-2981 (($ $ $) 66 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 86)) (-4249 (((-923) $) 60 (|has| |#1| (-370)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 70 (|has| |#1| (-365)))) (-3768 (($ (-923)) 59 (|has| |#1| (-370)))) (-1536 ((|#1| $) 81)) (-3721 ((|#1| $) 82)) (-1714 ((|#1| $) 83)) (-2048 ((|#1| $) 77)) (-3926 ((|#1| $) 78)) (-3421 ((|#1| $) 79)) (-1894 ((|#1| $) 80)) (-3430 (((-1122) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 87 (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3893 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 85)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1040 (-410 (-567)))))) (-1903 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 ((|#1| $) 74 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 64 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 63 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 65 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-798 |#1|) (-140) (-172)) (T -798)) -((-2073 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2283 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2240 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2933 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -2073 ($ $)) (-15 -2724 (|t#1| $)) (-15 -4324 (|t#1| $)) (-15 -4122 (|t#1| $)) (-15 -1935 (|t#1| $)) (-15 -3800 (|t#1| $)) (-15 -4217 (|t#1| $)) (-15 -1340 (|t#1| $)) (-15 -2979 (|t#1| $)) (-15 -2896 (|t#1| $)) (-15 -2283 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1061)) (-15 -4137 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2933 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3822 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5))))) -(-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-1000 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2797 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2797 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2033 ((|#1| $) NIL) (((-1000 |#1|) $) 33) (((-567) $) NIL (-2797 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567))))) (((-410 (-567)) $) NIL (-2797 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-3153 (((-3 $ "failed") $) NIL)) (-2724 ((|#1| $) 16)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1426 (((-112) $) NIL (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1378 (($) NIL (|has| |#1| (-370)))) (-2843 (((-112) $) NIL)) (-2283 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1000 |#1|) (-1000 |#1|)) 29)) (-2896 ((|#1| $) NIL)) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-1935 ((|#1| $) 22)) (-4122 ((|#1| $) 20)) (-4324 ((|#1| $) 18)) (-2979 ((|#1| $) 26)) (-1340 ((|#1| $) 25)) (-4217 ((|#1| $) 24)) (-3800 ((|#1| $) 23)) (-3430 (((-1121) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-517 (-1177) |#1|)))) (-1783 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2073 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1000 |#1|)) 30) (($ (-410 (-567))) NIL (-2797 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4137 ((|#1| $) NIL (|has| |#1| (-1061)))) (-1710 (($) 8 T CONST)) (-1722 (($) 12 T CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1000 |#1|)) (-10 -8 (-15 -2283 ($ (-1000 |#1|) (-1000 |#1|))))) (-172)) (T -800)) -((-2283 (*1 *1 *2 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) -(-13 (-798 |#1|) (-414 (-1000 |#1|)) (-10 -8 (-15 -2283 ($ (-1000 |#1|) (-1000 |#1|))))) -((-2399 (((-112) $ $) 7)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-4333 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2929 (((-112) $ $) 6))) +((-1823 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3899 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2939 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -1823 ($ $)) (-15 -2727 (|t#1| $)) (-15 -1714 (|t#1| $)) (-15 -3721 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -1894 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -2048 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -3899 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2939 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5))))) +(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-1001 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 ((|#1| $) NIL) (((-1001 |#1|) $) 33) (((-567) $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-410 (-567)) $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 16)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1348 (($) NIL (|has| |#1| (-370)))) (-1433 (((-112) $) NIL)) (-3899 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1001 |#1|) (-1001 |#1|)) 29)) (-2475 ((|#1| $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-1536 ((|#1| $) 22)) (-3721 ((|#1| $) 20)) (-1714 ((|#1| $) 18)) (-2048 ((|#1| $) 26)) (-3926 ((|#1| $) 25)) (-3421 ((|#1| $) 24)) (-1894 ((|#1| $) 23)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1001 |#1|)) 30) (($ (-410 (-567))) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1716 (($) 8 T CONST)) (-1728 (($) 12 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -3899 ($ (-1001 |#1|) (-1001 |#1|))))) (-172)) (T -800)) +((-3899 (*1 *1 *2 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) +(-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -3899 ($ (-1001 |#1|) (-1001 |#1|))))) +((-2403 (((-112) $ $) 7)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2936 (((-112) $ $) 6))) (((-801) (-140)) (T -801)) -((-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) (-4333 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1036))))) -(-13 (-1101) (-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4333 ((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-4335 (((-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#3| |#2| (-1177)) 19))) -(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -4335 ((-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#3| |#2| (-1177)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1202) (-960)) (-657 |#2|)) (T -802)) -((-4335 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1177)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1202) (-960))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1975 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -4335 ((-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#3| |#2| (-1177)))) -((-1754 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1177)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1177)) 18) (((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1177)) 24) (((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1177)) 26) (((-3 (-645 (-1267 |#2|)) "failed") (-690 |#2|) (-1177)) 37) (((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-690 |#2|) (-1267 |#2|) (-1177)) 35))) -(((-803 |#1| |#2|) (-10 -7 (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-690 |#2|) (-1267 |#2|) (-1177))) (-15 -1754 ((-3 (-645 (-1267 |#2|)) "failed") (-690 |#2|) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1177))) (-15 -1754 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1754 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1202) (-960))) (T -803)) -((-1754 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-1754 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1202) (-960))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))))) (-1754 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1177)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1975 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1202) (-960))))) (-1754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1975 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-1754 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) (-5 *1 (-803 *6 *7)))) (-1754 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) (-5 *1 (-803 *6 *7)))) (-1754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1177)) (-4 *6 (-13 (-29 *5) (-1202) (-960))) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1267 *6))) (-5 *1 (-803 *5 *6)))) (-1754 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1267 *7))))) -(-10 -7 (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-690 |#2|) (-1267 |#2|) (-1177))) (-15 -1754 ((-3 (-645 (-1267 |#2|)) "failed") (-690 |#2|) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#2|)) (|:| -1975 (-645 (-1267 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1177))) (-15 -1754 ((-3 (-2 (|:| |particular| |#2|) (|:| -1975 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1177))) (-15 -1754 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1754 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) -((-4386 (($) 9)) (-3684 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1422 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1330 (($ (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-2398 (($ (-645 (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-1354 (((-1272)) 12))) -(((-804) (-10 -8 (-15 -4386 ($)) (-15 -1354 ((-1272))) (-15 -1422 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2398 ($ (-645 (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1330 ($ (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -3684 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804)) -((-3684 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-1354 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-804)))) (-4386 (*1 *1) (-5 *1 (-804)))) -(-10 -8 (-15 -4386 ($)) (-15 -1354 ((-1272))) (-15 -1422 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2398 ($ (-645 (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1330 ($ (-2 (|:| -1791 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4232 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -3684 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2697 ((|#2| |#2| (-1177)) 17)) (-3863 ((|#2| |#2| (-1177)) 56)) (-2167 (((-1 |#2| |#2|) (-1177)) 11))) -(((-805 |#1| |#2|) (-10 -7 (-15 -2697 (|#2| |#2| (-1177))) (-15 -3863 (|#2| |#2| (-1177))) (-15 -2167 ((-1 |#2| |#2|) (-1177)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1202) (-960))) (T -805)) -((-2167 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1202) (-960))))) (-3863 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1202) (-960))))) (-2697 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1202) (-960)))))) -(-10 -7 (-15 -2697 (|#2| |#2| (-1177))) (-15 -3863 (|#2| |#2| (-1177))) (-15 -2167 ((-1 |#2| |#2|) (-1177)))) -((-1754 (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1036) (-809) (-1064)) 123) (((-1036) (-809)) 124)) (-2484 (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809) (-1064)) 83) (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809)) 85))) -(((-806) (-10 -7 (-15 -1754 ((-1036) (-809))) (-15 -1754 ((-1036) (-809) (-1064))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809) (-1064))))) (T -806)) -((-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1064)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-806)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1036)) (-5 *1 (-806))))) -(-10 -7 (-15 -1754 ((-1036) (-809))) (-15 -1754 ((-1036) (-809) (-1064))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -1754 ((-1036) (-1267 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-809) (-1064)))) -((-3682 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1975 (-645 |#4|))) (-654 |#4|) |#4|) 35))) -(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1975 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807)) -((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4))))) -(-10 -7 (-15 -3682 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1975 (-645 |#4|))) (-654 |#4|) |#4|))) -((-1572 (((-2 (|:| -3827 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-1380 (((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4|) 61) (((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3|) 21)) (-3883 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2225 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109))) -(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2225 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2225 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3| |#2|)) (-15 -3883 (|#2| |#3| |#1|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4| |#2|)) (-15 -3883 (|#2| |#4| |#1|)) (-15 -1572 ((-2 (|:| -3827 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-410 (-567)))) (-1243 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808)) -((-1572 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-2 (|:| -3827 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-3883 (*1 *2 *3 *4) (-12 (-4 *2 (-1243 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-1380 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *4 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -2793 *4) (|:| -2534 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-2 (|:| -2793 *5) (|:| -2534 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-3883 (*1 *2 *3 *4) (-12 (-4 *2 (-1243 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-1380 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *4 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -2793 *4) (|:| -2534 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-2 (|:| -2793 *5) (|:| -2534 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1243 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-2225 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1243 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))) -(-10 -7 (-15 -2225 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2225 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#3| |#2|)) (-15 -3883 (|#2| |#3| |#1|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4|)) (-15 -1380 ((-645 (-2 (|:| -2793 |#2|) (|:| -2534 |#2|))) |#4| |#2|)) (-15 -3883 (|#2| |#4| |#1|)) (-15 -1572 ((-2 (|:| -3827 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) -((-2399 (((-112) $ $) NIL)) (-2033 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-809) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2033 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809))))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2033 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-1444 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1173 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-2890 (((-645 (-2 (|:| |poly| |#2|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-3614 (((-645 (-2 (|:| |deg| (-772)) (|:| -3827 |#2|))) |#3|) 127)) (-1787 ((|#2| |#3|) 45)) (-3886 (((-645 (-2 (|:| -3280 |#1|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-1978 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#2| |#3|)) (-15 -3614 ((-645 (-2 (|:| |deg| (-772)) (|:| -3827 |#2|))) |#3|)) (-15 -3886 ((-645 (-2 (|:| -3280 |#1|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -2890 ((-645 (-2 (|:| |poly| |#2|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1444 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1173 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1978 (|#3| |#3| |#2|)) (-15 -1978 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1039 (-410 (-567)))) (-1243 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810)) -((-1978 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-1978 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-1243 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-1444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1173 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1243 *6)) (-4 *6 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3827 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-2890 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3827 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -3280 *5) (|:| -3827 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3827 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-1787 (*1 *2 *3) (-12 (-4 *2 (-1243 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2)))))) -(-10 -7 (-15 -1787 (|#2| |#3|)) (-15 -3614 ((-645 (-2 (|:| |deg| (-772)) (|:| -3827 |#2|))) |#3|)) (-15 -3886 ((-645 (-2 (|:| -3280 |#1|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -2890 ((-645 (-2 (|:| |poly| |#2|) (|:| -3827 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1444 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1173 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1978 (|#3| |#3| |#2|)) (-15 -1978 (|#3| |#3| (-410 |#2|)))) -((-2016 (((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-2575 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92))) -(((-811 |#1| |#2|) (-10 -7 (-15 -2016 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -2016 ((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2016 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2016 ((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2575 (|#2| (-654 (-410 |#2|)))) (-15 -2575 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1243 |#1|)) (T -811)) -((-2575 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1243 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1243 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| -1975 (-645 (-410 *6))) (|:| -4138 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| -1975 (-645 (-410 *6))) (|:| -4138 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-811 *5 *6))))) -(-10 -7 (-15 -2016 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -2016 ((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2016 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -1975 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2016 ((-2 (|:| -1975 (-645 (-410 |#2|))) (|:| -4138 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2575 (|#2| (-654 (-410 |#2|)))) (-15 -2575 (|#2| (-655 |#2| (-410 |#2|))))) -((-2863 (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) |#5| |#4|) 52))) -(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2863 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1243 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812)) -((-2863 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1243 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -4138 (-690 *6)) (|:| |vec| (-1267 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -2863 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) |#5| |#4|))) -((-1444 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-1834 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-2890 (((-645 (-2 (|:| |poly| |#2|) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99))) -(((-813 |#1| |#2|) (-10 -7 (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1444 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2890 ((-645 (-2 (|:| |poly| |#2|) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1243 |#1|)) (T -813)) -((-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1243 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1243 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3827 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3827 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-1834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *7 (-1243 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *7 (-1243 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) -(-10 -7 (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1444 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2890 ((-645 (-2 (|:| |poly| |#2|) (|:| -3827 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -1834 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -1834 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) -((-2738 (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) (-690 |#2|) (-1267 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)) (|:| -3827 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1267 |#1|)) 15)) (-2372 (((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#2|) (-1267 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1975 (-645 |#1|))) |#2| |#1|)) 116)) (-1754 (((-3 (-2 (|:| |particular| (-1267 |#1|)) (|:| -1975 (-690 |#1|))) "failed") (-690 |#1|) (-1267 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed") |#2| |#1|)) 52))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2738 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)) (|:| -3827 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1267 |#1|))) (-15 -2738 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) (-690 |#2|) (-1267 |#1|))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#1|)) (|:| -1975 (-690 |#1|))) "failed") (-690 |#1|) (-1267 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2372 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#2|) (-1267 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1975 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814)) -((-2372 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1975 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1267 *6) "failed")) (|:| -1975 (-645 (-1267 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1267 *6)))) (-1754 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1975 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1267 *6)) (|:| -1975 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1267 *6)))) (-2738 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -4138 (-690 *6)) (|:| |vec| (-1267 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1267 *5)))) (-2738 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1267 *5)) (|:| -3827 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) (-4 *6 (-657 *5))))) -(-10 -7 (-15 -2738 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)) (|:| -3827 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1267 |#1|))) (-15 -2738 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#1|))) (-690 |#2|) (-1267 |#1|))) (-15 -1754 ((-3 (-2 (|:| |particular| (-1267 |#1|)) (|:| -1975 (-690 |#1|))) "failed") (-690 |#1|) (-1267 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1975 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2372 ((-2 (|:| |particular| (-3 (-1267 |#1|) "failed")) (|:| -1975 (-645 (-1267 |#1|)))) (-690 |#2|) (-1267 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1975 (-645 |#1|))) |#2| |#1|)))) -((-2295 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-2928 (((-3 (-1267 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-4315 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46))) -(((-815 |#1| |#2|) (-10 -7 (-15 -2295 ((-690 |#1|) (-645 |#1|))) (-15 -2295 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -2928 ((-3 (-1267 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -4315 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815)) -((-4315 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-2928 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1267 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))) -(-10 -7 (-15 -2295 ((-690 |#1|) (-645 |#1|))) (-15 -2295 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -2928 ((-3 (-1267 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -4315 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2840 (((-112) $) NIL (|has| |#2| (-131)))) (-3457 (($ (-922)) NIL (|has| |#2| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) NIL (|has| |#2| (-794)))) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#2| (-370)))) (-3449 (((-567) $) NIL (|has| |#2| (-849)))) (-4281 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1101)))) (-2033 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) ((|#2| $) NIL (|has| |#2| (-1101)))) (-1868 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-3153 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1378 (($) NIL (|has| |#2| (-370)))) (-3759 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ (-567)) NIL)) (-4357 (((-112) $) NIL (|has| |#2| (-849)))) (-3397 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (|has| |#2| (-727)))) (-2102 (((-112) $) NIL (|has| |#2| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2513 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#2| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#2| (-1101)))) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#2| (-370)))) (-3430 (((-1121) $) NIL (|has| |#2| (-1101)))) (-2405 ((|#2| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3246 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2746 (($ (-1267 |#2|)) NIL)) (-1635 (((-134)) NIL (|has| |#2| (-365)))) (-1621 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#2|) $) NIL) (($ (-567)) NIL (-2797 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1101))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1101)))) (($ |#2|) NIL (|has| |#2| (-1101))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-1772 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-4104 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2461 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#2| (-849)))) (-1710 (($) NIL (|has| |#2| (-131)) CONST)) (-1722 (($) NIL (|has| |#2| (-727)) CONST)) (-2636 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1177))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2929 (((-112) $ $) NIL (|has| |#2| (-1101)))) (-2977 (((-112) $ $) NIL (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2952 (((-112) $ $) 11 (-2797 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3024 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1267 |#2|) (-1267 |#2|))) (T -816)) +((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3393 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1037))))) +(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3393 ((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-3626 (((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178)) 19))) +(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -3626 ((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961)) (-657 |#2|)) (T -802)) +((-3626 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1203) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) +(-10 -7 (-15 -3626 ((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178)))) +((-3018 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178)) 18) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178)) 24) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178)) 26) (((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178)) 37) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178)) 35))) +(((-803 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178))) (-15 -3018 ((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178))) (-15 -3018 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3018 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -803)) +((-3018 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-3018 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2623 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1203) (-961))))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2623 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1178)) (-4 *6 (-13 (-29 *5) (-1203) (-961))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1268 *6))) (-5 *1 (-803 *5 *6)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1268 *7))))) +(-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178))) (-15 -3018 ((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178))) (-15 -3018 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3018 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) +((-3246 (($) 9)) (-2776 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1391 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2531 (($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1973 (($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-3083 (((-1273)) 12))) +(((-804) (-10 -8 (-15 -3246 ($)) (-15 -3083 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1973 ($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2776 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804)) +((-2776 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-3083 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-804)))) (-3246 (*1 *1) (-5 *1 (-804)))) +(-10 -8 (-15 -3246 ($)) (-15 -3083 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1973 ($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2776 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2669 ((|#2| |#2| (-1178)) 17)) (-4140 ((|#2| |#2| (-1178)) 56)) (-4074 (((-1 |#2| |#2|) (-1178)) 11))) +(((-805 |#1| |#2|) (-10 -7 (-15 -2669 (|#2| |#2| (-1178))) (-15 -4140 (|#2| |#2| (-1178))) (-15 -4074 ((-1 |#2| |#2|) (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -805)) +((-4074 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1203) (-961))))) (-4140 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961))))) (-2669 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961)))))) +(-10 -7 (-15 -2669 (|#2| |#2| (-1178))) (-15 -4140 (|#2| |#2| (-1178))) (-15 -4074 ((-1 |#2| |#2|) (-1178)))) +((-3018 (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1037) (-809) (-1065)) 123) (((-1037) (-809)) 124)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065)) 83) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809)) 85))) +(((-806) (-10 -7 (-15 -3018 ((-1037) (-809))) (-15 -3018 ((-1037) (-809) (-1065))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065))))) (T -806)) +((-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-806)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806))))) +(-10 -7 (-15 -3018 ((-1037) (-809))) (-15 -3018 ((-1037) (-809) (-1065))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065)))) +((-2678 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|) 35))) +(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807)) +((-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4))))) +(-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|))) +((-1989 (((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-2883 (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|) 61) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|) 21)) (-2655 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3839 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109))) +(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3839 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3839 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|)) (-15 -2655 (|#2| |#3| |#1|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|)) (-15 -2655 (|#2| |#4| |#1|)) (-15 -1989 ((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1244 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808)) +((-1989 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-2 (|:| -3845 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-2883 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-2883 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1244 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-3839 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))) +(-10 -7 (-15 -3839 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3839 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|)) (-15 -2655 (|#2| |#3| |#1|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|)) (-15 -2655 (|#2| |#4| |#1|)) (-15 -1989 ((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) +((-2403 (((-112) $ $) NIL)) (-2038 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-809) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2038 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809))))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2038 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-3732 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-3067 (((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-3927 (((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|) 127)) (-4033 ((|#2| |#3|) 45)) (-2941 (((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-2877 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102))) +(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4033 (|#2| |#3|)) (-15 -3927 ((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|)) (-15 -2941 ((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2877 (|#3| |#3| |#2|)) (-15 -2877 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1244 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810)) +((-2877 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-2877 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-1244 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1174 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3845 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -3286 *5) (|:| -3845 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3845 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-4033 (*1 *2 *3) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2)))))) +(-10 -7 (-15 -4033 (|#2| |#3|)) (-15 -3927 ((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|)) (-15 -2941 ((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2877 (|#3| |#3| |#2|)) (-15 -2877 (|#3| |#3| (-410 |#2|)))) +((-3071 (((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-1425 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92))) +(((-811 |#1| |#2|) (-10 -7 (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1425 (|#2| (-654 (-410 |#2|)))) (-15 -1425 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -811)) +((-1425 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-811 *5 *6))))) +(-10 -7 (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1425 (|#2| (-654 (-410 |#2|)))) (-15 -1425 (|#2| (-655 |#2| (-410 |#2|))))) +((-2789 (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|) 52))) +(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2789 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1244 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812)) +((-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1244 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) +(-10 -7 (-15 -2789 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|))) +((-3732 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-3302 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-3067 (((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99))) +(((-813 |#1| |#2|) (-10 -7 (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -813)) +((-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3845 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) +((-4006 (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|)) 15)) (-3549 (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|)) 116)) (-3018 (((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|)) 52))) +(((-814 |#1| |#2|) (-10 -7 (-15 -4006 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|))) (-15 -4006 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3549 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814)) +((-3549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2623 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *6) "failed")) (|:| -2623 (-645 (-1268 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1268 *6)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2623 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1268 *6)) (|:| -2623 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *6)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *5)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5)) (|:| -3845 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *6 (-657 *5))))) +(-10 -7 (-15 -4006 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|))) (-15 -4006 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3549 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|)))) +((-3026 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-1768 (((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-3141 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46))) +(((-815 |#1| |#2|) (-10 -7 (-15 -3026 ((-690 |#1|) (-645 |#1|))) (-15 -3026 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -1768 ((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3141 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815)) +((-3141 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-1768 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1268 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))) +(-10 -7 (-15 -3026 ((-690 |#1|) (-645 |#1|))) (-15 -3026 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -1768 ((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3141 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) NIL (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) NIL)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) NIL (|has| |#2| (-131)) CONST)) (-1728 (($) NIL (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 11 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1268 |#2|) (-1268 |#2|))) (T -816)) NIL (-238 |#1| |#2|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2100 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1177)) NIL)) (-2415 (((-772) $) NIL) (((-772) $ (-1177)) NIL)) (-2845 (((-645 (-819 (-1177))) $) NIL)) (-2670 (((-1173 $) $ (-819 (-1177))) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1177)))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2533 (($ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-819 (-1177)) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL) (((-3 (-1126 |#1| (-1177)) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-819 (-1177)) $) NIL) (((-1177) $) NIL) (((-1126 |#1| (-1177)) $) NIL)) (-3621 (($ $ $ (-819 (-1177))) NIL (|has| |#1| (-172)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1177))) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-534 (-819 (-1177))) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-819 (-1177)) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-819 (-1177)) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ (-1177)) NIL) (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#1|) (-819 (-1177))) NIL) (($ (-1173 $) (-819 (-1177))) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-534 (-819 (-1177)))) NIL) (($ $ (-819 (-1177)) (-772)) NIL) (($ $ (-645 (-819 (-1177))) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-819 (-1177))) NIL)) (-2752 (((-534 (-819 (-1177))) $) NIL) (((-772) $ (-819 (-1177))) NIL) (((-645 (-772)) $ (-645 (-819 (-1177)))) NIL)) (-3345 (($ (-1 (-534 (-819 (-1177))) (-534 (-819 (-1177)))) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1518 (((-1 $ (-772)) (-1177)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-1902 (((-3 (-819 (-1177)) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3714 (((-819 (-1177)) $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-4162 (((-112) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-819 (-1177))) (|:| -4250 (-772))) "failed") $) NIL)) (-2339 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1177)) |#1|) NIL) (($ $ (-645 (-819 (-1177))) (-645 |#1|)) NIL) (($ $ (-819 (-1177)) $) NIL) (($ $ (-645 (-819 (-1177))) (-645 $)) NIL) (($ $ (-1177) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1177)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-1999 (($ $ (-819 (-1177))) NIL (|has| |#1| (-172)))) (-1621 (($ $ (-819 (-1177))) NIL) (($ $ (-645 (-819 (-1177)))) NIL) (($ $ (-819 (-1177)) (-772)) NIL) (($ $ (-645 (-819 (-1177))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1516 (((-645 (-1177)) $) NIL)) (-1813 (((-534 (-819 (-1177))) $) NIL) (((-772) $ (-819 (-1177))) NIL) (((-645 (-772)) $ (-645 (-819 (-1177)))) NIL) (((-772) $ (-1177)) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-819 (-1177)) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-819 (-1177)) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1177)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1177))) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1177))) NIL) (($ (-1177)) NIL) (($ (-1126 |#1| (-1177))) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-534 (-819 (-1177)))) NIL) (($ $ (-819 (-1177)) (-772)) NIL) (($ $ (-645 (-819 (-1177))) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-819 (-1177))) NIL) (($ $ (-645 (-819 (-1177)))) NIL) (($ $ (-819 (-1177)) (-772)) NIL) (($ $ (-645 (-819 (-1177))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-817 |#1|) (-13 (-254 |#1| (-1177) (-819 (-1177)) (-534 (-819 (-1177)))) (-1039 (-1126 |#1| (-1177)))) (-1050)) (T -817)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1178)) NIL)) (-3729 (((-772) $) NIL) (((-772) $ (-1178)) NIL)) (-2847 (((-645 (-819 (-1178))) $) NIL)) (-2675 (((-1174 $) $ (-819 (-1178))) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1178)))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-819 (-1178)) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL) (((-3 (-1127 |#1| (-1178)) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-819 (-1178)) $) NIL) (((-1178) $) NIL) (((-1127 |#1| (-1178)) $) NIL)) (-2951 (($ $ $ (-819 (-1178))) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1178))) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-819 (-1178))) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-819 (-1178)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-819 (-1178)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-819 (-1178))) NIL) (($ (-1174 $) (-819 (-1178))) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-819 (-1178))) NIL)) (-2656 (((-534 (-819 (-1178))) $) NIL) (((-772) $ (-819 (-1178))) NIL) (((-645 (-772)) $ (-645 (-819 (-1178)))) NIL)) (-3273 (($ (-1 (-534 (-819 (-1178))) (-534 (-819 (-1178)))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) (-1178)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 (-819 (-1178)) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 (((-819 (-1178)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-819 (-1178))) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1178)) |#1|) NIL) (($ $ (-645 (-819 (-1178))) (-645 |#1|)) NIL) (($ $ (-819 (-1178)) $) NIL) (($ $ (-645 (-819 (-1178))) (-645 $)) NIL) (($ $ (-1178) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ (-819 (-1178))) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-819 (-1178))) NIL) (($ $ (-645 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 (-1178)) $) NIL)) (-3077 (((-534 (-819 (-1178))) $) NIL) (((-772) $ (-819 (-1178))) NIL) (((-645 (-772)) $ (-645 (-819 (-1178)))) NIL) (((-772) $ (-1178)) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1178))) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1178))) NIL) (($ (-1178)) NIL) (($ (-1127 |#1| (-1178))) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-819 (-1178))) NIL) (($ $ (-645 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-817 |#1|) (-13 (-254 |#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) (-1040 (-1127 |#1| (-1178)))) (-1051)) (T -817)) NIL -(-13 (-254 |#1| (-1177) (-819 (-1177)) (-534 (-819 (-1177)))) (-1039 (-1126 |#1| (-1177)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-1312 (($ $) NIL (|has| |#2| (-365)))) (-2318 (((-112) $) NIL (|has| |#2| (-365)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#2| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-365)))) (-2373 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL (|has| |#2| (-365)))) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#2| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-4341 (((-112) $) NIL (|has| |#2| (-365)))) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2735 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 20 (|has| |#2| (-365)))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#2| (-365)))) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-4197 (((-772) $) NIL (|has| |#2| (-365)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-365)))) (-1621 (($ $ (-772)) NIL) (($ $) 13)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) 15 (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365))))) -(((-818 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1101) (-901 |#1|) |#1|) (T -818)) +(-13 (-254 |#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) (-1040 (-1127 |#1| (-1178)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-4381 (($ $) NIL (|has| |#2| (-365)))) (-3949 (((-112) $) NIL (|has| |#2| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#2| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3609 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#2| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#2| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-3184 (((-112) $) NIL (|has| |#2| (-365)))) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2740 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 20 (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-1990 (((-772) $) NIL (|has| |#2| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-1593 (($ $ (-772)) NIL) (($ $) 13)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) 15 (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365))))) +(((-818 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1102) (-902 |#1|) |#1|) (T -818)) NIL (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2415 (((-772) $) NIL)) (-3638 ((|#1| $) 10)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-2937 (((-772) $) 11)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1518 (($ |#1| (-772)) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1621 (($ $) NIL) (($ $ (-772)) NIL)) (-4127 (((-863) $) NIL) (($ |#1|) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) NIL)) (-3644 ((|#1| $) 10)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4384 (((-772) $) 11)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1369 (($ |#1| (-772)) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) (((-819 |#1|) (-267 |#1|) (-851)) (T -819)) NIL (-267 |#1|) -((-2399 (((-112) $ $) NIL)) (-3259 (((-645 |#1|) $) 38)) (-2371 (((-772) $) NIL)) (-2245 (($) NIL T CONST)) (-3323 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-2417 (($ $) 42)) (-3153 (((-3 $ "failed") $) NIL)) (-2074 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2843 (((-112) $) NIL)) (-1771 ((|#1| $ (-567)) NIL)) (-3866 (((-772) $ (-567)) NIL)) (-3818 (($ $) 54)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3371 (($ (-1 |#1| |#1|) $) NIL)) (-2753 (($ (-1 (-772) (-772)) $) NIL)) (-3626 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1697 (((-112) $ $) 51)) (-2334 (((-772) $) 34)) (-3739 (((-1159) $) NIL)) (-2425 (($ $ $) NIL)) (-2719 (($ $ $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 ((|#1| $) 41)) (-2166 (((-645 (-2 (|:| |gen| |#1|) (|:| -3927 (-772)))) $) NIL)) (-2573 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2376 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4127 (((-863) $) NIL) (($ |#1|) NIL)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 20 T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 53)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-820 |#1|) (-13 (-388 |#1|) (-847) (-10 -8 (-15 -2405 (|#1| $)) (-15 -2417 ($ $)) (-15 -3818 ($ $)) (-15 -1697 ((-112) $ $)) (-15 -3626 ((-3 $ "failed") $ |#1|)) (-15 -3323 ((-3 $ "failed") $ |#1|)) (-15 -2376 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2334 ((-772) $)) (-15 -3259 ((-645 |#1|) $)))) (-851)) (T -820)) -((-2405 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-1697 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3626 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3323 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2376 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) -(-13 (-388 |#1|) (-847) (-10 -8 (-15 -2405 (|#1| $)) (-15 -2417 ($ $)) (-15 -3818 ($ $)) (-15 -1697 ((-112) $ $)) (-15 -3626 ((-3 $ "failed") $ |#1|)) (-15 -3323 ((-3 $ "failed") $ |#1|)) (-15 -2376 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2334 ((-772) $)) (-15 -3259 ((-645 |#1|) $)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-3449 (((-567) $) 59)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-4357 (((-112) $) 57)) (-2843 (((-112) $) 35)) (-2102 (((-112) $) 58)) (-2010 (($ $ $) 56)) (-2998 (($ $ $) 55)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ $) 48)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-4137 (($ $) 60)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 53)) (-2964 (((-112) $ $) 52)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 54)) (-2952 (((-112) $ $) 51)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 38)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-2885 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2421 (($ $) 42)) (-2109 (((-3 $ "failed") $) NIL)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1433 (((-112) $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-772) $ (-567)) NIL)) (-3592 (($ $) 54)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-2728 (($ (-1 (-772) (-772)) $) NIL)) (-2173 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4175 (((-112) $ $) 51)) (-1699 (((-772) $) 34)) (-1419 (((-1160) $) NIL)) (-3231 (($ $ $) NIL)) (-3827 (($ $ $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) 41)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) NIL)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2380 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 53)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-820 |#1|) (-13 (-388 |#1|) (-847) (-10 -8 (-15 -2409 (|#1| $)) (-15 -2421 ($ $)) (-15 -3592 ($ $)) (-15 -4175 ((-112) $ $)) (-15 -2173 ((-3 $ "failed") $ |#1|)) (-15 -2885 ((-3 $ "failed") $ |#1|)) (-15 -2380 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1699 ((-772) $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -820)) +((-2409 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2173 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2885 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2380 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) +(-13 (-388 |#1|) (-847) (-10 -8 (-15 -2409 (|#1| $)) (-15 -2421 ($ $)) (-15 -3592 ($ $)) (-15 -4175 ((-112) $ $)) (-15 -2173 ((-3 $ "failed") $ |#1|)) (-15 -2885 ((-3 $ "failed") $ |#1|)) (-15 -2380 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1699 ((-772) $)) (-15 -3267 ((-645 |#1|) $)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-1750 (((-567) $) 59)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-4336 (((-112) $) 57)) (-1433 (((-112) $) 35)) (-3494 (((-112) $) 58)) (-1354 (($ $ $) 56)) (-2981 (($ $ $) 55)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 60)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 53)) (-2971 (((-112) $ $) 52)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 54)) (-2958 (((-112) $ $) 51)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-821) (-140)) (T -821)) NIL (-13 (-559) (-849)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3158 (($ (-1121)) 7)) (-2764 (((-112) $ (-1159) (-1121)) 15)) (-2823 (((-823) $) 12)) (-2665 (((-823) $) 11)) (-4297 (((-1272) $) 9)) (-1628 (((-112) $ (-1121)) 16))) -(((-822) (-10 -8 (-15 -3158 ($ (-1121))) (-15 -4297 ((-1272) $)) (-15 -2665 ((-823) $)) (-15 -2823 ((-823) $)) (-15 -2764 ((-112) $ (-1159) (-1121))) (-15 -1628 ((-112) $ (-1121))))) (T -822)) -((-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2764 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-822)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-822))))) -(-10 -8 (-15 -3158 ($ (-1121))) (-15 -4297 ((-1272) $)) (-15 -2665 ((-823) $)) (-15 -2823 ((-823) $)) (-15 -2764 ((-112) $ (-1159) (-1121))) (-15 -1628 ((-112) $ (-1121)))) -((-2097 (((-1272) $ (-824)) 12)) (-3243 (((-1272) $ (-1177)) 32)) (-1929 (((-1272) $ (-1159) (-1159)) 34)) (-3831 (((-1272) $ (-1159)) 33)) (-2071 (((-1272) $) 19)) (-3524 (((-1272) $ (-567)) 28)) (-1727 (((-1272) $ (-225)) 30)) (-2865 (((-1272) $) 18)) (-1647 (((-1272) $) 26)) (-1472 (((-1272) $) 25)) (-2186 (((-1272) $) 23)) (-3758 (((-1272) $) 24)) (-3023 (((-1272) $) 22)) (-4070 (((-1272) $) 21)) (-3450 (((-1272) $) 20)) (-3480 (((-1272) $) 16)) (-3300 (((-1272) $) 17)) (-2607 (((-1272) $) 15)) (-4022 (((-1272) $) 14)) (-3179 (((-1272) $) 13)) (-4063 (($ (-1159) (-824)) 9)) (-3448 (($ (-1159) (-1159) (-824)) 8)) (-1386 (((-1177) $) 51)) (-2837 (((-1177) $) 55)) (-1363 (((-2 (|:| |cd| (-1159)) (|:| -1988 (-1159))) $) 54)) (-1864 (((-1159) $) 52)) (-3464 (((-1272) $) 41)) (-2743 (((-567) $) 49)) (-3078 (((-225) $) 50)) (-1744 (((-1272) $) 40)) (-1670 (((-1272) $) 48)) (-1512 (((-1272) $) 47)) (-1376 (((-1272) $) 45)) (-1886 (((-1272) $) 46)) (-2458 (((-1272) $) 44)) (-3369 (((-1272) $) 43)) (-1892 (((-1272) $) 42)) (-3998 (((-1272) $) 38)) (-4311 (((-1272) $) 39)) (-2178 (((-1272) $) 37)) (-2362 (((-1272) $) 36)) (-3824 (((-1272) $) 35)) (-2201 (((-1272) $) 11))) -(((-823) (-10 -8 (-15 -3448 ($ (-1159) (-1159) (-824))) (-15 -4063 ($ (-1159) (-824))) (-15 -2201 ((-1272) $)) (-15 -2097 ((-1272) $ (-824))) (-15 -3179 ((-1272) $)) (-15 -4022 ((-1272) $)) (-15 -2607 ((-1272) $)) (-15 -3480 ((-1272) $)) (-15 -3300 ((-1272) $)) (-15 -2865 ((-1272) $)) (-15 -2071 ((-1272) $)) (-15 -3450 ((-1272) $)) (-15 -4070 ((-1272) $)) (-15 -3023 ((-1272) $)) (-15 -2186 ((-1272) $)) (-15 -3758 ((-1272) $)) (-15 -1472 ((-1272) $)) (-15 -1647 ((-1272) $)) (-15 -3524 ((-1272) $ (-567))) (-15 -1727 ((-1272) $ (-225))) (-15 -3243 ((-1272) $ (-1177))) (-15 -3831 ((-1272) $ (-1159))) (-15 -1929 ((-1272) $ (-1159) (-1159))) (-15 -3824 ((-1272) $)) (-15 -2362 ((-1272) $)) (-15 -2178 ((-1272) $)) (-15 -3998 ((-1272) $)) (-15 -4311 ((-1272) $)) (-15 -1744 ((-1272) $)) (-15 -3464 ((-1272) $)) (-15 -1892 ((-1272) $)) (-15 -3369 ((-1272) $)) (-15 -2458 ((-1272) $)) (-15 -1376 ((-1272) $)) (-15 -1886 ((-1272) $)) (-15 -1512 ((-1272) $)) (-15 -1670 ((-1272) $)) (-15 -2743 ((-567) $)) (-15 -3078 ((-225) $)) (-15 -1386 ((-1177) $)) (-15 -1864 ((-1159) $)) (-15 -1363 ((-2 (|:| |cd| (-1159)) (|:| -1988 (-1159))) $)) (-15 -2837 ((-1177) $)))) (T -823)) -((-2837 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-823)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1159)) (|:| -1988 (-1159)))) (-5 *1 (-823)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-823)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-823)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1929 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-1727 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-3524 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1272)) (-5 *1 (-823)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823)))) (-4063 (*1 *1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-824)) (-5 *1 (-823)))) (-3448 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-824)) (-5 *1 (-823))))) -(-10 -8 (-15 -3448 ($ (-1159) (-1159) (-824))) (-15 -4063 ($ (-1159) (-824))) (-15 -2201 ((-1272) $)) (-15 -2097 ((-1272) $ (-824))) (-15 -3179 ((-1272) $)) (-15 -4022 ((-1272) $)) (-15 -2607 ((-1272) $)) (-15 -3480 ((-1272) $)) (-15 -3300 ((-1272) $)) (-15 -2865 ((-1272) $)) (-15 -2071 ((-1272) $)) (-15 -3450 ((-1272) $)) (-15 -4070 ((-1272) $)) (-15 -3023 ((-1272) $)) (-15 -2186 ((-1272) $)) (-15 -3758 ((-1272) $)) (-15 -1472 ((-1272) $)) (-15 -1647 ((-1272) $)) (-15 -3524 ((-1272) $ (-567))) (-15 -1727 ((-1272) $ (-225))) (-15 -3243 ((-1272) $ (-1177))) (-15 -3831 ((-1272) $ (-1159))) (-15 -1929 ((-1272) $ (-1159) (-1159))) (-15 -3824 ((-1272) $)) (-15 -2362 ((-1272) $)) (-15 -2178 ((-1272) $)) (-15 -3998 ((-1272) $)) (-15 -4311 ((-1272) $)) (-15 -1744 ((-1272) $)) (-15 -3464 ((-1272) $)) (-15 -1892 ((-1272) $)) (-15 -3369 ((-1272) $)) (-15 -2458 ((-1272) $)) (-15 -1376 ((-1272) $)) (-15 -1886 ((-1272) $)) (-15 -1512 ((-1272) $)) (-15 -1670 ((-1272) $)) (-15 -2743 ((-567) $)) (-15 -3078 ((-225) $)) (-15 -1386 ((-1177) $)) (-15 -1864 ((-1159) $)) (-15 -1363 ((-2 (|:| |cd| (-1159)) (|:| -1988 (-1159))) $)) (-15 -2837 ((-1177) $))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 13)) (-4104 (((-112) $ $) NIL)) (-2286 (($) 16)) (-3821 (($) 14)) (-2691 (($) 17)) (-2179 (($) 15)) (-2929 (((-112) $ $) 9))) -(((-824) (-13 (-1101) (-10 -8 (-15 -3821 ($)) (-15 -2286 ($)) (-15 -2691 ($)) (-15 -2179 ($))))) (T -824)) -((-3821 (*1 *1) (-5 *1 (-824))) (-2286 (*1 *1) (-5 *1 (-824))) (-2691 (*1 *1) (-5 *1 (-824))) (-2179 (*1 *1) (-5 *1 (-824)))) -(-13 (-1101) (-10 -8 (-15 -3821 ($)) (-15 -2286 ($)) (-15 -2691 ($)) (-15 -2179 ($)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 23) (($ (-1177)) 19)) (-4104 (((-112) $ $) NIL)) (-4239 (((-112) $) 10)) (-3833 (((-112) $) 9)) (-1643 (((-112) $) 11)) (-4014 (((-112) $) 8)) (-2929 (((-112) $ $) 21))) -(((-825) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-1177))) (-15 -4014 ((-112) $)) (-15 -3833 ((-112) $)) (-15 -4239 ((-112) $)) (-15 -1643 ((-112) $))))) (T -825)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-825)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-1177))) (-15 -4014 ((-112) $)) (-15 -3833 ((-112) $)) (-15 -4239 ((-112) $)) (-15 -1643 ((-112) $)))) -((-2399 (((-112) $ $) NIL)) (-2183 (($ (-825) (-645 (-1177))) 32)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3508 (((-825) $) 33)) (-4302 (((-645 (-1177)) $) 34)) (-4127 (((-863) $) 31)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-826) (-13 (-1101) (-10 -8 (-15 -3508 ((-825) $)) (-15 -4302 ((-645 (-1177)) $)) (-15 -2183 ($ (-825) (-645 (-1177))))))) (T -826)) -((-3508 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-826)))) (-2183 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1177))) (-5 *1 (-826))))) -(-13 (-1101) (-10 -8 (-15 -3508 ((-825) $)) (-15 -4302 ((-645 (-1177)) $)) (-15 -2183 ($ (-825) (-645 (-1177)))))) -((-4224 (((-1272) (-823) (-317 |#1|) (-112)) 24) (((-1272) (-823) (-317 |#1|)) 90) (((-1159) (-317 |#1|) (-112)) 89) (((-1159) (-317 |#1|)) 88))) -(((-827 |#1|) (-10 -7 (-15 -4224 ((-1159) (-317 |#1|))) (-15 -4224 ((-1159) (-317 |#1|) (-112))) (-15 -4224 ((-1272) (-823) (-317 |#1|))) (-15 -4224 ((-1272) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1050))) (T -827)) -((-4224 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1050))) (-5 *2 (-1272)) (-5 *1 (-827 *6)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1050))) (-5 *2 (-1272)) (-5 *1 (-827 *5)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1050))) (-5 *2 (-1159)) (-5 *1 (-827 *5)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1050))) (-5 *2 (-1159)) (-5 *1 (-827 *4))))) -(-10 -7 (-15 -4224 ((-1159) (-317 |#1|))) (-15 -4224 ((-1159) (-317 |#1|) (-112))) (-15 -4224 ((-1272) (-823) (-317 |#1|))) (-15 -4224 ((-1272) (-823) (-317 |#1|) (-112)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3885 ((|#1| $) 10)) (-4174 (($ |#1|) 9)) (-2843 (((-112) $) NIL)) (-2821 (($ |#2| (-772)) NIL)) (-2752 (((-772) $) NIL)) (-2980 ((|#2| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1621 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1813 (((-772) $) NIL)) (-4127 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2253 ((|#2| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4174 ($ |#1|)) (-15 -3885 (|#1| $)))) (-709 |#2|) (-1050)) (T -828)) -((-4174 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-3885 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1050))))) -(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4174 ($ |#1|)) (-15 -3885 (|#1| $)))) -((-4224 (((-1272) (-823) $ (-112)) 9) (((-1272) (-823) $) 8) (((-1159) $ (-112)) 7) (((-1159) $) 6))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2468 (($ (-1122)) 7)) (-2952 (((-112) $ (-1160) (-1122)) 15)) (-4364 (((-823) $) 12)) (-2311 (((-823) $) 11)) (-1705 (((-1273) $) 9)) (-2187 (((-112) $ (-1122)) 16))) +(((-822) (-10 -8 (-15 -2468 ($ (-1122))) (-15 -1705 ((-1273) $)) (-15 -2311 ((-823) $)) (-15 -4364 ((-823) $)) (-15 -2952 ((-112) $ (-1160) (-1122))) (-15 -2187 ((-112) $ (-1122))))) (T -822)) +((-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2952 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-822)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822))))) +(-10 -8 (-15 -2468 ($ (-1122))) (-15 -1705 ((-1273) $)) (-15 -2311 ((-823) $)) (-15 -4364 ((-823) $)) (-15 -2952 ((-112) $ (-1160) (-1122))) (-15 -2187 ((-112) $ (-1122)))) +((-4322 (((-1273) $ (-824)) 12)) (-4267 (((-1273) $ (-1178)) 32)) (-3203 (((-1273) $ (-1160) (-1160)) 34)) (-2260 (((-1273) $ (-1160)) 33)) (-1602 (((-1273) $) 19)) (-4243 (((-1273) $ (-567)) 28)) (-1530 (((-1273) $ (-225)) 30)) (-3019 (((-1273) $) 18)) (-2725 (((-1273) $) 26)) (-4263 (((-1273) $) 25)) (-2215 (((-1273) $) 23)) (-1494 (((-1273) $) 24)) (-1659 (((-1273) $) 22)) (-3771 (((-1273) $) 21)) (-1856 (((-1273) $) 20)) (-1637 (((-1273) $) 16)) (-2322 (((-1273) $) 17)) (-2027 (((-1273) $) 15)) (-3334 (((-1273) $) 14)) (-1342 (((-1273) $) 13)) (-2492 (($ (-1160) (-824)) 9)) (-1630 (($ (-1160) (-1160) (-824)) 8)) (-2412 (((-1178) $) 51)) (-2132 (((-1178) $) 55)) (-2854 (((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $) 54)) (-3856 (((-1160) $) 52)) (-3735 (((-1273) $) 41)) (-3212 (((-567) $) 49)) (-2917 (((-225) $) 50)) (-3242 (((-1273) $) 40)) (-3660 (((-1273) $) 48)) (-2011 (((-1273) $) 47)) (-3332 (((-1273) $) 45)) (-3948 (((-1273) $) 46)) (-1556 (((-1273) $) 44)) (-3318 (((-1273) $) 43)) (-3331 (((-1273) $) 42)) (-3384 (((-1273) $) 38)) (-3581 (((-1273) $) 39)) (-2568 (((-1273) $) 37)) (-4215 (((-1273) $) 36)) (-2889 (((-1273) $) 35)) (-4196 (((-1273) $) 11))) +(((-823) (-10 -8 (-15 -1630 ($ (-1160) (-1160) (-824))) (-15 -2492 ($ (-1160) (-824))) (-15 -4196 ((-1273) $)) (-15 -4322 ((-1273) $ (-824))) (-15 -1342 ((-1273) $)) (-15 -3334 ((-1273) $)) (-15 -2027 ((-1273) $)) (-15 -1637 ((-1273) $)) (-15 -2322 ((-1273) $)) (-15 -3019 ((-1273) $)) (-15 -1602 ((-1273) $)) (-15 -1856 ((-1273) $)) (-15 -3771 ((-1273) $)) (-15 -1659 ((-1273) $)) (-15 -2215 ((-1273) $)) (-15 -1494 ((-1273) $)) (-15 -4263 ((-1273) $)) (-15 -2725 ((-1273) $)) (-15 -4243 ((-1273) $ (-567))) (-15 -1530 ((-1273) $ (-225))) (-15 -4267 ((-1273) $ (-1178))) (-15 -2260 ((-1273) $ (-1160))) (-15 -3203 ((-1273) $ (-1160) (-1160))) (-15 -2889 ((-1273) $)) (-15 -4215 ((-1273) $)) (-15 -2568 ((-1273) $)) (-15 -3384 ((-1273) $)) (-15 -3581 ((-1273) $)) (-15 -3242 ((-1273) $)) (-15 -3735 ((-1273) $)) (-15 -3331 ((-1273) $)) (-15 -3318 ((-1273) $)) (-15 -1556 ((-1273) $)) (-15 -3332 ((-1273) $)) (-15 -3948 ((-1273) $)) (-15 -2011 ((-1273) $)) (-15 -3660 ((-1273) $)) (-15 -3212 ((-567) $)) (-15 -2917 ((-225) $)) (-15 -2412 ((-1178) $)) (-15 -3856 ((-1160) $)) (-15 -2854 ((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $)) (-15 -2132 ((-1178) $)))) (T -823)) +((-2132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1160)) (|:| -1996 (-1160)))) (-5 *1 (-823)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-823)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-2260 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4322 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2492 (*1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823)))) (-1630 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823))))) +(-10 -8 (-15 -1630 ($ (-1160) (-1160) (-824))) (-15 -2492 ($ (-1160) (-824))) (-15 -4196 ((-1273) $)) (-15 -4322 ((-1273) $ (-824))) (-15 -1342 ((-1273) $)) (-15 -3334 ((-1273) $)) (-15 -2027 ((-1273) $)) (-15 -1637 ((-1273) $)) (-15 -2322 ((-1273) $)) (-15 -3019 ((-1273) $)) (-15 -1602 ((-1273) $)) (-15 -1856 ((-1273) $)) (-15 -3771 ((-1273) $)) (-15 -1659 ((-1273) $)) (-15 -2215 ((-1273) $)) (-15 -1494 ((-1273) $)) (-15 -4263 ((-1273) $)) (-15 -2725 ((-1273) $)) (-15 -4243 ((-1273) $ (-567))) (-15 -1530 ((-1273) $ (-225))) (-15 -4267 ((-1273) $ (-1178))) (-15 -2260 ((-1273) $ (-1160))) (-15 -3203 ((-1273) $ (-1160) (-1160))) (-15 -2889 ((-1273) $)) (-15 -4215 ((-1273) $)) (-15 -2568 ((-1273) $)) (-15 -3384 ((-1273) $)) (-15 -3581 ((-1273) $)) (-15 -3242 ((-1273) $)) (-15 -3735 ((-1273) $)) (-15 -3331 ((-1273) $)) (-15 -3318 ((-1273) $)) (-15 -1556 ((-1273) $)) (-15 -3332 ((-1273) $)) (-15 -3948 ((-1273) $)) (-15 -2011 ((-1273) $)) (-15 -3660 ((-1273) $)) (-15 -3212 ((-567) $)) (-15 -2917 ((-225) $)) (-15 -2412 ((-1178) $)) (-15 -3856 ((-1160) $)) (-15 -2854 ((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $)) (-15 -2132 ((-1178) $))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-4259 (($) 16)) (-2710 (($) 14)) (-3507 (($) 17)) (-2686 (($) 15)) (-2936 (((-112) $ $) 9))) +(((-824) (-13 (-1102) (-10 -8 (-15 -2710 ($)) (-15 -4259 ($)) (-15 -3507 ($)) (-15 -2686 ($))))) (T -824)) +((-2710 (*1 *1) (-5 *1 (-824))) (-4259 (*1 *1) (-5 *1 (-824))) (-3507 (*1 *1) (-5 *1 (-824))) (-2686 (*1 *1) (-5 *1 (-824)))) +(-13 (-1102) (-10 -8 (-15 -2710 ($)) (-15 -4259 ($)) (-15 -3507 ($)) (-15 -2686 ($)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 23) (($ (-1178)) 19)) (-1745 (((-112) $ $) NIL)) (-1851 (((-112) $) 10)) (-2473 (((-112) $) 9)) (-3414 (((-112) $) 11)) (-1889 (((-112) $) 8)) (-2936 (((-112) $ $) 21))) +(((-825) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -1889 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -3414 ((-112) $))))) (T -825)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-825)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -1889 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -3414 ((-112) $)))) +((-2403 (((-112) $ $) NIL)) (-1911 (($ (-825) (-645 (-1178))) 32)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2118 (((-825) $) 33)) (-4044 (((-645 (-1178)) $) 34)) (-4132 (((-863) $) 31)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-826) (-13 (-1102) (-10 -8 (-15 -2118 ((-825) $)) (-15 -4044 ((-645 (-1178)) $)) (-15 -1911 ($ (-825) (-645 (-1178))))))) (T -826)) +((-2118 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-826)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1178))) (-5 *1 (-826))))) +(-13 (-1102) (-10 -8 (-15 -2118 ((-825) $)) (-15 -4044 ((-645 (-1178)) $)) (-15 -1911 ($ (-825) (-645 (-1178)))))) +((-2904 (((-1273) (-823) (-317 |#1|) (-112)) 24) (((-1273) (-823) (-317 |#1|)) 90) (((-1160) (-317 |#1|) (-112)) 89) (((-1160) (-317 |#1|)) 88))) +(((-827 |#1|) (-10 -7 (-15 -2904 ((-1160) (-317 |#1|))) (-15 -2904 ((-1160) (-317 |#1|) (-112))) (-15 -2904 ((-1273) (-823) (-317 |#1|))) (-15 -2904 ((-1273) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1051))) (T -827)) +((-2904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *6)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *5)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1160)) (-5 *1 (-827 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1160)) (-5 *1 (-827 *4))))) +(-10 -7 (-15 -2904 ((-1160) (-317 |#1|))) (-15 -2904 ((-1160) (-317 |#1|) (-112))) (-15 -2904 ((-1273) (-823) (-317 |#1|))) (-15 -2904 ((-1273) (-823) (-317 |#1|) (-112)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2859 ((|#1| $) 10)) (-4179 (($ |#1|) 9)) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) NIL)) (-2656 (((-772) $) NIL)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3077 (((-772) $) NIL)) (-4132 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4136 ((|#2| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4179 ($ |#1|)) (-15 -2859 (|#1| $)))) (-709 |#2|) (-1051)) (T -828)) +((-4179 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-2859 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051))))) +(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4179 ($ |#1|)) (-15 -2859 (|#1| $)))) +((-2904 (((-1273) (-823) $ (-112)) 9) (((-1273) (-823) $) 8) (((-1160) $ (-112)) 7) (((-1160) $) 6))) (((-829) (-140)) (T -829)) -((-4224 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1272)))) (-4224 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1272)))) (-4224 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1159)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1159))))) -(-13 (-10 -8 (-15 -4224 ((-1159) $)) (-15 -4224 ((-1159) $ (-112))) (-15 -4224 ((-1272) (-823) $)) (-15 -4224 ((-1272) (-823) $ (-112))))) -((-3251 (((-313) (-1159) (-1159)) 12)) (-1850 (((-112) (-1159) (-1159)) 34)) (-1309 (((-112) (-1159)) 33)) (-1623 (((-52) (-1159)) 25)) (-3995 (((-52) (-1159)) 23)) (-2673 (((-52) (-823)) 17)) (-1775 (((-645 (-1159)) (-1159)) 28)) (-4235 (((-645 (-1159))) 27))) -(((-830) (-10 -7 (-15 -2673 ((-52) (-823))) (-15 -3995 ((-52) (-1159))) (-15 -1623 ((-52) (-1159))) (-15 -4235 ((-645 (-1159)))) (-15 -1775 ((-645 (-1159)) (-1159))) (-15 -1309 ((-112) (-1159))) (-15 -1850 ((-112) (-1159) (-1159))) (-15 -3251 ((-313) (-1159) (-1159))))) (T -830)) -((-3251 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-830)))) (-1850 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1775 (*1 *2 *3) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-830)) (-5 *3 (-1159)))) (-4235 (*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-830)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-830)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-830)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) -(-10 -7 (-15 -2673 ((-52) (-823))) (-15 -3995 ((-52) (-1159))) (-15 -1623 ((-52) (-1159))) (-15 -4235 ((-645 (-1159)))) (-15 -1775 ((-645 (-1159)) (-1159))) (-15 -1309 ((-112) (-1159))) (-15 -1850 ((-112) (-1159) (-1159))) (-15 -3251 ((-313) (-1159) (-1159)))) -((-2399 (((-112) $ $) 19)) (-4240 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4020 (($ $ $) 73)) (-4202 (((-112) $ $) 74)) (-2112 (((-112) $ (-772)) 8)) (-4150 (($ (-645 |#1|)) 69) (($) 68)) (-3502 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-2300 (($ $) 63)) (-2440 (($ $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) 65)) (-1904 (((-112) $ (-772)) 9)) (-2010 ((|#1| $) 79)) (-1812 (($ $ $) 82)) (-3523 (($ $ $) 81)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2998 ((|#1| $) 80)) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22)) (-1877 (($ $ $) 70)) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1121) $) 21)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3662 (((-645 (-2 (|:| -4232 |#1|) (|:| -3439 (-772)))) $) 62)) (-1739 (($ $ |#1|) 72) (($ $ $) 71)) (-3253 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 51)) (-4127 (((-863) $) 18)) (-2768 (($ (-645 |#1|)) 67) (($) 66)) (-4104 (((-112) $ $) 23)) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20)) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) +((-2904 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1273)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1273)))) (-2904 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1160)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1160))))) +(-13 (-10 -8 (-15 -2904 ((-1160) $)) (-15 -2904 ((-1160) $ (-112))) (-15 -2904 ((-1273) (-823) $)) (-15 -2904 ((-1273) (-823) $ (-112))))) +((-3702 (((-313) (-1160) (-1160)) 12)) (-2358 (((-112) (-1160) (-1160)) 34)) (-2169 (((-112) (-1160)) 33)) (-2798 (((-52) (-1160)) 25)) (-4291 (((-52) (-1160)) 23)) (-1693 (((-52) (-823)) 17)) (-1311 (((-645 (-1160)) (-1160)) 28)) (-1457 (((-645 (-1160))) 27))) +(((-830) (-10 -7 (-15 -1693 ((-52) (-823))) (-15 -4291 ((-52) (-1160))) (-15 -2798 ((-52) (-1160))) (-15 -1457 ((-645 (-1160)))) (-15 -1311 ((-645 (-1160)) (-1160))) (-15 -2169 ((-112) (-1160))) (-15 -2358 ((-112) (-1160) (-1160))) (-15 -3702 ((-313) (-1160) (-1160))))) (T -830)) +((-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-830)))) (-2358 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1311 (*1 *2 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)) (-5 *3 (-1160)))) (-1457 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) +(-10 -7 (-15 -1693 ((-52) (-823))) (-15 -4291 ((-52) (-1160))) (-15 -2798 ((-52) (-1160))) (-15 -1457 ((-645 (-1160)))) (-15 -1311 ((-645 (-1160)) (-1160))) (-15 -2169 ((-112) (-1160))) (-15 -2358 ((-112) (-1160) (-1160))) (-15 -3702 ((-313) (-1160) (-1160)))) +((-2403 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4287 (($ $ $) 73)) (-2493 (((-112) $ $) 74)) (-3445 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 65)) (-2077 (((-112) $ (-772)) 9)) (-1354 ((|#1| $) 79)) (-2966 (($ $ $) 82)) (-4135 (($ $ $) 81)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 80)) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 70)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-4071 (($ $ |#1|) 72) (($ $ $) 71)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18)) (-2772 (($ (-645 |#1|)) 67) (($) 66)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) (((-831 |#1|) (-140) (-851)) (T -831)) -((-2010 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851))))) -(-13 (-737 |t#1|) (-969 |t#1|) (-10 -8 (-15 -2010 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-969 |#1|) . T) ((-1099 |#1|) . T) ((-1101) . T) ((-1217) . T)) -((-2761 (((-1272) (-1121) (-1121)) 48)) (-3766 (((-1272) (-822) (-52)) 45)) (-2131 (((-52) (-822)) 16))) -(((-832) (-10 -7 (-15 -2131 ((-52) (-822))) (-15 -3766 ((-1272) (-822) (-52))) (-15 -2761 ((-1272) (-1121) (-1121))))) (T -832)) -((-2761 (*1 *2 *3 *3) (-12 (-5 *3 (-1121)) (-5 *2 (-1272)) (-5 *1 (-832)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1272)) (-5 *1 (-832)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) -(-10 -7 (-15 -2131 ((-52) (-822))) (-15 -3766 ((-1272) (-822) (-52))) (-15 -2761 ((-1272) (-1121) (-1121)))) -((-3822 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13))) -(((-833 |#1| |#2|) (-10 -7 (-15 -3822 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3822 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1101) (-1101)) (T -833)) -((-3822 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *1 (-833 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))) -(-10 -7 (-15 -3822 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3822 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL (|has| |#1| (-21)))) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3449 (((-567) $) NIL (|has| |#1| (-849)))) (-2245 (($) NIL (|has| |#1| (-21)) CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 9)) (-3153 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-2240 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-1426 (((-112) $) 46 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-4357 (((-112) $) NIL (|has| |#1| (-849)))) (-2843 (((-112) $) NIL (|has| |#1| (-849)))) (-2102 (((-112) $) NIL (|has| |#1| (-849)))) (-2010 (($ $ $) NIL (|has| |#1| (-849)))) (-2998 (($ $ $) NIL (|has| |#1| (-849)))) (-3739 (((-1159) $) NIL)) (-1491 (($) 13)) (-3890 (((-112) $) 12)) (-3430 (((-1121) $) NIL)) (-3527 (((-112) $) 11)) (-4127 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2797 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))))) (-1772 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-4104 (((-112) $ $) 54)) (-4137 (($ $) NIL (|has| |#1| (-849)))) (-1710 (($) 23 (|has| |#1| (-21)) CONST)) (-1722 (($) 33 (|has| |#1| (-849)) CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2929 (((-112) $ $) 21)) (-2977 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2952 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3037 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3024 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) -(((-834 |#1|) (-13 (-1101) (-414 |#1|) (-10 -8 (-15 -1491 ($)) (-15 -3527 ((-112) $)) (-15 -3890 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1101)) (T -834)) -((-1491 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1101)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1101)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1101)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) (-2240 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1101))))) -(-13 (-1101) (-414 |#1|) (-10 -8 (-15 -1491 ($)) (-15 -3527 ((-112) $)) (-15 -3890 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -((-1582 (((-112) $ |#2|) 14)) (-4127 (((-863) $) 11))) -(((-835 |#1| |#2|) (-10 -8 (-15 -1582 ((-112) |#1| |#2|)) (-15 -4127 ((-863) |#1|))) (-836 |#2|) (-1101)) (T -835)) -NIL -(-10 -8 (-15 -1582 ((-112) |#1| |#2|)) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-1988 ((|#1| $) 16)) (-3739 (((-1159) $) 10)) (-1582 (((-112) $ |#1|) 14)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1681 (((-55) $) 15)) (-2929 (((-112) $ $) 6))) -(((-836 |#1|) (-140) (-1101)) (T -836)) -((-1988 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1101)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1101)) (-5 *2 (-55)))) (-1582 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(-13 (-1101) (-10 -8 (-15 -1988 (|t#1| $)) (-15 -1681 ((-55) $)) (-15 -1582 ((-112) $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-114) $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2835 ((|#1| (-114) |#1|) NIL)) (-2843 (((-112) $) NIL)) (-1684 (($ |#1| (-363 (-114))) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3705 (($ $ (-1 |#1| |#1|)) NIL)) (-2428 (($ $ (-1 |#1| |#1|)) NIL)) (-1783 ((|#1| $ |#1|) NIL)) (-1672 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-837 |#1|) (-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3406 ($ $)) (-15 -3406 ($ $ $)) (-15 -1672 (|#1| |#1|))) |%noBranch|) (-15 -2428 ($ $ (-1 |#1| |#1|))) (-15 -3705 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -2835 (|#1| (-114) |#1|)) (-15 -1684 ($ |#1| (-363 (-114)))))) (-1050)) (T -837)) -((-3406 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-3406 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-1672 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-2428 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1050)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1050)))) (-2835 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1050)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1050))))) -(-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3406 ($ $)) (-15 -3406 ($ $ $)) (-15 -1672 (|#1| |#1|))) |%noBranch|) (-15 -2428 ($ $ (-1 |#1| |#1|))) (-15 -3705 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -2835 (|#1| (-114) |#1|)) (-15 -1684 ($ |#1| (-363 (-114)))))) -((-2512 (((-214 (-505)) (-1159)) 9))) -(((-838) (-10 -7 (-15 -2512 ((-214 (-505)) (-1159))))) (T -838)) -((-2512 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) -(-10 -7 (-15 -2512 ((-214 (-505)) (-1159)))) -((-2399 (((-112) $ $) NIL)) (-3384 (((-1119) $) 10)) (-1988 (((-509) $) 9)) (-3739 (((-1159) $) NIL)) (-1582 (((-112) $ (-509)) NIL)) (-3430 (((-1121) $) NIL)) (-4142 (($ (-509) (-1119)) 8)) (-4127 (((-863) $) 25)) (-4104 (((-112) $ $) NIL)) (-1681 (((-55) $) 20)) (-2929 (((-112) $ $) 12))) -(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -3384 ((-1119) $)) (-15 -4142 ($ (-509) (-1119)))))) (T -839)) -((-3384 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-839)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1119)) (-5 *1 (-839))))) -(-13 (-836 (-509)) (-10 -8 (-15 -3384 ((-1119) $)) (-15 -4142 ($ (-509) (-1119))))) -((-2399 (((-112) $ $) 7)) (-2643 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 15) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 16)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) +((-1354 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851))))) +(-13 (-737 |t#1|) (-970 |t#1|) (-10 -8 (-15 -1354 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-970 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T)) +((-2664 (((-1273) (-1122) (-1122)) 48)) (-3902 (((-1273) (-822) (-52)) 45)) (-1685 (((-52) (-822)) 16))) +(((-832) (-10 -7 (-15 -1685 ((-52) (-822))) (-15 -3902 ((-1273) (-822) (-52))) (-15 -2664 ((-1273) (-1122) (-1122))))) (T -832)) +((-2664 (*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1273)) (-5 *1 (-832)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1273)) (-5 *1 (-832)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) +(-10 -7 (-15 -1685 ((-52) (-822))) (-15 -3902 ((-1273) (-822) (-52))) (-15 -2664 ((-1273) (-1122) (-1122)))) +((-3829 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1102) (-1102)) (T -833)) +((-3829 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))) +(-10 -7 (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL (|has| |#1| (-21)) CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-2109 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-2085 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-1862 (((-112) $) 46 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-1433 (((-112) $) NIL (|has| |#1| (-849)))) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-1493 (($) 13)) (-2125 (((-112) $) 12)) (-3430 (((-1122) $) NIL)) (-1314 (((-112) $) 11)) (-4132 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-4221 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-1745 (((-112) $ $) 54)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) 23 (|has| |#1| (-21)) CONST)) (-1728 (($) 33 (|has| |#1| (-849)) CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3045 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3033 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) +(((-834 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1493 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -834)) +((-1493 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))) +(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1493 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) +((-1854 (((-112) $ |#2|) 14)) (-4132 (((-863) $) 11))) +(((-835 |#1| |#2|) (-10 -8 (-15 -1854 ((-112) |#1| |#2|)) (-15 -4132 ((-863) |#1|))) (-836 |#2|) (-1102)) (T -835)) +NIL +(-10 -8 (-15 -1854 ((-112) |#1| |#2|)) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-1996 ((|#1| $) 16)) (-1419 (((-1160) $) 10)) (-1854 (((-112) $ |#1|) 14)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2124 (((-55) $) 15)) (-2936 (((-112) $ $) 6))) +(((-836 |#1|) (-140) (-1102)) (T -836)) +((-1996 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(-13 (-1102) (-10 -8 (-15 -1996 (|t#1| $)) (-15 -2124 ((-55) $)) (-15 -1854 ((-112) $ |t#1|)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-114) $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1929 ((|#1| (-114) |#1|) NIL)) (-1433 (((-112) $) NIL)) (-2371 (($ |#1| (-363 (-114))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1361 (($ $ (-1 |#1| |#1|)) NIL)) (-3456 (($ $ (-1 |#1| |#1|)) NIL)) (-1787 ((|#1| $ |#1|) NIL)) (-2665 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2974 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-837 |#1|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#1| |#1|))) (-15 -1361 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#1| (-114) |#1|)) (-15 -2371 ($ |#1| (-363 (-114)))))) (-1051)) (T -837)) +((-2974 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-2974 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-2665 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) +(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#1| |#1|))) (-15 -1361 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#1| (-114) |#1|)) (-15 -2371 ($ |#1| (-363 (-114)))))) +((-2163 (((-214 (-505)) (-1160)) 9))) +(((-838) (-10 -7 (-15 -2163 ((-214 (-505)) (-1160))))) (T -838)) +((-2163 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) +(-10 -7 (-15 -2163 ((-214 (-505)) (-1160)))) +((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 10)) (-1996 (((-509) $) 9)) (-1419 (((-1160) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-4147 (($ (-509) (-1120)) 8)) (-4132 (((-863) $) 25)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) 20)) (-2936 (((-112) $ $) 12))) +(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -3386 ((-1120) $)) (-15 -4147 ($ (-509) (-1120)))))) (T -839)) +((-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839))))) +(-13 (-836 (-509)) (-10 -8 (-15 -3386 ((-1120) $)) (-15 -4147 ($ (-509) (-1120))))) +((-2403 (((-112) $ $) 7)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 15) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 16)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) (((-840) (-140)) (T -840)) -((-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) (-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) (-2643 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) (-5 *2 (-1036)))) (-2643 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1036))))) -(-13 (-1101) (-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -2643 ((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -2643 ((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2243 (((-1036) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1036) (-317 (-381)) (-645 (-381))) 167) (((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1036) (-842)) 128) (((-1036) (-842) (-1064)) 127)) (-2484 (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842) (-1064)) 88) (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842)) 90)) (-2802 (((-1036) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1036) (-842)) 153))) -(((-841) (-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842) (-1064))) (-15 -2243 ((-1036) (-842) (-1064))) (-15 -2243 ((-1036) (-842))) (-15 -2802 ((-1036) (-842))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)))) (-15 -2243 ((-1036) (-645 (-317 (-381))) (-645 (-381)))) (-15 -2802 ((-1036) (-645 (-317 (-381))) (-645 (-381)))))) (T -841)) -((-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1064)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-841)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-841))))) -(-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-842) (-1064))) (-15 -2243 ((-1036) (-842) (-1064))) (-15 -2243 ((-1036) (-842))) (-15 -2802 ((-1036) (-842))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2243 ((-1036) (-317 (-381)) (-645 (-381)))) (-15 -2243 ((-1036) (-645 (-317 (-381))) (-645 (-381)))) (-15 -2802 ((-1036) (-645 (-317 (-381))) (-645 (-381))))) -((-2399 (((-112) $ $) NIL)) (-2033 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) $) 21)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-842) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4127 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -4127 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))))) (-15 -2033 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) $))))) (T -842)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) (-5 *1 (-842)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))) (-5 *1 (-842)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))))) (-5 *1 (-842))))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4127 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) (-15 -4127 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))))) (-15 -2033 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225)))))) $)))) -((-3822 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14))) -(((-843 |#1| |#2|) (-10 -7 (-15 -3822 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3822 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1101) (-1101)) (T -843)) -((-3822 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *1 (-843 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))) -(-10 -7 (-15 -3822 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3822 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL (|has| |#1| (-21)))) (-2101 (((-1121) $) 31)) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3449 (((-567) $) NIL (|has| |#1| (-849)))) (-2245 (($) NIL (|has| |#1| (-21)) CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 9)) (-3153 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-2240 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-1426 (((-112) $) 60 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-4357 (((-112) $) NIL (|has| |#1| (-849)))) (-2311 (($) 14)) (-2843 (((-112) $) NIL (|has| |#1| (-849)))) (-2102 (((-112) $) NIL (|has| |#1| (-849)))) (-2326 (($) 16)) (-2010 (($ $ $) NIL (|has| |#1| (-849)))) (-2998 (($ $ $) NIL (|has| |#1| (-849)))) (-3739 (((-1159) $) NIL)) (-3890 (((-112) $) 12)) (-3430 (((-1121) $) NIL)) (-3527 (((-112) $) 11)) (-4127 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2797 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))))) (-1772 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-4104 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-849)))) (-1710 (($) 37 (|has| |#1| (-21)) CONST)) (-1722 (($) 48 (|has| |#1| (-849)) CONST)) (-2988 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2929 (((-112) $ $) 35)) (-2977 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2952 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3037 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3024 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) -(((-844 |#1|) (-13 (-1101) (-414 |#1|) (-10 -8 (-15 -2311 ($)) (-15 -2326 ($)) (-15 -3527 ((-112) $)) (-15 -3890 ((-112) $)) (-15 -2101 ((-1121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1101)) (T -844)) -((-2311 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1101)))) (-2326 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1101)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1101)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1101)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-844 *3)) (-4 *3 (-1101)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) (-2240 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1101))))) -(-13 (-1101) (-414 |#1|) (-10 -8 (-15 -2311 ($)) (-15 -2326 ($)) (-15 -3527 ((-112) $)) (-15 -3890 ((-112) $)) (-15 -2101 ((-1121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2371 (((-772)) 23)) (-1378 (($) 26)) (-2010 (($ $ $) 14) (($) 22 T CONST)) (-2998 (($ $ $) 15) (($) 21 T CONST)) (-3425 (((-922) $) 25)) (-3739 (((-1159) $) 10)) (-3763 (($ (-922)) 24)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19))) +((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3912 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-1037)))) (-3912 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1037))))) +(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3912 ((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3912 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2252 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1037) (-317 (-381)) (-645 (-381))) 167) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1037) (-842)) 128) (((-1037) (-842) (-1065)) 127)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065)) 88) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842)) 90)) (-3059 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1037) (-842)) 153))) +(((-841) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065))) (-15 -2252 ((-1037) (-842) (-1065))) (-15 -2252 ((-1037) (-842))) (-15 -3059 ((-1037) (-842))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2252 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3059 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))) (T -841)) +((-3059 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-841)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-841))))) +(-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065))) (-15 -2252 ((-1037) (-842) (-1065))) (-15 -2252 ((-1037) (-842))) (-15 -3059 ((-1037) (-842))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2252 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3059 ((-1037) (-645 (-317 (-381))) (-645 (-381))))) +((-2403 (((-112) $ $) NIL)) (-2038 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-842) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4132 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -4132 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))) (-15 -2038 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $))))) (T -842)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *1 (-842)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *1 (-842)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *1 (-842))))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4132 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -4132 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))) (-15 -2038 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $)))) +((-3829 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14))) +(((-843 |#1| |#2|) (-10 -7 (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1102) (-1102)) (T -843)) +((-3829 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))) +(-10 -7 (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3406 (((-1122) $) 31)) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL (|has| |#1| (-21)) CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-2109 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-2085 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-1862 (((-112) $) 60 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-2319 (($) 14)) (-1433 (((-112) $) NIL (|has| |#1| (-849)))) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-2333 (($) 16)) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-2125 (((-112) $) 12)) (-3430 (((-1122) $) NIL)) (-1314 (((-112) $) 11)) (-4132 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-4221 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-1745 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) 37 (|has| |#1| (-21)) CONST)) (-1728 (($) 48 (|has| |#1| (-849)) CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) 35)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3045 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3033 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) +(((-844 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2333 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (-15 -3406 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -844)) +((-2319 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-2333 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))) +(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2333 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (-15 -3406 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) +((-2403 (((-112) $ $) 7)) (-2375 (((-772)) 23)) (-1348 (($) 26)) (-1354 (($ $ $) 14) (($) 22 T CONST)) (-2981 (($ $ $) 15) (($) 21 T CONST)) (-4249 (((-923) $) 25)) (-1419 (((-1160) $) 10)) (-3768 (($ (-923)) 24)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19))) (((-845) (-140)) (T -845)) -((-2010 (*1 *1) (-4 *1 (-845))) (-2998 (*1 *1) (-4 *1 (-845)))) -(-13 (-851) (-370) (-10 -8 (-15 -2010 ($) -3280) (-15 -2998 ($) -3280))) -(((-102) . T) ((-614 (-863)) . T) ((-370) . T) ((-851) . T) ((-1101) . T)) -((-2347 (((-112) (-1267 |#2|) (-1267 |#2|)) 23)) (-1742 (((-112) (-1267 |#2|) (-1267 |#2|)) 24)) (-3212 (((-112) (-1267 |#2|) (-1267 |#2|)) 20))) -(((-846 |#1| |#2|) (-10 -7 (-15 -3212 ((-112) (-1267 |#2|) (-1267 |#2|))) (-15 -2347 ((-112) (-1267 |#2|) (-1267 |#2|))) (-15 -1742 ((-112) (-1267 |#2|) (-1267 |#2|)))) (-772) (-793)) (T -846)) -((-1742 (*1 *2 *3 *3) (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2347 (*1 *2 *3 *3) (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-3212 (*1 *2 *3 *3) (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(-10 -7 (-15 -3212 ((-112) (-1267 |#2|) (-1267 |#2|))) (-15 -2347 ((-112) (-1267 |#2|) (-1267 |#2|))) (-15 -1742 ((-112) (-1267 |#2|) (-1267 |#2|)))) -((-2399 (((-112) $ $) 7)) (-2245 (($) 24 T CONST)) (-3153 (((-3 $ "failed") $) 27)) (-2843 (((-112) $) 25)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1722 (($) 23 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (** (($ $ (-922)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21))) +((-1354 (*1 *1) (-4 *1 (-845))) (-2981 (*1 *1) (-4 *1 (-845)))) +(-13 (-851) (-370) (-10 -8 (-15 -1354 ($) -3286) (-15 -2981 ($) -3286))) +(((-102) . T) ((-614 (-863)) . T) ((-370) . T) ((-851) . T) ((-1102) . T)) +((-2507 (((-112) (-1268 |#2|) (-1268 |#2|)) 23)) (-4279 (((-112) (-1268 |#2|) (-1268 |#2|)) 24)) (-4055 (((-112) (-1268 |#2|) (-1268 |#2|)) 20))) +(((-846 |#1| |#2|) (-10 -7 (-15 -4055 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -2507 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -4279 ((-112) (-1268 |#2|) (-1268 |#2|)))) (-772) (-793)) (T -846)) +((-4279 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2507 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-4055 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) +(-10 -7 (-15 -4055 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -2507 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -4279 ((-112) (-1268 |#2|) (-1268 |#2|)))) +((-2403 (((-112) $ $) 7)) (-2585 (($) 24 T CONST)) (-2109 (((-3 $ "failed") $) 27)) (-1433 (((-112) $) 25)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (** (($ $ (-923)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21))) (((-847) (-140)) (T -847)) NIL (-13 (-858) (-727)) -(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-858) . T) ((-851) . T) ((-1113) . T) ((-1101) . T)) -((-3449 (((-567) $) 21)) (-4357 (((-112) $) 10)) (-2102 (((-112) $) 12)) (-4137 (($ $) 23))) -(((-848 |#1|) (-10 -8 (-15 -4137 (|#1| |#1|)) (-15 -3449 ((-567) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -4357 ((-112) |#1|))) (-849)) (T -848)) +(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-858) . T) ((-851) . T) ((-1114) . T) ((-1102) . T)) +((-1750 (((-567) $) 21)) (-4336 (((-112) $) 10)) (-3494 (((-112) $) 12)) (-2219 (($ $) 23))) +(((-848 |#1|) (-10 -8 (-15 -2219 (|#1| |#1|)) (-15 -1750 ((-567) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4336 ((-112) |#1|))) (-849)) (T -848)) NIL -(-10 -8 (-15 -4137 (|#1| |#1|)) (-15 -3449 ((-567) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -4357 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 25)) (-3460 (((-3 $ "failed") $ $) 27)) (-3449 (((-567) $) 37)) (-2245 (($) 24 T CONST)) (-3153 (((-3 $ "failed") $) 42)) (-4357 (((-112) $) 39)) (-2843 (((-112) $) 44)) (-2102 (((-112) $) 38)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 46)) (-1772 (((-772)) 47 T CONST)) (-4104 (((-112) $ $) 9)) (-4137 (($ $) 36)) (-1710 (($) 23 T CONST)) (-1722 (($) 45 T CONST)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (-3037 (($ $ $) 31) (($ $) 30)) (-3024 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-922)) 40)) (* (($ (-922) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41))) +(-10 -8 (-15 -2219 (|#1| |#1|)) (-15 -1750 ((-567) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4336 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-1750 (((-567) $) 37)) (-2585 (($) 24 T CONST)) (-2109 (((-3 $ "failed") $) 42)) (-4336 (((-112) $) 39)) (-1433 (((-112) $) 44)) (-3494 (((-112) $) 38)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 46)) (-4221 (((-772)) 47 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 (($ $) 36)) (-1716 (($) 23 T CONST)) (-1728 (($) 45 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3045 (($ $ $) 31) (($ $) 30)) (-3033 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-923)) 40)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41))) (((-849) (-140)) (T -849)) -((-4357 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-4137 (*1 *1 *1) (-4 *1 (-849)))) -(-13 (-792) (-1050) (-727) (-10 -8 (-15 -4357 ((-112) $)) (-15 -2102 ((-112) $)) (-15 -3449 ((-567) $)) (-15 -4137 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2010 (($ $ $) 12)) (-2998 (($ $ $) 11)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 15)) (-2964 (((-112) $ $) 13)) (-2977 (((-112) $ $) 16))) -(((-850 |#1|) (-10 -8 (-15 -2010 (|#1| |#1| |#1|)) (-15 -2998 (|#1| |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|))) (-851)) (T -850)) -NIL -(-10 -8 (-15 -2010 (|#1| |#1| |#1|)) (-15 -2998 (|#1| |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19))) +((-4336 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-2219 (*1 *1 *1) (-4 *1 (-849)))) +(-13 (-792) (-1051) (-727) (-10 -8 (-15 -4336 ((-112) $)) (-15 -3494 ((-112) $)) (-15 -1750 ((-567) $)) (-15 -2219 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-1354 (($ $ $) 12)) (-2981 (($ $ $) 11)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 15)) (-2971 (((-112) $ $) 13)) (-2984 (((-112) $ $) 16))) +(((-850 |#1|) (-10 -8 (-15 -1354 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2997 ((-112) |#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) (-851)) (T -850)) +NIL +(-10 -8 (-15 -1354 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2997 ((-112) |#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19))) (((-851) (-140)) (T -851)) -((-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2998 (*1 *1 *1 *1) (-4 *1 (-851))) (-2010 (*1 *1 *1 *1) (-4 *1 (-851)))) -(-13 (-1101) (-10 -8 (-15 -2952 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -2977 ((-112) $ $)) (-15 -2998 ($ $ $)) (-15 -2010 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-1385 (($ $ $) 49)) (-2241 (($ $ $) 48)) (-3107 (($ $ $) 46)) (-1899 (($ $ $) 55)) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 50)) (-4342 (((-3 $ "failed") $ $) 53)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-4334 (($ $) 39)) (-3308 (($ $ $) 43)) (-3819 (($ $ $) 42)) (-1634 (($ $ $) 51)) (-4188 (($ $ $) 57)) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 45)) (-4097 (((-3 $ "failed") $ $) 52)) (-2387 (((-3 $ "failed") $ |#2|) 32)) (-4385 ((|#2| $) 36)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-3468 (((-645 |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-852 |#1| |#2|) (-10 -8 (-15 -1634 (|#1| |#1| |#1|)) (-15 -2120 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -1899 (|#1| |#1| |#1|)) (-15 -4342 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1385 (|#1| |#1| |#1|)) (-15 -2241 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1310 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3308 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4127 ((-863) |#1|))) (-853 |#2|) (-1050)) (T -852)) -NIL -(-10 -8 (-15 -1634 (|#1| |#1| |#1|)) (-15 -2120 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -1899 (|#1| |#1| |#1|)) (-15 -4342 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1385 (|#1| |#1| |#1|)) (-15 -2241 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1310 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1394 |#1|)) |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3308 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -2387 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-1385 (($ $ $) 50 (|has| |#1| (-365)))) (-2241 (($ $ $) 51 (|has| |#1| (-365)))) (-3107 (($ $ $) 53 (|has| |#1| (-365)))) (-1899 (($ $ $) 48 (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 47 (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 52 (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2033 (((-567) $) 79 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 75)) (-3006 (($ $) 69)) (-3153 (((-3 $ "failed") $) 37)) (-4334 (($ $) 60 (|has| |#1| (-455)))) (-2843 (((-112) $) 35)) (-2821 (($ |#1| (-772)) 67)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 62 (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63 (|has| |#1| (-559)))) (-2752 (((-772) $) 71)) (-3308 (($ $ $) 57 (|has| |#1| (-365)))) (-3819 (($ $ $) 58 (|has| |#1| (-365)))) (-1634 (($ $ $) 46 (|has| |#1| (-365)))) (-4188 (($ $ $) 55 (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 54 (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 59 (|has| |#1| (-365)))) (-2980 ((|#1| $) 70)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1813 (((-772) $) 72)) (-4385 ((|#1| $) 61 (|has| |#1| (-455)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 73)) (-3468 (((-645 |#1|) $) 66)) (-2253 ((|#1| $ (-772)) 68)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-2351 ((|#1| $ |#1| |#1|) 65)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-853 |#1|) (-140) (-1050)) (T -853)) -((-1813 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-645 *3)))) (-2351 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2387 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-2412 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) (-3206 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-4334 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) (-3819 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-3308 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4097 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4188 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1310 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) (-4 *1 (-853 *3)))) (-3107 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2436 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) (-2241 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1385 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4342 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1899 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2120 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) (-4 *1 (-853 *3)))) (-1634 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(-13 (-1050) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -1813 ((-772) $)) (-15 -2752 ((-772) $)) (-15 -2980 (|t#1| $)) (-15 -3006 ($ $)) (-15 -2253 (|t#1| $ (-772))) (-15 -2821 ($ |t#1| (-772))) (-15 -3468 ((-645 |t#1|) $)) (-15 -2351 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2387 ((-3 $ "failed") $ |t#1|)) (-15 -2412 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3206 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4385 (|t#1| $)) (-15 -4334 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1751 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3819 ($ $ $)) (-15 -3308 ($ $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -4188 ($ $ $)) (-15 -1310 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $)) (-15 -3107 ($ $ $)) (-15 -2436 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -2241 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -4342 ((-3 $ "failed") $ $)) (-15 -1899 ($ $ $)) (-15 -2120 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $)) (-15 -1634 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2237 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2436 (((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-3206 (((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-1751 (((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2351 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2237 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2351 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -2412 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3206 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1751 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2436 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1050) (-853 |#1|)) (T -854)) -((-2436 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1751 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-3206 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2351 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1050)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-2237 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1050)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) -(-10 -7 (-15 -2237 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2351 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -2412 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3206 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1751 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2436 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1385 (($ $ $) NIL (|has| |#1| (-365)))) (-2241 (($ $ $) NIL (|has| |#1| (-365)))) (-3107 (($ $ $) NIL (|has| |#1| (-365)))) (-1899 (($ $ $) NIL (|has| |#1| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 34 (|has| |#1| (-365)))) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-1808 (((-863) $ (-863)) NIL)) (-2843 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) NIL)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 30 (|has| |#1| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 28 (|has| |#1| (-559)))) (-2752 (((-772) $) NIL)) (-3308 (($ $ $) NIL (|has| |#1| (-365)))) (-3819 (($ $ $) NIL (|has| |#1| (-365)))) (-1634 (($ $ $) NIL (|has| |#1| (-365)))) (-4188 (($ $ $) NIL (|has| |#1| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-4097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 32 (|has| |#1| (-365)))) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1813 (((-772) $) NIL)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-2351 ((|#1| $ |#1| |#1|) 15)) (-1710 (($) NIL T CONST)) (-1722 (($) 23 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) 19) (($ $ (-772)) 24)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-863))))) (-1050) (-99 |#1|) (-1 |#1| |#1|)) (T -855)) -((-1808 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-853 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-863))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1385 (($ $ $) NIL (|has| |#2| (-365)))) (-2241 (($ $ $) NIL (|has| |#2| (-365)))) (-3107 (($ $ $) NIL (|has| |#2| (-365)))) (-1899 (($ $ $) NIL (|has| |#2| (-365)))) (-2120 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#2| (-365)))) (-4342 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2436 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-365)))) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#2| (-455)))) (-2843 (((-112) $) NIL)) (-2821 (($ |#2| (-772)) 17)) (-3206 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-559)))) (-2412 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-559)))) (-2752 (((-772) $) NIL)) (-3308 (($ $ $) NIL (|has| |#2| (-365)))) (-3819 (($ $ $) NIL (|has| |#2| (-365)))) (-1634 (($ $ $) NIL (|has| |#2| (-365)))) (-4188 (($ $ $) NIL (|has| |#2| (-365)))) (-1310 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#2| (-365)))) (-4097 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1751 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-365)))) (-2980 ((|#2| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-1813 (((-772) $) NIL)) (-4385 ((|#2| $) NIL (|has| |#2| (-455)))) (-4127 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (($ (-1263 |#1|)) 19)) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-772)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-2351 ((|#2| $ |#2| |#2|) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) 13 T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1263 |#1|))) (-1177) (-1050) (-99 |#2|) (-1 |#2| |#2|)) (T -856)) -NIL -(-13 (-853 |#2|) (-617 (-1263 |#1|))) -((-2262 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-3680 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-2212 ((|#1| (-772) |#1|) 43)) (-1810 ((|#1| (-772) |#1|) 41)) (-3790 ((|#1| (-772) |#1|) 40))) -(((-857 |#1|) (-10 -7 (-15 -3790 (|#1| (-772) |#1|)) (-15 -1810 (|#1| (-772) |#1|)) (-15 -2212 (|#1| (-772) |#1|)) (-15 -3680 (|#1| (-772) |#1|)) (-15 -3680 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2262 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857)) -((-2262 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3680 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3680 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2212 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1810 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -3790 (|#1| (-772) |#1|)) (-15 -1810 (|#1| (-772) |#1|)) (-15 -2212 (|#1| (-772) |#1|)) (-15 -3680 (|#1| (-772) |#1|)) (-15 -3680 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2262 (|#1| (-772) |#1|)) |%noBranch|)) -((-2399 (((-112) $ $) 7)) (-2010 (($ $ $) 14)) (-2998 (($ $ $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2988 (((-112) $ $) 17)) (-2964 (((-112) $ $) 18)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 16)) (-2952 (((-112) $ $) 19)) (** (($ $ (-922)) 22)) (* (($ $ $) 21))) +((-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2971 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2981 (*1 *1 *1 *1) (-4 *1 (-851))) (-1354 (*1 *1 *1 *1) (-4 *1 (-851)))) +(-13 (-1102) (-10 -8 (-15 -2958 ((-112) $ $)) (-15 -2971 ((-112) $ $)) (-15 -2997 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -2981 ($ $ $)) (-15 -1354 ($ $ $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2336 (($ $ $) 49)) (-2210 (($ $ $) 48)) (-2785 (($ $ $) 46)) (-2680 (($ $ $) 55)) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 50)) (-2080 (((-3 $ "failed") $ $) 53)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3501 (($ $) 39)) (-1778 (($ $ $) 43)) (-3683 (($ $ $) 42)) (-1739 (($ $ $) 51)) (-3053 (($ $ $) 57)) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 45)) (-2446 (((-3 $ "failed") $ $) 52)) (-2391 (((-3 $ "failed") $ |#2|) 32)) (-4358 ((|#2| $) 36)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-3032 (((-645 |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-852 |#1| |#2|) (-10 -8 (-15 -1739 (|#1| |#1| |#1|)) (-15 -3037 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2080 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4132 ((-863) |#1|))) (-853 |#2|) (-1051)) (T -852)) +NIL +(-10 -8 (-15 -1739 (|#1| |#1| |#1|)) (-15 -3037 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2080 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2336 (($ $ $) 50 (|has| |#1| (-365)))) (-2210 (($ $ $) 51 (|has| |#1| (-365)))) (-2785 (($ $ $) 53 (|has| |#1| (-365)))) (-2680 (($ $ $) 48 (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 47 (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 52 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2038 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3014 (($ $) 69)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 60 (|has| |#1| (-455)))) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 67)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 62 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63 (|has| |#1| (-559)))) (-2656 (((-772) $) 71)) (-1778 (($ $ $) 57 (|has| |#1| (-365)))) (-3683 (($ $ $) 58 (|has| |#1| (-365)))) (-1739 (($ $ $) 46 (|has| |#1| (-365)))) (-3053 (($ $ $) 55 (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 54 (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 59 (|has| |#1| (-365)))) (-2989 ((|#1| $) 70)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-3077 (((-772) $) 72)) (-4358 ((|#1| $) 61 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3032 (((-645 |#1|) $) 66)) (-4136 ((|#1| $ (-772)) 68)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2355 ((|#1| $ |#1| |#1|) 65)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-853 |#1|) (-140) (-1051)) (T -853)) +((-3077 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) (-2355 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-1624 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-1701 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-2720 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-1778 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2446 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2285 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-853 *3)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3327 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-2210 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2336 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2080 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2680 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3037 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-853 *3)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(-13 (-1051) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -3077 ((-772) $)) (-15 -2656 ((-772) $)) (-15 -2989 (|t#1| $)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ (-772))) (-15 -2824 ($ |t#1| (-772))) (-15 -3032 ((-645 |t#1|) $)) (-15 -2355 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2391 ((-3 $ "failed") $ |t#1|)) (-15 -1624 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -1701 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4358 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3683 ($ $ $)) (-15 -1778 ($ $ $)) (-15 -2446 ((-3 $ "failed") $ $)) (-15 -3053 ($ $ $)) (-15 -2285 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -2785 ($ $ $)) (-15 -3327 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2210 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -2080 ((-3 $ "failed") $ $)) (-15 -2680 ($ $ $)) (-15 -3037 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -1739 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2243 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3327 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-1701 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-2720 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2355 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-854 |#1| |#2|) (-10 -7 (-15 -2243 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2355 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1624 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1701 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3327 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1051) (-853 |#1|)) (T -854)) +((-3327 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2720 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1701 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1624 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2355 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-2243 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) +(-10 -7 (-15 -2243 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2355 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1624 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1701 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3327 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 34 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2570 (((-863) $ (-863)) NIL)) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 30 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 28 (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 32 (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) 15)) (-1716 (($) NIL T CONST)) (-1728 (($) 23 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 19) (($ $ (-772)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))))) (-1051) (-99 |#1|) (-1 |#1| |#1|)) (T -855)) +((-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-853 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#2| (-365)))) (-2210 (($ $ $) NIL (|has| |#2| (-365)))) (-2785 (($ $ $) NIL (|has| |#2| (-365)))) (-2680 (($ $ $) NIL (|has| |#2| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) 17)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#2| (-365)))) (-3683 (($ $ $) NIL (|has| |#2| (-365)))) (-1739 (($ $ $) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3077 (((-772) $) NIL)) (-4358 ((|#2| $) NIL (|has| |#2| (-455)))) (-4132 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (($ (-1264 |#1|)) 19)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#2| $ |#2| |#2|) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) 13 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1264 |#1|))) (-1178) (-1051) (-99 |#2|) (-1 |#2| |#2|)) (T -856)) +NIL +(-13 (-853 |#2|) (-617 (-1264 |#1|))) +((-3772 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-3684 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-3008 ((|#1| (-772) |#1|) 43)) (-2773 ((|#1| (-772) |#1|) 41)) (-2489 ((|#1| (-772) |#1|) 40))) +(((-857 |#1|) (-10 -7 (-15 -2489 (|#1| (-772) |#1|)) (-15 -2773 (|#1| (-772) |#1|)) (-15 -3008 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3772 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857)) +((-3772 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3684 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3008 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2489 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -2489 (|#1| (-772) |#1|)) (-15 -2773 (|#1| (-772) |#1|)) (-15 -3008 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3772 (|#1| (-772) |#1|)) |%noBranch|)) +((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (** (($ $ (-923)) 22)) (* (($ $ $) 21))) (((-858) (-140)) (T -858)) NIL -(-13 (-851) (-1113)) -(((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3794 (((-567) $) 14)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 20) (($ (-567)) 13)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 9)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 11))) -(((-859) (-13 (-851) (-10 -8 (-15 -4127 ($ (-567))) (-15 -3794 ((-567) $))))) (T -859)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))) -(-13 (-851) (-10 -8 (-15 -4127 ($ (-567))) (-15 -3794 ((-567) $)))) -((-2315 (((-692 (-1225)) $ (-1225)) 15)) (-4285 (((-692 (-552)) $ (-552)) 12)) (-1949 (((-772) $ (-128)) 30))) -(((-860 |#1|) (-10 -8 (-15 -1949 ((-772) |#1| (-128))) (-15 -2315 ((-692 (-1225)) |#1| (-1225))) (-15 -4285 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860)) -NIL -(-10 -8 (-15 -1949 ((-772) |#1| (-128))) (-15 -2315 ((-692 (-1225)) |#1| (-1225))) (-15 -4285 ((-692 (-552)) |#1| (-552)))) -((-2315 (((-692 (-1225)) $ (-1225)) 8)) (-4285 (((-692 (-552)) $ (-552)) 9)) (-1949 (((-772) $ (-128)) 7)) (-2198 (((-692 (-129)) $ (-129)) 10)) (-2990 (($ $) 6))) +(-13 (-851) (-1114)) +(((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-3802 (((-567) $) 14)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-567)) 13)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 11))) +(((-859) (-13 (-851) (-10 -8 (-15 -4132 ($ (-567))) (-15 -3802 ((-567) $))))) (T -859)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))) +(-13 (-851) (-10 -8 (-15 -4132 ($ (-567))) (-15 -3802 ((-567) $)))) +((-3835 (((-692 (-1226)) $ (-1226)) 15)) (-2841 (((-692 (-552)) $ (-552)) 12)) (-3597 (((-772) $ (-128)) 30))) +(((-860 |#1|) (-10 -8 (-15 -3597 ((-772) |#1| (-128))) (-15 -3835 ((-692 (-1226)) |#1| (-1226))) (-15 -2841 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860)) +NIL +(-10 -8 (-15 -3597 ((-772) |#1| (-128))) (-15 -3835 ((-692 (-1226)) |#1| (-1226))) (-15 -2841 ((-692 (-552)) |#1| (-552)))) +((-3835 (((-692 (-1226)) $ (-1226)) 8)) (-2841 (((-692 (-552)) $ (-552)) 9)) (-3597 (((-772) $ (-128)) 7)) (-3887 (((-692 (-129)) $ (-129)) 10)) (-1675 (($ $) 6))) (((-861) (-140)) (T -861)) -((-2198 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-4285 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1225))) (-5 *3 (-1225)))) (-1949 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) -(-13 (-173) (-10 -8 (-15 -2198 ((-692 (-129)) $ (-129))) (-15 -4285 ((-692 (-552)) $ (-552))) (-15 -2315 ((-692 (-1225)) $ (-1225))) (-15 -1949 ((-772) $ (-128))))) +((-3887 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-3835 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1226))) (-5 *3 (-1226)))) (-3597 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) +(-13 (-173) (-10 -8 (-15 -3887 ((-692 (-129)) $ (-129))) (-15 -2841 ((-692 (-552)) $ (-552))) (-15 -3835 ((-692 (-1226)) $ (-1226))) (-15 -3597 ((-772) $ (-128))))) (((-173) . T)) -((-2315 (((-692 (-1225)) $ (-1225)) NIL)) (-4285 (((-692 (-552)) $ (-552)) NIL)) (-1949 (((-772) $ (-128)) NIL)) (-2198 (((-692 (-129)) $ (-129)) 22)) (-2590 (($ (-391)) 12) (($ (-1159)) 14)) (-1703 (((-112) $) 19)) (-4127 (((-863) $) 26)) (-2990 (($ $) 23))) -(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -2590 ($ (-391))) (-15 -2590 ($ (-1159))) (-15 -1703 ((-112) $))))) (T -862)) -((-2590 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-862)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) -(-13 (-861) (-614 (-863)) (-10 -8 (-15 -2590 ($ (-391))) (-15 -2590 ($ (-1159))) (-15 -1703 ((-112) $)))) -((-2399 (((-112) $ $) NIL) (($ $ $) 85)) (-2671 (($ $ $) 125)) (-2036 (((-567) $) 31) (((-567)) 36)) (-1649 (($ (-567)) 53)) (-2448 (($ $ $) 54) (($ (-645 $)) 84)) (-2982 (($ $ (-645 $)) 82)) (-4376 (((-567) $) 34)) (-3216 (($ $ $) 73)) (-3593 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2289 (((-567) $) 33)) (-3543 (($ $ $) 72)) (-3651 (($ $) 114)) (-3840 (($ $ $) 129)) (-1869 (($ (-645 $)) 61)) (-2348 (($ $ (-645 $)) 79)) (-2176 (($ (-567) (-567)) 55)) (-1931 (($ $) 126) (($ $ $) 127)) (-2956 (($ $ (-567)) 43) (($ $) 46)) (-2344 (($ $ $) 97)) (-3208 (($ $ $) 132)) (-2784 (($ $) 115)) (-2355 (($ $ $) 98)) (-3301 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2730 (((-1272) $) 10)) (-1321 (($ $) 118) (($ $ (-772)) 122)) (-2255 (($ $ $) 75)) (-3159 (($ $ $) 74)) (-3842 (($ $ (-645 $)) 110)) (-2654 (($ $ $) 113)) (-3935 (($ (-645 $)) 59)) (-2482 (($ $) 70) (($ (-645 $)) 71)) (-1620 (($ $ $) 123)) (-2409 (($ $) 116)) (-2655 (($ $ $) 128)) (-1808 (($ (-567)) 21) (($ (-1177)) 23) (($ (-1159)) 30) (($ (-225)) 25)) (-1676 (($ $ $) 101)) (-1653 (($ $) 102)) (-2899 (((-1272) (-1159)) 15)) (-3409 (($ (-1159)) 14)) (-2109 (($ (-645 (-645 $))) 58)) (-2944 (($ $ (-567)) 42) (($ $) 45)) (-3739 (((-1159) $) NIL)) (-3160 (($ $ $) 131)) (-2697 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1458 (((-112) $) 108)) (-3297 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-1377 (($ (-567)) 39)) (-4133 (((-567) $) 32) (((-567)) 35)) (-1316 (($ $ $) 40) (($ (-645 $)) 83)) (-3430 (((-1121) $) NIL)) (-2387 (($ $ $) 99)) (-3347 (($) 13)) (-1783 (($ $ (-645 $)) 109)) (-2554 (((-1159) (-1159)) 8)) (-3246 (($ $) 117) (($ $ (-772)) 121)) (-2376 (($ $ $) 96)) (-1621 (($ $ (-772)) 139)) (-4375 (($ (-645 $)) 60)) (-4127 (((-863) $) 19)) (-2793 (($ $ (-567)) 41) (($ $) 44)) (-2259 (($ $) 68) (($ (-645 $)) 69)) (-2768 (($ $) 66) (($ (-645 $)) 67)) (-1331 (($ $) 124)) (-3551 (($ (-645 $)) 65)) (-2092 (($ $ $) 105)) (-4104 (((-112) $ $) NIL)) (-3408 (($ $ $) 130)) (-1664 (($ $ $) 100)) (-2174 (($ $ $) 103) (($ $) 104)) (-2988 (($ $ $) 89)) (-2964 (($ $ $) 87)) (-2929 (((-112) $ $) 16) (($ $ $) 17)) (-2977 (($ $ $) 88)) (-2952 (($ $ $) 86)) (-3050 (($ $ $) 94)) (-3037 (($ $ $) 91) (($ $) 92)) (-3024 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-863) (-13 (-1101) (-10 -8 (-15 -2730 ((-1272) $)) (-15 -3409 ($ (-1159))) (-15 -2899 ((-1272) (-1159))) (-15 -1808 ($ (-567))) (-15 -1808 ($ (-1177))) (-15 -1808 ($ (-1159))) (-15 -1808 ($ (-225))) (-15 -3347 ($)) (-15 -2554 ((-1159) (-1159))) (-15 -2036 ((-567) $)) (-15 -4133 ((-567) $)) (-15 -2036 ((-567))) (-15 -4133 ((-567))) (-15 -2289 ((-567) $)) (-15 -4376 ((-567) $)) (-15 -1377 ($ (-567))) (-15 -1649 ($ (-567))) (-15 -2176 ($ (-567) (-567))) (-15 -2944 ($ $ (-567))) (-15 -2956 ($ $ (-567))) (-15 -2793 ($ $ (-567))) (-15 -2944 ($ $)) (-15 -2956 ($ $)) (-15 -2793 ($ $)) (-15 -1316 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -1316 ($ (-645 $))) (-15 -2448 ($ (-645 $))) (-15 -3842 ($ $ (-645 $))) (-15 -3297 ($ $ (-645 $))) (-15 -3297 ($ $ $ $)) (-15 -2654 ($ $ $)) (-15 -1458 ((-112) $)) (-15 -1783 ($ $ (-645 $))) (-15 -3651 ($ $)) (-15 -3160 ($ $ $)) (-15 -1331 ($ $)) (-15 -2109 ($ (-645 (-645 $)))) (-15 -2671 ($ $ $)) (-15 -1931 ($ $)) (-15 -1931 ($ $ $)) (-15 -2655 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3408 ($ $ $)) (-15 -3208 ($ $ $)) (-15 -1621 ($ $ (-772))) (-15 -2092 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -2348 ($ $ (-645 $))) (-15 -2982 ($ $ (-645 $))) (-15 -2784 ($ $)) (-15 -3246 ($ $)) (-15 -3246 ($ $ (-772))) (-15 -1321 ($ $)) (-15 -1321 ($ $ (-772))) (-15 -2409 ($ $)) (-15 -1620 ($ $ $)) (-15 -3593 ($ $)) (-15 -3593 ($ $ $)) (-15 -3593 ($ $ $ $)) (-15 -3301 ($ $)) (-15 -3301 ($ $ $)) (-15 -3301 ($ $ $ $)) (-15 -2697 ($ $)) (-15 -2697 ($ $ $)) (-15 -2697 ($ $ $ $)) (-15 -2768 ($ $)) (-15 -2768 ($ (-645 $))) (-15 -2259 ($ $)) (-15 -2259 ($ (-645 $))) (-15 -2482 ($ $)) (-15 -2482 ($ (-645 $))) (-15 -3935 ($ (-645 $))) (-15 -4375 ($ (-645 $))) (-15 -1869 ($ (-645 $))) (-15 -3551 ($ (-645 $))) (-15 -2929 ($ $ $)) (-15 -2399 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3037 ($ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ $)) (-15 -2376 ($ $ $)) (-15 -2344 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -1664 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1653 ($ $)) (-15 -2174 ($ $ $)) (-15 -2174 ($ $))))) (T -863)) -((-2730 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-863)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-863)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-863)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-3347 (*1 *1) (-5 *1 (-863))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2036 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4133 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2176 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2944 (*1 *1 *1) (-5 *1 (-863))) (-2956 (*1 *1 *1) (-5 *1 (-863))) (-2793 (*1 *1 *1) (-5 *1 (-863))) (-1316 (*1 *1 *1 *1) (-5 *1 (-863))) (-2448 (*1 *1 *1 *1) (-5 *1 (-863))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2448 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3297 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2654 (*1 *1 *1 *1) (-5 *1 (-863))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3651 (*1 *1 *1) (-5 *1 (-863))) (-3160 (*1 *1 *1 *1) (-5 *1 (-863))) (-1331 (*1 *1 *1) (-5 *1 (-863))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-2671 (*1 *1 *1 *1) (-5 *1 (-863))) (-1931 (*1 *1 *1) (-5 *1 (-863))) (-1931 (*1 *1 *1 *1) (-5 *1 (-863))) (-2655 (*1 *1 *1 *1) (-5 *1 (-863))) (-3840 (*1 *1 *1 *1) (-5 *1 (-863))) (-3408 (*1 *1 *1 *1) (-5 *1 (-863))) (-3208 (*1 *1 *1 *1) (-5 *1 (-863))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2092 (*1 *1 *1 *1) (-5 *1 (-863))) (-3543 (*1 *1 *1 *1) (-5 *1 (-863))) (-3216 (*1 *1 *1 *1) (-5 *1 (-863))) (-3159 (*1 *1 *1 *1) (-5 *1 (-863))) (-2255 (*1 *1 *1 *1) (-5 *1 (-863))) (-2348 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2784 (*1 *1 *1) (-5 *1 (-863))) (-3246 (*1 *1 *1) (-5 *1 (-863))) (-3246 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-1321 (*1 *1 *1) (-5 *1 (-863))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2409 (*1 *1 *1) (-5 *1 (-863))) (-1620 (*1 *1 *1 *1) (-5 *1 (-863))) (-3593 (*1 *1 *1) (-5 *1 (-863))) (-3593 (*1 *1 *1 *1) (-5 *1 (-863))) (-3593 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3301 (*1 *1 *1) (-5 *1 (-863))) (-3301 (*1 *1 *1 *1) (-5 *1 (-863))) (-3301 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2697 (*1 *1 *1) (-5 *1 (-863))) (-2697 (*1 *1 *1 *1) (-5 *1 (-863))) (-2697 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2768 (*1 *1 *1) (-5 *1 (-863))) (-2768 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2259 (*1 *1 *1) (-5 *1 (-863))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2482 (*1 *1 *1) (-5 *1 (-863))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2929 (*1 *1 *1 *1) (-5 *1 (-863))) (-2399 (*1 *1 *1 *1) (-5 *1 (-863))) (-2952 (*1 *1 *1 *1) (-5 *1 (-863))) (-2964 (*1 *1 *1 *1) (-5 *1 (-863))) (-2977 (*1 *1 *1 *1) (-5 *1 (-863))) (-2988 (*1 *1 *1 *1) (-5 *1 (-863))) (-3024 (*1 *1 *1 *1) (-5 *1 (-863))) (-3037 (*1 *1 *1 *1) (-5 *1 (-863))) (-3037 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3050 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2376 (*1 *1 *1 *1) (-5 *1 (-863))) (-2344 (*1 *1 *1 *1) (-5 *1 (-863))) (-2355 (*1 *1 *1 *1) (-5 *1 (-863))) (-2387 (*1 *1 *1 *1) (-5 *1 (-863))) (-1664 (*1 *1 *1 *1) (-5 *1 (-863))) (-1676 (*1 *1 *1 *1) (-5 *1 (-863))) (-1653 (*1 *1 *1) (-5 *1 (-863))) (-2174 (*1 *1 *1 *1) (-5 *1 (-863))) (-2174 (*1 *1 *1) (-5 *1 (-863)))) -(-13 (-1101) (-10 -8 (-15 -2730 ((-1272) $)) (-15 -3409 ($ (-1159))) (-15 -2899 ((-1272) (-1159))) (-15 -1808 ($ (-567))) (-15 -1808 ($ (-1177))) (-15 -1808 ($ (-1159))) (-15 -1808 ($ (-225))) (-15 -3347 ($)) (-15 -2554 ((-1159) (-1159))) (-15 -2036 ((-567) $)) (-15 -4133 ((-567) $)) (-15 -2036 ((-567))) (-15 -4133 ((-567))) (-15 -2289 ((-567) $)) (-15 -4376 ((-567) $)) (-15 -1377 ($ (-567))) (-15 -1649 ($ (-567))) (-15 -2176 ($ (-567) (-567))) (-15 -2944 ($ $ (-567))) (-15 -2956 ($ $ (-567))) (-15 -2793 ($ $ (-567))) (-15 -2944 ($ $)) (-15 -2956 ($ $)) (-15 -2793 ($ $)) (-15 -1316 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -1316 ($ (-645 $))) (-15 -2448 ($ (-645 $))) (-15 -3842 ($ $ (-645 $))) (-15 -3297 ($ $ (-645 $))) (-15 -3297 ($ $ $ $)) (-15 -2654 ($ $ $)) (-15 -1458 ((-112) $)) (-15 -1783 ($ $ (-645 $))) (-15 -3651 ($ $)) (-15 -3160 ($ $ $)) (-15 -1331 ($ $)) (-15 -2109 ($ (-645 (-645 $)))) (-15 -2671 ($ $ $)) (-15 -1931 ($ $)) (-15 -1931 ($ $ $)) (-15 -2655 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3408 ($ $ $)) (-15 -3208 ($ $ $)) (-15 -1621 ($ $ (-772))) (-15 -2092 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -2348 ($ $ (-645 $))) (-15 -2982 ($ $ (-645 $))) (-15 -2784 ($ $)) (-15 -3246 ($ $)) (-15 -3246 ($ $ (-772))) (-15 -1321 ($ $)) (-15 -1321 ($ $ (-772))) (-15 -2409 ($ $)) (-15 -1620 ($ $ $)) (-15 -3593 ($ $)) (-15 -3593 ($ $ $)) (-15 -3593 ($ $ $ $)) (-15 -3301 ($ $)) (-15 -3301 ($ $ $)) (-15 -3301 ($ $ $ $)) (-15 -2697 ($ $)) (-15 -2697 ($ $ $)) (-15 -2697 ($ $ $ $)) (-15 -2768 ($ $)) (-15 -2768 ($ (-645 $))) (-15 -2259 ($ $)) (-15 -2259 ($ (-645 $))) (-15 -2482 ($ $)) (-15 -2482 ($ (-645 $))) (-15 -3935 ($ (-645 $))) (-15 -4375 ($ (-645 $))) (-15 -1869 ($ (-645 $))) (-15 -3551 ($ (-645 $))) (-15 -2929 ($ $ $)) (-15 -2399 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3037 ($ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ $)) (-15 -2376 ($ $ $)) (-15 -2344 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -1664 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1653 ($ $)) (-15 -2174 ($ $ $)) (-15 -2174 ($ $)))) -((-3139 (((-1272) (-645 (-52))) 24)) (-2389 (((-1272) (-1159) (-863)) 14) (((-1272) (-863)) 9) (((-1272) (-1159)) 11))) -(((-864) (-10 -7 (-15 -2389 ((-1272) (-1159))) (-15 -2389 ((-1272) (-863))) (-15 -2389 ((-1272) (-1159) (-863))) (-15 -3139 ((-1272) (-645 (-52)))))) (T -864)) -((-3139 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1272)) (-5 *1 (-864)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-863)) (-5 *2 (-1272)) (-5 *1 (-864)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-864)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-864))))) -(-10 -7 (-15 -2389 ((-1272) (-1159))) (-15 -2389 ((-1272) (-863))) (-15 -2389 ((-1272) (-1159) (-863))) (-15 -3139 ((-1272) (-645 (-52))))) -((-2399 (((-112) $ $) NIL)) (-3638 (((-3 $ "failed") (-1177)) 39)) (-2371 (((-772)) 32)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) 29)) (-3739 (((-1159) $) 46)) (-3763 (($ (-922)) 28)) (-3430 (((-1121) $) NIL)) (-3880 (((-1177) $) 13) (((-539) $) 19) (((-893 (-381)) $) 26) (((-893 (-567)) $) 22)) (-4127 (((-863) $) 16)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 43)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 41))) -(((-865 |#1|) (-13 (-845) (-615 (-1177)) (-615 (-539)) (-615 (-893 (-381))) (-615 (-893 (-567))) (-10 -8 (-15 -3638 ((-3 $ "failed") (-1177))))) (-645 (-1177))) (T -865)) -((-3638 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))) -(-13 (-845) (-615 (-1177)) (-615 (-539)) (-615 (-893 (-381))) (-615 (-893 (-567))) (-10 -8 (-15 -3638 ((-3 $ "failed") (-1177))))) -((-2399 (((-112) $ $) NIL)) (-1988 (((-509) $) 9)) (-2513 (((-645 (-442)) $) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 21)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 16))) -(((-866) (-13 (-1101) (-10 -8 (-15 -1988 ((-509) $)) (-15 -2513 ((-645 (-442)) $))))) (T -866)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) -(-13 (-1101) (-10 -8 (-15 -1988 ((-509) $)) (-15 -2513 ((-645 (-442)) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-953 |#1|)) NIL) (((-953 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-1772 (((-772)) NIL T CONST)) (-3738 (((-1272) (-772)) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-867 |#1| |#2| |#3| |#4|) (-13 (-1050) (-493 (-953 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3738 ((-1272) (-772))))) (-1050) (-645 (-1177)) (-645 (-772)) (-772)) (T -867)) -((-3050 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1050)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1050)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 *3)) (-14 *7 *3)))) -(-13 (-1050) (-493 (-953 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3738 ((-1272) (-772))))) -((-2591 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-3133 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3133 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2591 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1258 |#1|) (-1243 |#1|)) (T -868)) -((-2591 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1258 *5)) (-4 *6 (-1243 *5)))) (-3133 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1258 *5)) (-4 *6 (-1243 *5))))) -(-10 -7 (-15 -3133 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2591 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) -((-3133 (((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) 28))) -(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -3133 ((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3133 ((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|)))) (-365) (-1177) |#1|) (T -869)) -((-3133 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1177)) (-14 *7 *5) (-5 *2 (-410 (-1240 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-3133 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1177)) (-14 *7 *5) (-5 *2 (-410 (-1240 *6 *5))) (-5 *1 (-869 *5 *6 *7))))) -(-10 -7 (-15 -3133 ((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3133 ((-3 (-410 (-1240 |#2| |#1|)) "failed") (-772) (-772) (-1259 |#1| |#2| |#3|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2714 (($ $ (-567)) 68)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-1931 (($ (-1173 (-567)) (-567)) 67)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-1423 (($ $) 70)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-2937 (((-772) $) 75)) (-2843 (((-112) $) 35)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2542 (((-567)) 72)) (-1793 (((-567) $) 71)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3981 (($ $ (-567)) 74)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3435 (((-1157 (-567)) $) 76)) (-1546 (($ $) 73)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-3040 (((-567) $ (-567)) 69)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) NIL)) (-3887 (((-692 (-129)) $ (-129)) 22)) (-2694 (($ (-391)) 12) (($ (-1160)) 14)) (-3254 (((-112) $) 19)) (-4132 (((-863) $) 26)) (-1675 (($ $) 23))) +(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -2694 ($ (-391))) (-15 -2694 ($ (-1160))) (-15 -3254 ((-112) $))))) (T -862)) +((-2694 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-862)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) +(-13 (-861) (-614 (-863)) (-10 -8 (-15 -2694 ($ (-391))) (-15 -2694 ($ (-1160))) (-15 -3254 ((-112) $)))) +((-2403 (((-112) $ $) NIL) (($ $ $) 85)) (-1521 (($ $ $) 125)) (-2039 (((-567) $) 31) (((-567)) 36)) (-2961 (($ (-567)) 53)) (-3096 (($ $ $) 54) (($ (-645 $)) 84)) (-2256 (($ $ (-645 $)) 82)) (-1610 (((-567) $) 34)) (-3206 (($ $ $) 73)) (-3579 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1367 (((-567) $) 33)) (-3466 (($ $ $) 72)) (-3657 (($ $) 114)) (-1727 (($ $ $) 129)) (-2705 (($ (-645 $)) 61)) (-1711 (($ $ (-645 $)) 79)) (-3990 (($ (-567) (-567)) 55)) (-2236 (($ $) 126) (($ $ $) 127)) (-2963 (($ $ (-567)) 43) (($ $) 46)) (-2349 (($ $ $) 97)) (-1923 (($ $ $) 132)) (-3924 (($ $) 115)) (-2360 (($ $ $) 98)) (-2424 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2733 (((-1273) $) 10)) (-3950 (($ $) 118) (($ $ (-772)) 122)) (-4264 (($ $ $) 75)) (-2533 (($ $ $) 74)) (-3848 (($ $ (-645 $)) 110)) (-3605 (($ $ $) 113)) (-3907 (($ (-645 $)) 59)) (-2068 (($ $) 70) (($ (-645 $)) 71)) (-3778 (($ $ $) 123)) (-1528 (($ $) 116)) (-3686 (($ $ $) 128)) (-2570 (($ (-567)) 21) (($ (-1178)) 23) (($ (-1160)) 30) (($ (-225)) 25)) (-1677 (($ $ $) 101)) (-1657 (($ $) 102)) (-1507 (((-1273) (-1160)) 15)) (-3410 (($ (-1160)) 14)) (-2114 (($ (-645 (-645 $))) 58)) (-2950 (($ $ (-567)) 42) (($ $) 45)) (-1419 (((-1160) $) NIL)) (-3170 (($ $ $) 131)) (-2669 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1437 (((-112) $) 108)) (-2108 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-3443 (($ (-567)) 39)) (-4138 (((-567) $) 32) (((-567)) 35)) (-1529 (($ $ $) 40) (($ (-645 $)) 83)) (-3430 (((-1122) $) NIL)) (-2391 (($ $ $) 99)) (-3498 (($) 13)) (-1787 (($ $ (-645 $)) 109)) (-3917 (((-1160) (-1160)) 8)) (-3366 (($ $) 117) (($ $ (-772)) 121)) (-2380 (($ $ $) 96)) (-1593 (($ $ (-772)) 139)) (-1514 (($ (-645 $)) 60)) (-4132 (((-863) $) 19)) (-2166 (($ $ (-567)) 41) (($ $) 44)) (-3553 (($ $) 68) (($ (-645 $)) 69)) (-2772 (($ $) 66) (($ (-645 $)) 67)) (-1334 (($ $) 124)) (-3505 (($ (-645 $)) 65)) (-3881 (($ $ $) 105)) (-1745 (((-112) $ $) NIL)) (-3209 (($ $ $) 130)) (-1667 (($ $ $) 100)) (-2179 (($ $ $) 103) (($ $) 104)) (-2997 (($ $ $) 89)) (-2971 (($ $ $) 87)) (-2936 (((-112) $ $) 16) (($ $ $) 17)) (-2984 (($ $ $) 88)) (-2958 (($ $ $) 86)) (-3060 (($ $ $) 94)) (-3045 (($ $ $) 91) (($ $) 92)) (-3033 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-863) (-13 (-1102) (-10 -8 (-15 -2733 ((-1273) $)) (-15 -3410 ($ (-1160))) (-15 -1507 ((-1273) (-1160))) (-15 -2570 ($ (-567))) (-15 -2570 ($ (-1178))) (-15 -2570 ($ (-1160))) (-15 -2570 ($ (-225))) (-15 -3498 ($)) (-15 -3917 ((-1160) (-1160))) (-15 -2039 ((-567) $)) (-15 -4138 ((-567) $)) (-15 -2039 ((-567))) (-15 -4138 ((-567))) (-15 -1367 ((-567) $)) (-15 -1610 ((-567) $)) (-15 -3443 ($ (-567))) (-15 -2961 ($ (-567))) (-15 -3990 ($ (-567) (-567))) (-15 -2950 ($ $ (-567))) (-15 -2963 ($ $ (-567))) (-15 -2166 ($ $ (-567))) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -2166 ($ $)) (-15 -1529 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1529 ($ (-645 $))) (-15 -3096 ($ (-645 $))) (-15 -3848 ($ $ (-645 $))) (-15 -2108 ($ $ (-645 $))) (-15 -2108 ($ $ $ $)) (-15 -3605 ($ $ $)) (-15 -1437 ((-112) $)) (-15 -1787 ($ $ (-645 $))) (-15 -3657 ($ $)) (-15 -3170 ($ $ $)) (-15 -1334 ($ $)) (-15 -2114 ($ (-645 (-645 $)))) (-15 -1521 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -3686 ($ $ $)) (-15 -1727 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1593 ($ $ (-772))) (-15 -3881 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -3206 ($ $ $)) (-15 -2533 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -1711 ($ $ (-645 $))) (-15 -2256 ($ $ (-645 $))) (-15 -3924 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-772))) (-15 -3950 ($ $)) (-15 -3950 ($ $ (-772))) (-15 -1528 ($ $)) (-15 -3778 ($ $ $)) (-15 -3579 ($ $)) (-15 -3579 ($ $ $)) (-15 -3579 ($ $ $ $)) (-15 -2424 ($ $)) (-15 -2424 ($ $ $)) (-15 -2424 ($ $ $ $)) (-15 -2669 ($ $)) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ $ $)) (-15 -2772 ($ $)) (-15 -2772 ($ (-645 $))) (-15 -3553 ($ $)) (-15 -3553 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3907 ($ (-645 $))) (-15 -1514 ($ (-645 $))) (-15 -2705 ($ (-645 $))) (-15 -3505 ($ (-645 $))) (-15 -2936 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2958 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2997 ($ $ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1657 ($ $)) (-15 -2179 ($ $ $)) (-15 -2179 ($ $))))) (T -863)) +((-2733 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-863)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-3498 (*1 *1) (-5 *1 (-863))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2039 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4138 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3990 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2950 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2950 (*1 *1 *1) (-5 *1 (-863))) (-2963 (*1 *1 *1) (-5 *1 (-863))) (-2166 (*1 *1 *1) (-5 *1 (-863))) (-1529 (*1 *1 *1 *1) (-5 *1 (-863))) (-3096 (*1 *1 *1 *1) (-5 *1 (-863))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3096 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2108 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3605 (*1 *1 *1 *1) (-5 *1 (-863))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3657 (*1 *1 *1) (-5 *1 (-863))) (-3170 (*1 *1 *1 *1) (-5 *1 (-863))) (-1334 (*1 *1 *1) (-5 *1 (-863))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-1521 (*1 *1 *1 *1) (-5 *1 (-863))) (-2236 (*1 *1 *1) (-5 *1 (-863))) (-2236 (*1 *1 *1 *1) (-5 *1 (-863))) (-3686 (*1 *1 *1 *1) (-5 *1 (-863))) (-1727 (*1 *1 *1 *1) (-5 *1 (-863))) (-3209 (*1 *1 *1 *1) (-5 *1 (-863))) (-1923 (*1 *1 *1 *1) (-5 *1 (-863))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3881 (*1 *1 *1 *1) (-5 *1 (-863))) (-3466 (*1 *1 *1 *1) (-5 *1 (-863))) (-3206 (*1 *1 *1 *1) (-5 *1 (-863))) (-2533 (*1 *1 *1 *1) (-5 *1 (-863))) (-4264 (*1 *1 *1 *1) (-5 *1 (-863))) (-1711 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3924 (*1 *1 *1) (-5 *1 (-863))) (-3366 (*1 *1 *1) (-5 *1 (-863))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3950 (*1 *1 *1) (-5 *1 (-863))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-1528 (*1 *1 *1) (-5 *1 (-863))) (-3778 (*1 *1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2772 (*1 *1 *1) (-5 *1 (-863))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3553 (*1 *1 *1) (-5 *1 (-863))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2068 (*1 *1 *1) (-5 *1 (-863))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3505 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2936 (*1 *1 *1 *1) (-5 *1 (-863))) (-2403 (*1 *1 *1 *1) (-5 *1 (-863))) (-2958 (*1 *1 *1 *1) (-5 *1 (-863))) (-2971 (*1 *1 *1 *1) (-5 *1 (-863))) (-2984 (*1 *1 *1 *1) (-5 *1 (-863))) (-2997 (*1 *1 *1 *1) (-5 *1 (-863))) (-3033 (*1 *1 *1 *1) (-5 *1 (-863))) (-3045 (*1 *1 *1 *1) (-5 *1 (-863))) (-3045 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3060 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2380 (*1 *1 *1 *1) (-5 *1 (-863))) (-2349 (*1 *1 *1 *1) (-5 *1 (-863))) (-2360 (*1 *1 *1 *1) (-5 *1 (-863))) (-2391 (*1 *1 *1 *1) (-5 *1 (-863))) (-1667 (*1 *1 *1 *1) (-5 *1 (-863))) (-1677 (*1 *1 *1 *1) (-5 *1 (-863))) (-1657 (*1 *1 *1) (-5 *1 (-863))) (-2179 (*1 *1 *1 *1) (-5 *1 (-863))) (-2179 (*1 *1 *1) (-5 *1 (-863)))) +(-13 (-1102) (-10 -8 (-15 -2733 ((-1273) $)) (-15 -3410 ($ (-1160))) (-15 -1507 ((-1273) (-1160))) (-15 -2570 ($ (-567))) (-15 -2570 ($ (-1178))) (-15 -2570 ($ (-1160))) (-15 -2570 ($ (-225))) (-15 -3498 ($)) (-15 -3917 ((-1160) (-1160))) (-15 -2039 ((-567) $)) (-15 -4138 ((-567) $)) (-15 -2039 ((-567))) (-15 -4138 ((-567))) (-15 -1367 ((-567) $)) (-15 -1610 ((-567) $)) (-15 -3443 ($ (-567))) (-15 -2961 ($ (-567))) (-15 -3990 ($ (-567) (-567))) (-15 -2950 ($ $ (-567))) (-15 -2963 ($ $ (-567))) (-15 -2166 ($ $ (-567))) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -2166 ($ $)) (-15 -1529 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1529 ($ (-645 $))) (-15 -3096 ($ (-645 $))) (-15 -3848 ($ $ (-645 $))) (-15 -2108 ($ $ (-645 $))) (-15 -2108 ($ $ $ $)) (-15 -3605 ($ $ $)) (-15 -1437 ((-112) $)) (-15 -1787 ($ $ (-645 $))) (-15 -3657 ($ $)) (-15 -3170 ($ $ $)) (-15 -1334 ($ $)) (-15 -2114 ($ (-645 (-645 $)))) (-15 -1521 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -3686 ($ $ $)) (-15 -1727 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1593 ($ $ (-772))) (-15 -3881 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -3206 ($ $ $)) (-15 -2533 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -1711 ($ $ (-645 $))) (-15 -2256 ($ $ (-645 $))) (-15 -3924 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-772))) (-15 -3950 ($ $)) (-15 -3950 ($ $ (-772))) (-15 -1528 ($ $)) (-15 -3778 ($ $ $)) (-15 -3579 ($ $)) (-15 -3579 ($ $ $)) (-15 -3579 ($ $ $ $)) (-15 -2424 ($ $)) (-15 -2424 ($ $ $)) (-15 -2424 ($ $ $ $)) (-15 -2669 ($ $)) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ $ $)) (-15 -2772 ($ $)) (-15 -2772 ($ (-645 $))) (-15 -3553 ($ $)) (-15 -3553 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3907 ($ (-645 $))) (-15 -1514 ($ (-645 $))) (-15 -2705 ($ (-645 $))) (-15 -3505 ($ (-645 $))) (-15 -2936 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2958 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2997 ($ $ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1657 ($ $)) (-15 -2179 ($ $ $)) (-15 -2179 ($ $)))) +((-3129 (((-1273) (-645 (-52))) 24)) (-2393 (((-1273) (-1160) (-863)) 14) (((-1273) (-863)) 9) (((-1273) (-1160)) 11))) +(((-864) (-10 -7 (-15 -2393 ((-1273) (-1160))) (-15 -2393 ((-1273) (-863))) (-15 -2393 ((-1273) (-1160) (-863))) (-15 -3129 ((-1273) (-645 (-52)))))) (T -864)) +((-3129 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-864))))) +(-10 -7 (-15 -2393 ((-1273) (-1160))) (-15 -2393 ((-1273) (-863))) (-15 -2393 ((-1273) (-1160) (-863))) (-15 -3129 ((-1273) (-645 (-52))))) +((-2403 (((-112) $ $) NIL)) (-3644 (((-3 $ "failed") (-1178)) 39)) (-2375 (((-772)) 32)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) 29)) (-1419 (((-1160) $) 46)) (-3768 (($ (-923)) 28)) (-3430 (((-1122) $) NIL)) (-3893 (((-1178) $) 13) (((-539) $) 19) (((-894 (-381)) $) 26) (((-894 (-567)) $) 22)) (-4132 (((-863) $) 16)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 43)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 41))) +(((-865 |#1|) (-13 (-845) (-615 (-1178)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3644 ((-3 $ "failed") (-1178))))) (-645 (-1178))) (T -865)) +((-3644 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))) +(-13 (-845) (-615 (-1178)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3644 ((-3 $ "failed") (-1178))))) +((-2403 (((-112) $ $) NIL)) (-1996 (((-509) $) 9)) (-2279 (((-645 (-442)) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 16))) +(((-866) (-13 (-1102) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2279 ((-645 (-442)) $))))) (T -866)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) +(-13 (-1102) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2279 ((-645 (-442)) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-954 |#1|)) NIL) (((-954 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-4221 (((-772)) NIL T CONST)) (-1330 (((-1273) (-772)) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-867 |#1| |#2| |#3| |#4|) (-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) (-1051) (-645 (-1178)) (-645 (-772)) (-772)) (T -867)) +((-3060 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1051)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 *3)) (-14 *7 *3)))) +(-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) +((-2803 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-4002 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2803 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1259 |#1|) (-1244 |#1|)) (T -868)) +((-2803 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5)))) (-4002 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5))))) +(-10 -7 (-15 -4002 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2803 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) +((-4002 (((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) 28))) +(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|)))) (-365) (-1178) |#1|) (T -869)) +((-4002 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-4002 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) (-5 *1 (-869 *5 *6 *7))))) +(-10 -7 (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $ (-567)) 68)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2236 (($ (-1174 (-567)) (-567)) 67)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1648 (($ $) 70)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4384 (((-772) $) 75)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2211 (((-567)) 72)) (-3297 (((-567) $) 71)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (($ $ (-567)) 74)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3038 (((-1158 (-567)) $) 76)) (-2192 (($ $) 73)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-3050 (((-567) $ (-567)) 69)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) (((-870 |#1|) (-140) (-567)) (T -870)) -((-3435 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1157 (-567))))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-3981 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1546 (*1 *1 *1) (-4 *1 (-870 *2))) (-2542 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1423 (*1 *1 *1) (-4 *1 (-870 *2))) (-3040 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2714 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1931 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) -(-13 (-308) (-147) (-10 -8 (-15 -3435 ((-1157 (-567)) $)) (-15 -2937 ((-772) $)) (-15 -3981 ($ $ (-567))) (-15 -1546 ($ $)) (-15 -2542 ((-567))) (-15 -1793 ((-567) $)) (-15 -1423 ($ $)) (-15 -3040 ((-567) $ (-567))) (-15 -2714 ($ $ (-567))) (-15 -1931 ($ (-1173 (-567)) (-567))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $ (-567)) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-1931 (($ (-1173 (-567)) (-567)) NIL)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1423 (($ $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-2937 (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2542 (((-567)) NIL)) (-1793 (((-567) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3981 (($ $ (-567)) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3435 (((-1157 (-567)) $) NIL)) (-1546 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-567) $ (-567)) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) +((-3038 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1158 (-567))))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2192 (*1 *1 *1) (-4 *1 (-870 *2))) (-2211 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1648 (*1 *1 *1) (-4 *1 (-870 *2))) (-3050 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) +(-13 (-308) (-147) (-10 -8 (-15 -3038 ((-1158 (-567)) $)) (-15 -4384 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)) (-15 -2211 ((-567))) (-15 -3297 ((-567) $)) (-15 -1648 ($ $)) (-15 -3050 ((-567) $ (-567))) (-15 -2716 ($ $ (-567))) (-15 -2236 ($ (-1174 (-567)) (-567))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1648 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) NIL)) (-3297 (((-567) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-1158 (-567)) $) NIL)) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) (((-871 |#1|) (-870 |#1|) (-567)) (T -871)) NIL (-870 |#1|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-871 |#1|) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-871 |#1|) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-567))))) (-2033 (((-871 |#1|) $) NIL) (((-1177) $) NIL (|has| (-871 |#1|) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1039 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1039 (-567))))) (-3671 (($ $) NIL) (($ (-567) $) NIL)) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-871 |#1|))) (|:| |vec| (-1267 (-871 |#1|)))) (-690 $) (-1267 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-871 |#1|) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-871 |#1|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-871 |#1|) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-871 |#1|) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1152)))) (-2102 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-2998 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3822 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-871 |#1|) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-1842 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-871 |#1|) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-871 |#1|) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1177)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1177) (-871 |#1|)))) (($ $ (-1177) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1177) (-871 |#1|))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1177)) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-871 |#1|) $) NIL)) (-3880 (((-893 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1023))) (((-225) $) NIL (|has| (-871 |#1|) (-1023)))) (-4145 (((-174 (-410 (-567))) $) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1177)) NIL (|has| (-871 |#1|) (-1039 (-1177))))) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-910))) (|has| (-871 |#1|) (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-410 (-567)) $ (-567)) NIL)) (-4137 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1177)) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-871 |#1|) (-901 (-1177)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3050 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL))) -(((-872 |#1|) (-13 (-993 (-871 |#1|)) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) (-567)) (T -872)) -((-3040 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-3671 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))) -(-13 (-993 (-871 |#1|)) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 ((|#2| $) NIL (|has| |#2| (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| |#2| (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (|has| |#2| (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567))))) (-2033 ((|#2| $) NIL) (((-1177) $) NIL (|has| |#2| (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-567)))) (((-567) $) NIL (|has| |#2| (-1039 (-567))))) (-3671 (($ $) 35) (($ (-567) $) 38)) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) 64)) (-1378 (($) NIL (|has| |#2| (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) NIL (|has| |#2| (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#2| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#2| (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 ((|#2| $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#2| (-1152)))) (-2102 (((-112) $) NIL (|has| |#2| (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| |#2| (-851)))) (-2998 (($ $ $) NIL (|has| |#2| (-851)))) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 60)) (-2701 (($) NIL (|has| |#2| (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| |#2| (-308)))) (-1842 ((|#2| $) NIL (|has| |#2| (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1177)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1177) |#2|))) (($ $ (-1177) |#2|) NIL (|has| |#2| (-517 (-1177) |#2|)))) (-4197 (((-772) $) NIL)) (-1783 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3168 (($ $) NIL)) (-1455 ((|#2| $) NIL)) (-3880 (((-893 (-567)) $) NIL (|has| |#2| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#2| (-615 (-893 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1023))) (((-225) $) NIL (|has| |#2| (-1023)))) (-4145 (((-174 (-410 (-567))) $) 78)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4127 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1177)) NIL (|has| |#2| (-1039 (-1177))))) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-1687 ((|#2| $) NIL (|has| |#2| (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-410 (-567)) $ (-567)) 71)) (-4137 (($ $) NIL (|has| |#2| (-821)))) (-1710 (($) 15 T CONST)) (-1722 (($) 17 T CONST)) (-2636 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2929 (((-112) $ $) 46)) (-2977 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3050 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3037 (($ $) 50) (($ $ $) 52)) (-3024 (($ $ $) 48)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-873 |#1| |#2|) (-13 (-993 |#2|) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873)) -((-3040 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-4145 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-3671 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) -(-13 (-993 |#2|) (-10 -8 (-15 -3040 ((-410 (-567)) $ (-567))) (-15 -4145 ((-174 (-410 (-567))) $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)))) -((-2399 (((-112) $ $) NIL (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))))) (-3977 ((|#2| $) 12)) (-3786 (($ |#1| |#2|) 9)) (-3739 (((-1159) $) NIL (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))))) (-3430 (((-1121) $) NIL (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#1| $) 11)) (-4142 (($ |#1| |#2|) 10)) (-4127 (((-863) $) 18 (-2797 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101)))))) (-4104 (((-112) $ $) NIL (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101))))) (-2929 (((-112) $ $) 23 (-12 (|has| |#1| (-1101)) (|has| |#2| (-1101)))))) -(((-874 |#1| |#2|) (-13 (-1217) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1101)) (IF (|has| |#2| (-1101)) (-6 (-1101)) |%noBranch|) |%noBranch|) (-15 -3786 ($ |#1| |#2|)) (-15 -4142 ($ |#1| |#2|)) (-15 -2405 (|#1| $)) (-15 -3977 (|#2| $)))) (-1217) (-1217)) (T -874)) -((-3786 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1217)) (-4 *3 (-1217)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1217)) (-4 *3 (-1217)))) (-2405 (*1 *2 *1) (-12 (-4 *2 (-1217)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1217)))) (-3977 (*1 *2 *1) (-12 (-4 *2 (-1217)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1217))))) -(-13 (-1217) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1101)) (IF (|has| |#2| (-1101)) (-6 (-1101)) |%noBranch|) |%noBranch|) (-15 -3786 ($ |#1| |#2|)) (-15 -4142 ($ |#1| |#2|)) (-15 -2405 (|#1| $)) (-15 -3977 (|#2| $)))) -((-2399 (((-112) $ $) NIL)) (-2613 (((-567) $) 16)) (-3309 (($ (-157)) 13)) (-2830 (($ (-157)) 14)) (-3739 (((-1159) $) NIL)) (-3534 (((-157) $) 15)) (-3430 (((-1121) $) NIL)) (-2609 (($ (-157)) 11)) (-1795 (($ (-157)) 10)) (-4127 (((-863) $) 24) (($ (-157)) 17)) (-2592 (($ (-157)) 12)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-875) (-13 (-1101) (-10 -8 (-15 -1795 ($ (-157))) (-15 -2609 ($ (-157))) (-15 -2592 ($ (-157))) (-15 -3309 ($ (-157))) (-15 -2830 ($ (-157))) (-15 -3534 ((-157) $)) (-15 -2613 ((-567) $)) (-15 -4127 ($ (-157)))))) (T -875)) -((-1795 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(-13 (-1101) (-10 -8 (-15 -1795 ($ (-157))) (-15 -2609 ($ (-157))) (-15 -2592 ($ (-157))) (-15 -3309 ($ (-157))) (-15 -2830 ($ (-157))) (-15 -3534 ((-157) $)) (-15 -2613 ((-567) $)) (-15 -4127 ($ (-157))))) -((-4127 (((-317 (-567)) (-410 (-953 (-48)))) 23) (((-317 (-567)) (-953 (-48))) 18))) -(((-876) (-10 -7 (-15 -4127 ((-317 (-567)) (-953 (-48)))) (-15 -4127 ((-317 (-567)) (-410 (-953 (-48))))))) (T -876)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-953 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876))))) -(-10 -7 (-15 -4127 ((-317 (-567)) (-953 (-48)))) (-15 -4127 ((-317 (-567)) (-410 (-953 (-48)))))) -((-3822 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 15))) -(((-877 |#1| |#2|) (-10 -7 (-15 -3822 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1217) (-1217)) (T -877)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))) -(-10 -7 (-15 -3822 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) -((-3334 (($ |#1| |#1|) 8)) (-2330 ((|#1| $ (-772)) 15))) -(((-878 |#1|) (-10 -8 (-15 -3334 ($ |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) (-1217)) (T -878)) -((-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-878 *2)) (-4 *2 (-1217)))) (-3334 (*1 *1 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1217))))) -(-10 -8 (-15 -3334 ($ |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) -((-3822 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15))) -(((-879 |#1| |#2|) (-10 -7 (-15 -3822 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1217) (-1217)) (T -879)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))) -(-10 -7 (-15 -3822 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) -((-3334 (($ |#1| |#1| |#1|) 8)) (-2330 ((|#1| $ (-772)) 15))) -(((-880 |#1|) (-10 -8 (-15 -3334 ($ |#1| |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) (-1217)) (T -880)) -((-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-880 *2)) (-4 *2 (-1217)))) (-3334 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1217))))) -(-10 -8 (-15 -3334 ($ |#1| |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) -((-3528 (((-645 (-1182)) (-1159)) 9))) -(((-881) (-10 -7 (-15 -3528 ((-645 (-1182)) (-1159))))) (T -881)) -((-3528 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-645 (-1182))) (-5 *1 (-881))))) -(-10 -7 (-15 -3528 ((-645 (-1182)) (-1159)))) -((-3822 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15))) -(((-882 |#1| |#2|) (-10 -7 (-15 -3822 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1217) (-1217)) (T -882)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))) -(-10 -7 (-15 -3822 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) -((-2857 (($ |#1| |#1| |#1|) 8)) (-2330 ((|#1| $ (-772)) 15))) -(((-883 |#1|) (-10 -8 (-15 -2857 ($ |#1| |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) (-1217)) (T -883)) -((-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-883 *2)) (-4 *2 (-1217)))) (-2857 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1217))))) -(-10 -8 (-15 -2857 ($ |#1| |#1| |#1|)) (-15 -2330 (|#1| $ (-772)))) -((-4168 (((-1157 (-645 (-567))) (-645 (-567)) (-1157 (-645 (-567)))) 48)) (-2206 (((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-3969 (((-1157 (-645 (-567))) (-645 (-567))) 58) (((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-2143 (((-1157 (-645 (-567))) (-567)) 59)) (-4322 (((-1157 (-645 (-567))) (-567) (-567)) 34) (((-1157 (-645 (-567))) (-567)) 23) (((-1157 (-645 (-567))) (-567) (-567) (-567)) 19)) (-1446 (((-1157 (-645 (-567))) (-1157 (-645 (-567)))) 42)) (-2073 (((-645 (-567)) (-645 (-567))) 41))) -(((-884) (-10 -7 (-15 -4322 ((-1157 (-645 (-567))) (-567) (-567) (-567))) (-15 -4322 ((-1157 (-645 (-567))) (-567))) (-15 -4322 ((-1157 (-645 (-567))) (-567) (-567))) (-15 -2073 ((-645 (-567)) (-645 (-567)))) (-15 -1446 ((-1157 (-645 (-567))) (-1157 (-645 (-567))))) (-15 -2206 ((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4168 ((-1157 (-645 (-567))) (-645 (-567)) (-1157 (-645 (-567))))) (-15 -3969 ((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3969 ((-1157 (-645 (-567))) (-645 (-567)))) (-15 -2143 ((-1157 (-645 (-567))) (-567))))) (T -884)) -((-2143 (*1 *2 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-3969 (*1 *2 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-3969 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-884)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-884)))) (-4322 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-4322 (*1 *2 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-4322 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567))))) -(-10 -7 (-15 -4322 ((-1157 (-645 (-567))) (-567) (-567) (-567))) (-15 -4322 ((-1157 (-645 (-567))) (-567))) (-15 -4322 ((-1157 (-645 (-567))) (-567) (-567))) (-15 -2073 ((-645 (-567)) (-645 (-567)))) (-15 -1446 ((-1157 (-645 (-567))) (-1157 (-645 (-567))))) (-15 -2206 ((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4168 ((-1157 (-645 (-567))) (-645 (-567)) (-1157 (-645 (-567))))) (-15 -3969 ((-1157 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3969 ((-1157 (-645 (-567))) (-645 (-567)))) (-15 -2143 ((-1157 (-645 (-567))) (-567)))) -((-3880 (((-893 (-381)) $) 9 (|has| |#1| (-615 (-893 (-381))))) (((-893 (-567)) $) 8 (|has| |#1| (-615 (-893 (-567))))))) -(((-885 |#1|) (-140) (-1217)) (T -885)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-615 (-893 (-567)))) (-6 (-615 (-893 (-567)))) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-381)))) (-6 (-615 (-893 (-381)))) |%noBranch|))) -(((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567))))) -((-2399 (((-112) $ $) NIL)) (-2844 (($) 14)) (-4231 (($ (-890 |#1| |#2|) (-890 |#1| |#3|)) 28)) (-2048 (((-890 |#1| |#3|) $) 16)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4024 (((-112) $) 22)) (-3661 (($) 19)) (-4127 (((-863) $) 31)) (-4104 (((-112) $ $) NIL)) (-2729 (((-890 |#1| |#2|) $) 15)) (-2929 (((-112) $ $) 26))) -(((-886 |#1| |#2| |#3|) (-13 (-1101) (-10 -8 (-15 -4024 ((-112) $)) (-15 -3661 ($)) (-15 -2844 ($)) (-15 -4231 ($ (-890 |#1| |#2|) (-890 |#1| |#3|))) (-15 -2729 ((-890 |#1| |#2|) $)) (-15 -2048 ((-890 |#1| |#3|) $)))) (-1101) (-1101) (-667 |#2|)) (T -886)) -((-4024 (*1 *2 *1) (-12 (-4 *4 (-1101)) (-5 *2 (-112)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1101)) (-4 *5 (-667 *4)))) (-3661 (*1 *1) (-12 (-4 *3 (-1101)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1101)) (-4 *4 (-667 *3)))) (-2844 (*1 *1) (-12 (-4 *3 (-1101)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1101)) (-4 *4 (-667 *3)))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-890 *4 *5)) (-5 *3 (-890 *4 *6)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-667 *5)) (-5 *1 (-886 *4 *5 *6)))) (-2729 (*1 *2 *1) (-12 (-4 *4 (-1101)) (-5 *2 (-890 *3 *4)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1101)) (-4 *5 (-667 *4)))) (-2048 (*1 *2 *1) (-12 (-4 *4 (-1101)) (-5 *2 (-890 *3 *5)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1101)) (-4 *5 (-667 *4))))) -(-13 (-1101) (-10 -8 (-15 -4024 ((-112) $)) (-15 -3661 ($)) (-15 -2844 ($)) (-15 -4231 ($ (-890 |#1| |#2|) (-890 |#1| |#3|))) (-15 -2729 ((-890 |#1| |#2|) $)) (-15 -2048 ((-890 |#1| |#3|) $)))) -((-2399 (((-112) $ $) 7)) (-3489 (((-890 |#1| $) $ (-893 |#1|) (-890 |#1| $)) 14)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-887 |#1|) (-140) (-1101)) (T -887)) -((-3489 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-890 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-887 *4)) (-4 *4 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -3489 ((-890 |t#1| $) $ (-893 |t#1|) (-890 |t#1| $))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-1582 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2810 (((-890 |#1| |#2|) |#2| |#3|) 45 (-12 (-1653 (|has| |#2| (-1039 (-1177)))) (-1653 (|has| |#2| (-1050))))) (((-645 (-295 (-953 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1050)) (-1653 (|has| |#2| (-1039 (-1177)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1039 (-1177)))) (((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21))) -(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -1582 ((-112) |#2| |#3|)) (-15 -1582 ((-112) (-645 |#2|) |#3|)) (-15 -2810 ((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1039 (-1177))) (-15 -2810 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1050)) (-15 -2810 ((-645 (-295 (-953 |#2|))) |#2| |#3|)) (-15 -2810 ((-890 |#1| |#2|) |#2| |#3|))))) (-1101) (-887 |#1|) (-615 (-893 |#1|))) (T -888)) -((-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-5 *2 (-890 *5 *3)) (-5 *1 (-888 *5 *3 *4)) (-1653 (-4 *3 (-1039 (-1177)))) (-1653 (-4 *3 (-1050))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-5 *2 (-645 (-295 (-953 *3)))) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1050)) (-1653 (-4 *3 (-1039 (-1177)))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1039 (-1177))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-4 *6 (-887 *5)) (-5 *2 (-886 *5 *6 (-645 *6))) (-5 *1 (-888 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-893 *5))))) (-1582 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-887 *5)) (-4 *5 (-1101)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6 *4)) (-4 *4 (-615 (-893 *5))))) (-1582 (*1 *2 *3 *4) (-12 (-4 *5 (-1101)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5)))))) -(-10 -7 (-15 -1582 ((-112) |#2| |#3|)) (-15 -1582 ((-112) (-645 |#2|) |#3|)) (-15 -2810 ((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1039 (-1177))) (-15 -2810 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1050)) (-15 -2810 ((-645 (-295 (-953 |#2|))) |#2| |#3|)) (-15 -2810 ((-890 |#1| |#2|) |#2| |#3|))))) -((-3822 (((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|)) 22))) -(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|)))) (-1101) (-1101) (-1101)) (T -889)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-890 *5 *6)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-890 *5 *7)) (-5 *1 (-889 *5 *6 *7))))) -(-10 -7 (-15 -3822 ((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|)))) -((-2399 (((-112) $ $) NIL)) (-4240 (($ $ $) 40)) (-3931 (((-3 (-112) "failed") $ (-893 |#1|)) 37)) (-2844 (($) 12)) (-3739 (((-1159) $) NIL)) (-2649 (($ (-893 |#1|) |#2| $) 20)) (-3430 (((-1121) $) NIL)) (-4186 (((-3 |#2| "failed") (-893 |#1|) $) 51)) (-4024 (((-112) $) 15)) (-3661 (($) 13)) (-2780 (((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|))) $) 25)) (-4142 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|)))) 23)) (-4127 (((-863) $) 45)) (-4104 (((-112) $ $) NIL)) (-2364 (($ (-893 |#1|) |#2| $ |#2|) 49)) (-2498 (($ (-893 |#1|) |#2| $) 48)) (-2929 (((-112) $ $) 42))) -(((-890 |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -4024 ((-112) $)) (-15 -3661 ($)) (-15 -2844 ($)) (-15 -4240 ($ $ $)) (-15 -4186 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -2498 ($ (-893 |#1|) |#2| $)) (-15 -2649 ($ (-893 |#1|) |#2| $)) (-15 -2364 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -2780 ((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|))) $)) (-15 -4142 ($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|))))) (-15 -3931 ((-3 (-112) "failed") $ (-893 |#1|))))) (-1101) (-1101)) (T -890)) -((-4024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-3661 (*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-2844 (*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-4240 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-4186 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-4 *2 (-1101)) (-5 *1 (-890 *4 *2)))) (-2498 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1101)))) (-2649 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1101)))) (-2364 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1101)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 *4)))) (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 *4)))) (-4 *4 (-1101)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)))) (-3931 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-112)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -4024 ((-112) $)) (-15 -3661 ($)) (-15 -2844 ($)) (-15 -4240 ($ $ $)) (-15 -4186 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -2498 ($ (-893 |#1|) |#2| $)) (-15 -2649 ($ (-893 |#1|) |#2| $)) (-15 -2364 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -2780 ((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|))) $)) (-15 -4142 ($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 |#2|))))) (-15 -3931 ((-3 (-112) "failed") $ (-893 |#1|))))) -((-2135 (((-893 |#1|) (-893 |#1|) (-645 (-1177)) (-1 (-112) (-645 |#2|))) 32) (((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|)) 35)) (-3931 (((-112) (-645 |#2|) (-893 |#1|)) 42) (((-112) |#2| (-893 |#1|)) 36)) (-2172 (((-1 (-112) |#2|) (-893 |#1|)) 16)) (-3776 (((-645 |#2|) (-893 |#1|)) 24)) (-3273 (((-893 |#1|) (-893 |#1|) |#2|) 20))) -(((-891 |#1| |#2|) (-10 -7 (-15 -2135 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -2135 ((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2135 ((-893 |#1|) (-893 |#1|) (-645 (-1177)) (-1 (-112) (-645 |#2|)))) (-15 -2172 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3931 ((-112) |#2| (-893 |#1|))) (-15 -3931 ((-112) (-645 |#2|) (-893 |#1|))) (-15 -3273 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3776 ((-645 |#2|) (-893 |#1|)))) (-1101) (-1217)) (T -891)) -((-3776 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-645 *5)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1217)))) (-3273 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1217)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-4 *6 (-1217)) (-5 *2 (-112)) (-5 *1 (-891 *5 *6)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-5 *2 (-112)) (-5 *1 (-891 *5 *3)) (-4 *3 (-1217)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1217)))) (-2135 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-893 *5)) (-5 *3 (-645 (-1177))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1101)) (-4 *6 (-1217)) (-5 *1 (-891 *5 *6)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1101)) (-4 *5 (-1217)) (-5 *1 (-891 *4 *5)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1101)) (-4 *5 (-1217)) (-5 *1 (-891 *4 *5))))) -(-10 -7 (-15 -2135 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -2135 ((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2135 ((-893 |#1|) (-893 |#1|) (-645 (-1177)) (-1 (-112) (-645 |#2|)))) (-15 -2172 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3931 ((-112) |#2| (-893 |#1|))) (-15 -3931 ((-112) (-645 |#2|) (-893 |#1|))) (-15 -3273 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3776 ((-645 |#2|) (-893 |#1|)))) -((-3822 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19))) -(((-892 |#1| |#2|) (-10 -7 (-15 -3822 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1101) (-1101)) (T -892)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) -(-10 -7 (-15 -3822 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-2399 (((-112) $ $) NIL)) (-3096 (($ $ (-645 (-52))) 74)) (-2845 (((-645 $) $) 138)) (-2312 (((-2 (|:| |var| (-645 (-1177))) (|:| |pred| (-52))) $) 30)) (-3986 (((-112) $) 35)) (-2185 (($ $ (-645 (-1177)) (-52)) 31)) (-3048 (($ $ (-645 (-52))) 73)) (-3747 (((-3 |#1| "failed") $) 71) (((-3 (-1177) "failed") $) 162)) (-2033 ((|#1| $) 68) (((-1177) $) NIL)) (-2205 (($ $) 126)) (-1513 (((-112) $) 55)) (-2349 (((-645 (-52)) $) 50)) (-1656 (($ (-1177) (-112) (-112) (-112)) 75)) (-3649 (((-3 (-645 $) "failed") (-645 $)) 82)) (-3616 (((-112) $) 58)) (-2502 (((-112) $) 57)) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) 41)) (-4061 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2641 (((-3 (-2 (|:| |val| $) (|:| -4250 $)) "failed") $) 97)) (-2432 (((-3 (-645 $) "failed") $) 40)) (-1401 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -4174 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-3271 (((-3 (-645 $) "failed") $) 42)) (-4026 (((-3 (-2 (|:| |val| $) (|:| -4250 (-772))) "failed") $) 45)) (-2645 (((-112) $) 34)) (-3430 (((-1121) $) NIL)) (-3895 (((-112) $) 28)) (-3733 (((-112) $) 52)) (-2914 (((-645 (-52)) $) 130)) (-1858 (((-112) $) 56)) (-1783 (($ (-114) (-645 $)) 104)) (-3298 (((-772) $) 33)) (-4303 (($ $) 72)) (-3880 (($ (-645 $)) 69)) (-3976 (((-112) $) 32)) (-4127 (((-863) $) 63) (($ |#1|) 23) (($ (-1177)) 76)) (-4104 (((-112) $ $) NIL)) (-3273 (($ $ (-52)) 129)) (-1710 (($) 103 T CONST)) (-1722 (($) 83 T CONST)) (-2929 (((-112) $ $) 93)) (-3050 (($ $ $) 117)) (-3024 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-893 |#1|) (-13 (-1101) (-1039 |#1|) (-1039 (-1177)) (-10 -8 (-15 0 ($) -3280) (-15 1 ($) -3280) (-15 -2432 ((-3 (-645 $) "failed") $)) (-15 -2662 ((-3 (-645 $) "failed") $)) (-15 -1401 ((-3 (-645 $) "failed") $ (-114))) (-15 -1401 ((-3 (-2 (|:| -4174 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -4026 ((-3 (-2 (|:| |val| $) (|:| -4250 (-772))) "failed") $)) (-15 -4061 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3271 ((-3 (-645 $) "failed") $)) (-15 -2641 ((-3 (-2 (|:| |val| $) (|:| -4250 $)) "failed") $)) (-15 -1783 ($ (-114) (-645 $))) (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3298 ((-772) $)) (-15 -3880 ($ (-645 $))) (-15 -4303 ($ $)) (-15 -2645 ((-112) $)) (-15 -1513 ((-112) $)) (-15 -3986 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -1858 ((-112) $)) (-15 -2502 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -3733 ((-112) $)) (-15 -2349 ((-645 (-52)) $)) (-15 -3048 ($ $ (-645 (-52)))) (-15 -3096 ($ $ (-645 (-52)))) (-15 -1656 ($ (-1177) (-112) (-112) (-112))) (-15 -2185 ($ $ (-645 (-1177)) (-52))) (-15 -2312 ((-2 (|:| |var| (-645 (-1177))) (|:| |pred| (-52))) $)) (-15 -3895 ((-112) $)) (-15 -2205 ($ $)) (-15 -3273 ($ $ (-52))) (-15 -2914 ((-645 (-52)) $)) (-15 -2845 ((-645 $) $)) (-15 -3649 ((-3 (-645 $) "failed") (-645 $))))) (-1101)) (T -893)) -((-1710 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-1722 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-2432 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2662 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-1401 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1101)))) (-1401 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4174 (-114)) (|:| |arg| (-645 (-893 *3))))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-4026 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4250 (-772)))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-4061 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3271 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2641 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4250 (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1101)))) (-3024 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-3050 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-4303 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-1656 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1101)))) (-2185 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-52)) (-5 *1 (-893 *4)) (-4 *4 (-1101)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1177))) (|:| |pred| (-52)))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2205 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) (-3649 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(-13 (-1101) (-1039 |#1|) (-1039 (-1177)) (-10 -8 (-15 (-1710) ($) -3280) (-15 (-1722) ($) -3280) (-15 -2432 ((-3 (-645 $) "failed") $)) (-15 -2662 ((-3 (-645 $) "failed") $)) (-15 -1401 ((-3 (-645 $) "failed") $ (-114))) (-15 -1401 ((-3 (-2 (|:| -4174 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -4026 ((-3 (-2 (|:| |val| $) (|:| -4250 (-772))) "failed") $)) (-15 -4061 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3271 ((-3 (-645 $) "failed") $)) (-15 -2641 ((-3 (-2 (|:| |val| $) (|:| -4250 $)) "failed") $)) (-15 -1783 ($ (-114) (-645 $))) (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3298 ((-772) $)) (-15 -3880 ($ (-645 $))) (-15 -4303 ($ $)) (-15 -2645 ((-112) $)) (-15 -1513 ((-112) $)) (-15 -3986 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -1858 ((-112) $)) (-15 -2502 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -3733 ((-112) $)) (-15 -2349 ((-645 (-52)) $)) (-15 -3048 ($ $ (-645 (-52)))) (-15 -3096 ($ $ (-645 (-52)))) (-15 -1656 ($ (-1177) (-112) (-112) (-112))) (-15 -2185 ($ $ (-645 (-1177)) (-52))) (-15 -2312 ((-2 (|:| |var| (-645 (-1177))) (|:| |pred| (-52))) $)) (-15 -3895 ((-112) $)) (-15 -2205 ($ $)) (-15 -3273 ($ $ (-52))) (-15 -2914 ((-645 (-52)) $)) (-15 -2845 ((-645 $) $)) (-15 -3649 ((-3 (-645 $) "failed") (-645 $))))) -((-2399 (((-112) $ $) NIL)) (-3259 (((-645 |#1|) $) 19)) (-2803 (((-112) $) 49)) (-3747 (((-3 (-673 |#1|) "failed") $) 56)) (-2033 (((-673 |#1|) $) 54)) (-2417 (($ $) 23)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-2334 (((-772) $) 61)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-673 |#1|) $) 21)) (-4127 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 9 T CONST)) (-1568 (((-645 (-673 |#1|)) $) 28)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 12)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 67))) -(((-894 |#1|) (-13 (-851) (-1039 (-673 |#1|)) (-10 -8 (-15 1 ($) -3280) (-15 -4127 ((-820 |#1|) $)) (-15 -4127 ($ |#1|)) (-15 -2405 ((-673 |#1|) $)) (-15 -2334 ((-772) $)) (-15 -1568 ((-645 (-673 |#1|)) $)) (-15 -2417 ($ $)) (-15 -2803 ((-112) $)) (-15 -3259 ((-645 |#1|) $)))) (-851)) (T -894)) -((-1722 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-4127 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1039 (-673 |#1|)) (-10 -8 (-15 (-1722) ($) -3280) (-15 -4127 ((-820 |#1|) $)) (-15 -4127 ($ |#1|)) (-15 -2405 ((-673 |#1|) $)) (-15 -2334 ((-772) $)) (-15 -1568 ((-645 (-673 |#1|)) $)) (-15 -2417 ($ $)) (-15 -2803 ((-112) $)) (-15 -3259 ((-645 |#1|) $)))) -((-1562 ((|#1| |#1| |#1|) 19))) -(((-895 |#1| |#2|) (-10 -7 (-15 -1562 (|#1| |#1| |#1|))) (-1243 |#2|) (-1050)) (T -895)) -((-1562 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-895 *2 *3)) (-4 *2 (-1243 *3))))) -(-10 -7 (-15 -1562 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2484 (((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-3910 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 14)) (-2929 (((-112) $ $) 6))) -(((-896) (-140)) (T -896)) -((-2484 (*1 *2 *3 *4) (-12 (-4 *1 (-896)) (-5 *3 (-1064)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) (-3910 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) (-5 *2 (-1036))))) -(-13 (-1101) (-10 -7 (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| |explanations| (-1159))) (-1064) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))))) (-15 -3910 ((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-3652 ((|#1| |#1| (-772)) 29)) (-1538 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3349 (((-3 (-2 (|:| -2944 |#1|) (|:| -2956 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3349 ((-645 |#1|) |#1|)) (-15 -3349 ((-3 (-2 (|:| -2944 |#1|) (|:| -2956 |#1|)) "failed") |#1| (-772) (-772))) (-15 -1538 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3652 (|#1| |#1| (-772)))) (-1243 |#2|) (-365)) (T -897)) -((-3652 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-897 *2 *4)) (-4 *2 (-1243 *4)))) (-1538 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1243 *3)))) (-3349 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2944 *3) (|:| -2956 *3))) (-5 *1 (-897 *3 *5)) (-4 *3 (-1243 *5)))) (-3349 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-897 *3 *4)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -3349 ((-645 |#1|) |#1|)) (-15 -3349 ((-3 (-2 (|:| -2944 |#1|) (|:| -2956 |#1|)) "failed") |#1| (-772) (-772))) (-15 -1538 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3652 (|#1| |#1| (-772)))) -((-1754 (((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159)) 106) (((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159) (-225)) 102) (((-1036) (-899) (-1064)) 94) (((-1036) (-899)) 95)) (-2484 (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899) (-1064)) 65) (((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899)) 67))) -(((-898) (-10 -7 (-15 -1754 ((-1036) (-899))) (-15 -1754 ((-1036) (-899) (-1064))) (-15 -1754 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159) (-225))) (-15 -1754 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899) (-1064))))) (T -898)) -((-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-899)) (-5 *4 (-1064)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-898)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159))))) (-5 *1 (-898)))) (-1754 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1159)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1754 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1159)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-899)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-1036)) (-5 *1 (-898))))) -(-10 -7 (-15 -1754 ((-1036) (-899))) (-15 -1754 ((-1036) (-899) (-1064))) (-15 -1754 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159) (-225))) (-15 -1754 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1159))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899))) (-15 -2484 ((-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) (|:| |explanations| (-645 (-1159)))) (-899) (-1064)))) -((-2399 (((-112) $ $) NIL)) (-2033 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))) $) 19)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) 18)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-899) (-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))))) (-15 -2033 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))) $))))) (T -899)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) (-5 *1 (-899)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225)))) (-5 *1 (-899))))) -(-13 (-1101) (-10 -8 (-15 -4127 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))))) (-15 -2033 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) (|:| |tol| (-225))) $)))) -((-1621 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2636 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24))) -(((-900 |#1| |#2|) (-10 -8 (-15 -2636 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2636 (|#1| |#1| |#2| (-772))) (-15 -2636 (|#1| |#1| (-645 |#2|))) (-15 -2636 (|#1| |#1| |#2|)) (-15 -1621 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1621 (|#1| |#1| |#2| (-772))) (-15 -1621 (|#1| |#1| (-645 |#2|))) (-15 -1621 (|#1| |#1| |#2|))) (-901 |#2|) (-1101)) (T -900)) -NIL -(-10 -8 (-15 -2636 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2636 (|#1| |#1| |#2| (-772))) (-15 -2636 (|#1| |#1| (-645 |#2|))) (-15 -2636 (|#1| |#1| |#2|)) (-15 -1621 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1621 (|#1| |#1| |#2| (-772))) (-15 -1621 (|#1| |#1| (-645 |#2|))) (-15 -1621 (|#1| |#1| |#2|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1621 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-901 |#1|) (-140) (-1101)) (T -901)) -((-1621 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1101)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1101)))) (-1621 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1101)))) (-1621 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) (-4 *4 (-1101)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1101)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1101)))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1101)))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) (-4 *4 (-1101))))) -(-13 (-1050) (-10 -8 (-15 -1621 ($ $ |t#1|)) (-15 -1621 ($ $ (-645 |t#1|))) (-15 -1621 ($ $ |t#1| (-772))) (-15 -1621 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2636 ($ $ |t#1|)) (-15 -2636 ($ $ (-645 |t#1|))) (-15 -2636 ($ $ |t#1| (-772))) (-15 -2636 ($ $ (-645 |t#1|) (-645 (-772)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) 26)) (-2112 (((-112) $ (-772)) NIL)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-4043 (($ $ $) NIL (|has| $ (-6 -4418)))) (-4329 (($ $ $) NIL (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-2956 (($ $) 25)) (-3427 (($ |#1|) 12) (($ $ $) 17)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2944 (($ $) 23)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) 20)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1203 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 21 (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-902 |#1|) (-13 (-119 |#1|) (-614 (-1203 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $)))) (-1101)) (T -902)) -((-3427 (*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1101)))) (-3427 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1101))))) -(-13 (-119 |#1|) (-614 (-1203 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $)))) -((-3415 ((|#2| (-1143 |#1| |#2|)) 53))) -(((-903 |#1| |#2|) (-10 -7 (-15 -3415 (|#2| (-1143 |#1| |#2|)))) (-922) (-13 (-1050) (-10 -7 (-6 (-4419 "*"))))) (T -903)) -((-3415 (*1 *2 *3) (-12 (-5 *3 (-1143 *4 *2)) (-14 *4 (-922)) (-4 *2 (-13 (-1050) (-10 -7 (-6 (-4419 "*"))))) (-5 *1 (-903 *4 *2))))) -(-10 -7 (-15 -3415 (|#2| (-1143 |#1| |#2|)))) -((-2399 (((-112) $ $) 7)) (-2245 (($) 19 T CONST)) (-3153 (((-3 $ "failed") $) 16)) (-2422 (((-1103 |#1|) $ |#1|) 33)) (-2843 (((-112) $) 18)) (-2010 (($ $ $) 31 (-2797 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2998 (($ $ $) 30 (-2797 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 25)) (-3430 (((-1121) $) 11)) (-2631 ((|#1| $ |#1|) 35)) (-1783 ((|#1| $ |#1|) 34)) (-4087 (($ (-645 (-645 |#1|))) 36)) (-3659 (($ (-645 |#1|)) 37)) (-2073 (($ $ $) 22)) (-3387 (($ $ $) 21)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1722 (($) 20 T CONST)) (-2988 (((-112) $ $) 28 (-2797 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2964 (((-112) $ $) 27 (-2797 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 29 (-2797 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2952 (((-112) $ $) 32)) (-3050 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) -(((-904 |#1|) (-140) (-1101)) (T -904)) -((-3659 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-904 *3)))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-4 *1 (-904 *3)))) (-2631 (*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1101)))) (-1783 (*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1101)))) (-2422 (*1 *2 *1 *3) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1101)) (-5 *2 (-1103 *3)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(-13 (-476) (-10 -8 (-15 -3659 ($ (-645 |t#1|))) (-15 -4087 ($ (-645 (-645 |t#1|)))) (-15 -2631 (|t#1| $ |t#1|)) (-15 -1783 (|t#1| $ |t#1|)) (-15 -2422 ((-1103 |t#1|) $ |t#1|)) (-15 -2952 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|))) -(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2797 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3695 (((-645 (-645 (-772))) $) 165)) (-1781 (((-645 (-772)) (-906 |#1|) $) 193)) (-3058 (((-645 (-772)) (-906 |#1|) $) 194)) (-2775 (((-645 (-906 |#1|)) $) 154)) (-1378 (((-906 |#1|) $ (-567)) 159) (((-906 |#1|) $) 160)) (-3401 (($ (-645 (-906 |#1|))) 167)) (-2937 (((-772) $) 161)) (-2460 (((-1103 (-1103 |#1|)) $) 191)) (-2422 (((-1103 |#1|) $ |#1|) 182) (((-1103 (-1103 |#1|)) $ (-1103 |#1|)) 202) (((-1103 (-645 |#1|)) $ (-645 |#1|)) 205)) (-2908 (((-1103 |#1|) $) 157)) (-3136 (((-112) (-906 |#1|) $) 143)) (-3739 (((-1159) $) NIL)) (-2866 (((-1272) $) 147) (((-1272) $ (-567) (-567)) 206)) (-3430 (((-1121) $) NIL)) (-1963 (((-645 (-906 |#1|)) $) 148)) (-1783 (((-906 |#1|) $ (-772)) 155)) (-1813 (((-772) $) 162)) (-4127 (((-863) $) 179) (((-645 (-906 |#1|)) $) 28) (($ (-645 (-906 |#1|))) 166)) (-4104 (((-112) $ $) NIL)) (-3074 (((-645 |#1|) $) 164)) (-2929 (((-112) $ $) 199)) (-2977 (((-112) $ $) 197)) (-2952 (((-112) $ $) 196))) -(((-905 |#1|) (-13 (-1101) (-10 -8 (-15 -4127 ((-645 (-906 |#1|)) $)) (-15 -1963 ((-645 (-906 |#1|)) $)) (-15 -1783 ((-906 |#1|) $ (-772))) (-15 -1378 ((-906 |#1|) $ (-567))) (-15 -1378 ((-906 |#1|) $)) (-15 -2937 ((-772) $)) (-15 -1813 ((-772) $)) (-15 -3074 ((-645 |#1|) $)) (-15 -2775 ((-645 (-906 |#1|)) $)) (-15 -3695 ((-645 (-645 (-772))) $)) (-15 -4127 ($ (-645 (-906 |#1|)))) (-15 -3401 ($ (-645 (-906 |#1|)))) (-15 -2422 ((-1103 |#1|) $ |#1|)) (-15 -2460 ((-1103 (-1103 |#1|)) $)) (-15 -2422 ((-1103 (-1103 |#1|)) $ (-1103 |#1|))) (-15 -2422 ((-1103 (-645 |#1|)) $ (-645 |#1|))) (-15 -3136 ((-112) (-906 |#1|) $)) (-15 -1781 ((-645 (-772)) (-906 |#1|) $)) (-15 -3058 ((-645 (-772)) (-906 |#1|) $)) (-15 -2908 ((-1103 |#1|) $)) (-15 -2952 ((-112) $ $)) (-15 -2977 ((-112) $ $)) (-15 -2866 ((-1272) $)) (-15 -2866 ((-1272) $ (-567) (-567))))) (-1101)) (T -905)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) (-4 *4 (-1101)))) (-1378 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) (-4 *4 (-1101)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1101)) (-5 *1 (-905 *3)))) (-3401 (*1 *1 *2) (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1101)) (-5 *1 (-905 *3)))) (-2422 (*1 *2 *1 *3) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1103 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2422 (*1 *2 *1 *3) (-12 (-4 *4 (-1101)) (-5 *2 (-1103 (-1103 *4))) (-5 *1 (-905 *4)) (-5 *3 (-1103 *4)))) (-2422 (*1 *2 *1 *3) (-12 (-4 *4 (-1101)) (-5 *2 (-1103 (-645 *4))) (-5 *1 (-905 *4)) (-5 *3 (-645 *4)))) (-3136 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-112)) (-5 *1 (-905 *4)))) (-1781 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-645 (-772))) (-5 *1 (-905 *4)))) (-3058 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-645 (-772))) (-5 *1 (-905 *4)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2952 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2977 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) (-2866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-905 *4)) (-4 *4 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -4127 ((-645 (-906 |#1|)) $)) (-15 -1963 ((-645 (-906 |#1|)) $)) (-15 -1783 ((-906 |#1|) $ (-772))) (-15 -1378 ((-906 |#1|) $ (-567))) (-15 -1378 ((-906 |#1|) $)) (-15 -2937 ((-772) $)) (-15 -1813 ((-772) $)) (-15 -3074 ((-645 |#1|) $)) (-15 -2775 ((-645 (-906 |#1|)) $)) (-15 -3695 ((-645 (-645 (-772))) $)) (-15 -4127 ($ (-645 (-906 |#1|)))) (-15 -3401 ($ (-645 (-906 |#1|)))) (-15 -2422 ((-1103 |#1|) $ |#1|)) (-15 -2460 ((-1103 (-1103 |#1|)) $)) (-15 -2422 ((-1103 (-1103 |#1|)) $ (-1103 |#1|))) (-15 -2422 ((-1103 (-645 |#1|)) $ (-645 |#1|))) (-15 -3136 ((-112) (-906 |#1|) $)) (-15 -1781 ((-645 (-772)) (-906 |#1|) $)) (-15 -3058 ((-645 (-772)) (-906 |#1|) $)) (-15 -2908 ((-1103 |#1|) $)) (-15 -2952 ((-112) $ $)) (-15 -2977 ((-112) $ $)) (-15 -2866 ((-1272) $)) (-15 -2866 ((-1272) $ (-567) (-567))))) -((-2399 (((-112) $ $) NIL)) (-1332 (((-645 $) (-645 $)) 105)) (-3449 (((-567) $) 86)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2937 (((-772) $) 83)) (-2422 (((-1103 |#1|) $ |#1|) 74)) (-2843 (((-112) $) NIL)) (-2904 (((-112) $) 90)) (-1686 (((-772) $) 87)) (-2908 (((-1103 |#1|) $) 63)) (-2010 (($ $ $) NIL (-2797 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2998 (($ $ $) NIL (-2797 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3452 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 133)) (-3430 (((-1121) $) NIL)) (-4245 (((-1103 |#1|) $) 141 (|has| |#1| (-370)))) (-2799 (((-112) $) 84)) (-2631 ((|#1| $ |#1|) 72)) (-1783 ((|#1| $ |#1|) 135)) (-1813 (((-772) $) 65)) (-4087 (($ (-645 (-645 |#1|))) 120)) (-2067 (((-972) $) 78)) (-3659 (($ (-645 |#1|)) 35)) (-2073 (($ $ $) NIL)) (-3387 (($ $ $) NIL)) (-1318 (($ (-645 (-645 |#1|))) 60)) (-3901 (($ (-645 (-645 |#1|))) 125)) (-3642 (($ (-645 |#1|)) 137)) (-4127 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-4104 (((-112) $ $) NIL)) (-1722 (($) 27 T CONST)) (-2988 (((-112) $ $) NIL (-2797 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2929 (((-112) $ $) 70)) (-2977 (((-112) $ $) NIL (-2797 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2952 (((-112) $ $) 92)) (-3050 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36))) -(((-906 |#1|) (-13 (-904 |#1|) (-10 -8 (-15 -3452 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1318 ($ (-645 (-645 |#1|)))) (-15 -4127 ($ (-645 (-645 |#1|)))) (-15 -4127 ($ (-645 |#1|))) (-15 -3901 ($ (-645 (-645 |#1|)))) (-15 -1813 ((-772) $)) (-15 -2908 ((-1103 |#1|) $)) (-15 -2067 ((-972) $)) (-15 -2937 ((-772) $)) (-15 -1686 ((-772) $)) (-15 -3449 ((-567) $)) (-15 -2799 ((-112) $)) (-15 -2904 ((-112) $)) (-15 -1332 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4245 ((-1103 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3642 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -3642 ($ (-645 |#1|))) |%noBranch|)))) (-1101)) (T -906)) -((-3452 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-906 *3)) (-4 *3 (-370)) (-4 *3 (-1101)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-906 *3))))) -(-13 (-904 |#1|) (-10 -8 (-15 -3452 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1318 ($ (-645 (-645 |#1|)))) (-15 -4127 ($ (-645 (-645 |#1|)))) (-15 -4127 ($ (-645 |#1|))) (-15 -3901 ($ (-645 (-645 |#1|)))) (-15 -1813 ((-772) $)) (-15 -2908 ((-1103 |#1|) $)) (-15 -2067 ((-972) $)) (-15 -2937 ((-772) $)) (-15 -1686 ((-772) $)) (-15 -3449 ((-567) $)) (-15 -2799 ((-112) $)) (-15 -2904 ((-112) $)) (-15 -1332 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4245 ((-1103 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3642 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -3642 ($ (-645 |#1|))) |%noBranch|)))) -((-4318 (((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|)) 159)) (-1822 ((|#1|) 97)) (-2341 (((-421 (-1173 |#4|)) (-1173 |#4|)) 168)) (-3635 (((-421 (-1173 |#4|)) (-645 |#3|) (-1173 |#4|)) 84)) (-1788 (((-421 (-1173 |#4|)) (-1173 |#4|)) 178)) (-2677 (((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|) |#3|) 113))) -(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 ((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|))) (-15 -1788 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -2341 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -1822 (|#1|)) (-15 -2677 ((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|) |#3|)) (-15 -3635 ((-421 (-1173 |#4|)) (-645 |#3|) (-1173 |#4|)))) (-910) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -907)) -((-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-910)) (-4 *6 (-794)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-421 (-1173 *8))) (-5 *1 (-907 *5 *6 *7 *8)) (-5 *4 (-1173 *8)))) (-2677 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1173 *7))) (-5 *3 (-1173 *7)) (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-910)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-907 *5 *6 *4 *7)))) (-1822 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1173 *7))) (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) (-4318 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 *7))) (-5 *3 (-1173 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-907 *4 *5 *6 *7))))) -(-10 -7 (-15 -4318 ((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|))) (-15 -1788 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -2341 ((-421 (-1173 |#4|)) (-1173 |#4|))) (-15 -1822 (|#1|)) (-15 -2677 ((-3 (-645 (-1173 |#4|)) "failed") (-645 (-1173 |#4|)) (-1173 |#4|) |#3|)) (-15 -3635 ((-421 (-1173 |#4|)) (-645 |#3|) (-1173 |#4|)))) -((-4318 (((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|)) 41)) (-1822 ((|#1|) 75)) (-2341 (((-421 (-1173 |#2|)) (-1173 |#2|)) 124)) (-3635 (((-421 (-1173 |#2|)) (-1173 |#2|)) 108)) (-1788 (((-421 (-1173 |#2|)) (-1173 |#2|)) 135))) -(((-908 |#1| |#2|) (-10 -7 (-15 -4318 ((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|))) (-15 -1788 ((-421 (-1173 |#2|)) (-1173 |#2|))) (-15 -2341 ((-421 (-1173 |#2|)) (-1173 |#2|))) (-15 -1822 (|#1|)) (-15 -3635 ((-421 (-1173 |#2|)) (-1173 |#2|)))) (-910) (-1243 |#1|)) (T -908)) -((-3635 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5)))) (-1822 (*1 *2) (-12 (-4 *2 (-910)) (-5 *1 (-908 *2 *3)) (-4 *3 (-1243 *2)))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5)))) (-4318 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 *5))) (-5 *3 (-1173 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-910)) (-5 *1 (-908 *4 *5))))) -(-10 -7 (-15 -4318 ((-3 (-645 (-1173 |#2|)) "failed") (-645 (-1173 |#2|)) (-1173 |#2|))) (-15 -1788 ((-421 (-1173 |#2|)) (-1173 |#2|))) (-15 -2341 ((-421 (-1173 |#2|)) (-1173 |#2|))) (-15 -1822 (|#1|)) (-15 -3635 ((-421 (-1173 |#2|)) (-1173 |#2|)))) -((-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 42)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 18)) (-1467 (((-3 $ "failed") $) 36))) -(((-909 |#1|) (-10 -8 (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)))) (-910)) (T -909)) -NIL -(-10 -8 (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 66)) (-3081 (($ $) 57)) (-2833 (((-421 $) $) 58)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 63)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-4341 (((-112) $) 59)) (-2843 (((-112) $) 35)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-3475 (((-421 (-1173 $)) (-1173 $)) 64)) (-3871 (((-421 (-1173 $)) (-1173 $)) 65)) (-2703 (((-421 $) $) 56)) (-2387 (((-3 $ "failed") $ $) 48)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1467 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-910) (-140)) (T -910)) -((-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-910)))) (-1431 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1)))) (-3871 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1)))) (-3475 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1)))) (-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1173 *1))) (-5 *3 (-1173 *1)) (-4 *1 (-910)))) (-1735 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-910)) (-5 *2 (-1267 *1)))) (-1467 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-910))))) -(-13 (-1221) (-10 -8 (-15 -1431 ((-421 (-1173 $)) (-1173 $))) (-15 -3871 ((-421 (-1173 $)) (-1173 $))) (-15 -3475 ((-421 (-1173 $)) (-1173 $))) (-15 -2052 ((-1173 $) (-1173 $) (-1173 $))) (-15 -1885 ((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $))) (IF (|has| $ (-145)) (PROGN (-15 -1735 ((-3 (-1267 $) "failed") (-690 $))) (-15 -1467 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-1552 (((-112) $) NIL)) (-2463 (((-772)) NIL)) (-4290 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3581 (((-1190 (-922) (-772)) (-567)) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 $ "failed") $) NIL)) (-2033 (($ $) NIL)) (-4025 (($ (-1267 $)) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-3005 (($) NIL)) (-4284 (((-112) $) NIL)) (-4112 (($ $) NIL) (($ $ (-772)) NIL)) (-4341 (((-112) $) NIL)) (-2937 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2843 (((-112) $) NIL)) (-2794 (($) NIL (|has| $ (-370)))) (-3601 (((-112) $) NIL (|has| $ (-370)))) (-2896 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2612 (((-1173 $) $ (-922)) NIL (|has| $ (-370))) (((-1173 $) $) NIL)) (-3425 (((-922) $) NIL)) (-4091 (((-1173 $) $) NIL (|has| $ (-370)))) (-2772 (((-3 (-1173 $) "failed") $ $) NIL (|has| $ (-370))) (((-1173 $) $) NIL (|has| $ (-370)))) (-2157 (($ $ (-1173 $)) NIL (|has| $ (-370)))) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL T CONST)) (-3763 (($ (-922)) NIL)) (-1816 (((-112) $) NIL)) (-3430 (((-1121) $) NIL)) (-1394 (($) NIL (|has| $ (-370)))) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL)) (-2703 (((-421 $) $) NIL)) (-1768 (((-922)) NIL) (((-834 (-922))) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3942 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1635 (((-134)) NIL)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-1813 (((-922) $) NIL) (((-834 (-922)) $) NIL)) (-2530 (((-1173 $)) NIL)) (-3057 (($) NIL)) (-3914 (($) NIL (|has| $ (-370)))) (-2446 (((-690 $) (-1267 $)) NIL) (((-1267 $) $) NIL)) (-3880 (((-567) $) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1467 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $) (-922)) NIL) (((-1267 $)) NIL)) (-4380 (((-112) $ $) NIL)) (-3113 (((-112) $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2529 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-911 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-922)) (T -911)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-2038 (((-871 |#1|) $) NIL) (((-1178) $) NIL (|has| (-871 |#1|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-871 |#1|))) (|:| |vec| (-1268 (-871 |#1|)))) (-690 $) (-1268 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-871 |#1|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-871 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-871 |#1|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-871 |#1|) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-2981 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3829 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-871 |#1|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-2780 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1178)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1178) (-871 |#1|)))) (($ $ (-1178) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1178) (-871 |#1|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-871 |#1|) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1024))) (((-225) $) NIL (|has| (-871 |#1|) (-1024)))) (-1579 (((-174 (-410 (-567))) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1178)) NIL (|has| (-871 |#1|) (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))) (|has| (-871 |#1|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) NIL)) (-2219 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3060 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL))) +(((-872 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567)) (T -872)) +((-3050 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))) +(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#2| $) NIL (|has| |#2| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#2| (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| |#2| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567))))) (-2038 ((|#2| $) NIL) (((-1178) $) NIL (|has| |#2| (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-567)))) (((-567) $) NIL (|has| |#2| (-1040 (-567))))) (-3812 (($ $) 35) (($ (-567) $) 38)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 64)) (-1348 (($) NIL (|has| |#2| (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| |#2| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#2| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#2| (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 ((|#2| $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#2| (-1153)))) (-3494 (((-112) $) NIL (|has| |#2| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| |#2| (-851)))) (-2981 (($ $ $) NIL (|has| |#2| (-851)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 60)) (-2672 (($) NIL (|has| |#2| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| |#2| (-308)))) (-2780 ((|#2| $) NIL (|has| |#2| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1178)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1178) |#2|))) (($ $ (-1178) |#2|) NIL (|has| |#2| (-517 (-1178) |#2|)))) (-1990 (((-772) $) NIL)) (-1787 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1967 (($ $) NIL)) (-1460 ((|#2| $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#2| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1024))) (((-225) $) NIL (|has| |#2| (-1024)))) (-1579 (((-174 (-410 (-567))) $) 78)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1178)) NIL (|has| |#2| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 ((|#2| $) NIL (|has| |#2| (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) 71)) (-2219 (($ $) NIL (|has| |#2| (-821)))) (-1716 (($) 15 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2936 (((-112) $ $) 46)) (-2984 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3060 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3045 (($ $) 50) (($ $ $) 52)) (-3033 (($ $ $) 48)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-873 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873)) +((-3050 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-1579 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-3812 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) +(-13 (-994 |#2|) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) +((-2403 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3984 ((|#2| $) 12)) (-3795 (($ |#1| |#2|) 9)) (-1419 (((-1160) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3430 (((-1122) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#1| $) 11)) (-4147 (($ |#1| |#2|) 10)) (-4132 (((-863) $) 18 (-2800 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) (-1745 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2936 (((-112) $ $) 23 (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) +(((-874 |#1| |#2|) (-13 (-1218) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3795 ($ |#1| |#2|)) (-15 -4147 ($ |#1| |#2|)) (-15 -2409 (|#1| $)) (-15 -3984 (|#2| $)))) (-1218) (-1218)) (T -874)) +((-3795 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))) (-2409 (*1 *2 *1) (-12 (-4 *2 (-1218)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1218)))) (-3984 (*1 *2 *1) (-12 (-4 *2 (-1218)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1218))))) +(-13 (-1218) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3795 ($ |#1| |#2|)) (-15 -4147 ($ |#1| |#2|)) (-15 -2409 (|#1| $)) (-15 -3984 (|#2| $)))) +((-2403 (((-112) $ $) NIL)) (-4315 (((-567) $) 16)) (-1984 (($ (-157)) 13)) (-2794 (($ (-157)) 14)) (-1419 (((-1160) $) NIL)) (-3811 (((-157) $) 15)) (-3430 (((-1122) $) NIL)) (-2612 (($ (-157)) 11)) (-3895 (($ (-157)) 10)) (-4132 (((-863) $) 24) (($ (-157)) 17)) (-2597 (($ (-157)) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-875) (-13 (-1102) (-10 -8 (-15 -3895 ($ (-157))) (-15 -2612 ($ (-157))) (-15 -2597 ($ (-157))) (-15 -1984 ($ (-157))) (-15 -2794 ($ (-157))) (-15 -3811 ((-157) $)) (-15 -4315 ((-567) $)) (-15 -4132 ($ (-157)))))) (T -875)) +((-3895 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(-13 (-1102) (-10 -8 (-15 -3895 ($ (-157))) (-15 -2612 ($ (-157))) (-15 -2597 ($ (-157))) (-15 -1984 ($ (-157))) (-15 -2794 ($ (-157))) (-15 -3811 ((-157) $)) (-15 -4315 ((-567) $)) (-15 -4132 ($ (-157))))) +((-4132 (((-317 (-567)) (-410 (-954 (-48)))) 23) (((-317 (-567)) (-954 (-48))) 18))) +(((-876) (-10 -7 (-15 -4132 ((-317 (-567)) (-954 (-48)))) (-15 -4132 ((-317 (-567)) (-410 (-954 (-48))))))) (T -876)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876))))) +(-10 -7 (-15 -4132 ((-317 (-567)) (-954 (-48)))) (-15 -4132 ((-317 (-567)) (-410 (-954 (-48)))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1702 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1160))) 13)) (-1745 (((-112) $ $) NIL)) (-2523 (((-509) $) 10) (((-1160) $) 14)) (-2936 (((-112) $ $) 15))) +(((-877) (-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $))))) (T -877)) +((-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-877))))) +(-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $)))) +((-3829 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) +(((-878 |#1| |#2|) (-10 -7 (-15 -3829 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1218) (-1218)) (T -878)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) +(-10 -7 (-15 -3829 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-1533 (($ |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15))) +(((-879 |#1|) (-10 -8 (-15 -1533 ($ |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -879)) +((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1218)))) (-1533 (*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1218))))) +(-10 -8 (-15 -1533 ($ |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) +((-3829 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 15))) +(((-880 |#1| |#2|) (-10 -7 (-15 -3829 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1218) (-1218)) (T -880)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))) +(-10 -7 (-15 -3829 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) +((-1533 (($ |#1| |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15))) +(((-881 |#1|) (-10 -8 (-15 -1533 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -881)) +((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1218)))) (-1533 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1218))))) +(-10 -8 (-15 -1533 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) +((-1415 (((-645 (-1183)) (-1160)) 9))) +(((-882) (-10 -7 (-15 -1415 ((-645 (-1183)) (-1160))))) (T -882)) +((-1415 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-882))))) +(-10 -7 (-15 -1415 ((-645 (-1183)) (-1160)))) +((-3829 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15))) +(((-883 |#1| |#2|) (-10 -7 (-15 -3829 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1218) (-1218)) (T -883)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))) +(-10 -7 (-15 -3829 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) +((-3399 (($ |#1| |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15))) +(((-884 |#1|) (-10 -8 (-15 -3399 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -884)) +((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1218)))) (-3399 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1218))))) +(-10 -8 (-15 -3399 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) +((-4070 (((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567)))) 48)) (-3489 (((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-3594 (((-1158 (-645 (-567))) (-645 (-567))) 58) (((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-3452 (((-1158 (-645 (-567))) (-567)) 59)) (-1452 (((-1158 (-645 (-567))) (-567) (-567)) 34) (((-1158 (-645 (-567))) (-567)) 23) (((-1158 (-645 (-567))) (-567) (-567) (-567)) 19)) (-2764 (((-1158 (-645 (-567))) (-1158 (-645 (-567)))) 42)) (-1823 (((-645 (-567)) (-645 (-567))) 41))) +(((-885) (-10 -7 (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567))) (-15 -1823 ((-645 (-567)) (-645 (-567)))) (-15 -2764 ((-1158 (-645 (-567))) (-1158 (-645 (-567))))) (-15 -3489 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4070 ((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567))))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)))) (-15 -3452 ((-1158 (-645 (-567))) (-567))))) (T -885)) +((-3452 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3594 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-3594 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-4070 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-885)))) (-3489 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-1452 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) +(-10 -7 (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567))) (-15 -1823 ((-645 (-567)) (-645 (-567)))) (-15 -2764 ((-1158 (-645 (-567))) (-1158 (-645 (-567))))) (-15 -3489 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4070 ((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567))))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)))) (-15 -3452 ((-1158 (-645 (-567))) (-567)))) +((-3893 (((-894 (-381)) $) 9 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 8 (|has| |#1| (-615 (-894 (-567))))))) +(((-886 |#1|) (-140) (-1218)) (T -886)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|))) +(((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567))))) +((-2403 (((-112) $ $) NIL)) (-2846 (($) 14)) (-2389 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-2022 (((-891 |#1| |#3|) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3569 (((-112) $) 22)) (-3668 (($) 19)) (-4132 (((-863) $) 31)) (-1745 (((-112) $ $) NIL)) (-1582 (((-891 |#1| |#2|) $) 15)) (-2936 (((-112) $ $) 26))) +(((-887 |#1| |#2| |#3|) (-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -2389 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -1582 ((-891 |#1| |#2|) $)) (-15 -2022 ((-891 |#1| |#3|) $)))) (-1102) (-1102) (-667 |#2|)) (T -887)) +((-3569 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-3668 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-2846 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))) (-1582 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-2022 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4))))) +(-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -2389 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -1582 ((-891 |#1| |#2|) $)) (-15 -2022 ((-891 |#1| |#3|) $)))) +((-2403 (((-112) $ $) 7)) (-4303 (((-891 |#1| $) $ (-894 |#1|) (-891 |#1| $)) 14)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-888 |#1|) (-140) (-1102)) (T -888)) +((-4303 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) (-4 *4 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -4303 ((-891 |t#1| $) $ (-894 |t#1|) (-891 |t#1| $))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-1854 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2525 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-1657 (|has| |#2| (-1040 (-1178)))) (-1657 (|has| |#2| (-1051))))) (((-645 (-295 (-954 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1051)) (-1657 (|has| |#2| (-1040 (-1178)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1040 (-1178)))) (((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21))) +(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-645 |#2|) |#3|)) (-15 -2525 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2525 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -2525 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -2525 ((-891 |#1| |#2|) |#2| |#3|))))) (-1102) (-888 |#1|) (-615 (-894 |#1|))) (T -889)) +((-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) (-1657 (-4 *3 (-1040 (-1178)))) (-1657 (-4 *3 (-1051))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) (-1657 (-4 *3 (-1040 (-1178)))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1040 (-1178))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))) +(-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-645 |#2|) |#3|)) (-15 -2525 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2525 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -2525 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -2525 ((-891 |#1| |#2|) |#2| |#3|))))) +((-3829 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1102) (-1102) (-1102)) (T -890)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) (-5 *1 (-890 *5 *6 *7))))) +(-10 -7 (-15 -3829 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) +((-2403 (((-112) $ $) NIL)) (-4244 (($ $ $) 40)) (-1683 (((-3 (-112) "failed") $ (-894 |#1|)) 37)) (-2846 (($) 12)) (-1419 (((-1160) $) NIL)) (-3235 (($ (-894 |#1|) |#2| $) 20)) (-3430 (((-1122) $) NIL)) (-2942 (((-3 |#2| "failed") (-894 |#1|) $) 51)) (-3569 (((-112) $) 15)) (-3668 (($) 13)) (-2784 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $) 25)) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|)))) 23)) (-4132 (((-863) $) 45)) (-1745 (((-112) $ $) NIL)) (-4373 (($ (-894 |#1|) |#2| $ |#2|) 49)) (-1651 (($ (-894 |#1|) |#2| $) 48)) (-2936 (((-112) $ $) 42))) +(((-891 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -4244 ($ $ $)) (-15 -2942 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1651 ($ (-894 |#1|) |#2| $)) (-15 -3235 ($ (-894 |#1|) |#2| $)) (-15 -4373 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2784 ((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))))) (-15 -1683 ((-3 (-112) "failed") $ (-894 |#1|))))) (-1102) (-1102)) (T -891)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3668 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2846 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2942 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-891 *4 *2)))) (-1651 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3235 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-4373 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) (-1683 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -4244 ($ $ $)) (-15 -2942 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1651 ($ (-894 |#1|) |#2| $)) (-15 -3235 ($ (-894 |#1|) |#2| $)) (-15 -4373 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2784 ((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))))) (-15 -1683 ((-3 (-112) "failed") $ (-894 |#1|))))) +((-2111 (((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|))) 32) (((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|)) 35)) (-1683 (((-112) (-645 |#2|) (-894 |#1|)) 42) (((-112) |#2| (-894 |#1|)) 36)) (-3342 (((-1 (-112) |#2|) (-894 |#1|)) 16)) (-3698 (((-645 |#2|) (-894 |#1|)) 24)) (-1810 (((-894 |#1|) (-894 |#1|) |#2|) 20))) +(((-892 |#1| |#2|) (-10 -7 (-15 -2111 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|)))) (-15 -3342 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1683 ((-112) |#2| (-894 |#1|))) (-15 -1683 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -1810 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3698 ((-645 |#2|) (-894 |#1|)))) (-1102) (-1218)) (T -892)) +((-3698 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))) (-1810 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1218)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-892 *5 *3)) (-4 *3 (-1218)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))) (-2111 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1178))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-892 *5 *6)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) (-4 *5 (-1218)) (-5 *1 (-892 *4 *5)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) (-4 *5 (-1218)) (-5 *1 (-892 *4 *5))))) +(-10 -7 (-15 -2111 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|)))) (-15 -3342 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1683 ((-112) |#2| (-894 |#1|))) (-15 -1683 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -1810 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3698 ((-645 |#2|) (-894 |#1|)))) +((-3829 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 19))) +(((-893 |#1| |#2|) (-10 -7 (-15 -3829 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1102) (-1102)) (T -893)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) +(-10 -7 (-15 -3829 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) +((-2403 (((-112) $ $) NIL)) (-3933 (($ $ (-645 (-52))) 74)) (-2847 (((-645 $) $) 138)) (-1738 (((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $) 30)) (-1765 (((-112) $) 35)) (-2113 (($ $ (-645 (-1178)) (-52)) 31)) (-3215 (($ $ (-645 (-52))) 73)) (-3753 (((-3 |#1| "failed") $) 71) (((-3 (-1178) "failed") $) 162)) (-2038 ((|#1| $) 68) (((-1178) $) NIL)) (-3390 (($ $) 126)) (-2093 (((-112) $) 55)) (-1376 (((-645 (-52)) $) 50)) (-2413 (($ (-1178) (-112) (-112) (-112)) 75)) (-3550 (((-3 (-645 $) "failed") (-645 $)) 82)) (-2536 (((-112) $) 58)) (-3939 (((-112) $) 57)) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) 41)) (-4068 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $) 97)) (-3671 (((-3 (-645 $) "failed") $) 40)) (-2486 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-1700 (((-3 (-645 $) "failed") $) 42)) (-3798 (((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $) 45)) (-4134 (((-112) $) 34)) (-3430 (((-1122) $) NIL)) (-1400 (((-112) $) 28)) (-4087 (((-112) $) 52)) (-3789 (((-645 (-52)) $) 130)) (-3857 (((-112) $) 56)) (-1787 (($ (-114) (-645 $)) 104)) (-3272 (((-772) $) 33)) (-4305 (($ $) 72)) (-3893 (($ (-645 $)) 69)) (-1935 (((-112) $) 32)) (-4132 (((-863) $) 63) (($ |#1|) 23) (($ (-1178)) 76)) (-1745 (((-112) $ $) NIL)) (-1810 (($ $ (-52)) 129)) (-1716 (($) 103 T CONST)) (-1728 (($) 83 T CONST)) (-2936 (((-112) $ $) 93)) (-3060 (($ $ $) 117)) (-3033 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-894 |#1|) (-13 (-1102) (-1040 |#1|) (-1040 (-1178)) (-10 -8 (-15 0 ($) -3286) (-15 1 ($) -3286) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -2486 ((-3 (-645 $) "failed") $ (-114))) (-15 -2486 ((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $)) (-15 -4068 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1700 ((-3 (-645 $) "failed") $)) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3060 ($ $ $)) (-15 -3272 ((-772) $)) (-15 -3893 ($ (-645 $))) (-15 -4305 ($ $)) (-15 -4134 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -1376 ((-645 (-52)) $)) (-15 -3215 ($ $ (-645 (-52)))) (-15 -3933 ($ $ (-645 (-52)))) (-15 -2413 ($ (-1178) (-112) (-112) (-112))) (-15 -2113 ($ $ (-645 (-1178)) (-52))) (-15 -1738 ((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $)) (-15 -1400 ((-112) $)) (-15 -3390 ($ $)) (-15 -1810 ($ $ (-52))) (-15 -3789 ((-645 (-52)) $)) (-15 -2847 ((-645 $) $)) (-15 -3550 ((-3 (-645 $) "failed") (-645 $))))) (-1102)) (T -894)) +((-1716 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1728 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3671 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2056 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2486 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2486 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 (-894 *3))))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3798 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-772)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4068 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1700 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1912 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-3033 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3060 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4305 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2413 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-52)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3390 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3550 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(-13 (-1102) (-1040 |#1|) (-1040 (-1178)) (-10 -8 (-15 (-1716) ($) -3286) (-15 (-1728) ($) -3286) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -2486 ((-3 (-645 $) "failed") $ (-114))) (-15 -2486 ((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $)) (-15 -4068 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1700 ((-3 (-645 $) "failed") $)) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3060 ($ $ $)) (-15 -3272 ((-772) $)) (-15 -3893 ($ (-645 $))) (-15 -4305 ($ $)) (-15 -4134 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -1376 ((-645 (-52)) $)) (-15 -3215 ($ $ (-645 (-52)))) (-15 -3933 ($ $ (-645 (-52)))) (-15 -2413 ($ (-1178) (-112) (-112) (-112))) (-15 -2113 ($ $ (-645 (-1178)) (-52))) (-15 -1738 ((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $)) (-15 -1400 ((-112) $)) (-15 -3390 ($ $)) (-15 -1810 ($ $ (-52))) (-15 -3789 ((-645 (-52)) $)) (-15 -2847 ((-645 $) $)) (-15 -3550 ((-3 (-645 $) "failed") (-645 $))))) +((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 19)) (-3164 (((-112) $) 49)) (-3753 (((-3 (-673 |#1|) "failed") $) 56)) (-2038 (((-673 |#1|) $) 54)) (-2421 (($ $) 23)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1699 (((-772) $) 61)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-673 |#1|) $) 21)) (-4132 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 9 T CONST)) (-2761 (((-645 (-673 |#1|)) $) 28)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 12)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 67))) +(((-895 |#1|) (-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 1 ($) -3286) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ($ |#1|)) (-15 -2409 ((-673 |#1|) $)) (-15 -1699 ((-772) $)) (-15 -2761 ((-645 (-673 |#1|)) $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -895)) +((-1728 (*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-4132 (*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851))))) +(-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 (-1728) ($) -3286) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ($ |#1|)) (-15 -2409 ((-673 |#1|) $)) (-15 -1699 ((-772) $)) (-15 -2761 ((-645 (-673 |#1|)) $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -3267 ((-645 |#1|) $)))) +((-2476 ((|#1| |#1| |#1|) 19))) +(((-896 |#1| |#2|) (-10 -7 (-15 -2476 (|#1| |#1| |#1|))) (-1244 |#2|) (-1051)) (T -896)) +((-2476 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1244 *3))))) +(-10 -7 (-15 -2476 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 14)) (-2936 (((-112) $ $) 6))) +(((-897) (-140)) (T -897)) +((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-897)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-1037))))) +(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -3473 ((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2596 ((|#1| |#1| (-772)) 29)) (-2723 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2532 (((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39))) +(((-898 |#1| |#2|) (-10 -7 (-15 -2532 ((-645 |#1|) |#1|)) (-15 -2532 ((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2723 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2596 (|#1| |#1| (-772)))) (-1244 |#2|) (-365)) (T -898)) +((-2596 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) (-4 *2 (-1244 *4)))) (-2723 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1244 *3)))) (-2532 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-898 *3 *5)) (-4 *3 (-1244 *5)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -2532 ((-645 |#1|) |#1|)) (-15 -2532 ((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2723 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2596 (|#1| |#1| (-772)))) +((-3018 (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160)) 106) (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225)) 102) (((-1037) (-900) (-1065)) 94) (((-1037) (-900)) 95)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065)) 65) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900)) 67))) +(((-899) (-10 -7 (-15 -3018 ((-1037) (-900))) (-15 -3018 ((-1037) (-900) (-1065))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065))))) (T -899)) +((-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-899)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899))))) +(-10 -7 (-15 -3018 ((-1037) (-900))) (-15 -3018 ((-1037) (-900) (-1065))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065)))) +((-2403 (((-112) $ $) NIL)) (-2038 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $) 19)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-900) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -2038 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $))))) (T -900)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *1 (-900)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *1 (-900))))) +(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -2038 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $)))) +((-1593 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2637 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24))) +(((-901 |#1| |#2|) (-10 -8 (-15 -2637 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2637 (|#1| |#1| |#2| (-772))) (-15 -2637 (|#1| |#1| (-645 |#2|))) (-15 -2637 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#2| (-772))) (-15 -1593 (|#1| |#1| (-645 |#2|))) (-15 -1593 (|#1| |#1| |#2|))) (-902 |#2|) (-1102)) (T -901)) +NIL +(-10 -8 (-15 -2637 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2637 (|#1| |#1| |#2| (-772))) (-15 -2637 (|#1| |#1| (-645 |#2|))) (-15 -2637 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#2| (-772))) (-15 -1593 (|#1| |#1| (-645 |#2|))) (-15 -1593 (|#1| |#1| |#2|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-902 |#1|) (-140) (-1102)) (T -902)) +((-1593 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102))))) +(-13 (-1051) (-10 -8 (-15 -1593 ($ $ |t#1|)) (-15 -1593 ($ $ (-645 |t#1|))) (-15 -1593 ($ $ |t#1| (-772))) (-15 -1593 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2637 ($ $ |t#1|)) (-15 -2637 ($ $ (-645 |t#1|))) (-15 -2637 ($ $ |t#1| (-772))) (-15 -2637 ($ $ (-645 |t#1|) (-645 (-772)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 26)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-3909 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4062 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 25)) (-3427 (($ |#1|) 12) (($ $ $) 17)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 23)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 20)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1204 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 21 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-903 |#1|) (-13 (-119 |#1|) (-614 (-1204 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $)))) (-1102)) (T -903)) +((-3427 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) (-3427 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))) +(-13 (-119 |#1|) (-614 (-1204 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $)))) +((-2526 ((|#2| (-1144 |#1| |#2|)) 53))) +(((-904 |#1| |#2|) (-10 -7 (-15 -2526 (|#2| (-1144 |#1| |#2|)))) (-923) (-13 (-1051) (-10 -7 (-6 (-4420 "*"))))) (T -904)) +((-2526 (*1 *2 *3) (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4420 "*"))))) (-5 *1 (-904 *4 *2))))) +(-10 -7 (-15 -2526 (|#2| (-1144 |#1| |#2|)))) +((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-4276 (((-1104 |#1|) $ |#1|) 33)) (-1433 (((-112) $) 18)) (-1354 (($ $ $) 31 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2981 (($ $ $) 30 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 25)) (-3430 (((-1122) $) 11)) (-2631 ((|#1| $ |#1|) 35)) (-1787 ((|#1| $ |#1|) 34)) (-2926 (($ (-645 (-645 |#1|))) 36)) (-2088 (($ (-645 |#1|)) 37)) (-1823 (($ $ $) 22)) (-1485 (($ $ $) 21)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) 28 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2971 (((-112) $ $) 27 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 29 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2958 (((-112) $ $) 32)) (-3060 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) +(((-905 |#1|) (-140) (-1102)) (T -905)) +((-2088 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2631 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-1787 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) (-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(-13 (-476) (-10 -8 (-15 -2088 ($ (-645 |t#1|))) (-15 -2926 ($ (-645 (-645 |t#1|)))) (-15 -2631 (|t#1| $ |t#1|)) (-15 -1787 (|t#1| $ |t#1|)) (-15 -4276 ((-1104 |t#1|) $ |t#1|)) (-15 -2958 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|))) +(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2800 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-1558 (((-645 (-645 (-772))) $) 165)) (-1706 (((-645 (-772)) (-907 |#1|) $) 193)) (-1666 (((-645 (-772)) (-907 |#1|) $) 194)) (-1412 (((-645 (-907 |#1|)) $) 154)) (-1348 (((-907 |#1|) $ (-567)) 159) (((-907 |#1|) $) 160)) (-3669 (($ (-645 (-907 |#1|))) 167)) (-4384 (((-772) $) 161)) (-1761 (((-1104 (-1104 |#1|)) $) 191)) (-4276 (((-1104 |#1|) $ |#1|) 182) (((-1104 (-1104 |#1|)) $ (-1104 |#1|)) 202) (((-1104 (-645 |#1|)) $ (-645 |#1|)) 205)) (-1312 (((-1104 |#1|) $) 157)) (-4337 (((-112) (-907 |#1|) $) 143)) (-1419 (((-1160) $) NIL)) (-1925 (((-1273) $) 147) (((-1273) $ (-567) (-567)) 206)) (-3430 (((-1122) $) NIL)) (-1587 (((-645 (-907 |#1|)) $) 148)) (-1787 (((-907 |#1|) $ (-772)) 155)) (-3077 (((-772) $) 162)) (-4132 (((-863) $) 179) (((-645 (-907 |#1|)) $) 28) (($ (-645 (-907 |#1|))) 166)) (-1745 (((-112) $ $) NIL)) (-3047 (((-645 |#1|) $) 164)) (-2936 (((-112) $ $) 199)) (-2984 (((-112) $ $) 197)) (-2958 (((-112) $ $) 196))) +(((-906 |#1|) (-13 (-1102) (-10 -8 (-15 -4132 ((-645 (-907 |#1|)) $)) (-15 -1587 ((-645 (-907 |#1|)) $)) (-15 -1787 ((-907 |#1|) $ (-772))) (-15 -1348 ((-907 |#1|) $ (-567))) (-15 -1348 ((-907 |#1|) $)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $)) (-15 -3047 ((-645 |#1|) $)) (-15 -1412 ((-645 (-907 |#1|)) $)) (-15 -1558 ((-645 (-645 (-772))) $)) (-15 -4132 ($ (-645 (-907 |#1|)))) (-15 -3669 ($ (-645 (-907 |#1|)))) (-15 -4276 ((-1104 |#1|) $ |#1|)) (-15 -1761 ((-1104 (-1104 |#1|)) $)) (-15 -4276 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -4276 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -4337 ((-112) (-907 |#1|) $)) (-15 -1706 ((-645 (-772)) (-907 |#1|) $)) (-15 -1666 ((-645 (-772)) (-907 |#1|) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2958 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -1925 ((-1273) $)) (-15 -1925 ((-1273) $ (-567) (-567))))) (-1102)) (T -906)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1348 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) (-5 *3 (-1104 *4)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) (-5 *3 (-645 *4)))) (-4337 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-906 *4)))) (-1706 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-1666 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2958 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2984 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1925 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-906 *4)) (-4 *4 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -4132 ((-645 (-907 |#1|)) $)) (-15 -1587 ((-645 (-907 |#1|)) $)) (-15 -1787 ((-907 |#1|) $ (-772))) (-15 -1348 ((-907 |#1|) $ (-567))) (-15 -1348 ((-907 |#1|) $)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $)) (-15 -3047 ((-645 |#1|) $)) (-15 -1412 ((-645 (-907 |#1|)) $)) (-15 -1558 ((-645 (-645 (-772))) $)) (-15 -4132 ($ (-645 (-907 |#1|)))) (-15 -3669 ($ (-645 (-907 |#1|)))) (-15 -4276 ((-1104 |#1|) $ |#1|)) (-15 -1761 ((-1104 (-1104 |#1|)) $)) (-15 -4276 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -4276 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -4337 ((-112) (-907 |#1|) $)) (-15 -1706 ((-645 (-772)) (-907 |#1|) $)) (-15 -1666 ((-645 (-772)) (-907 |#1|) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2958 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -1925 ((-1273) $)) (-15 -1925 ((-1273) $ (-567) (-567))))) +((-2403 (((-112) $ $) NIL)) (-4396 (((-645 $) (-645 $)) 105)) (-1750 (((-567) $) 86)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-4384 (((-772) $) 83)) (-4276 (((-1104 |#1|) $ |#1|) 74)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) 90)) (-1322 (((-772) $) 87)) (-1312 (((-1104 |#1|) $) 63)) (-1354 (($ $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2981 (($ $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3849 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 133)) (-3430 (((-1122) $) NIL)) (-4216 (((-1104 |#1|) $) 141 (|has| |#1| (-370)))) (-2757 (((-112) $) 84)) (-2631 ((|#1| $ |#1|) 72)) (-1787 ((|#1| $ |#1|) 135)) (-3077 (((-772) $) 65)) (-2926 (($ (-645 (-645 |#1|))) 120)) (-2540 (((-973) $) 78)) (-2088 (($ (-645 |#1|)) 35)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-1775 (($ (-645 (-645 |#1|))) 60)) (-1921 (($ (-645 (-645 |#1|))) 125)) (-4105 (($ (-645 |#1|)) 137)) (-4132 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 27 T CONST)) (-2997 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2936 (((-112) $ $) 70)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2958 (((-112) $ $) 92)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36))) +(((-907 |#1|) (-13 (-905 |#1|) (-10 -8 (-15 -3849 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1775 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 |#1|))) (-15 -1921 ($ (-645 (-645 |#1|)))) (-15 -3077 ((-772) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2540 ((-973) $)) (-15 -4384 ((-772) $)) (-15 -1322 ((-772) $)) (-15 -1750 ((-567) $)) (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $)) (-15 -4396 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4216 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -4105 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -4105 ($ (-645 |#1|))) |%noBranch|)))) (-1102)) (T -907)) +((-3849 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) (-4 *3 (-1102)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) +(-13 (-905 |#1|) (-10 -8 (-15 -3849 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1775 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 |#1|))) (-15 -1921 ($ (-645 (-645 |#1|)))) (-15 -3077 ((-772) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2540 ((-973) $)) (-15 -4384 ((-772) $)) (-15 -1322 ((-772) $)) (-15 -1750 ((-567) $)) (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $)) (-15 -4396 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4216 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -4105 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -4105 ($ (-645 |#1|))) |%noBranch|)))) +((-2295 (((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|)) 159)) (-1422 ((|#1|) 97)) (-2078 (((-421 (-1174 |#4|)) (-1174 |#4|)) 168)) (-1698 (((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|)) 84)) (-4153 (((-421 (-1174 |#4|)) (-1174 |#4|)) 178)) (-3867 (((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|) 113))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|))) (-15 -4153 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -2078 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1422 (|#1|)) (-15 -3867 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -1698 ((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|)))) (-911) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -908)) +((-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1174 *8))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1174 *8)))) (-3867 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))) (-1422 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7))))) +(-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|))) (-15 -4153 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -2078 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1422 (|#1|)) (-15 -3867 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -1698 ((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|)))) +((-2295 (((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)) 41)) (-1422 ((|#1|) 75)) (-2078 (((-421 (-1174 |#2|)) (-1174 |#2|)) 124)) (-1698 (((-421 (-1174 |#2|)) (-1174 |#2|)) 108)) (-4153 (((-421 (-1174 |#2|)) (-1174 |#2|)) 135))) +(((-909 |#1| |#2|) (-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|))) (-15 -4153 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -2078 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -1422 (|#1|)) (-15 -1698 ((-421 (-1174 |#2|)) (-1174 |#2|)))) (-911) (-1244 |#1|)) (T -909)) +((-1698 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-1422 (*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1244 *2)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-2295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5))))) +(-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|))) (-15 -4153 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -2078 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -1422 (|#1|)) (-15 -1698 ((-421 (-1174 |#2|)) (-1174 |#2|)))) +((-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 42)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 18)) (-1903 (((-3 $ "failed") $) 36))) +(((-910 |#1|) (-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-911)) (T -910)) +NIL +(-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 66)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 63)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3184 (((-112) $) 59)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2435 (((-421 (-1174 $)) (-1174 $)) 64)) (-3517 (((-421 (-1174 $)) (-1174 $)) 65)) (-2706 (((-421 $) $) 56)) (-2391 (((-3 $ "failed") $ $) 48)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1903 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-911) (-140)) (T -911)) +((-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-911)))) (-4226 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3517 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-2435 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-911)))) (-1895 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) (-5 *2 (-1268 *1)))) (-1903 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911))))) +(-13 (-1222) (-10 -8 (-15 -4226 ((-421 (-1174 $)) (-1174 $))) (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -2435 ((-421 (-1174 $)) (-1174 $))) (-15 -3750 ((-1174 $) (-1174 $) (-1174 $))) (-15 -3815 ((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $))) (IF (|has| $ (-145)) (PROGN (-15 -1895 ((-3 (-1268 $) "failed") (-690 $))) (-15 -1903 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL)) (-3658 (($ (-1268 $)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL)) (-2722 (((-112) $) NIL)) (-4225 (($ $) NIL) (($ $ (-772)) NIL)) (-3184 (((-112) $) NIL)) (-4384 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| $ (-370)))) (-1426 (((-112) $) NIL (|has| $ (-370)))) (-2475 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 $) $ (-923)) NIL (|has| $ (-370))) (((-1174 $) $) NIL)) (-4249 (((-923) $) NIL)) (-2016 (((-1174 $) $) NIL (|has| $ (-370)))) (-2280 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-2286 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) NIL)) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| $ (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL)) (-2706 (((-421 $) $) NIL)) (-1953 (((-923)) NIL) (((-834 (-923))) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1879 (((-134)) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-3077 (((-923) $) NIL) (((-834 (-923)) $) NIL)) (-3341 (((-1174 $)) NIL)) (-1527 (($) NIL)) (-2661 (($) NIL (|has| $ (-370)))) (-2887 (((-690 $) (-1268 $)) NIL) (((-1268 $) $) NIL)) (-3893 (((-567) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $) (-923)) NIL) (((-1268 $)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-912 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -912)) NIL (-13 (-351) (-330 $) (-615 (-567))) -((-3433 (((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-3135 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-2937 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) -(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2937 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3135 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3433 ((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1039 (-567))) (-433 |#1|) (-1243 |#2|) (-1243 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -912)) -((-3433 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-2 (|:| -2937 (-772)) (|:| -2610 *8))) (-5 *1 (-912 *4 *5 *6 *7 *8)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6 *7 *8)))) (-2937 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-772)) (-5 *1 (-912 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2937 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3135 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3433 ((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) -((-3433 (((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-3135 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-2937 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -2937 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3135 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3433 ((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1243 (-410 (-567))) (-1243 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -913)) -((-3433 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -2937 (-772)) (|:| -2610 *6))) (-5 *1 (-913 *4 *5 *6)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6)))) (-2937 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6))))) -(-10 -7 (-15 -2937 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3135 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3433 ((-3 (-2 (|:| -2937 (-772)) (|:| -2610 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) -((-2858 ((|#2| |#2|) 26)) (-4269 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-2232 (((-922) (-567)) 38)) (-3194 (((-567) |#2|) 45)) (-2948 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20))) -(((-914 |#1| |#2|) (-10 -7 (-15 -2232 ((-922) (-567))) (-15 -2948 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -2948 ((-567) |#2|)) (-15 -4269 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3194 ((-567) |#2|)) (-15 -2858 (|#2| |#2|))) (-1243 (-410 (-567))) (-1243 (-410 |#1|))) (T -914)) -((-2858 (*1 *2 *2) (-12 (-4 *3 (-1243 (-410 (-567)))) (-5 *1 (-914 *3 *2)) (-4 *2 (-1243 (-410 *3))))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1243 (-410 *4))))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1243 (-410 *4))))) (-2948 (*1 *2 *3) (-12 (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1243 (-410 *4))))) (-2948 (*1 *2 *3) (-12 (-4 *3 (-1243 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-914 *3 *4)) (-4 *4 (-1243 (-410 *3))))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1243 (-410 *3))) (-5 *2 (-922)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1243 (-410 *4)))))) -(-10 -7 (-15 -2232 ((-922) (-567))) (-15 -2948 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -2948 ((-567) |#2|)) (-15 -4269 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3194 ((-567) |#2|)) (-15 -2858 (|#2| |#2|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 ((|#1| $) 100)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-2344 (($ $ $) NIL)) (-3153 (((-3 $ "failed") $) 94)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-1515 (($ |#1| (-421 |#1|)) 92)) (-1469 (((-1173 |#1|) |#1| |#1|) 53)) (-2618 (($ $) 61)) (-2843 (((-112) $) NIL)) (-2061 (((-567) $) 97)) (-3022 (($ $ (-567)) 99)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2500 ((|#1| $) 96)) (-2882 (((-421 |#1|) $) 95)) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) 93)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-3960 (($ $) 50)) (-4127 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-1772 (((-772)) 71 T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) 26 T CONST)) (-1722 (($) 15 T CONST)) (-2929 (((-112) $ $) 87)) (-3050 (($ $ $) NIL)) (-3037 (($ $) 108) (($ $ $) NIL)) (-3024 (($ $ $) 49)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-915 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4127 ((-410 |#1|) $)) (-15 -4127 ($ (-410 (-421 |#1|)))) (-15 -3960 ($ $)) (-15 -2882 ((-421 |#1|) $)) (-15 -2500 (|#1| $)) (-15 -3022 ($ $ (-567))) (-15 -2061 ((-567) $)) (-15 -1469 ((-1173 |#1|) |#1| |#1|)) (-15 -2618 ($ $)) (-15 -1515 ($ |#1| (-421 |#1|))) (-15 -2660 (|#1| $)))) (-308)) (T -915)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-915 *3)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-2500 (*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-1469 (*1 *2 *3 *3) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-2618 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-915 *2)))) (-2660 (*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308))))) -(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4127 ((-410 |#1|) $)) (-15 -4127 ($ (-410 (-421 |#1|)))) (-15 -3960 ($ $)) (-15 -2882 ((-421 |#1|) $)) (-15 -2500 (|#1| $)) (-15 -3022 ($ $ (-567))) (-15 -2061 ((-567) $)) (-15 -1469 ((-1173 |#1|) |#1| |#1|)) (-15 -2618 ($ $)) (-15 -1515 ($ |#1| (-421 |#1|))) (-15 -2660 (|#1| $)))) -((-1515 (((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1177)) 17) (((-52) (-410 (-953 |#1|)) (-1177)) 18))) -(((-916 |#1|) (-10 -7 (-15 -1515 ((-52) (-410 (-953 |#1|)) (-1177))) (-15 -1515 ((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1177)))) (-13 (-308) (-147))) (T -916)) -((-1515 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-953 *6))) (-5 *5 (-1177)) (-5 *3 (-953 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *6)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *5))))) -(-10 -7 (-15 -1515 ((-52) (-410 (-953 |#1|)) (-1177))) (-15 -1515 ((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1177)))) -((-2537 ((|#4| (-645 |#4|)) 149) (((-1173 |#4|) (-1173 |#4|) (-1173 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2771 (((-1173 |#4|) (-645 (-1173 |#4|))) 142) (((-1173 |#4|) (-1173 |#4|) (-1173 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 (|#4| |#4| |#4|)) (-15 -2771 (|#4| (-645 |#4|))) (-15 -2771 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -2771 ((-1173 |#4|) (-645 (-1173 |#4|)))) (-15 -2537 (|#4| |#4| |#4|)) (-15 -2537 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -2537 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -917)) -((-2537 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2537 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2537 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-645 (-1173 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1173 *7)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2771 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2771 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4))))) -(-10 -7 (-15 -2771 (|#4| |#4| |#4|)) (-15 -2771 (|#4| (-645 |#4|))) (-15 -2771 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -2771 ((-1173 |#4|) (-645 (-1173 |#4|)))) (-15 -2537 (|#4| |#4| |#4|)) (-15 -2537 ((-1173 |#4|) (-1173 |#4|) (-1173 |#4|))) (-15 -2537 (|#4| (-645 |#4|)))) -((-2503 (((-905 (-567)) (-972)) 38) (((-905 (-567)) (-645 (-567))) 35)) (-3727 (((-905 (-567)) (-645 (-567))) 70) (((-905 (-567)) (-922)) 71)) (-4381 (((-905 (-567))) 39)) (-1503 (((-905 (-567))) 55) (((-905 (-567)) (-645 (-567))) 54)) (-1360 (((-905 (-567))) 53) (((-905 (-567)) (-645 (-567))) 52)) (-3619 (((-905 (-567))) 51) (((-905 (-567)) (-645 (-567))) 50)) (-2062 (((-905 (-567))) 49) (((-905 (-567)) (-645 (-567))) 48)) (-2008 (((-905 (-567))) 47) (((-905 (-567)) (-645 (-567))) 46)) (-1752 (((-905 (-567))) 57) (((-905 (-567)) (-645 (-567))) 56)) (-2005 (((-905 (-567)) (-645 (-567))) 75) (((-905 (-567)) (-922)) 77)) (-3440 (((-905 (-567)) (-645 (-567))) 72) (((-905 (-567)) (-922)) 73)) (-3864 (((-905 (-567)) (-645 (-567))) 68) (((-905 (-567)) (-922)) 69)) (-3926 (((-905 (-567)) (-645 (-922))) 60))) -(((-918) (-10 -7 (-15 -3727 ((-905 (-567)) (-922))) (-15 -3727 ((-905 (-567)) (-645 (-567)))) (-15 -3864 ((-905 (-567)) (-922))) (-15 -3864 ((-905 (-567)) (-645 (-567)))) (-15 -3926 ((-905 (-567)) (-645 (-922)))) (-15 -3440 ((-905 (-567)) (-922))) (-15 -3440 ((-905 (-567)) (-645 (-567)))) (-15 -2005 ((-905 (-567)) (-922))) (-15 -2005 ((-905 (-567)) (-645 (-567)))) (-15 -2008 ((-905 (-567)) (-645 (-567)))) (-15 -2008 ((-905 (-567)))) (-15 -2062 ((-905 (-567)) (-645 (-567)))) (-15 -2062 ((-905 (-567)))) (-15 -3619 ((-905 (-567)) (-645 (-567)))) (-15 -3619 ((-905 (-567)))) (-15 -1360 ((-905 (-567)) (-645 (-567)))) (-15 -1360 ((-905 (-567)))) (-15 -1503 ((-905 (-567)) (-645 (-567)))) (-15 -1503 ((-905 (-567)))) (-15 -1752 ((-905 (-567)) (-645 (-567)))) (-15 -1752 ((-905 (-567)))) (-15 -4381 ((-905 (-567)))) (-15 -2503 ((-905 (-567)) (-645 (-567)))) (-15 -2503 ((-905 (-567)) (-972))))) (T -918)) -((-2503 (*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-4381 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1752 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1503 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1360 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3619 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2062 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2008 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-645 (-922))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(-10 -7 (-15 -3727 ((-905 (-567)) (-922))) (-15 -3727 ((-905 (-567)) (-645 (-567)))) (-15 -3864 ((-905 (-567)) (-922))) (-15 -3864 ((-905 (-567)) (-645 (-567)))) (-15 -3926 ((-905 (-567)) (-645 (-922)))) (-15 -3440 ((-905 (-567)) (-922))) (-15 -3440 ((-905 (-567)) (-645 (-567)))) (-15 -2005 ((-905 (-567)) (-922))) (-15 -2005 ((-905 (-567)) (-645 (-567)))) (-15 -2008 ((-905 (-567)) (-645 (-567)))) (-15 -2008 ((-905 (-567)))) (-15 -2062 ((-905 (-567)) (-645 (-567)))) (-15 -2062 ((-905 (-567)))) (-15 -3619 ((-905 (-567)) (-645 (-567)))) (-15 -3619 ((-905 (-567)))) (-15 -1360 ((-905 (-567)) (-645 (-567)))) (-15 -1360 ((-905 (-567)))) (-15 -1503 ((-905 (-567)) (-645 (-567)))) (-15 -1503 ((-905 (-567)))) (-15 -1752 ((-905 (-567)) (-645 (-567)))) (-15 -1752 ((-905 (-567)))) (-15 -4381 ((-905 (-567)))) (-15 -2503 ((-905 (-567)) (-645 (-567)))) (-15 -2503 ((-905 (-567)) (-972)))) -((-1840 (((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177))) 14)) (-2650 (((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177))) 13))) -(((-919 |#1|) (-10 -7 (-15 -2650 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -1840 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177))))) (-455)) (T -919)) -((-1840 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1177))) (-4 *4 (-455)) (-5 *1 (-919 *4)))) (-2650 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1177))) (-4 *4 (-455)) (-5 *1 (-919 *4))))) -(-10 -7 (-15 -2650 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -1840 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1177))))) -((-4127 (((-317 |#1|) (-480)) 16))) -(((-920 |#1|) (-10 -7 (-15 -4127 ((-317 |#1|) (-480)))) (-559)) (T -920)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-920 *4)) (-4 *4 (-559))))) -(-10 -7 (-15 -4127 ((-317 |#1|) (-480)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-2843 (((-112) $) 35)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-921) (-140)) (T -921)) -((-2239 (*1 *2 *3) (-12 (-4 *1 (-921)) (-5 *2 (-2 (|:| -3686 (-645 *1)) (|:| -1394 *1))) (-5 *3 (-645 *1)))) (-3407 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-921))))) -(-13 (-455) (-10 -8 (-15 -2239 ((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $))) (-15 -3407 ((-3 (-645 $) "failed") (-645 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2771 (($ $ $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1722 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ $ $) NIL))) -(((-922) (-13 (-795) (-727) (-10 -8 (-15 -2771 ($ $ $)) (-6 (-4419 "*"))))) (T -922)) -((-2771 (*1 *1 *1 *1) (-5 *1 (-922)))) -(-13 (-795) (-727) (-10 -8 (-15 -2771 ($ $ $)) (-6 (-4419 "*")))) +((-2837 (((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-4220 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-4384 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) +(((-913 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -4220 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -913)) +((-2837 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *8))) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-4384 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -4220 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) +((-2837 (((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-4220 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-4384 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14))) +(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4220 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1244 (-410 (-567))) (-1244 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -914)) +((-2837 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *6))) (-5 *1 (-914 *4 *5 *6)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6)))) (-4384 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-914 *4 *5 *6))))) +(-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4220 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) +((-3510 ((|#2| |#2|) 26)) (-3759 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-3704 (((-923) (-567)) 38)) (-3078 (((-567) |#2|) 45)) (-4102 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20))) +(((-915 |#1| |#2|) (-10 -7 (-15 -3704 ((-923) (-567))) (-15 -4102 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -4102 ((-567) |#2|)) (-15 -3759 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3078 ((-567) |#2|)) (-15 -3510 (|#2| |#2|))) (-1244 (-410 (-567))) (-1244 (-410 |#1|))) (T -915)) +((-3510 (*1 *2 *2) (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *1 (-915 *3 *2)) (-4 *2 (-1244 (-410 *3))))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4))))) (-4102 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-4102 (*1 *2 *3) (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-915 *3 *4)) (-4 *4 (-1244 (-410 *3))))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1244 (-410 *3))) (-5 *2 (-923)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4)))))) +(-10 -7 (-15 -3704 ((-923) (-567))) (-15 -4102 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -4102 ((-567) |#2|)) (-15 -3759 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3078 ((-567) |#2|)) (-15 -3510 (|#2| |#2|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#1| $) 100)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 94)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2293 (($ |#1| (-421 |#1|)) 92)) (-3915 (((-1174 |#1|) |#1| |#1|) 53)) (-1774 (($ $) 61)) (-1433 (((-112) $) NIL)) (-2052 (((-567) $) 97)) (-1551 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3210 ((|#1| $) 96)) (-4301 (((-421 |#1|) $) 95)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 93)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3805 (($ $) 50)) (-4132 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-4221 (((-772)) 71 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 26 T CONST)) (-1728 (($) 15 T CONST)) (-2936 (((-112) $ $) 87)) (-3060 (($ $ $) NIL)) (-3045 (($ $) 108) (($ $ $) NIL)) (-3033 (($ $ $) 49)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-916 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4132 ((-410 |#1|) $)) (-15 -4132 ($ (-410 (-421 |#1|)))) (-15 -3805 ($ $)) (-15 -4301 ((-421 |#1|) $)) (-15 -3210 (|#1| $)) (-15 -1551 ($ $ (-567))) (-15 -2052 ((-567) $)) (-15 -3915 ((-1174 |#1|) |#1| |#1|)) (-15 -1774 ($ $)) (-15 -2293 ($ |#1| (-421 |#1|))) (-15 -3093 (|#1| $)))) (-308)) (T -916)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3210 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3915 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-1774 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) (-3093 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) +(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4132 ((-410 |#1|) $)) (-15 -4132 ($ (-410 (-421 |#1|)))) (-15 -3805 ($ $)) (-15 -4301 ((-421 |#1|) $)) (-15 -3210 (|#1| $)) (-15 -1551 ($ $ (-567))) (-15 -2052 ((-567) $)) (-15 -3915 ((-1174 |#1|) |#1| |#1|)) (-15 -1774 ($ $)) (-15 -2293 ($ |#1| (-421 |#1|))) (-15 -3093 (|#1| $)))) +((-2293 (((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178)) 17) (((-52) (-410 (-954 |#1|)) (-1178)) 18))) +(((-917 |#1|) (-10 -7 (-15 -2293 ((-52) (-410 (-954 |#1|)) (-1178))) (-15 -2293 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178)))) (-13 (-308) (-147))) (T -917)) +((-2293 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1178)) (-5 *3 (-954 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5))))) +(-10 -7 (-15 -2293 ((-52) (-410 (-954 |#1|)) (-1178))) (-15 -2293 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178)))) +((-2830 ((|#4| (-645 |#4|)) 149) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2774 (((-1174 |#4|) (-645 (-1174 |#4|))) 142) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2774 (|#4| |#4| |#4|)) (-15 -2774 (|#4| (-645 |#4|))) (-15 -2774 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2774 ((-1174 |#4|) (-645 (-1174 |#4|)))) (-15 -2830 (|#4| |#4| |#4|)) (-15 -2830 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2830 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -918)) +((-2830 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2830 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-2830 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 (-1174 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-918 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2774 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2774 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4))))) +(-10 -7 (-15 -2774 (|#4| |#4| |#4|)) (-15 -2774 (|#4| (-645 |#4|))) (-15 -2774 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2774 ((-1174 |#4|) (-645 (-1174 |#4|)))) (-15 -2830 (|#4| |#4| |#4|)) (-15 -2830 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2830 (|#4| (-645 |#4|)))) +((-4067 (((-906 (-567)) (-973)) 38) (((-906 (-567)) (-645 (-567))) 35)) (-1695 (((-906 (-567)) (-645 (-567))) 70) (((-906 (-567)) (-923)) 71)) (-3925 (((-906 (-567))) 39)) (-3529 (((-906 (-567))) 55) (((-906 (-567)) (-645 (-567))) 54)) (-3223 (((-906 (-567))) 53) (((-906 (-567)) (-645 (-567))) 52)) (-2738 (((-906 (-567))) 51) (((-906 (-567)) (-645 (-567))) 50)) (-2156 (((-906 (-567))) 49) (((-906 (-567)) (-645 (-567))) 48)) (-3491 (((-906 (-567))) 47) (((-906 (-567)) (-645 (-567))) 46)) (-2817 (((-906 (-567))) 57) (((-906 (-567)) (-645 (-567))) 56)) (-3208 (((-906 (-567)) (-645 (-567))) 75) (((-906 (-567)) (-923)) 77)) (-2144 (((-906 (-567)) (-645 (-567))) 72) (((-906 (-567)) (-923)) 73)) (-4246 (((-906 (-567)) (-645 (-567))) 68) (((-906 (-567)) (-923)) 69)) (-2534 (((-906 (-567)) (-645 (-923))) 60))) +(((-919) (-10 -7 (-15 -1695 ((-906 (-567)) (-923))) (-15 -1695 ((-906 (-567)) (-645 (-567)))) (-15 -4246 ((-906 (-567)) (-923))) (-15 -4246 ((-906 (-567)) (-645 (-567)))) (-15 -2534 ((-906 (-567)) (-645 (-923)))) (-15 -2144 ((-906 (-567)) (-923))) (-15 -2144 ((-906 (-567)) (-645 (-567)))) (-15 -3208 ((-906 (-567)) (-923))) (-15 -3208 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)))) (-15 -2156 ((-906 (-567)) (-645 (-567)))) (-15 -2156 ((-906 (-567)))) (-15 -2738 ((-906 (-567)) (-645 (-567)))) (-15 -2738 ((-906 (-567)))) (-15 -3223 ((-906 (-567)) (-645 (-567)))) (-15 -3223 ((-906 (-567)))) (-15 -3529 ((-906 (-567)) (-645 (-567)))) (-15 -3529 ((-906 (-567)))) (-15 -2817 ((-906 (-567)) (-645 (-567)))) (-15 -2817 ((-906 (-567)))) (-15 -3925 ((-906 (-567)))) (-15 -4067 ((-906 (-567)) (-645 (-567)))) (-15 -4067 ((-906 (-567)) (-973))))) (T -919)) +((-4067 (*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3925 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2817 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3529 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3223 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2738 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2156 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3491 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(-10 -7 (-15 -1695 ((-906 (-567)) (-923))) (-15 -1695 ((-906 (-567)) (-645 (-567)))) (-15 -4246 ((-906 (-567)) (-923))) (-15 -4246 ((-906 (-567)) (-645 (-567)))) (-15 -2534 ((-906 (-567)) (-645 (-923)))) (-15 -2144 ((-906 (-567)) (-923))) (-15 -2144 ((-906 (-567)) (-645 (-567)))) (-15 -3208 ((-906 (-567)) (-923))) (-15 -3208 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)))) (-15 -2156 ((-906 (-567)) (-645 (-567)))) (-15 -2156 ((-906 (-567)))) (-15 -2738 ((-906 (-567)) (-645 (-567)))) (-15 -2738 ((-906 (-567)))) (-15 -3223 ((-906 (-567)) (-645 (-567)))) (-15 -3223 ((-906 (-567)))) (-15 -3529 ((-906 (-567)) (-645 (-567)))) (-15 -3529 ((-906 (-567)))) (-15 -2817 ((-906 (-567)) (-645 (-567)))) (-15 -2817 ((-906 (-567)))) (-15 -3925 ((-906 (-567)))) (-15 -4067 ((-906 (-567)) (-645 (-567)))) (-15 -4067 ((-906 (-567)) (-973)))) +((-3745 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))) 14)) (-3312 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))) 13))) +(((-920 |#1|) (-10 -7 (-15 -3312 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3745 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))))) (-455)) (T -920)) +((-3745 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-920 *4)))) (-3312 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-920 *4))))) +(-10 -7 (-15 -3312 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3745 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))))) +((-4132 (((-317 |#1|) (-480)) 16))) +(((-921 |#1|) (-10 -7 (-15 -4132 ((-317 |#1|) (-480)))) (-559)) (T -921)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) (-4 *4 (-559))))) +(-10 -7 (-15 -4132 ((-317 |#1|) (-480)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-922) (-140)) (T -922)) +((-3179 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3694 (-645 *1)) (|:| -1398 *1))) (-5 *3 (-645 *1)))) (-3117 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922))))) +(-13 (-455) (-10 -8 (-15 -3179 ((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $))) (-15 -3117 ((-3 (-645 $) "failed") (-645 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2774 (($ $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ $ $) NIL))) +(((-923) (-13 (-795) (-727) (-10 -8 (-15 -2774 ($ $ $)) (-6 (-4420 "*"))))) (T -923)) +((-2774 (*1 *1 *1 *1) (-5 *1 (-923)))) +(-13 (-795) (-727) (-10 -8 (-15 -2774 ($ $ $)) (-6 (-4420 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-3548 ((|#2| (-645 |#1|) (-645 |#1|)) 29))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3548 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1243 |#1|)) (T -923)) -((-3548 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1243 *4)) (-5 *1 (-923 *4 *2))))) -(-10 -7 (-15 -3548 (|#2| (-645 |#1|) (-645 |#1|)))) -((-1905 (((-1173 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1240 |#1| |#2|) (-1240 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13))) -(((-924 |#1| |#2|) (-10 -7 (-15 -1905 ((-1240 |#1| |#2|) (-1240 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1905 ((-1173 |#2|) (-645 |#2|) (-645 |#2|)))) (-1177) (-365)) (T -924)) -((-1905 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1173 *5)) (-5 *1 (-924 *4 *5)) (-14 *4 (-1177)))) (-1905 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1240 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1177)) (-4 *5 (-365)) (-5 *1 (-924 *4 *5))))) -(-10 -7 (-15 -1905 ((-1240 |#1| |#2|) (-1240 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1905 ((-1173 |#2|) (-645 |#2|) (-645 |#2|)))) -((-3512 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159)) 177)) (-1911 ((|#4| |#4|) 196)) (-2121 (((-645 (-410 (-953 |#1|))) (-645 (-1177))) 149)) (-3331 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-3832 (((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-645 |#4|)) 69)) (-3234 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-1745 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159)) 189)) (-4193 (((-567) (-690 |#4|) (-922) (-1159)) 169) (((-567) (-690 |#4|) (-645 (-1177)) (-922) (-1159)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-922) (-1159)) 167) (((-567) (-690 |#4|) (-1159)) 157) (((-567) (-690 |#4|) (-645 (-1177)) (-1159)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1159)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177)) (-922)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-1785 ((|#4| (-953 |#1|)) 80)) (-2072 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-4080 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-2108 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-4007 (((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-2936 (((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-2805 (((-112) (-645 (-953 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-2520 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-2548 (((-645 |#4|) |#4|) 57)) (-2377 (((-645 (-410 (-953 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-953 |#1|))) (-690 |#4|)) 66) (((-410 (-953 |#1|)) |#4|) 142)) (-2424 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1159) (-567)) 113)) (-3393 (((-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-1407 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-3031 (((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| -4138 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -1979 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56))) -(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177)))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177)) (-922))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922))) (-15 -4193 ((-567) (-690 |#4|) (-645 |#4|) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 (-1177)) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 |#4|) (-922) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 (-1177)) (-922) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-922) (-1159))) (-15 -3512 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159))) (-15 -1745 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159))) (-15 -2424 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1159) (-567))) (-15 -2377 ((-410 (-953 |#1|)) |#4|)) (-15 -2377 ((-690 (-410 (-953 |#1|))) (-690 |#4|))) (-15 -2377 ((-645 (-410 (-953 |#1|))) (-645 |#4|))) (-15 -2121 ((-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -1785 (|#4| (-953 |#1|))) (-15 -2520 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3393 ((-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -3832 ((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-645 |#4|))) (-15 -3031 ((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| -4138 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -1979 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -2548 ((-645 |#4|) |#4|)) (-15 -2936 ((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4007 ((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2108 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -4080 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2072 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1407 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3234 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3331 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1911 (|#4| |#4|)) (-15 -2805 ((-112) (-645 |#4|))) (-15 -2805 ((-112) (-645 (-953 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1177))) (-794) (-950 |#1| |#3| |#2|)) (T -925)) -((-2805 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7)))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1177)))) (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4)))) (-3331 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-953 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-950 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1177)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-953 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *9)))) (|:| -1975 (-645 (-1267 (-410 (-953 *9))))))))) (-5 *1 (-925 *9 *10 *11 *12)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))) (-1407 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *5 *6 *7 *8)))) (-4080 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *6 *5)))) (-2108 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-950 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1177)))) (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *6)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-925 *4 *5 *6 *7)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-925 *4 *5 *6 *7)))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-925 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4138 (-690 (-410 (-953 *4)))) (|:| |vec| (-645 (-410 (-953 *4)))) (|:| -1979 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) (|:| -1975 (-645 (-1267 (-410 (-953 *4))))))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3832 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) (|:| -1975 (-645 (-1267 (-410 (-953 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-772)))) (-2520 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-4 *7 (-950 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)))) (-2377 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-410 (-953 *4))) (-5 *1 (-925 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-2424 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-953 *8)))) (-5 *5 (-772)) (-5 *6 (-1159)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1177)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-953 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *8)))) (|:| -1975 (-645 (-1267 (-410 (-953 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-925 *8 *9 *10 *11)) (-5 *7 (-567)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) (|:| -1975 (-645 (-1267 (-410 (-953 *4)))))))))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) (-5 *4 (-1159)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-950 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-922)) (-5 *5 (-1159)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-4193 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1177))) (-5 *5 (-922)) (-5 *6 (-1159)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1177)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *7 *8 *9 *10)))) (-4193 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-922)) (-5 *6 (-1159)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1177)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *7 *8 *9 *10)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1159)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1177))) (-5 *5 (-1159)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1159)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-922)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1177))) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *6)))) (|:| -1975 (-645 (-1267 (-410 (-953 *6)))))))))) (-5 *1 (-925 *6 *7 *8 *9)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *6)))) (|:| -1975 (-645 (-1267 (-410 (-953 *6)))))))))) (-5 *1 (-925 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) (|:| -1975 (-645 (-1267 (-410 (-953 *4)))))))))) (-5 *1 (-925 *4 *5 *6 *7)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1177))) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(-10 -7 (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177)))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1177)) (-922))) (-15 -4193 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922))) (-15 -4193 ((-567) (-690 |#4|) (-645 |#4|) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 (-1177)) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 |#4|) (-922) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-645 (-1177)) (-922) (-1159))) (-15 -4193 ((-567) (-690 |#4|) (-922) (-1159))) (-15 -3512 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159))) (-15 -1745 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|))))))))) (-1159))) (-15 -2424 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1159) (-567))) (-15 -2377 ((-410 (-953 |#1|)) |#4|)) (-15 -2377 ((-690 (-410 (-953 |#1|))) (-690 |#4|))) (-15 -2377 ((-645 (-410 (-953 |#1|))) (-645 |#4|))) (-15 -2121 ((-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -1785 (|#4| (-953 |#1|))) (-15 -2520 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3393 ((-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -3832 ((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-645 |#4|))) (-15 -3031 ((-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))) (-2 (|:| -4138 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -1979 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -2548 ((-645 |#4|) |#4|)) (-15 -2936 ((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4007 ((-772) (-645 (-2 (|:| -1979 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2108 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -4080 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2072 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1407 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3234 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3331 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1267 (-410 (-953 |#1|)))) (|:| -1975 (-645 (-1267 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1911 (|#4| |#4|)) (-15 -2805 ((-112) (-645 |#4|))) (-15 -2805 ((-112) (-645 (-953 |#1|))))) -((-3068 (((-928) |#1| (-1177)) 17) (((-928) |#1| (-1177) (-1095 (-225))) 21)) (-1915 (((-928) |#1| |#1| (-1177) (-1095 (-225))) 19) (((-928) |#1| (-1177) (-1095 (-225))) 15))) -(((-926 |#1|) (-10 -7 (-15 -1915 ((-928) |#1| (-1177) (-1095 (-225)))) (-15 -1915 ((-928) |#1| |#1| (-1177) (-1095 (-225)))) (-15 -3068 ((-928) |#1| (-1177) (-1095 (-225)))) (-15 -3068 ((-928) |#1| (-1177)))) (-615 (-539))) (T -926)) -((-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-3068 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-1915 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -1915 ((-928) |#1| (-1177) (-1095 (-225)))) (-15 -1915 ((-928) |#1| |#1| (-1177) (-1095 (-225)))) (-15 -3068 ((-928) |#1| (-1177) (-1095 (-225)))) (-15 -3068 ((-928) |#1| (-1177)))) -((-2025 (($ $ (-1095 (-225)) (-1095 (-225)) (-1095 (-225))) 123)) (-3743 (((-1095 (-225)) $) 64)) (-3732 (((-1095 (-225)) $) 63)) (-3724 (((-1095 (-225)) $) 62)) (-4111 (((-645 (-645 (-225))) $) 69)) (-3898 (((-1095 (-225)) $) 65)) (-4178 (((-567) (-567)) 57)) (-3804 (((-567) (-567)) 52)) (-3289 (((-567) (-567)) 55)) (-1457 (((-112) (-112)) 59)) (-1517 (((-567)) 56)) (-1906 (($ $ (-1095 (-225))) 126) (($ $) 127)) (-4198 (($ (-1 (-944 (-225)) (-225)) (-1095 (-225))) 133) (($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225))) 134)) (-1915 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225))) 137) (($ $ (-1095 (-225))) 129)) (-2309 (((-567)) 60)) (-1493 (((-567)) 50)) (-3971 (((-567)) 53)) (-2298 (((-645 (-645 (-944 (-225)))) $) 153)) (-3624 (((-112) (-112)) 61)) (-4127 (((-863) $) 151)) (-4384 (((-112)) 58))) -(((-927) (-13 (-975) (-10 -8 (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ $ (-1095 (-225)))) (-15 -2025 ($ $ (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1906 ($ $ (-1095 (-225)))) (-15 -1906 ($ $)) (-15 -3898 ((-1095 (-225)) $)) (-15 -4111 ((-645 (-645 (-225))) $)) (-15 -1493 ((-567))) (-15 -3804 ((-567) (-567))) (-15 -3971 ((-567))) (-15 -3289 ((-567) (-567))) (-15 -1517 ((-567))) (-15 -4178 ((-567) (-567))) (-15 -4384 ((-112))) (-15 -1457 ((-112) (-112))) (-15 -2309 ((-567))) (-15 -3624 ((-112) (-112)))))) (T -927)) -((-4198 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-927)))) (-4198 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-927)))) (-1915 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-927)))) (-1915 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-927)))) (-1915 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) (-2025 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) (-1906 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) (-1906 (*1 *1 *1) (-5 *1 (-927))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-927)))) (-1493 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-3971 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-1517 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-4178 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-4384 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2309 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(-13 (-975) (-10 -8 (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ $ (-1095 (-225)))) (-15 -2025 ($ $ (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1906 ($ $ (-1095 (-225)))) (-15 -1906 ($ $)) (-15 -3898 ((-1095 (-225)) $)) (-15 -4111 ((-645 (-645 (-225))) $)) (-15 -1493 ((-567))) (-15 -3804 ((-567) (-567))) (-15 -3971 ((-567))) (-15 -3289 ((-567) (-567))) (-15 -1517 ((-567))) (-15 -4178 ((-567) (-567))) (-15 -4384 ((-112))) (-15 -1457 ((-112) (-112))) (-15 -2309 ((-567))) (-15 -3624 ((-112) (-112))))) -((-2025 (($ $ (-1095 (-225))) 124) (($ $ (-1095 (-225)) (-1095 (-225))) 125)) (-3732 (((-1095 (-225)) $) 73)) (-3724 (((-1095 (-225)) $) 72)) (-3898 (((-1095 (-225)) $) 74)) (-4076 (((-567) (-567)) 66)) (-4363 (((-567) (-567)) 61)) (-1355 (((-567) (-567)) 64)) (-3856 (((-112) (-112)) 68)) (-2801 (((-567)) 65)) (-1906 (($ $ (-1095 (-225))) 128) (($ $) 129)) (-4198 (($ (-1 (-944 (-225)) (-225)) (-1095 (-225))) 143) (($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225))) 144)) (-3068 (($ (-1 (-225) (-225)) (-1095 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-1915 (($ (-1 (-225) (-225)) (-1095 (-225))) 139) (($ (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1095 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1095 (-225)) (-1095 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225))) 142) (($ $ (-1095 (-225))) 130)) (-4339 (((-112) $) 69)) (-3227 (((-567)) 70)) (-2886 (((-567)) 59)) (-3996 (((-567)) 62)) (-2298 (((-645 (-645 (-944 (-225)))) $) 35)) (-2625 (((-112) (-112)) 71)) (-4127 (((-863) $) 169)) (-2800 (((-112)) 67))) -(((-928) (-13 (-956) (-10 -8 (-15 -1915 ($ (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-645 (-1 (-225) (-225))) (-1095 (-225)))) (-15 -1915 ($ (-645 (-1 (-225) (-225))) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -3068 ($ (-1 (-225) (-225)) (-1095 (-225)))) (-15 -3068 ($ (-1 (-225) (-225)))) (-15 -1915 ($ $ (-1095 (-225)))) (-15 -4339 ((-112) $)) (-15 -2025 ($ $ (-1095 (-225)))) (-15 -2025 ($ $ (-1095 (-225)) (-1095 (-225)))) (-15 -1906 ($ $ (-1095 (-225)))) (-15 -1906 ($ $)) (-15 -3898 ((-1095 (-225)) $)) (-15 -2886 ((-567))) (-15 -4363 ((-567) (-567))) (-15 -3996 ((-567))) (-15 -1355 ((-567) (-567))) (-15 -2801 ((-567))) (-15 -4076 ((-567) (-567))) (-15 -2800 ((-112))) (-15 -3856 ((-112) (-112))) (-15 -3227 ((-567))) (-15 -2625 ((-112) (-112)))))) (T -928)) -((-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-4198 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-4198 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-3068 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) (-5 *1 (-928)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) (-1915 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) (-2025 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) (-1906 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) (-1906 (*1 *1 *1) (-5 *1 (-928))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) (-2886 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3996 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2801 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2800 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3227 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(-13 (-956) (-10 -8 (-15 -1915 ($ (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-645 (-1 (-225) (-225))) (-1095 (-225)))) (-15 -1915 ($ (-645 (-1 (-225) (-225))) (-1095 (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)))) (-15 -1915 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)))) (-15 -4198 ($ (-1 (-944 (-225)) (-225)) (-1095 (-225)) (-1095 (-225)) (-1095 (-225)))) (-15 -3068 ($ (-1 (-225) (-225)) (-1095 (-225)))) (-15 -3068 ($ (-1 (-225) (-225)))) (-15 -1915 ($ $ (-1095 (-225)))) (-15 -4339 ((-112) $)) (-15 -2025 ($ $ (-1095 (-225)))) (-15 -2025 ($ $ (-1095 (-225)) (-1095 (-225)))) (-15 -1906 ($ $ (-1095 (-225)))) (-15 -1906 ($ $)) (-15 -3898 ((-1095 (-225)) $)) (-15 -2886 ((-567))) (-15 -4363 ((-567) (-567))) (-15 -3996 ((-567))) (-15 -1355 ((-567) (-567))) (-15 -2801 ((-567))) (-15 -4076 ((-567) (-567))) (-15 -2800 ((-112))) (-15 -3856 ((-112) (-112))) (-15 -3227 ((-567))) (-15 -2625 ((-112) (-112))))) -((-3687 (((-645 (-1095 (-225))) (-645 (-645 (-944 (-225))))) 34))) -(((-929) (-10 -7 (-15 -3687 ((-645 (-1095 (-225))) (-645 (-645 (-944 (-225)))))))) (T -929)) -((-3687 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-1095 (-225)))) (-5 *1 (-929))))) -(-10 -7 (-15 -3687 ((-645 (-1095 (-225))) (-645 (-645 (-944 (-225))))))) -((-2110 ((|#2| |#2|) 28)) (-2064 ((|#2| |#2|) 29)) (-3280 ((|#2| |#2|) 27)) (-2068 ((|#2| |#2| (-509)) 26))) -(((-930 |#1| |#2|) (-10 -7 (-15 -2068 (|#2| |#2| (-509))) (-15 -3280 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2064 (|#2| |#2|))) (-1101) (-433 |#1|)) (T -930)) -((-2064 (*1 *2 *2) (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-2068 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1101)) (-5 *1 (-930 *4 *2)) (-4 *2 (-433 *4))))) -(-10 -7 (-15 -2068 (|#2| |#2| (-509))) (-15 -3280 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2064 (|#2| |#2|))) -((-2110 (((-317 (-567)) (-1177)) 16)) (-2064 (((-317 (-567)) (-1177)) 14)) (-3280 (((-317 (-567)) (-1177)) 12)) (-2068 (((-317 (-567)) (-1177) (-509)) 19))) -(((-931) (-10 -7 (-15 -2068 ((-317 (-567)) (-1177) (-509))) (-15 -3280 ((-317 (-567)) (-1177))) (-15 -2110 ((-317 (-567)) (-1177))) (-15 -2064 ((-317 (-567)) (-1177))))) (T -931)) -((-2064 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-931))))) -(-10 -7 (-15 -2068 ((-317 (-567)) (-1177) (-509))) (-15 -3280 ((-317 (-567)) (-1177))) (-15 -2110 ((-317 (-567)) (-1177))) (-15 -2064 ((-317 (-567)) (-1177)))) -((-3489 (((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|)) 25)) (-3929 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3929 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3489 ((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|)))) (-1101) (-887 |#1|) (-13 (-1101) (-1039 |#2|))) (T -932)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-4 *6 (-13 (-1101) (-1039 *3))) (-4 *3 (-887 *5)) (-5 *1 (-932 *5 *3 *6)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1101) (-1039 *5))) (-4 *5 (-887 *4)) (-4 *4 (-1101)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-932 *4 *5 *6))))) -(-10 -7 (-15 -3929 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3489 ((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|)))) -((-3489 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 30))) -(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-1101) (-13 (-559) (-887 |#1|)) (-13 (-433 |#2|) (-615 (-893 |#1|)) (-887 |#1|) (-1039 (-613 $)))) (T -933)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) (-4 *3 (-13 (-433 *6) (-615 *4) (-887 *5) (-1039 (-613 $)))) (-5 *4 (-893 *5)) (-4 *6 (-13 (-559) (-887 *5))) (-5 *1 (-933 *5 *6 *3))))) -(-10 -7 (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) -((-3489 (((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|)) 13))) -(((-934 |#1|) (-10 -7 (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|)))) (-548)) (T -934)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 (-567) *3)) (-5 *4 (-893 (-567))) (-4 *3 (-548)) (-5 *1 (-934 *3))))) -(-10 -7 (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|)))) -((-3489 (((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|)) 57))) -(((-935 |#1| |#2|) (-10 -7 (-15 -3489 ((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|)))) (-1101) (-13 (-1101) (-1039 (-613 $)) (-615 (-893 |#1|)) (-887 |#1|))) (T -935)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1101)) (-4 *6 (-13 (-1101) (-1039 (-613 $)) (-615 *4) (-887 *5))) (-5 *4 (-893 *5)) (-5 *1 (-935 *5 *6))))) -(-10 -7 (-15 -3489 ((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|)))) -((-3489 (((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|)) 17))) -(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -3489 ((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|)))) (-1101) (-887 |#1|) (-667 |#2|)) (T -936)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-4 *6 (-887 *5)) (-4 *3 (-667 *6)) (-5 *1 (-936 *5 *6 *3))))) -(-10 -7 (-15 -3489 ((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|)))) -((-3489 (((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|)) 17 (|has| |#3| (-887 |#1|))) (((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|))) 16))) -(((-937 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3489 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|)))) (IF (|has| |#3| (-887 |#1|)) (-15 -3489 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|))) |%noBranch|)) (-1101) (-794) (-851) (-13 (-1050) (-887 |#1|)) (-13 (-950 |#4| |#2| |#3|) (-615 (-893 |#1|)))) (T -937)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) (-4 *3 (-13 (-950 *8 *6 *7) (-615 *4))) (-5 *4 (-893 *5)) (-4 *7 (-887 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1050) (-887 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3)))) (-3489 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-890 *6 *3) *8 (-893 *6) (-890 *6 *3))) (-4 *8 (-851)) (-5 *2 (-890 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1101)) (-4 *3 (-13 (-950 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1050) (-887 *6))) (-5 *1 (-937 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3489 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|)))) (IF (|has| |#3| (-887 |#1|)) (-15 -3489 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|))) |%noBranch|)) -((-2135 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -2135 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2135 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1101) (-433 |#1|) (-1217)) (T -938)) -((-2135 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1217)) (-4 *4 (-1101)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1217)) (-4 *4 (-1101)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4))))) -(-10 -7 (-15 -2135 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2135 (|#2| |#2| (-645 (-1 (-112) |#3|))))) -((-2135 (((-317 (-567)) (-1177) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1177) (-1 (-112) |#1|)) 15))) -(((-939 |#1|) (-10 -7 (-15 -2135 ((-317 (-567)) (-1177) (-1 (-112) |#1|))) (-15 -2135 ((-317 (-567)) (-1177) (-645 (-1 (-112) |#1|))))) (-1217)) (T -939)) -((-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1217)) (-5 *2 (-317 (-567))) (-5 *1 (-939 *5)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1217)) (-5 *2 (-317 (-567))) (-5 *1 (-939 *5))))) -(-10 -7 (-15 -2135 ((-317 (-567)) (-1177) (-1 (-112) |#1|))) (-15 -2135 ((-317 (-567)) (-1177) (-645 (-1 (-112) |#1|))))) -((-3489 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 25))) -(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-1101) (-13 (-559) (-887 |#1|) (-615 (-893 |#1|))) (-993 |#2|)) (T -940)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) (-4 *3 (-993 *6)) (-4 *6 (-13 (-559) (-887 *5) (-615 *4))) (-5 *4 (-893 *5)) (-5 *1 (-940 *5 *6 *3))))) -(-10 -7 (-15 -3489 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) -((-3489 (((-890 |#1| (-1177)) (-1177) (-893 |#1|) (-890 |#1| (-1177))) 18))) -(((-941 |#1|) (-10 -7 (-15 -3489 ((-890 |#1| (-1177)) (-1177) (-893 |#1|) (-890 |#1| (-1177))))) (-1101)) (T -941)) -((-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 (-1177))) (-5 *3 (-1177)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-5 *1 (-941 *5))))) -(-10 -7 (-15 -3489 ((-890 |#1| (-1177)) (-1177) (-893 |#1|) (-890 |#1| (-1177))))) -((-2809 (((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) 34)) (-3489 (((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) 33))) -(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3489 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-15 -2809 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))))) (-1101) (-1050) (-13 (-1050) (-615 (-893 |#1|)) (-1039 |#2|))) (T -942)) -((-2809 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-893 *6))) (-5 *5 (-1 (-890 *6 *8) *8 (-893 *6) (-890 *6 *8))) (-4 *6 (-1101)) (-4 *8 (-13 (-1050) (-615 (-893 *6)) (-1039 *7))) (-5 *2 (-890 *6 *8)) (-4 *7 (-1050)) (-5 *1 (-942 *6 *7 *8)))) (-3489 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-893 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-890 *7 *9) *9 (-893 *7) (-890 *7 *9))) (-4 *7 (-1101)) (-4 *9 (-13 (-1050) (-615 (-893 *7)) (-1039 *8))) (-5 *2 (-890 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1050)) (-5 *1 (-942 *7 *8 *9))))) -(-10 -7 (-15 -3489 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-15 -2809 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))))) -((-2026 (((-1173 (-410 (-567))) (-567)) 81)) (-3557 (((-1173 (-567)) (-567)) 84)) (-1755 (((-1173 (-567)) (-567)) 78)) (-3111 (((-567) (-1173 (-567))) 74)) (-4166 (((-1173 (-410 (-567))) (-567)) 65)) (-4023 (((-1173 (-567)) (-567)) 49)) (-1810 (((-1173 (-567)) (-567)) 86)) (-3790 (((-1173 (-567)) (-567)) 85)) (-3924 (((-1173 (-410 (-567))) (-567)) 67))) -(((-943) (-10 -7 (-15 -3924 ((-1173 (-410 (-567))) (-567))) (-15 -3790 ((-1173 (-567)) (-567))) (-15 -1810 ((-1173 (-567)) (-567))) (-15 -4023 ((-1173 (-567)) (-567))) (-15 -4166 ((-1173 (-410 (-567))) (-567))) (-15 -3111 ((-567) (-1173 (-567)))) (-15 -1755 ((-1173 (-567)) (-567))) (-15 -3557 ((-1173 (-567)) (-567))) (-15 -2026 ((-1173 (-410 (-567))) (-567))))) (T -943)) -((-2026 (*1 *2 *3) (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3557 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-1755 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-1173 (-567))) (-5 *2 (-567)) (-5 *1 (-943)))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))) (-4023 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-1810 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3790 (*1 *2 *3) (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567))))) -(-10 -7 (-15 -3924 ((-1173 (-410 (-567))) (-567))) (-15 -3790 ((-1173 (-567)) (-567))) (-15 -1810 ((-1173 (-567)) (-567))) (-15 -4023 ((-1173 (-567)) (-567))) (-15 -4166 ((-1173 (-410 (-567))) (-567))) (-15 -3111 ((-567) (-1173 (-567)))) (-15 -1755 ((-1173 (-567)) (-567))) (-15 -3557 ((-1173 (-567)) (-567))) (-15 -2026 ((-1173 (-410 (-567))) (-567)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772)) NIL (|has| |#1| (-23)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-1943 (($ (-645 |#1|)) 9)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1542 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3485 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-1596 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3981 (($ $ (-645 |#1|)) 25)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1234 (-567))) NIL)) (-3246 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-1635 (((-922) $) 13)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-2202 (($ $ $) 23)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-4142 (($ (-645 |#1|)) NIL)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3024 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2410 (((-772) $) 11 (|has| $ (-6 -4417))))) -(((-944 |#1|) (-981 |#1|) (-1050)) (T -944)) -NIL -(-981 |#1|) -((-2594 (((-484 |#1| |#2|) (-953 |#2|)) 22)) (-1642 (((-247 |#1| |#2|) (-953 |#2|)) 35)) (-3459 (((-953 |#2|) (-484 |#1| |#2|)) 27)) (-2620 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-3029 (((-953 |#2|) (-247 |#1| |#2|)) 32)) (-3533 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3533 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2620 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2594 ((-484 |#1| |#2|) (-953 |#2|))) (-15 -3459 ((-953 |#2|) (-484 |#1| |#2|))) (-15 -3029 ((-953 |#2|) (-247 |#1| |#2|))) (-15 -1642 ((-247 |#1| |#2|) (-953 |#2|)))) (-645 (-1177)) (-1050)) (T -945)) -((-1642 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1177))))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1177))))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5))))) -(-10 -7 (-15 -3533 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2620 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2594 ((-484 |#1| |#2|) (-953 |#2|))) (-15 -3459 ((-953 |#2|) (-484 |#1| |#2|))) (-15 -3029 ((-953 |#2|) (-247 |#1| |#2|))) (-15 -1642 ((-247 |#1| |#2|) (-953 |#2|)))) -((-2493 (((-645 |#2|) |#2| |#2|) 10)) (-3263 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-2566 (((-645 |#2|) |#2|) 11)) (-2218 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-2767 ((|#1| |#2|) 38 (|has| |#1| (-849))))) -(((-946 |#1| |#2|) (-10 -7 (-15 -2493 ((-645 |#2|) |#2| |#2|)) (-15 -2566 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2767 (|#1| |#2|)) (-15 -3263 ((-772) (-645 |#1|))) (-15 -2218 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1243 |#1|)) (T -946)) -((-2218 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1243 *5)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-946 *4 *5)) (-4 *5 (-1243 *4)))) (-2767 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1243 *2)))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1243 *4)))) (-2493 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -2493 ((-645 |#2|) |#2| |#2|)) (-15 -2566 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2767 (|#1| |#2|)) (-15 -3263 ((-772) (-645 |#1|))) (-15 -2218 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) -((-3822 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 19))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3822 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1050) (-1050)) (T -947)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6))))) -(-10 -7 (-15 -3822 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) -((-2670 (((-1240 |#1| (-953 |#2|)) (-953 |#2|) (-1263 |#1|)) 18))) -(((-948 |#1| |#2|) (-10 -7 (-15 -2670 ((-1240 |#1| (-953 |#2|)) (-953 |#2|) (-1263 |#1|)))) (-1177) (-1050)) (T -948)) -((-2670 (*1 *2 *3 *4) (-12 (-5 *4 (-1263 *5)) (-14 *5 (-1177)) (-4 *6 (-1050)) (-5 *2 (-1240 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6))))) -(-10 -7 (-15 -2670 ((-1240 |#1| (-953 |#2|)) (-953 |#2|) (-1263 |#1|)))) -((-2350 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-3081 (($ $) 203)) (-2833 (((-421 $) $) 195)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 141)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-3621 (($ $ $ |#4|) 95)) (-1868 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-4334 (($ $) 210) (($ $ |#4|) 213)) (-2992 (((-645 $) $) 77)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 229) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 222)) (-2604 (((-645 $) $) 34)) (-2821 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#4|) 192)) (-2662 (((-3 (-645 $) "failed") $) 52)) (-2432 (((-3 (-645 $) "failed") $) 39)) (-4026 (((-3 (-2 (|:| |var| |#4|) (|:| -4250 (-772))) "failed") $) 57)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 134)) (-3475 (((-421 (-1173 $)) (-1173 $)) 147)) (-3871 (((-421 (-1173 $)) (-1173 $)) 145)) (-2703 (((-421 $) $) 165)) (-2631 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-1999 (($ $ |#4|) 97)) (-3880 (((-893 (-381)) $) 243) (((-893 (-567)) $) 236) (((-539) $) 251)) (-4385 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 184)) (-2253 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-1467 (((-3 $ "failed") $) 186)) (-4104 (((-112) $ $) 216))) -(((-949 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -1735 ((-3 (-1267 |#1|) "failed") (-690 |#1|))) (-15 -4334 (|#1| |#1| |#4|)) (-15 -4385 (|#1| |#1| |#4|)) (-15 -1999 (|#1| |#1| |#4|)) (-15 -3621 (|#1| |#1| |#1| |#4|)) (-15 -2992 ((-645 |#1|) |#1|)) (-15 -2350 ((-772) |#1| (-645 |#4|))) (-15 -2350 ((-772) |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| |#4|) (|:| -4250 (-772))) "failed") |#1|)) (-15 -2662 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2432 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2821 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2821 (|#1| |#1| |#4| (-772))) (-15 -2777 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -2604 ((-645 |#1|) |#1|)) (-15 -2253 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2253 (|#1| |#1| |#4| (-772))) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2033 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2821 (|#1| |#2| |#3|)) (-15 -2253 (|#2| |#1| |#3|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|))) (-950 |#2| |#3| |#4|) (-1050) (-794) (-851)) (T -949)) -NIL -(-10 -8 (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -1735 ((-3 (-1267 |#1|) "failed") (-690 |#1|))) (-15 -4334 (|#1| |#1| |#4|)) (-15 -4385 (|#1| |#1| |#4|)) (-15 -1999 (|#1| |#1| |#4|)) (-15 -3621 (|#1| |#1| |#1| |#4|)) (-15 -2992 ((-645 |#1|) |#1|)) (-15 -2350 ((-772) |#1| (-645 |#4|))) (-15 -2350 ((-772) |#1|)) (-15 -4026 ((-3 (-2 (|:| |var| |#4|) (|:| -4250 (-772))) "failed") |#1|)) (-15 -2662 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2432 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2821 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2821 (|#1| |#1| |#4| (-772))) (-15 -2777 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -2604 ((-645 |#1|) |#1|)) (-15 -2253 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2253 (|#1| |#1| |#4| (-772))) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2033 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2821 (|#1| |#2| |#3|)) (-15 -2253 (|#2| |#1| |#3|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 |#3|) $) 112)) (-2670 (((-1173 $) $ |#3|) 127) (((-1173 |#1|) $) 126)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1312 (($ $) 90 (|has| |#1| (-559)))) (-2318 (((-112) $) 92 (|has| |#1| (-559)))) (-2350 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 102 (|has| |#1| (-910)))) (-3081 (($ $) 100 (|has| |#1| (-455)))) (-2833 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 105 (|has| |#1| (-910)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138)) (-2033 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139)) (-3621 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3006 (($ $) 156)) (-1868 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3153 (((-3 $ "failed") $) 37)) (-4334 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2992 (((-645 $) $) 111)) (-4341 (((-112) $) 98 (|has| |#1| (-910)))) (-2543 (($ $ |#1| |#2| $) 174)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2843 (((-112) $) 35)) (-4183 (((-772) $) 171)) (-2832 (($ (-1173 |#1|) |#3|) 119) (($ (-1173 $) |#3|) 118)) (-2604 (((-645 $) $) 128)) (-2014 (((-112) $) 154)) (-2821 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#3|) 122)) (-2752 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3345 (($ (-1 |#2| |#2|) $) 173)) (-3822 (($ (-1 |#1| |#1|) $) 153)) (-1902 (((-3 |#3| "failed") $) 125)) (-2969 (($ $) 151)) (-2980 ((|#1| $) 150)) (-2735 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3739 (((-1159) $) 10)) (-2662 (((-3 (-645 $) "failed") $) 116)) (-2432 (((-3 (-645 $) "failed") $) 117)) (-4026 (((-3 (-2 (|:| |var| |#3|) (|:| -4250 (-772))) "failed") $) 115)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 168)) (-2955 ((|#1| $) 169)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 97 (|has| |#1| (-455)))) (-2771 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 104 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 103 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 101 (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-1999 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1621 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-1813 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3880 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 106 (-1664 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3468 (((-645 |#1|) $) 170)) (-2253 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1467 (((-3 $ "failed") $) 81 (-2797 (-1664 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 32 T CONST)) (-2079 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-950 |#1| |#2| |#3|) (-140) (-1050) (-794) (-851)) (T -950)) -((-4334 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1813 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1813 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2253 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2253 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2604 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1173 *1)) (-4 *1 (-950 *4 *5 *3)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1173 *3)))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2777 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-950 *4 *5 *3)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1050)) (-4 *1 (-950 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2432 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-2662 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-4026 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -4250 (-772)))))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-3621 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-1999 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4385 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-4334 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2833 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-950 *3 *4 *5))))) -(-13 (-901 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1039 |t#3|) (-379 |t#1|) (-10 -8 (-15 -1813 ((-772) $ |t#3|)) (-15 -1813 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2253 ($ $ |t#3| (-772))) (-15 -2253 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2604 ((-645 $) $)) (-15 -2670 ((-1173 $) $ |t#3|)) (-15 -2670 ((-1173 |t#1|) $)) (-15 -1902 ((-3 |t#3| "failed") $)) (-15 -2752 ((-772) $ |t#3|)) (-15 -2752 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2777 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |t#3|)) (-15 -2821 ($ $ |t#3| (-772))) (-15 -2821 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2832 ($ (-1173 |t#1|) |t#3|)) (-15 -2832 ($ (-1173 $) |t#3|)) (-15 -2432 ((-3 (-645 $) "failed") $)) (-15 -2662 ((-3 (-645 $) "failed") $)) (-15 -4026 ((-3 (-2 (|:| |var| |t#3|) (|:| -4250 (-772))) "failed") $)) (-15 -2350 ((-772) $)) (-15 -2350 ((-772) $ (-645 |t#3|))) (-15 -2845 ((-645 |t#3|) $)) (-15 -2992 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-567)))) (IF (|has| |t#3| (-615 (-893 (-567)))) (-6 (-615 (-893 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-381)))) (IF (|has| |t#3| (-615 (-893 (-381)))) (-6 (-615 (-893 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-887 (-567))) (IF (|has| |t#3| (-887 (-567))) (-6 (-887 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-887 (-381))) (IF (|has| |t#3| (-887 (-381))) (-6 (-887 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3621 ($ $ $ |t#3|)) (-15 -1999 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -4385 ($ $ |t#3|)) (-15 -4334 ($ $)) (-15 -4334 ($ $ |t#3|)) (-15 -2833 ((-421 $) $)) (-15 -3081 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |t#1| (-910)) (-6 (-910)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-291) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) |has| |#1| (-910))) -((-2845 (((-645 |#2|) |#5|) 40)) (-2670 (((-1173 |#5|) |#5| |#2| (-1173 |#5|)) 23) (((-410 (-1173 |#5|)) |#5| |#2|) 16)) (-2832 ((|#5| (-410 (-1173 |#5|)) |#2|) 30)) (-1902 (((-3 |#2| "failed") |#5|) 71)) (-2662 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-2641 (((-3 (-2 (|:| |val| |#5|) (|:| -4250 (-567))) "failed") |#5|) 53)) (-2432 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-4026 (((-3 (-2 (|:| |var| |#2|) (|:| -4250 (-567))) "failed") |#5|) 57))) -(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2845 ((-645 |#2|) |#5|)) (-15 -1902 ((-3 |#2| "failed") |#5|)) (-15 -2670 ((-410 (-1173 |#5|)) |#5| |#2|)) (-15 -2832 (|#5| (-410 (-1173 |#5|)) |#2|)) (-15 -2670 ((-1173 |#5|) |#5| |#2| (-1173 |#5|))) (-15 -2432 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2662 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -4026 ((-3 (-2 (|:| |var| |#2|) (|:| -4250 (-567))) "failed") |#5|)) (-15 -2641 ((-3 (-2 (|:| |val| |#5|) (|:| -4250 (-567))) "failed") |#5|))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4127 ($ |#4|)) (-15 -1441 (|#4| $)) (-15 -1455 (|#4| $))))) (T -951)) -((-2641 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4250 (-567)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) (-4026 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4250 (-567)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) (-2662 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) (-2432 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) (-2670 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))) (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-5 *1 (-951 *5 *4 *6 *7 *3)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1173 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))) (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4)))) (-2670 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-410 (-1173 *3))) (-5 *1 (-951 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) (-1902 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1050)) (-4 *6 (-950 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-951 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *6)) (-15 -1441 (*6 $)) (-15 -1455 (*6 $))))))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $)))))))) -(-10 -7 (-15 -2845 ((-645 |#2|) |#5|)) (-15 -1902 ((-3 |#2| "failed") |#5|)) (-15 -2670 ((-410 (-1173 |#5|)) |#5| |#2|)) (-15 -2832 (|#5| (-410 (-1173 |#5|)) |#2|)) (-15 -2670 ((-1173 |#5|) |#5| |#2| (-1173 |#5|))) (-15 -2432 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2662 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -4026 ((-3 (-2 (|:| |var| |#2|) (|:| -4250 (-567))) "failed") |#5|)) (-15 -2641 ((-3 (-2 (|:| |val| |#5|) (|:| -4250 (-567))) "failed") |#5|))) -((-3822 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3822 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -952)) -((-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *6 (-794)) (-4 *2 (-13 (-1101) (-10 -8 (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7))))) -(-10 -7 (-15 -3822 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1177)) $) 16)) (-2670 (((-1173 $) $ (-1177)) 21) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1177))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1177) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1177) $) NIL)) (-3621 (($ $ $ (-1177)) NIL (|has| |#1| (-172)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1177)) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-534 (-1177)) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1177) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1177) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#1|) (-1177)) NIL) (($ (-1173 $) (-1177)) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-534 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1177)) NIL)) (-2752 (((-534 (-1177)) $) NIL) (((-772) $ (-1177)) NIL) (((-645 (-772)) $ (-645 (-1177))) NIL)) (-3345 (($ (-1 (-534 (-1177)) (-534 (-1177))) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-3 (-1177) "failed") $) 19)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1177)) (|:| -4250 (-772))) "failed") $) NIL)) (-1576 (($ $ (-1177)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1177) |#1|) NIL) (($ $ (-645 (-1177)) (-645 |#1|)) NIL) (($ $ (-1177) $) NIL) (($ $ (-645 (-1177)) (-645 $)) NIL)) (-1999 (($ $ (-1177)) NIL (|has| |#1| (-172)))) (-1621 (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-1813 (((-534 (-1177)) $) NIL) (((-772) $ (-1177)) NIL) (((-645 (-772)) $ (-645 (-1177))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1177) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1177) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1177) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1177)) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1177)) 27) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-534 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-953 |#1|) (-13 (-950 |#1| (-534 (-1177)) (-1177)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1177))) |%noBranch|))) (-1050)) (T -953)) -((-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-953 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050))))) -(-13 (-950 |#1| (-534 (-1177)) (-1177)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1177))) |%noBranch|))) -((-2674 (((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-3893 (((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-2781 (((-2 (|:| -4250 (-772)) (|:| -3686 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-1955 (((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455))))) -(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2674 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -3893 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -1955 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2781 ((-2 (|:| -4250 (-772)) (|:| -3686 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4127 ($ |#4|)) (-15 -1441 (|#4| $)) (-15 -1455 (|#4| $))))) (T -954)) -((-2781 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4127 ($ *3)) (-15 -1441 (*3 $)) (-15 -1455 (*3 $))))))) (-1955 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| *3))) (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4127 ($ *8)) (-15 -1441 (*8 $)) (-15 -1455 (*8 $))))))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *9) (|:| |radicand| *9))) (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4127 ($ *8)) (-15 -1441 (*8 $)) (-15 -1455 (*8 $))))))) (-2674 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-950 *3 *5 *6)) (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *8) (|:| |radicand| *8))) (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $)))))))) -(-10 -7 (-15 -2674 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -3893 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -1955 ((-2 (|:| -4250 (-772)) (|:| -3686 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2781 ((-2 (|:| -4250 (-772)) (|:| -3686 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) -((-2399 (((-112) $ $) NIL)) (-2060 (($ (-1121)) 8)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 15) (((-1121) $) 12)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 11))) -(((-955) (-13 (-1101) (-614 (-1121)) (-10 -8 (-15 -2060 ($ (-1121)))))) (T -955)) -((-2060 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-955))))) -(-13 (-1101) (-614 (-1121)) (-10 -8 (-15 -2060 ($ (-1121))))) -((-3732 (((-1095 (-225)) $) 8)) (-3724 (((-1095 (-225)) $) 9)) (-2298 (((-645 (-645 (-944 (-225)))) $) 10)) (-4127 (((-863) $) 6))) -(((-956) (-140)) (T -956)) -((-2298 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-645 (-645 (-944 (-225))))))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1095 (-225))))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1095 (-225)))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2298 ((-645 (-645 (-944 (-225)))) $)) (-15 -3724 ((-1095 (-225)) $)) (-15 -3732 ((-1095 (-225)) $)))) +((-2687 ((|#2| (-645 |#1|) (-645 |#1|)) 29))) +(((-924 |#1| |#2|) (-10 -7 (-15 -2687 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1244 |#1|)) (T -924)) +((-2687 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1244 *4)) (-5 *1 (-924 *4 *2))))) +(-10 -7 (-15 -2687 (|#2| (-645 |#1|) (-645 |#1|)))) +((-2190 (((-1174 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13))) +(((-925 |#1| |#2|) (-10 -7 (-15 -2190 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -2190 ((-1174 |#2|) (-645 |#2|) (-645 |#2|)))) (-1178) (-365)) (T -925)) +((-2190 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1178)))) (-2190 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1178)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))) +(-10 -7 (-15 -2190 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -2190 ((-1174 |#2|) (-645 |#2|) (-645 |#2|)))) +((-2503 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160)) 177)) (-1670 ((|#4| |#4|) 196)) (-3138 (((-645 (-410 (-954 |#1|))) (-645 (-1178))) 149)) (-2439 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-2374 (((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|)) 69)) (-3195 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-3328 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160)) 189)) (-2898 (((-567) (-690 |#4|) (-923) (-1160)) 169) (((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160)) 167) (((-567) (-690 |#4|) (-1160)) 157) (((-567) (-690 |#4|) (-645 (-1178)) (-1160)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1160)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-3831 ((|#4| (-954 |#1|)) 80)) (-1715 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-3482 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-3259 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-2353 (((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-4270 (((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-2130 (((-112) (-645 (-954 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-1712 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-1466 (((-645 |#4|) |#4|) 57)) (-2742 (((-645 (-410 (-954 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-954 |#1|))) (-690 |#4|)) 66) (((-410 (-954 |#1|)) |#4|) 142)) (-4361 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567)) 113)) (-4121 (((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-1924 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-3359 (((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56))) +(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-923) (-1160))) (-15 -2503 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -3328 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -4361 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567))) (-15 -2742 ((-410 (-954 |#1|)) |#4|)) (-15 -2742 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -2742 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3138 ((-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3831 (|#4| (-954 |#1|))) (-15 -1712 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -4121 ((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2374 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -3359 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1466 ((-645 |#4|) |#4|)) (-15 -4270 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2353 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3259 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3482 ((-645 (-645 (-567))) (-567) (-567))) (-15 -1715 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1924 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3195 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2439 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1670 (|#4| |#4|)) (-15 -2130 ((-112) (-645 |#4|))) (-15 -2130 ((-112) (-645 (-954 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1178))) (-794) (-951 |#1| |#3| |#2|)) (T -926)) +((-2130 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))) (-2439 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1178)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-954 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *9)))) (|:| -2623 (-645 (-1268 (-410 (-954 *9))))))))) (-5 *1 (-926 *9 *10 *11 *12)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2316 (-690 (-410 (-954 *4)))) (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))) (-1712 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-4361 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) (-5 *5 (-772)) (-5 *6 (-1160)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1178)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-954 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *8)))) (|:| -2623 (-645 (-1268 (-410 (-954 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *4 (-1160)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-2898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1160)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1178))) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) +(-10 -7 (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-923) (-1160))) (-15 -2503 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -3328 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -4361 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567))) (-15 -2742 ((-410 (-954 |#1|)) |#4|)) (-15 -2742 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -2742 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3138 ((-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3831 (|#4| (-954 |#1|))) (-15 -1712 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -4121 ((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2374 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -3359 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1466 ((-645 |#4|) |#4|)) (-15 -4270 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2353 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3259 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3482 ((-645 (-645 (-567))) (-567) (-567))) (-15 -1715 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1924 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3195 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2439 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1670 (|#4| |#4|)) (-15 -2130 ((-112) (-645 |#4|))) (-15 -2130 ((-112) (-645 (-954 |#1|))))) +((-1335 (((-929) |#1| (-1178)) 17) (((-929) |#1| (-1178) (-1096 (-225))) 21)) (-1308 (((-929) |#1| |#1| (-1178) (-1096 (-225))) 19) (((-929) |#1| (-1178) (-1096 (-225))) 15))) +(((-927 |#1|) (-10 -7 (-15 -1308 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1308 ((-929) |#1| |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178)))) (-615 (-539))) (T -927)) +((-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1335 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1308 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1308 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))) +(-10 -7 (-15 -1308 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1308 ((-929) |#1| |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178)))) +((-2544 (($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 123)) (-3720 (((-1096 (-225)) $) 64)) (-3711 (((-1096 (-225)) $) 63)) (-3703 (((-1096 (-225)) $) 62)) (-4142 (((-645 (-645 (-225))) $) 69)) (-1726 (((-1096 (-225)) $) 65)) (-3555 (((-567) (-567)) 57)) (-3956 (((-567) (-567)) 52)) (-2650 (((-567) (-567)) 55)) (-2432 (((-112) (-112)) 59)) (-2510 (((-567)) 56)) (-2298 (($ $ (-1096 (-225))) 126) (($ $) 127)) (-2084 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 133) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 134)) (-1308 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 137) (($ $ (-1096 (-225))) 129)) (-1643 (((-567)) 60)) (-3747 (((-567)) 50)) (-2551 (((-567)) 53)) (-2049 (((-645 (-645 (-945 (-225)))) $) 153)) (-1969 (((-112) (-112)) 61)) (-4132 (((-863) $) 151)) (-4261 (((-112)) 58))) +(((-928) (-13 (-976) (-10 -8 (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -4142 ((-645 (-645 (-225))) $)) (-15 -3747 ((-567))) (-15 -3956 ((-567) (-567))) (-15 -2551 ((-567))) (-15 -2650 ((-567) (-567))) (-15 -2510 ((-567))) (-15 -3555 ((-567) (-567))) (-15 -4261 ((-112))) (-15 -2432 ((-112) (-112))) (-15 -1643 ((-567))) (-15 -1969 ((-112) (-112)))))) (T -928)) +((-2084 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2084 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2544 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2298 (*1 *1 *1) (-5 *1 (-928))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))) (-3747 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2551 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2510 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4261 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-1643 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(-13 (-976) (-10 -8 (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -4142 ((-645 (-645 (-225))) $)) (-15 -3747 ((-567))) (-15 -3956 ((-567) (-567))) (-15 -2551 ((-567))) (-15 -2650 ((-567) (-567))) (-15 -2510 ((-567))) (-15 -3555 ((-567) (-567))) (-15 -4261 ((-112))) (-15 -2432 ((-112) (-112))) (-15 -1643 ((-567))) (-15 -1969 ((-112) (-112))))) +((-2544 (($ $ (-1096 (-225))) 124) (($ $ (-1096 (-225)) (-1096 (-225))) 125)) (-3711 (((-1096 (-225)) $) 73)) (-3703 (((-1096 (-225)) $) 72)) (-1726 (((-1096 (-225)) $) 74)) (-4308 (((-567) (-567)) 66)) (-1880 (((-567) (-567)) 61)) (-2372 (((-567) (-567)) 64)) (-1802 (((-112) (-112)) 68)) (-2959 (((-567)) 65)) (-2298 (($ $ (-1096 (-225))) 128) (($ $) 129)) (-2084 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 143) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 144)) (-1335 (($ (-1 (-225) (-225)) (-1096 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-1308 (($ (-1 (-225) (-225)) (-1096 (-225))) 139) (($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1096 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 142) (($ $ (-1096 (-225))) 130)) (-2948 (((-112) $) 69)) (-3866 (((-567)) 70)) (-3467 (((-567)) 59)) (-3213 (((-567)) 62)) (-2049 (((-645 (-645 (-945 (-225)))) $) 35)) (-2626 (((-112) (-112)) 71)) (-4132 (((-863) $) 169)) (-2855 (((-112)) 67))) +(((-929) (-13 (-957) (-10 -8 (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2948 ((-112) $)) (-15 -2544 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -3467 ((-567))) (-15 -1880 ((-567) (-567))) (-15 -3213 ((-567))) (-15 -2372 ((-567) (-567))) (-15 -2959 ((-567))) (-15 -4308 ((-567) (-567))) (-15 -2855 ((-112))) (-15 -1802 ((-112) (-112))) (-15 -3866 ((-567))) (-15 -2626 ((-112) (-112)))))) (T -929)) +((-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2084 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2084 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1335 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2544 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2298 (*1 *1 *1) (-5 *1 (-929))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3467 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-3213 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2959 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2855 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3866 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(-13 (-957) (-10 -8 (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2948 ((-112) $)) (-15 -2544 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -3467 ((-567))) (-15 -1880 ((-567) (-567))) (-15 -3213 ((-567))) (-15 -2372 ((-567) (-567))) (-15 -2959 ((-567))) (-15 -4308 ((-567) (-567))) (-15 -2855 ((-112))) (-15 -1802 ((-112) (-112))) (-15 -3866 ((-567))) (-15 -2626 ((-112) (-112))))) +((-2992 (((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))) 34))) +(((-930) (-10 -7 (-15 -2992 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))) (T -930)) +((-2992 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930))))) +(-10 -7 (-15 -2992 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))))) +((-2115 ((|#2| |#2|) 28)) (-3236 ((|#2| |#2|) 29)) (-3286 ((|#2| |#2|) 27)) (-2074 ((|#2| |#2| (-509)) 26))) +(((-931 |#1| |#2|) (-10 -7 (-15 -2074 (|#2| |#2| (-509))) (-15 -3286 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -3236 (|#2| |#2|))) (-1102) (-433 |#1|)) (T -931)) +((-3236 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2115 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2074 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) (-4 *2 (-433 *4))))) +(-10 -7 (-15 -2074 (|#2| |#2| (-509))) (-15 -3286 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -3236 (|#2| |#2|))) +((-2115 (((-317 (-567)) (-1178)) 16)) (-3236 (((-317 (-567)) (-1178)) 14)) (-3286 (((-317 (-567)) (-1178)) 12)) (-2074 (((-317 (-567)) (-1178) (-509)) 19))) +(((-932) (-10 -7 (-15 -2074 ((-317 (-567)) (-1178) (-509))) (-15 -3286 ((-317 (-567)) (-1178))) (-15 -2115 ((-317 (-567)) (-1178))) (-15 -3236 ((-317 (-567)) (-1178))))) (T -932)) +((-3236 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) +(-10 -7 (-15 -2074 ((-317 (-567)) (-1178) (-509))) (-15 -3286 ((-317 (-567)) (-1178))) (-15 -2115 ((-317 (-567)) (-1178))) (-15 -3236 ((-317 (-567)) (-1178)))) +((-4303 (((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)) 25)) (-1511 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -1511 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4303 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-888 |#1|) (-13 (-1102) (-1040 |#2|))) (T -933)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) (-5 *1 (-933 *5 *3 *6)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-933 *4 *5 *6))))) +(-10 -7 (-15 -1511 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4303 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) +((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 30))) +(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|)) (-13 (-433 |#2|) (-615 (-894 |#1|)) (-888 |#1|) (-1040 (-613 $)))) (T -934)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) (-5 *1 (-934 *5 *6 *3))))) +(-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) +((-4303 (((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)) 13))) +(((-935 |#1|) (-10 -7 (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) (-548)) (T -935)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) (-5 *1 (-935 *3))))) +(-10 -7 (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) +((-4303 (((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)) 57))) +(((-936 |#1| |#2|) (-10 -7 (-15 -4303 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) (-1102) (-13 (-1102) (-1040 (-613 $)) (-615 (-894 |#1|)) (-888 |#1|))) (T -936)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6))))) +(-10 -7 (-15 -4303 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) +((-4303 (((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)) 17))) +(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) (-1102) (-888 |#1|) (-667 |#2|)) (T -937)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3))))) +(-10 -7 (-15 -4303 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) +((-4303 (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-888 |#1|))) (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|))) 16))) +(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1102) (-794) (-851) (-13 (-1051) (-888 |#1|)) (-13 (-951 |#4| |#2| |#3|) (-615 (-894 |#1|)))) (T -938)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) (-4303 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) (-5 *1 (-938 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) +((-2111 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2111 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2111 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1102) (-433 |#1|) (-1218)) (T -939)) +((-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1218)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4))))) +(-10 -7 (-15 -2111 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2111 (|#2| |#2| (-645 (-1 (-112) |#3|))))) +((-2111 (((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1178) (-1 (-112) |#1|)) 15))) +(((-940 |#1|) (-10 -7 (-15 -2111 ((-317 (-567)) (-1178) (-1 (-112) |#1|))) (-15 -2111 ((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|))))) (-1218)) (T -940)) +((-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1218)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5))))) +(-10 -7 (-15 -2111 ((-317 (-567)) (-1178) (-1 (-112) |#1|))) (-15 -2111 ((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|))))) +((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 25))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|) (-615 (-894 |#1|))) (-994 |#2|)) (T -941)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) (-5 *1 (-941 *5 *6 *3))))) +(-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) +((-4303 (((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178))) 18))) +(((-942 |#1|) (-10 -7 (-15 -4303 ((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178))))) (-1102)) (T -942)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1178))) (-5 *3 (-1178)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *1 (-942 *5))))) +(-10 -7 (-15 -4303 ((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178))))) +((-2436 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 34)) (-4303 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 33))) +(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -2436 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) (-1102) (-1051) (-13 (-1051) (-615 (-894 |#1|)) (-1040 |#2|))) (T -943)) +((-2436 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))) (-4303 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) (-5 *1 (-943 *7 *8 *9))))) +(-10 -7 (-15 -4303 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -2436 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) +((-1408 (((-1174 (-410 (-567))) (-567)) 81)) (-2878 (((-1174 (-567)) (-567)) 84)) (-3122 (((-1174 (-567)) (-567)) 78)) (-3065 (((-567) (-1174 (-567))) 74)) (-3840 (((-1174 (-410 (-567))) (-567)) 65)) (-3444 (((-1174 (-567)) (-567)) 49)) (-2773 (((-1174 (-567)) (-567)) 86)) (-2489 (((-1174 (-567)) (-567)) 85)) (-2346 (((-1174 (-410 (-567))) (-567)) 67))) +(((-944) (-10 -7 (-15 -2346 ((-1174 (-410 (-567))) (-567))) (-15 -2489 ((-1174 (-567)) (-567))) (-15 -2773 ((-1174 (-567)) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -3840 ((-1174 (-410 (-567))) (-567))) (-15 -3065 ((-567) (-1174 (-567)))) (-15 -3122 ((-1174 (-567)) (-567))) (-15 -2878 ((-1174 (-567)) (-567))) (-15 -1408 ((-1174 (-410 (-567))) (-567))))) (T -944)) +((-1408 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))) (-3840 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3444 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2773 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) +(-10 -7 (-15 -2346 ((-1174 (-410 (-567))) (-567))) (-15 -2489 ((-1174 (-567)) (-567))) (-15 -2773 ((-1174 (-567)) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -3840 ((-1174 (-410 (-567))) (-567))) (-15 -3065 ((-567) (-1174 (-567)))) (-15 -3122 ((-1174 (-567)) (-567))) (-15 -2878 ((-1174 (-567)) (-567))) (-15 -1408 ((-1174 (-410 (-567))) (-567)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-4371 (($ (-645 |#1|)) 9)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-2410 (($ $ (-645 |#1|)) 25)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1879 (((-923) $) 13)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) 23)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-4147 (($ (-645 |#1|)) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) 11 (|has| $ (-6 -4418))))) +(((-945 |#1|) (-982 |#1|) (-1051)) (T -945)) +NIL +(-982 |#1|) +((-3048 (((-484 |#1| |#2|) (-954 |#2|)) 22)) (-3296 (((-247 |#1| |#2|) (-954 |#2|)) 35)) (-3373 (((-954 |#2|) (-484 |#1| |#2|)) 27)) (-1858 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-1318 (((-954 |#2|) (-247 |#1| |#2|)) 32)) (-3748 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-946 |#1| |#2|) (-10 -7 (-15 -3748 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1858 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3048 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3373 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -1318 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -3296 ((-247 |#1| |#2|) (-954 |#2|)))) (-645 (-1178)) (-1051)) (T -946)) +((-3296 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5))))) +(-10 -7 (-15 -3748 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1858 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3048 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3373 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -1318 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -3296 ((-247 |#1| |#2|) (-954 |#2|)))) +((-1828 (((-645 |#2|) |#2| |#2|) 10)) (-2304 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-2871 (((-645 |#2|) |#2|) 11)) (-2505 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-2040 ((|#1| |#2|) 38 (|has| |#1| (-849))))) +(((-947 |#1| |#2|) (-10 -7 (-15 -1828 ((-645 |#2|) |#2| |#2|)) (-15 -2871 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2040 (|#1| |#2|)) (-15 -2304 ((-772) (-645 |#1|))) (-15 -2505 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1244 |#1|)) (T -947)) +((-2505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1244 *5)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *4 *5)) (-4 *5 (-1244 *4)))) (-2040 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) (-4 *3 (-1244 *2)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1244 *4)))) (-1828 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -1828 ((-645 |#2|) |#2| |#2|)) (-15 -2871 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2040 (|#1| |#2|)) (-15 -2304 ((-772) (-645 |#1|))) (-15 -2505 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) +((-3829 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 19))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3829 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1051) (-1051)) (T -948)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6))))) +(-10 -7 (-15 -3829 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) +((-2675 (((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|)) 18))) +(((-949 |#1| |#2|) (-10 -7 (-15 -2675 ((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|)))) (-1178) (-1051)) (T -949)) +((-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 *5)) (-14 *5 (-1178)) (-4 *6 (-1051)) (-5 *2 (-1241 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6))))) +(-10 -7 (-15 -2675 ((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|)))) +((-1468 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-3248 (($ $) 203)) (-2908 (((-421 $) $) 195)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 141)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-2951 (($ $ $ |#4|) 95)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-3501 (($ $) 210) (($ $ |#4|) 213)) (-3000 (((-645 $) $) 77)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 229) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 222)) (-1709 (((-645 $) $) 34)) (-2824 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#4|) 192)) (-2056 (((-3 (-645 $) "failed") $) 52)) (-3671 (((-3 (-645 $) "failed") $) 39)) (-3798 (((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") $) 57)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 134)) (-2435 (((-421 (-1174 $)) (-1174 $)) 147)) (-3517 (((-421 (-1174 $)) (-1174 $)) 145)) (-2706 (((-421 $) $) 165)) (-2631 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-3788 (($ $ |#4|) 97)) (-3893 (((-894 (-381)) $) 243) (((-894 (-567)) $) 236) (((-539) $) 251)) (-4358 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 184)) (-4136 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-1903 (((-3 $ "failed") $) 186)) (-1745 (((-112) $ $) 216))) +(((-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -3501 (|#1| |#1| |#4|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#1| |#4|)) (-15 -3000 ((-645 |#1|) |#1|)) (-15 -1468 ((-772) |#1| (-645 |#4|))) (-15 -1468 ((-772) |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2824 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2824 (|#1| |#1| |#4| (-772))) (-15 -1621 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -1709 ((-645 |#1|) |#1|)) (-15 -4136 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4136 (|#1| |#1| |#4| (-772))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2824 (|#1| |#2| |#3|)) (-15 -4136 (|#2| |#1| |#3|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) (-951 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -950)) +NIL +(-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -3501 (|#1| |#1| |#4|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#1| |#4|)) (-15 -3000 ((-645 |#1|) |#1|)) (-15 -1468 ((-772) |#1| (-645 |#4|))) (-15 -1468 ((-772) |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2824 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2824 (|#1| |#1| |#4| (-772))) (-15 -1621 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -1709 ((-645 |#1|) |#1|)) (-15 -4136 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4136 (|#1| |#1| |#4| (-772))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2824 (|#1| |#2| |#3|)) (-15 -4136 (|#2| |#1| |#3|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139)) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| |#2| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-2656 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3273 (($ (-1 |#2| |#2|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-3046 (((-3 |#3| "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3077 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-951 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -951)) +((-3501 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3077 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-1709 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1174 *3)))) (-3046 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2656 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2656 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-1621 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-951 *4 *5 *3)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)))) (-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-772)))))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2951 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4358 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3501 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3248 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2908 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5))))) +(-13 (-902 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1040 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3077 ((-772) $ |t#3|)) (-15 -3077 ((-645 (-772)) $ (-645 |t#3|))) (-15 -4136 ($ $ |t#3| (-772))) (-15 -4136 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -1709 ((-645 $) $)) (-15 -2675 ((-1174 $) $ |t#3|)) (-15 -2675 ((-1174 |t#1|) $)) (-15 -3046 ((-3 |t#3| "failed") $)) (-15 -2656 ((-772) $ |t#3|)) (-15 -2656 ((-645 (-772)) $ (-645 |t#3|))) (-15 -1621 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |t#3|)) (-15 -2824 ($ $ |t#3| (-772))) (-15 -2824 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2836 ($ (-1174 |t#1|) |t#3|)) (-15 -2836 ($ (-1174 $) |t#3|)) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |var| |t#3|) (|:| -3458 (-772))) "failed") $)) (-15 -1468 ((-772) $)) (-15 -1468 ((-772) $ (-645 |t#3|))) (-15 -2847 ((-645 |t#3|) $)) (-15 -3000 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-567)))) (IF (|has| |t#3| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (IF (|has| |t#3| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-567))) (IF (|has| |t#3| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (IF (|has| |t#3| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2951 ($ $ $ |t#3|)) (-15 -3788 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -4358 ($ $ |t#3|)) (-15 -3501 ($ $)) (-15 -3501 ($ $ |t#3|)) (-15 -2908 ((-421 $) $)) (-15 -3248 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4416)) (-6 -4416) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911))) +((-2847 (((-645 |#2|) |#5|) 40)) (-2675 (((-1174 |#5|) |#5| |#2| (-1174 |#5|)) 23) (((-410 (-1174 |#5|)) |#5| |#2|) 16)) (-2836 ((|#5| (-410 (-1174 |#5|)) |#2|) 30)) (-3046 (((-3 |#2| "failed") |#5|) 71)) (-2056 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-1912 (((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|) 53)) (-3671 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|) 57))) +(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2847 ((-645 |#2|) |#5|)) (-15 -3046 ((-3 |#2| "failed") |#5|)) (-15 -2675 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -2836 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -2675 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3671 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3798 ((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|)) (-15 -1912 ((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -952)) +((-1912 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3458 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3798 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-2056 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3671 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-2675 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) (-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1174 *3))) (-5 *1 (-952 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3046 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *6)) (-15 -1448 (*6 $)) (-15 -1460 (*6 $))))))) (-2847 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))) +(-10 -7 (-15 -2847 ((-645 |#2|) |#5|)) (-15 -3046 ((-3 |#2| "failed") |#5|)) (-15 -2675 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -2836 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -2675 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3671 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3798 ((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|)) (-15 -1912 ((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|))) +((-3829 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3829 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -953)) +((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *6 (-794)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7))))) +(-10 -7 (-15 -3829 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) 16)) (-2675 (((-1174 $) $ (-1178)) 21) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1178))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1178) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1178) $) NIL)) (-2951 (($ $ $ (-1178)) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1178)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-1178)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1178) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1178) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-1178)) NIL) (($ (-1174 $) (-1178)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1178)) NIL)) (-2656 (((-534 (-1178)) $) NIL) (((-772) $ (-1178)) NIL) (((-645 (-772)) $ (-645 (-1178))) NIL)) (-3273 (($ (-1 (-534 (-1178)) (-534 (-1178))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3046 (((-3 (-1178) "failed") $) 19)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1178)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $ (-1178)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1178) |#1|) NIL) (($ $ (-645 (-1178)) (-645 |#1|)) NIL) (($ $ (-1178) $) NIL) (($ $ (-645 (-1178)) (-645 $)) NIL)) (-3788 (($ $ (-1178)) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3077 (((-534 (-1178)) $) NIL) (((-772) $ (-1178)) NIL) (((-645 (-772)) $ (-645 (-1178))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1178) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1178) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1178) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1178)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1178)) 27) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-954 |#1|) (-13 (-951 |#1| (-534 (-1178)) (-1178)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1178))) |%noBranch|))) (-1051)) (T -954)) +((-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))))) +(-13 (-951 |#1| (-534 (-1178)) (-1178)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1178))) |%noBranch|))) +((-1790 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-2429 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-1931 (((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-3155 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455))))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1790 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -2429 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3155 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -1931 ((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -955)) +((-1931 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4132 ($ *3)) (-15 -1448 (*3 $)) (-15 -1460 (*3 $))))))) (-3155 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *3))) (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *9) (|:| |radicand| *9))) (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))) (-1790 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-951 *3 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *8) (|:| |radicand| *8))) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))) +(-10 -7 (-15 -1790 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -2429 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3155 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -1931 ((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) +((-2403 (((-112) $ $) NIL)) (-2067 (($ (-1122)) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (((-1122) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11))) +(((-956) (-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2067 ($ (-1122)))))) (T -956)) +((-2067 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956))))) +(-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2067 ($ (-1122))))) +((-3711 (((-1096 (-225)) $) 8)) (-3703 (((-1096 (-225)) $) 9)) (-2049 (((-645 (-645 (-945 (-225)))) $) 10)) (-4132 (((-863) $) 6))) +(((-957) (-140)) (T -957)) +((-2049 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225)))))) +(-13 (-614 (-863)) (-10 -8 (-15 -2049 ((-645 (-645 (-945 (-225)))) $)) (-15 -3703 ((-1096 (-225)) $)) (-15 -3711 ((-1096 (-225)) $)))) (((-614 (-863)) . T)) -((-3961 (((-3 (-690 |#1|) "failed") |#2| (-922)) 18))) -(((-957 |#1| |#2|) (-10 -7 (-15 -3961 ((-3 (-690 |#1|) "failed") |#2| (-922)))) (-559) (-657 |#1|)) (T -957)) -((-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-922)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-957 *5 *3)) (-4 *3 (-657 *5))))) -(-10 -7 (-15 -3961 ((-3 (-690 |#1|) "failed") |#2| (-922)))) -((-2565 (((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|) 16)) (-2499 ((|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|) 18)) (-3822 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 13))) -(((-958 |#1| |#2|) (-10 -7 (-15 -2565 ((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3822 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1217) (-1217)) (T -958)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-959 *6)) (-5 *1 (-958 *5 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-959 *5)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-958 *5 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-959 *6)) (-4 *6 (-1217)) (-4 *5 (-1217)) (-5 *2 (-959 *5)) (-5 *1 (-958 *6 *5))))) -(-10 -7 (-15 -2565 ((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3822 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 16)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) |#1|) 15)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) 11 (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) 20 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1234 (-567))) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) 21)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 14)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2410 (((-772) $) 8 (|has| $ (-6 -4417))))) -(((-959 |#1|) (-19 |#1|) (-1217)) (T -959)) +((-3923 (((-3 (-690 |#1|) "failed") |#2| (-923)) 18))) +(((-958 |#1| |#2|) (-10 -7 (-15 -3923 ((-3 (-690 |#1|) "failed") |#2| (-923)))) (-559) (-657 |#1|)) (T -958)) +((-3923 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5))))) +(-10 -7 (-15 -3923 ((-3 (-690 |#1|) "failed") |#2| (-923)))) +((-2788 (((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 18)) (-3829 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 13))) +(((-959 |#1| |#2|) (-10 -7 (-15 -2788 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3829 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1218) (-1218)) (T -959)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-959 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5))))) +(-10 -7 (-15 -2788 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3829 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 16)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 15)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 11 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 20 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 21)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 14)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 8 (|has| $ (-6 -4418))))) +(((-960 |#1|) (-19 |#1|) (-1218)) (T -960)) NIL (-19 |#1|) -((-2508 (($ $ (-1093 $)) 7) (($ $ (-1177)) 6))) -(((-960) (-140)) (T -960)) -((-2508 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-960)))) (-2508 (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-1177))))) -(-13 (-10 -8 (-15 -2508 ($ $ (-1177))) (-15 -2508 ($ $ (-1093 $))))) -((-3005 (((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177)) (-1177)) 30) (((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1173 |#1|))) (-953 |#1|) (-1177) (-953 |#1|) (-1177)) 49))) -(((-961 |#1|) (-10 -7 (-15 -3005 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1173 |#1|))) (-953 |#1|) (-1177) (-953 |#1|) (-1177))) (-15 -3005 ((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -3005 ((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177)) (-1177)))) (-13 (-365) (-147))) (T -961)) -((-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) (-5 *5 (-1177)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 *6))) (|:| |prim| (-1173 *6)))) (-5 *1 (-961 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 *5))) (|:| |prim| (-1173 *5)))) (-5 *1 (-961 *5)))) (-3005 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-1177)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1173 *5)))) (-5 *1 (-961 *5))))) -(-10 -7 (-15 -3005 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1173 |#1|))) (-953 |#1|) (-1177) (-953 |#1|) (-1177))) (-15 -3005 ((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177)))) (-15 -3005 ((-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 |#1|))) (|:| |prim| (-1173 |#1|))) (-645 (-953 |#1|)) (-645 (-1177)) (-1177)))) -((-1402 (((-645 |#1|) |#1| |#1|) 47)) (-4341 (((-112) |#1|) 44)) (-1543 ((|#1| |#1|) 82)) (-3189 ((|#1| |#1|) 81))) -(((-962 |#1|) (-10 -7 (-15 -4341 ((-112) |#1|)) (-15 -3189 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1402 ((-645 |#1|) |#1| |#1|))) (-548)) (T -962)) -((-1402 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-962 *3)) (-4 *3 (-548)))) (-1543 (*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))) (-3189 (*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))) (-4341 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -4341 ((-112) |#1|)) (-15 -3189 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1402 ((-645 |#1|) |#1| |#1|))) -((-2730 (((-1272) (-863)) 9))) -(((-963) (-10 -7 (-15 -2730 ((-1272) (-863))))) (T -963)) -((-2730 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-963))))) -(-10 -7 (-15 -2730 ((-1272) (-863)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-1312 (($ $) 79 (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) 31)) (-3153 (((-3 $ "failed") $) 42)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-2543 (($ $ |#1| |#2| $) 62)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) 17)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| |#2|) NIL)) (-2752 ((|#2| $) 24)) (-3345 (($ (-1 |#2| |#2|) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2969 (($ $) 28)) (-2980 ((|#1| $) 26)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) 51)) (-2955 ((|#1| $) NIL)) (-4196 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2387 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-1813 ((|#2| $) 22)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ |#2|) 37)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) 15 T CONST)) (-2079 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1710 (($) 27 T CONST)) (-1722 (($) 12 T CONST)) (-2929 (((-112) $ $) 83)) (-3050 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) 69) (($ $ (-772)) 67)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-964 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -4196 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1050) (-793)) (T -964)) -((-4196 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *2 (-793))))) -(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -4196 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2825 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-3460 (((-3 $ "failed") $ $) 52 (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2371 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1524 ((|#2| $) 22)) (-1326 ((|#1| $) 21)) (-2245 (($) NIL (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-3153 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1378 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2843 (((-112) $) NIL (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-2010 (($ $ $) NIL (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2998 (($ $ $) NIL (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-1554 (($ |#1| |#2|) 20)) (-3425 (((-922) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3763 (($ (-922)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3430 (((-1121) $) NIL)) (-2073 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3387 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4127 (((-863) $) 14)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 42 (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1722 (($) 25 (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-2988 (((-112) $ $) NIL (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2964 (((-112) $ $) NIL (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2929 (((-112) $ $) 19)) (-2977 (((-112) $ $) NIL (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2952 (((-112) $ $) 69 (-2797 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3050 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3037 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3024 (($ $ $) 45 (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-922)) NIL (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-922) $) NIL (-2797 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2797 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))))) -(((-965 |#1| |#2|) (-13 (-1101) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1554 ($ |#1| |#2|)) (-15 -1326 (|#1| $)) (-15 -1524 (|#2| $)))) (-1101) (-1101)) (T -965)) -((-1554 (*1 *1 *2 *3) (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-1326 (*1 *2 *1) (-12 (-4 *2 (-1101)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1101)))) (-1524 (*1 *2 *1) (-12 (-4 *2 (-1101)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1101))))) -(-13 (-1101) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1554 ($ |#1| |#2|)) (-15 -1326 (|#1| $)) (-15 -1524 (|#2| $)))) -((-3794 (((-1105) $) 12)) (-1701 (($ (-509) (-1105)) 14)) (-1988 (((-509) $) 9)) (-4127 (((-863) $) 26))) -(((-966) (-13 (-614 (-863)) (-10 -8 (-15 -1988 ((-509) $)) (-15 -3794 ((-1105) $)) (-15 -1701 ($ (-509) (-1105)))))) (T -966)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-966)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-966)))) (-1701 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1105)) (-5 *1 (-966))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1988 ((-509) $)) (-15 -3794 ((-1105) $)) (-15 -1701 ($ (-509) (-1105))))) -((-2399 (((-112) $ $) NIL)) (-1474 (($) NIL T CONST)) (-1676 (($ $ $) 11)) (-1653 (($ $) 9)) (-3739 (((-1159) $) NIL)) (-3925 (((-692 |#1|) $) 24)) (-1590 (((-692 (-874 $ $)) $) 36)) (-2099 (((-692 $) $) 29)) (-4378 (((-692 (-874 $ $)) $) 37)) (-1968 (((-692 (-874 $ $)) $) 38)) (-2875 (((-692 (-874 $ $)) $) 35)) (-2441 (($ $ $) 12)) (-3430 (((-1121) $) NIL)) (-2782 (($) 17 T CONST)) (-4149 (($ $ $) 13)) (-4127 (((-863) $) 40) (($ |#1|) 8)) (-4104 (((-112) $ $) NIL)) (-1664 (($ $ $) 10)) (-2929 (((-112) $ $) NIL))) -(((-967 |#1|) (-13 (-968) (-617 |#1|) (-10 -8 (-15 -3925 ((-692 |#1|) $)) (-15 -2099 ((-692 $) $)) (-15 -2875 ((-692 (-874 $ $)) $)) (-15 -1590 ((-692 (-874 $ $)) $)) (-15 -4378 ((-692 (-874 $ $)) $)) (-15 -1968 ((-692 (-874 $ $)) $)))) (-1101)) (T -967)) -((-3925 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1101)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-692 (-967 *3))) (-5 *1 (-967 *3)) (-4 *3 (-1101)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1101)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1101)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1101)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1101))))) -(-13 (-968) (-617 |#1|) (-10 -8 (-15 -3925 ((-692 |#1|) $)) (-15 -2099 ((-692 $) $)) (-15 -2875 ((-692 (-874 $ $)) $)) (-15 -1590 ((-692 (-874 $ $)) $)) (-15 -4378 ((-692 (-874 $ $)) $)) (-15 -1968 ((-692 (-874 $ $)) $)))) -((-2399 (((-112) $ $) 7)) (-1474 (($) 20 T CONST)) (-1676 (($ $ $) 16)) (-1653 (($ $) 18)) (-3739 (((-1159) $) 10)) (-2441 (($ $ $) 15)) (-3430 (((-1121) $) 11)) (-2782 (($) 19 T CONST)) (-4149 (($ $ $) 14)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1664 (($ $ $) 17)) (-2929 (((-112) $ $) 6))) -(((-968) (-140)) (T -968)) -((-1474 (*1 *1) (-4 *1 (-968))) (-2782 (*1 *1) (-4 *1 (-968))) (-1653 (*1 *1 *1) (-4 *1 (-968))) (-1664 (*1 *1 *1 *1) (-4 *1 (-968))) (-1676 (*1 *1 *1 *1) (-4 *1 (-968))) (-2441 (*1 *1 *1 *1) (-4 *1 (-968))) (-4149 (*1 *1 *1 *1) (-4 *1 (-968)))) -(-13 (-1101) (-10 -8 (-15 -1474 ($) -3280) (-15 -2782 ($) -3280) (-15 -1653 ($ $)) (-15 -1664 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -4149 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-1812 (($ $ $) 44)) (-3523 (($ $ $) 45)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2998 ((|#1| $) 46)) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-969 |#1|) (-140) (-851)) (T -969)) -((-2998 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))) (-3523 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -2998 (|t#1| $)) (-15 -3523 ($ $ $)) (-15 -1812 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-3305 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|) 106)) (-3412 ((|#2| |#2| |#2|) 104)) (-3042 (((-2 (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|) 108)) (-3118 (((-2 (|:| |coef1| |#2|) (|:| -2771 |#2|)) |#2| |#2|) 110)) (-3783 (((-2 (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-2046 (((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|) 56)) (-4340 (((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|) 81)) (-3862 (((-2 (|:| |coef1| |#2|) (|:| -3621 |#1|)) |#2| |#2|) 83)) (-1973 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3282 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-1416 (((-2 (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|) 122)) (-1329 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-2785 (((-645 (-772)) |#2| |#2|) 103)) (-1708 ((|#1| |#2| |#2|) 50)) (-3752 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-2754 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-3420 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|) 54)) (-1406 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|) 80)) (-3621 ((|#1| |#2| |#2|) 77)) (-1950 (((-2 (|:| -3686 |#1|) (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|) 41)) (-2263 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1501 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2707 ((|#2| |#2| |#2|) 94)) (-3205 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-4351 ((|#2| |#2| |#2| (-772)) 86)) (-2771 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2387 (((-1267 |#2|) (-1267 |#2|) |#1|) 22)) (-2573 (((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|) 46)) (-1479 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|) 120)) (-1999 ((|#1| |#2|) 117)) (-3426 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-2491 ((|#2| |#2| |#2| (-772)) 91)) (-2096 (((-645 |#2|) |#2| |#2|) 100)) (-3428 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-1463 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1267 |#2|) |#1| (-1267 |#2|)) 17))) -(((-970 |#1| |#2|) (-10 -7 (-15 -3621 (|#1| |#2| |#2|)) (-15 -1406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -4340 ((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -3862 ((-2 (|:| |coef1| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -4351 (|#2| |#2| |#2| (-772))) (-15 -3205 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3282 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2491 (|#2| |#2| |#2| (-772))) (-15 -3426 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1329 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2707 (|#2| |#2| |#2|)) (-15 -1501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1973 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3412 (|#2| |#2| |#2|)) (-15 -3305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -3042 ((-2 (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -3118 ((-2 (|:| |coef1| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -1999 (|#1| |#2|)) (-15 -1479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|)) (-15 -1416 ((-2 (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|)) (-15 -2096 ((-645 |#2|) |#2| |#2|)) (-15 -2785 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2754 (|#1| |#2| |#2|)) (-15 -3752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|)) (-15 -3783 ((-2 (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|)) (-15 -2771 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1267 |#2|) |#1| (-1267 |#2|))) (-15 -2387 ((-1267 |#2|) (-1267 |#2|) |#1|)) (-15 -1950 ((-2 (|:| -3686 |#1|) (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|)) (-15 -2573 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|)) (-15 -1463 (|#1| |#1| |#1| (-772))) (-15 -3428 (|#2| |#2| |#1| |#1| (-772))) (-15 -2263 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1708 (|#1| |#2| |#2|)) (-15 -3420 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -2046 ((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|))) (-559) (-1243 |#1|)) (T -970)) -((-2046 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3621 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3420 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3621 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1708 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2)))) (-2263 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) (-3428 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) (-1463 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-970 *2 *4)) (-4 *4 (-1243 *2)))) (-2573 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1950 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3686 *4) (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-2387 (*1 *2 *2 *3) (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-559)) (-5 *1 (-970 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-559)) (-5 *1 (-970 *3 *4)))) (-2771 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) (-3783 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2754 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2754 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-2754 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2)))) (-2785 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-2096 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1999 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1999 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1999 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2)))) (-3118 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2771 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3042 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2771 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2771 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3412 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) (-1973 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1501 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) (-1329 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5)))) (-3426 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5)))) (-2491 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1243 *4)))) (-3282 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5)))) (-3205 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5)))) (-4351 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1243 *4)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3621 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-4340 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3621 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-1406 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3621 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2))))) -(-10 -7 (-15 -3621 (|#1| |#2| |#2|)) (-15 -1406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -4340 ((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -3862 ((-2 (|:| |coef1| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -4351 (|#2| |#2| |#2| (-772))) (-15 -3205 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3282 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2491 (|#2| |#2| |#2| (-772))) (-15 -3426 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1329 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2707 (|#2| |#2| |#2|)) (-15 -1501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1973 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3412 (|#2| |#2| |#2|)) (-15 -3305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -3042 ((-2 (|:| |coef2| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -3118 ((-2 (|:| |coef1| |#2|) (|:| -2771 |#2|)) |#2| |#2|)) (-15 -1999 (|#1| |#2|)) (-15 -1479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|)) (-15 -1416 ((-2 (|:| |coef2| |#2|) (|:| -1999 |#1|)) |#2|)) (-15 -2096 ((-645 |#2|) |#2| |#2|)) (-15 -2785 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2754 (|#1| |#2| |#2|)) (-15 -3752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|)) (-15 -3783 ((-2 (|:| |coef2| |#2|) (|:| -2754 |#1|)) |#2| |#2|)) (-15 -2771 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1267 |#2|) |#1| (-1267 |#2|))) (-15 -2387 ((-1267 |#2|) (-1267 |#2|) |#1|)) (-15 -1950 ((-2 (|:| -3686 |#1|) (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|)) (-15 -2573 ((-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) |#2| |#2|)) (-15 -1463 (|#1| |#1| |#1| (-772))) (-15 -3428 (|#2| |#2| |#1| |#1| (-772))) (-15 -2263 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1708 (|#1| |#2| |#2|)) (-15 -3420 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|)) (-15 -2046 ((-2 (|:| |coef2| |#2|) (|:| -3621 |#1|)) |#2| |#2|))) -((-2399 (((-112) $ $) NIL)) (-3568 (((-1216) $) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 10)) (-4127 (((-863) $) 20) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-971) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $))))) (T -971)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-971)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-971))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) 39)) (-2245 (($) NIL T CONST)) (-2538 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-3410 (((-567) $) 72)) (-3768 (($ (-645 (-567))) 18)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3880 (((-645 (-567)) $) 13)) (-2073 (($ $) 52)) (-4127 (((-863) $) 68) (((-645 (-567)) $) 11)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 8 T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 26)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 25)) (-3024 (($ $ $) 28)) (* (($ (-922) $) NIL) (($ (-772) $) 37))) -(((-972) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -3768 ($ (-645 (-567)))) (-15 -2538 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3410 ((-567) $)) (-15 -2073 ($ $))))) (T -972)) -((-3768 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-972)))) (-2538 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-972)) (-5 *3 (-645 (-567))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-972)))) (-2073 (*1 *1 *1) (-5 *1 (-972)))) -(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -3768 ($ (-645 (-567)))) (-15 -2538 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3410 ((-567) $)) (-15 -2073 ($ $)))) -((-3050 (($ $ |#2|) 31)) (-3037 (($ $) 23) (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29))) -(((-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3050 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-974 |#2| |#3| |#4|) (-1050) (-793) (-851)) (T -973)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3050 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 |#3|) $) 86)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-4184 (((-112) $) 85)) (-2843 (((-112) $) 35)) (-2014 (((-112) $) 74)) (-2821 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-1813 ((|#2| $) 76)) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2253 ((|#1| $ |#2|) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-974 |#1| |#2| |#3|) (-140) (-1050) (-793) (-851)) (T -974)) -((-2980 (*1 *2 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1050)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *4 (-851)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *2 (-793)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1050)) (-4 *3 (-793)) (-4 *2 (-851)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-974 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-793)) (-4 *6 (-851)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1546 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *4 (-851))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2821 ($ $ |t#3| |t#2|)) (-15 -2821 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -2969 ($ $)) (-15 -2980 (|t#1| $)) (-15 -1813 (|t#2| $)) (-15 -2845 ((-645 |t#3|) $)) (-15 -4184 ((-112) $)) (-15 -1546 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3743 (((-1095 (-225)) $) 8)) (-3732 (((-1095 (-225)) $) 9)) (-3724 (((-1095 (-225)) $) 10)) (-2298 (((-645 (-645 (-944 (-225)))) $) 11)) (-4127 (((-863) $) 6))) -(((-975) (-140)) (T -975)) -((-2298 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-645 (-645 (-944 (-225))))))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225))))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225))))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225)))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2298 ((-645 (-645 (-944 (-225)))) $)) (-15 -3724 ((-1095 (-225)) $)) (-15 -3732 ((-1095 (-225)) $)) (-15 -3743 ((-1095 (-225)) $)))) +((-2940 (($ $ (-1094 $)) 7) (($ $ (-1178)) 6))) +(((-961) (-140)) (T -961)) +((-2940 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))) (-2940 (*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1178))))) +(-13 (-10 -8 (-15 -2940 ($ $ (-1178))) (-15 -2940 ($ $ (-1094 $))))) +((-3431 (((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178)) 30) (((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178)) 49))) +(((-962 |#1|) (-10 -7 (-15 -3431 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178)))) (-13 (-365) (-147))) (T -962)) +((-3431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-5 *5 (-1178)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *6))) (|:| |prim| (-1174 *6)))) (-5 *1 (-962 *6)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-962 *5)))) (-3431 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-1178)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 *5)))) (-5 *1 (-962 *5))))) +(-10 -7 (-15 -3431 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178)))) +((-2605 (((-645 |#1|) |#1| |#1|) 47)) (-3184 (((-112) |#1|) 44)) (-3126 ((|#1| |#1|) 82)) (-2679 ((|#1| |#1|) 81))) +(((-963 |#1|) (-10 -7 (-15 -3184 ((-112) |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -2605 ((-645 |#1|) |#1| |#1|))) (-548)) (T -963)) +((-2605 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) (-3126 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-2679 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -3184 ((-112) |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -2605 ((-645 |#1|) |#1| |#1|))) +((-2733 (((-1273) (-863)) 9))) +(((-964) (-10 -7 (-15 -2733 ((-1273) (-863))))) (T -964)) +((-2733 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-964))))) +(-10 -7 (-15 -2733 ((-1273) (-863)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-4381 (($ $) 79 (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) 31)) (-2109 (((-3 $ "failed") $) 42)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2320 (($ $ |#1| |#2| $) 62)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 17)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-2656 ((|#2| $) 24)) (-3273 (($ (-1 |#2| |#2|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2976 (($ $) 28)) (-2989 ((|#1| $) 26)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 51)) (-2962 ((|#1| $) NIL)) (-3110 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2391 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-3077 ((|#2| $) 22)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ |#2|) 37)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 15 T CONST)) (-4176 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1716 (($) 27 T CONST)) (-1728 (($) 12 T CONST)) (-2936 (((-112) $ $) 83)) (-3060 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 69) (($ $ (-772)) 67)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-965 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3110 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051) (-793)) (T -965)) +((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *2 (-793))))) +(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3110 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-4016 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-3472 (((-3 $ "failed") $ $) 52 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2375 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3787 ((|#2| $) 22)) (-2042 ((|#1| $) 21)) (-2585 (($) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1348 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1354 (($ $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-1799 (($ |#1| |#2|) 20)) (-4249 (((-923) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3768 (($ (-923)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3430 (((-1122) $) NIL)) (-1823 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-1485 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4132 (((-863) $) 14)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 42 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1728 (($) 25 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2936 (((-112) $ $) 19)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2958 (((-112) $ $) 69 (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3060 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3045 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3033 (($ $ $) 45 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-923) $) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))))) +(((-966 |#1| |#2|) (-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1799 ($ |#1| |#2|)) (-15 -2042 (|#1| $)) (-15 -3787 (|#2| $)))) (-1102) (-1102)) (T -966)) +((-1799 (*1 *1 *2 *3) (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2042 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))) (-3787 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102))))) +(-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1799 ($ |#1| |#2|)) (-15 -2042 (|#1| $)) (-15 -3787 (|#2| $)))) +((-3802 (((-1106) $) 12)) (-1704 (($ (-509) (-1106)) 14)) (-1996 (((-509) $) 9)) (-4132 (((-863) $) 26))) +(((-967) (-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -3802 ((-1106) $)) (-15 -1704 ($ (-509) (-1106)))))) (T -967)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) (-1704 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967))))) +(-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -3802 ((-1106) $)) (-15 -1704 ($ (-509) (-1106))))) +((-2403 (((-112) $ $) NIL)) (-1477 (($) NIL T CONST)) (-1677 (($ $ $) 11)) (-1657 (($ $) 9)) (-1419 (((-1160) $) NIL)) (-2447 (((-692 |#1|) $) 24)) (-3380 (((-692 (-874 $ $)) $) 36)) (-3268 (((-692 $) $) 29)) (-1822 (((-692 (-874 $ $)) $) 37)) (-3945 (((-692 (-874 $ $)) $) 38)) (-1754 (((-692 (-874 $ $)) $) 35)) (-3661 (($ $ $) 12)) (-3430 (((-1122) $) NIL)) (-2786 (($) 17 T CONST)) (-1983 (($ $ $) 13)) (-4132 (((-863) $) 40) (($ |#1|) 8)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 10)) (-2936 (((-112) $ $) NIL))) +(((-968 |#1|) (-13 (-969) (-617 |#1|) (-10 -8 (-15 -2447 ((-692 |#1|) $)) (-15 -3268 ((-692 $) $)) (-15 -1754 ((-692 (-874 $ $)) $)) (-15 -3380 ((-692 (-874 $ $)) $)) (-15 -1822 ((-692 (-874 $ $)) $)) (-15 -3945 ((-692 (-874 $ $)) $)))) (-1102)) (T -968)) +((-2447 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) +(-13 (-969) (-617 |#1|) (-10 -8 (-15 -2447 ((-692 |#1|) $)) (-15 -3268 ((-692 $) $)) (-15 -1754 ((-692 (-874 $ $)) $)) (-15 -3380 ((-692 (-874 $ $)) $)) (-15 -1822 ((-692 (-874 $ $)) $)) (-15 -3945 ((-692 (-874 $ $)) $)))) +((-2403 (((-112) $ $) 7)) (-1477 (($) 20 T CONST)) (-1677 (($ $ $) 16)) (-1657 (($ $) 18)) (-1419 (((-1160) $) 10)) (-3661 (($ $ $) 15)) (-3430 (((-1122) $) 11)) (-2786 (($) 19 T CONST)) (-1983 (($ $ $) 14)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1667 (($ $ $) 17)) (-2936 (((-112) $ $) 6))) +(((-969) (-140)) (T -969)) +((-1477 (*1 *1) (-4 *1 (-969))) (-2786 (*1 *1) (-4 *1 (-969))) (-1657 (*1 *1 *1) (-4 *1 (-969))) (-1667 (*1 *1 *1 *1) (-4 *1 (-969))) (-1677 (*1 *1 *1 *1) (-4 *1 (-969))) (-3661 (*1 *1 *1 *1) (-4 *1 (-969))) (-1983 (*1 *1 *1 *1) (-4 *1 (-969)))) +(-13 (-1102) (-10 -8 (-15 -1477 ($) -3286) (-15 -2786 ($) -3286) (-15 -1657 ($ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -3661 ($ $ $)) (-15 -1983 ($ $ $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2966 (($ $ $) 44)) (-4135 (($ $ $) 45)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 46)) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-970 |#1|) (-140) (-851)) (T -970)) +((-2981 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-2966 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -2981 (|t#1| $)) (-15 -4135 ($ $ $)) (-15 -2966 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-1489 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 106)) (-2323 ((|#2| |#2| |#2|) 104)) (-2667 (((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 108)) (-2340 (((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 110)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-3387 (((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 56)) (-3073 (((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 81)) (-4020 (((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 83)) (-1309 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3255 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-3688 (((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|) 122)) (-2419 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-4052 (((-645 (-772)) |#2| |#2|) 103)) (-3718 ((|#1| |#2| |#2|) 50)) (-2186 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-2806 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-1864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 54)) (-1786 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 80)) (-2951 ((|#1| |#2| |#2|) 77)) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|) 41)) (-2748 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3348 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2272 ((|#2| |#2| |#2|) 94)) (-1613 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-1840 ((|#2| |#2| |#2| (-772)) 86)) (-2774 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2391 (((-1268 |#2|) (-1268 |#2|) |#1|) 22)) (-2384 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|) 46)) (-1646 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|) 120)) (-3788 ((|#1| |#2|) 117)) (-4355 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-1616 ((|#2| |#2| |#2| (-772)) 91)) (-4212 (((-645 |#2|) |#2| |#2|) 100)) (-1377 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-1688 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1268 |#2|) |#1| (-1268 |#2|)) 17))) +(((-971 |#1| |#2|) (-10 -7 (-15 -2951 (|#1| |#2| |#2|)) (-15 -1786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3073 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -4020 ((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2| (-772))) (-15 -1613 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1616 (|#2| |#2| |#2| (-772))) (-15 -4355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1309 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1489 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2667 ((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -3788 (|#1| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -3688 ((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -4212 ((-645 |#2|) |#2| |#2|)) (-15 -4052 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2806 (|#1| |#2| |#2|)) (-15 -2186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -2774 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1268 |#2|) |#1| (-1268 |#2|))) (-15 -2391 ((-1268 |#2|) (-1268 |#2|) |#1|)) (-15 -3708 ((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -2384 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -1688 (|#1| |#1| |#1| (-772))) (-15 -1377 (|#2| |#2| |#1| |#1| (-772))) (-15 -2748 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3718 (|#1| |#2| |#2|)) (-15 -1864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3387 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|))) (-559) (-1244 |#1|)) (T -971)) +((-3387 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3718 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-2748 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1377 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1688 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) (-4 *4 (-1244 *2)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3708 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3694 *4) (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (-2774 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2186 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2806 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-4052 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-4212 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3788 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3788 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3788 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-2340 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1489 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2323 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1309 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2272 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-2419 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-4355 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1616 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1244 *4)))) (-3255 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1613 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1840 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1244 *4)))) (-4020 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3073 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1786 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2))))) +(-10 -7 (-15 -2951 (|#1| |#2| |#2|)) (-15 -1786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3073 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -4020 ((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2| (-772))) (-15 -1613 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1616 (|#2| |#2| |#2| (-772))) (-15 -4355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1309 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1489 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2667 ((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -3788 (|#1| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -3688 ((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -4212 ((-645 |#2|) |#2| |#2|)) (-15 -4052 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2806 (|#1| |#2| |#2|)) (-15 -2186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -2774 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1268 |#2|) |#1| (-1268 |#2|))) (-15 -2391 ((-1268 |#2|) (-1268 |#2|) |#1|)) (-15 -3708 ((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -2384 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -1688 (|#1| |#1| |#1| (-772))) (-15 -1377 (|#2| |#2| |#1| |#1| (-772))) (-15 -2748 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3718 (|#1| |#2| |#2|)) (-15 -1864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3387 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|))) +((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-972) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -972)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-972))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) 39)) (-2585 (($) NIL T CONST)) (-2945 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-2110 (((-567) $) 72)) (-4149 (($ (-645 (-567))) 18)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3893 (((-645 (-567)) $) 13)) (-1823 (($ $) 52)) (-4132 (((-863) $) 68) (((-645 (-567)) $) 11)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 8 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 26)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 25)) (-3033 (($ $ $) 28)) (* (($ (-923) $) NIL) (($ (-772) $) 37))) +(((-973) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4149 ($ (-645 (-567)))) (-15 -2945 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2110 ((-567) $)) (-15 -1823 ($ $))))) (T -973)) +((-4149 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))) (-2945 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) (-5 *3 (-645 (-567))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))) (-1823 (*1 *1 *1) (-5 *1 (-973)))) +(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4149 ($ (-645 (-567)))) (-15 -2945 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2110 ((-567) $)) (-15 -1823 ($ $)))) +((-3060 (($ $ |#2|) 31)) (-3045 (($ $) 23) (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29))) +(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3060 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-975 |#2| |#3| |#4|) (-1051) (-793) (-851)) (T -974)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3060 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 86)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2762 (((-112) $) 85)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-975 |#1| |#2| |#3|) (-140) (-1051) (-793) (-851)) (T -975)) +((-2989 (*1 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *2 (-793)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2824 ($ $ |t#3| |t#2|)) (-15 -2824 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -2976 ($ $)) (-15 -2989 (|t#1| $)) (-15 -3077 (|t#2| $)) (-15 -2847 ((-645 |t#3|) $)) (-15 -2762 ((-112) $)) (-15 -2192 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3720 (((-1096 (-225)) $) 8)) (-3711 (((-1096 (-225)) $) 9)) (-3703 (((-1096 (-225)) $) 10)) (-2049 (((-645 (-645 (-945 (-225)))) $) 11)) (-4132 (((-863) $) 6))) +(((-976) (-140)) (T -976)) +((-2049 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) +(-13 (-614 (-863)) (-10 -8 (-15 -2049 ((-645 (-645 (-945 (-225)))) $)) (-15 -3703 ((-1096 (-225)) $)) (-15 -3711 ((-1096 (-225)) $)) (-15 -3720 ((-1096 (-225)) $)))) (((-614 (-863)) . T)) -((-2845 (((-645 |#4|) $) 23)) (-3295 (((-112) $) 55)) (-3008 (((-112) $) 54)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#4|) 42)) (-3162 (((-112) $) 56)) (-2762 (((-112) $ $) 62)) (-3232 (((-112) $ $) 65)) (-3544 (((-112) $) 60)) (-4267 (((-645 |#5|) (-645 |#5|) $) 98)) (-3828 (((-645 |#5|) (-645 |#5|) $) 95)) (-1608 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3254 (((-645 |#4|) $) 27)) (-3377 (((-112) |#4| $) 34)) (-3121 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2388 (($ $ |#4|) 39)) (-2155 (($ $ |#4|) 38)) (-3712 (($ $ |#4|) 40)) (-2929 (((-112) $ $) 46))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3008 ((-112) |#1|)) (-15 -4267 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3828 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1608 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3121 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3232 ((-112) |#1| |#1|)) (-15 -2762 ((-112) |#1| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3295 ((-112) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -1842 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -3712 (|#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#4|)) (-15 -3377 ((-112) |#4| |#1|)) (-15 -3254 ((-645 |#4|) |#1|)) (-15 -2845 ((-645 |#4|) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-977 |#2| |#3| |#4| |#5|) (-1050) (-794) (-851) (-1066 |#2| |#3| |#4|)) (T -976)) -NIL -(-10 -8 (-15 -3008 ((-112) |#1|)) (-15 -4267 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3828 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1608 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3121 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3232 ((-112) |#1| |#1|)) (-15 -2762 ((-112) |#1| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3295 ((-112) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -1842 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -3712 (|#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#4|)) (-15 -3377 ((-112) |#4| |#1|)) (-15 -3254 ((-645 |#4|) |#1|)) (-15 -2845 ((-645 |#4|) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417)))) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417)))) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3430 (((-1121) $) 11)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4104 (((-112) $ $) 9)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-977 |#1| |#2| |#3| |#4|) (-140) (-1050) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -977)) -((-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6)))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-1066 *3 *4 *2)) (-4 *2 (-851)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5)))) (-3377 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1066 *4 *5 *3)) (-5 *2 (-112)))) (-2155 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2)))) (-1332 (*1 *2 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1066 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1842 *1) (|:| |upper| *1))) (-4 *1 (-977 *4 *5 *3 *6)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2762 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3232 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3121 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1608 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3828 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)))) (-4267 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112))))) -(-13 (-1101) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4417) (-15 -3747 ((-3 $ "failed") (-645 |t#4|))) (-15 -2033 ($ (-645 |t#4|))) (-15 -4146 (|t#3| $)) (-15 -2845 ((-645 |t#3|) $)) (-15 -3254 ((-645 |t#3|) $)) (-15 -3377 ((-112) |t#3| $)) (-15 -2155 ($ $ |t#3|)) (-15 -3712 ($ $ |t#3|)) (-15 -2388 ($ $ |t#3|)) (-15 -1332 ((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |t#3|)) (-15 -3295 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -3544 ((-112) $)) (-15 -2762 ((-112) $ $)) (-15 -3232 ((-112) $ $)) (-15 -3162 ((-112) $)) (-15 -3121 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1608 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3828 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -4267 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -3008 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-1101) . T) ((-1217) . T)) -((-2864 (((-645 |#4|) |#4| |#4|) 136)) (-2578 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-4391 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-2193 (((-112) |#4|) 43)) (-3038 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-2258 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-3122 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-4397 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-3579 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-4360 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2485 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-1695 (((-645 |#4|) (-645 |#4|)) 128)) (-1473 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3745 ((|#4| |#4| (-645 |#4|)) 60)) (-3904 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-1854 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-3772 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-2180 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-2814 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2357 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-1498 (((-112) (-645 |#4|)) 79)) (-3394 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-3892 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-3576 (((-112) |#4|) 36)) (-3290 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4321 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1657 (((-645 |#4|) (-645 |#4|)) 83)) (-1619 (((-645 |#4|) (-645 |#4|)) 97)) (-2918 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3476 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-3278 (((-112) |#4|) 45))) -(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2180 ((-645 |#4|) (-645 |#4|))) (-15 -2180 ((-645 |#4|) |#4| |#4|)) (-15 -1695 ((-645 |#4|) (-645 |#4|))) (-15 -2864 ((-645 |#4|) |#4| |#4|)) (-15 -2180 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2180 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2180 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -2918 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3394 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1498 ((-112) (-645 |#4|))) (-15 -2258 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -3122 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -4397 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2357 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2193 ((-112) |#4|)) (-15 -4391 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3576 ((-112) |#4|)) (-15 -3892 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3278 ((-112) |#4|)) (-15 -3476 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1473 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1473 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3745 (|#4| |#4| (-645 |#4|))) (-15 -1657 ((-645 |#4|) (-645 |#4|))) (-15 -3579 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -1619 ((-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2485 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3038 ((-645 |#4|) |#4|)) (-15 -2578 ((-645 |#4|) (-645 |#4|))) (-15 -2578 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -3904 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3772 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1854 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4321 ((-645 |#4|) (-645 |#4|))) (-15 -3290 ((-645 |#4|) (-645 |#4|))) (-15 -2814 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -978)) -((-2814 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1854 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3772 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3904 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2578 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2578 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-2485 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-978 *5 *6 *7 *8)))) (-4360 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-978 *6 *7 *8 *9)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3579 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2254 (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *2)))) (-1473 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-1473 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-3892 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-2357 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8)))) (-2918 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2180 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *3)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2180 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))) -(-10 -7 (-15 -2180 ((-645 |#4|) (-645 |#4|))) (-15 -2180 ((-645 |#4|) |#4| |#4|)) (-15 -1695 ((-645 |#4|) (-645 |#4|))) (-15 -2864 ((-645 |#4|) |#4| |#4|)) (-15 -2180 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2180 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2180 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -2918 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3394 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1498 ((-112) (-645 |#4|))) (-15 -2258 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -3122 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -4397 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2357 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2193 ((-112) |#4|)) (-15 -4391 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3576 ((-112) |#4|)) (-15 -3892 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3278 ((-112) |#4|)) (-15 -3476 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1473 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1473 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3745 (|#4| |#4| (-645 |#4|))) (-15 -1657 ((-645 |#4|) (-645 |#4|))) (-15 -3579 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -1619 ((-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2485 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3038 ((-645 |#4|) |#4|)) (-15 -2578 ((-645 |#4|) (-645 |#4|))) (-15 -2578 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -3904 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3772 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1854 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4321 ((-645 |#4|) (-645 |#4|))) (-15 -3290 ((-645 |#4|) (-645 |#4|))) (-15 -2814 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) -((-4073 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2266 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|)) 44)) (-1847 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-979 |#1|) (-10 -7 (-15 -4073 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1847 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2266 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|)))) (-365)) (T -979)) -((-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1267 *5))))) (-5 *1 (-979 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)))) (-1847 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-979 *5)))) (-4073 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-979 *6)) (-5 *3 (-690 *6))))) -(-10 -7 (-15 -4073 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1847 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2266 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1267 |#1|)))) (-690 |#1|) (-1267 |#1|)))) -((-2833 (((-421 |#4|) |#4|) 56))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2833 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-950 |#3| |#2| |#1|)) (T -980)) -((-2833 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) -(-10 -7 (-15 -2833 ((-421 |#4|) |#4|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-1314 (($ (-772)) 113 (|has| |#1| (-23)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-2567 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1101)))) (-1943 (($ (-645 |#1|)) 119)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1542 (((-690 |#1|) $ $) 106 (|has| |#1| (-1050)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3485 ((|#1| $) 103 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-1596 (((-112) $ (-772)) 10)) (-2334 ((|#1| $) 104 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3981 (($ $ (-645 |#1|)) 117)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-3246 ((|#1| $ $) 107 (|has| |#1| (-1050)))) (-1635 (((-922) $) 118)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-2202 (($ $ $) 105)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-4142 (($ (-645 |#1|)) 71)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3037 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3024 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-981 |#1|) (-140) (-1050)) (T -981)) -((-1943 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-981 *3)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1050)) (-5 *2 (-922)))) (-2202 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1050)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1050))))) -(-13 (-1265 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -1943 ($ (-645 |t#1|))) (-15 -1635 ((-922) $)) (-15 -2202 ($ $ $)) (-15 -3981 ($ $ (-645 |t#1|))))) -(((-34) . T) ((-102) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1101) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-1217) . T) ((-1265 |#1|) . T)) -((-3822 (((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)) 17))) -(((-982 |#1| |#2|) (-10 -7 (-15 -3822 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)))) (-1050) (-1050)) (T -982)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6))))) -(-10 -7 (-15 -3822 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)))) -((-3905 ((|#1| (-944 |#1|)) 14)) (-1436 ((|#1| (-944 |#1|)) 13)) (-2515 ((|#1| (-944 |#1|)) 12)) (-4349 ((|#1| (-944 |#1|)) 16)) (-2613 ((|#1| (-944 |#1|)) 24)) (-1698 ((|#1| (-944 |#1|)) 15)) (-1918 ((|#1| (-944 |#1|)) 17)) (-3534 ((|#1| (-944 |#1|)) 23)) (-3341 ((|#1| (-944 |#1|)) 22))) -(((-983 |#1|) (-10 -7 (-15 -2515 (|#1| (-944 |#1|))) (-15 -1436 (|#1| (-944 |#1|))) (-15 -3905 (|#1| (-944 |#1|))) (-15 -1698 (|#1| (-944 |#1|))) (-15 -4349 (|#1| (-944 |#1|))) (-15 -1918 (|#1| (-944 |#1|))) (-15 -3341 (|#1| (-944 |#1|))) (-15 -3534 (|#1| (-944 |#1|))) (-15 -2613 (|#1| (-944 |#1|)))) (-1050)) (T -983)) -((-2613 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(-10 -7 (-15 -2515 (|#1| (-944 |#1|))) (-15 -1436 (|#1| (-944 |#1|))) (-15 -3905 (|#1| (-944 |#1|))) (-15 -1698 (|#1| (-944 |#1|))) (-15 -4349 (|#1| (-944 |#1|))) (-15 -1918 (|#1| (-944 |#1|))) (-15 -3341 (|#1| (-944 |#1|))) (-15 -3534 (|#1| (-944 |#1|))) (-15 -2613 (|#1| (-944 |#1|)))) -((-3358 (((-3 |#1| "failed") |#1|) 18)) (-1669 (((-3 |#1| "failed") |#1|) 6)) (-4103 (((-3 |#1| "failed") |#1|) 16)) (-4156 (((-3 |#1| "failed") |#1|) 4)) (-1945 (((-3 |#1| "failed") |#1|) 20)) (-2386 (((-3 |#1| "failed") |#1|) 8)) (-1583 (((-3 |#1| "failed") |#1| (-772)) 1)) (-4066 (((-3 |#1| "failed") |#1|) 3)) (-2900 (((-3 |#1| "failed") |#1|) 2)) (-3364 (((-3 |#1| "failed") |#1|) 21)) (-1843 (((-3 |#1| "failed") |#1|) 9)) (-2213 (((-3 |#1| "failed") |#1|) 19)) (-3086 (((-3 |#1| "failed") |#1|) 7)) (-3049 (((-3 |#1| "failed") |#1|) 17)) (-3198 (((-3 |#1| "failed") |#1|) 5)) (-1799 (((-3 |#1| "failed") |#1|) 24)) (-2453 (((-3 |#1| "failed") |#1|) 12)) (-3239 (((-3 |#1| "failed") |#1|) 22)) (-2632 (((-3 |#1| "failed") |#1|) 10)) (-1571 (((-3 |#1| "failed") |#1|) 26)) (-3141 (((-3 |#1| "failed") |#1|) 14)) (-1841 (((-3 |#1| "failed") |#1|) 27)) (-1565 (((-3 |#1| "failed") |#1|) 15)) (-3362 (((-3 |#1| "failed") |#1|) 25)) (-2945 (((-3 |#1| "failed") |#1|) 13)) (-2022 (((-3 |#1| "failed") |#1|) 23)) (-3951 (((-3 |#1| "failed") |#1|) 11))) -(((-984 |#1|) (-140) (-1202)) (T -984)) -((-1841 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1571 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1799 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3239 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1945 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2213 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3049 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-4103 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1565 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3141 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2453 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3951 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2632 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1843 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2386 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3086 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1669 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-3198 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-4156 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-4066 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-2900 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202)))) (-1583 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(-13 (-10 -7 (-15 -1583 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -2900 ((-3 |t#1| "failed") |t#1|)) (-15 -4066 ((-3 |t#1| "failed") |t#1|)) (-15 -4156 ((-3 |t#1| "failed") |t#1|)) (-15 -3198 ((-3 |t#1| "failed") |t#1|)) (-15 -1669 ((-3 |t#1| "failed") |t#1|)) (-15 -3086 ((-3 |t#1| "failed") |t#1|)) (-15 -2386 ((-3 |t#1| "failed") |t#1|)) (-15 -1843 ((-3 |t#1| "failed") |t#1|)) (-15 -2632 ((-3 |t#1| "failed") |t#1|)) (-15 -3951 ((-3 |t#1| "failed") |t#1|)) (-15 -2453 ((-3 |t#1| "failed") |t#1|)) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -3141 ((-3 |t#1| "failed") |t#1|)) (-15 -1565 ((-3 |t#1| "failed") |t#1|)) (-15 -4103 ((-3 |t#1| "failed") |t#1|)) (-15 -3049 ((-3 |t#1| "failed") |t#1|)) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -2213 ((-3 |t#1| "failed") |t#1|)) (-15 -1945 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3239 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -1799 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -1571 ((-3 |t#1| "failed") |t#1|)) (-15 -1841 ((-3 |t#1| "failed") |t#1|)))) -((-1939 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4086 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3822 ((|#4| (-1 |#4| (-953 |#1|)) |#4|) 31))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4086 (|#4| |#4| |#3|)) (-15 -4086 (|#4| |#4| (-645 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-645 |#3|))) (-15 -3822 (|#4| (-1 |#4| (-953 |#1|)) |#4|))) (-1050) (-794) (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177))))) (-950 (-953 |#1|) |#2| |#3|)) (T -985)) -((-3822 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1050)) (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-5 *1 (-985 *4 *5 *6 *2)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-4086 (*1 *2 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)) (-15 -3638 ((-3 $ "failed") (-1177)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3))))) -(-10 -7 (-15 -4086 (|#4| |#4| |#3|)) (-15 -4086 (|#4| |#4| (-645 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-645 |#3|))) (-15 -3822 (|#4| (-1 |#4| (-953 |#1|)) |#4|))) -((-2306 ((|#2| |#3|) 35)) (-2910 (((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-1593 (((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103))) -(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -2306 (|#2| |#3|))) (-351) (-1243 |#1|) (-1243 |#2|) (-725 |#2| |#3|)) (T -986)) -((-2306 (*1 *2 *3) (-12 (-4 *3 (-1243 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-986 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 *3)) (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-1593 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| -1975 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))) -(-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -2306 (|#2| |#3|))) -((-3365 (((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3365 ((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1177)) (-772)) (T -987)) -((-3365 (*1 *2 *2) (-12 (-5 *2 (-988 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1177))) (-14 *4 (-772)) (-5 *1 (-987 *3 *4))))) -(-10 -7 (-15 -3365 ((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) -((-2399 (((-112) $ $) NIL)) (-2938 (((-3 (-112) "failed") $) 71)) (-3245 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4309 (($ $ (-3 (-112) "failed")) 72)) (-3072 (($ (-645 |#4|) |#4|) 25)) (-3739 (((-1159) $) NIL)) (-3545 (($ $) 69)) (-3430 (((-1121) $) NIL)) (-3240 (((-112) $) 70)) (-3347 (($) 30)) (-2984 ((|#4| $) 74)) (-3051 (((-645 |#4|) $) 73)) (-4127 (((-863) $) 68)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-988 |#1| |#2| |#3| |#4|) (-13 (-1101) (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -3072 ($ (-645 |#4|) |#4|)) (-15 -2938 ((-3 (-112) "failed") $)) (-15 -4309 ($ $ (-3 (-112) "failed"))) (-15 -3240 ((-112) $)) (-15 -3051 ((-645 |#4|) $)) (-15 -2984 (|#4| $)) (-15 -3545 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3245 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-950 |#1| |#3| |#2|)) (T -988)) -((-3347 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-3072 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-988 *4 *5 *6 *3)))) (-2938 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-4309 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-3240 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-3051 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-2984 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-3545 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-3245 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))) -(-13 (-1101) (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -3072 ($ (-645 |#4|) |#4|)) (-15 -2938 ((-3 (-112) "failed") $)) (-15 -4309 ($ $ (-3 (-112) "failed"))) (-15 -3240 ((-112) $)) (-15 -3051 ((-645 |#4|) $)) (-15 -2984 (|#4| $)) (-15 -3545 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3245 ($ $)) |%noBranch|) |%noBranch|))) -((-2700 (((-112) |#5| |#5|) 45)) (-3299 (((-112) |#5| |#5|) 60)) (-3283 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-3884 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-1712 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) 71)) (-3755 (((-1272)) 33)) (-1991 (((-1272) (-1159) (-1159) (-1159)) 29)) (-3521 (((-645 |#5|) (-645 |#5|)) 101)) (-3774 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) 93)) (-2146 (((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-1971 (((-112) |#5| |#5|) 54)) (-2045 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3274 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-4134 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-1835 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1692 (((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3199 (((-645 |#5|) (-645 |#5|)) 50))) -(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1991 ((-1272) (-1159) (-1159) (-1159))) (-15 -3755 ((-1272))) (-15 -2700 ((-112) |#5| |#5|)) (-15 -3199 ((-645 |#5|) (-645 |#5|))) (-15 -1971 ((-112) |#5| |#5|)) (-15 -3299 ((-112) |#5| |#5|)) (-15 -3884 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3274 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4134 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1835 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2045 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3283 ((-112) |#5| |#5|)) (-15 -3283 ((-112) |#5| (-645 |#5|))) (-15 -3521 ((-645 |#5|) (-645 |#5|))) (-15 -1712 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3774 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-15 -2146 ((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1692 ((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -989)) -((-1692 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| -3827 (-645 *9)) (|:| -2564 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1072 *6 *7 *8 *9)))) (-2146 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1072 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3827 (-645 *9)) (|:| -2564 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2564 *7)))) (-4 *6 (-1066 *3 *4 *5)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-1712 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8 *3)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-2045 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-1835 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-4134 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3884 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-1971 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-2700 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-3755 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-1991 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(-10 -7 (-15 -1991 ((-1272) (-1159) (-1159) (-1159))) (-15 -3755 ((-1272))) (-15 -2700 ((-112) |#5| |#5|)) (-15 -3199 ((-645 |#5|) (-645 |#5|))) (-15 -1971 ((-112) |#5| |#5|)) (-15 -3299 ((-112) |#5| |#5|)) (-15 -3884 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3274 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4134 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1835 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2045 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3283 ((-112) |#5| |#5|)) (-15 -3283 ((-112) |#5| (-645 |#5|))) (-15 -3521 ((-645 |#5|) (-645 |#5|))) (-15 -1712 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3774 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-15 -2146 ((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1692 ((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3638 (((-1177) $) 15)) (-3794 (((-1159) $) 16)) (-2534 (($ (-1177) (-1159)) 14)) (-4127 (((-863) $) 13))) -(((-990) (-13 (-614 (-863)) (-10 -8 (-15 -2534 ($ (-1177) (-1159))) (-15 -3638 ((-1177) $)) (-15 -3794 ((-1159) $))))) (T -990)) -((-2534 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1159)) (-5 *1 (-990)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-990)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-990))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2534 ($ (-1177) (-1159))) (-15 -3638 ((-1177) $)) (-15 -3794 ((-1159) $)))) -((-3822 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-993 |#1|) (-993 |#2|)) (T -991)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#2| |#1|) |#3|))) -((-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-1177) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-2033 ((|#2| $) NIL) (((-1177) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-1868 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-1378 (($) 99)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 76) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 85)) (-1747 (($ $) 10)) (-3641 (((-3 $ "failed") $) 20)) (-3822 (($ (-1 |#2| |#2|) $) 22)) (-2701 (($) 16)) (-2721 (($ $) 55)) (-1621 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3168 (($ $) 12)) (-3880 (((-893 (-567)) $) 71) (((-893 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1177)) 58)) (-1772 (((-772)) 31)) (-2952 (((-112) $ $) 51))) -(((-992 |#1| |#2|) (-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -4127 (|#1| (-1177))) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -1378 (|#1|)) (-15 -2721 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| |#1|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-993 |#2|) (-559)) (T -992)) -((-1772 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4))))) -(-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -4127 (|#1| (-1177))) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -1378 (|#1|)) (-15 -2721 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3489 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -1868 ((-690 |#2|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| |#1|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2660 ((|#1| $) 147 (|has| |#1| (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 138 (|has| |#1| (-910)))) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 141 (|has| |#1| (-910)))) (-2373 (((-112) $ $) 65)) (-3449 (((-567) $) 128 (|has| |#1| (-821)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 185) (((-3 (-1177) "failed") $) 136 (|has| |#1| (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1039 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1039 (-567))))) (-2033 ((|#1| $) 186) (((-1177) $) 137 (|has| |#1| (-1039 (-1177)))) (((-410 (-567)) $) 120 (|has| |#1| (-1039 (-567)))) (((-567) $) 118 (|has| |#1| (-1039 (-567))))) (-2344 (($ $ $) 61)) (-1868 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-3153 (((-3 $ "failed") $) 37)) (-1378 (($) 145 (|has| |#1| (-548)))) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-4357 (((-112) $) 130 (|has| |#1| (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 154 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 153 (|has| |#1| (-887 (-381))))) (-2843 (((-112) $) 35)) (-1747 (($ $) 149)) (-1441 ((|#1| $) 151)) (-3641 (((-3 $ "failed") $) 116 (|has| |#1| (-1152)))) (-2102 (((-112) $) 129 (|has| |#1| (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2010 (($ $ $) 126 (|has| |#1| (-851)))) (-2998 (($ $ $) 125 (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) 177)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-2701 (($) 115 (|has| |#1| (-1152)) CONST)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2721 (($ $) 146 (|has| |#1| (-308)))) (-1842 ((|#1| $) 143 (|has| |#1| (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 140 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 139 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) 178 (|has| |#1| (-517 (-1177) |#1|)))) (-4197 (((-772) $) 64)) (-1783 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-1621 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1177)) 172 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 171 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 170 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 169 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3168 (($ $) 148)) (-1455 ((|#1| $) 150)) (-3880 (((-893 (-567)) $) 156 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 155 (|has| |#1| (-615 (-893 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1023))) (((-225) $) 131 (|has| |#1| (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 142 (-1664 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1177)) 135 (|has| |#1| (-1039 (-1177))))) (-1467 (((-3 $ "failed") $) 134 (-2797 (|has| |#1| (-145)) (-1664 (|has| $ (-145)) (|has| |#1| (-910)))))) (-1772 (((-772)) 32 T CONST)) (-1687 ((|#1| $) 144 (|has| |#1| (-548)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-4137 (($ $) 127 (|has| |#1| (-821)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1177)) 168 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 167 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 166 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 165 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2988 (((-112) $ $) 123 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 122 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 124 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3050 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) -(((-993 |#1|) (-140) (-559)) (T -993)) -((-3050 (*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-1747 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1378 (*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548))))) -(-13 (-365) (-38 |t#1|) (-1039 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-885 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3050 ($ |t#1| |t#1|)) (-15 -1441 (|t#1| $)) (-15 -1455 (|t#1| $)) (-15 -1747 ($ $)) (-15 -3168 ($ $)) (IF (|has| |t#1| (-1152)) (-6 (-1152)) |%noBranch|) (IF (|has| |t#1| (-1039 (-567))) (PROGN (-6 (-1039 (-567))) (-6 (-1039 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1039 (-1177))) (-6 (-1039 (-1177))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2660 (|t#1| $)) (-15 -2721 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1378 ($)) (-15 -1687 (|t#1| $)) (-15 -1842 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-910)) (-6 (-910)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1177)) |has| |#1| (-1039 (-1177))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1023)) ((-615 (-381)) |has| |#1| (-1023)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2797 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-910) |has| |#1| (-910)) ((-921) . T) ((-1023) |has| |#1| (-1023)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-567))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #1#) |has| |#1| (-1039 (-1177))) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| |#1| (-1152)) ((-1217) . T) ((-1221) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-1966 (($ (-1143 |#1| |#2|)) 11)) (-2109 (((-1143 |#1| |#2|) $) 12)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1783 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL))) -(((-994 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1966 ($ (-1143 |#1| |#2|))) (-15 -2109 ((-1143 |#1| |#2|) $)) (-15 -1783 (|#2| $ (-240 |#1| |#2|))))) (-922) (-365)) (T -994)) -((-1966 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) (-5 *1 (-994 *3 *4)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1143 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) (-5 *1 (-994 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -1966 ($ (-1143 |#1| |#2|))) (-15 -2109 ((-1143 |#1| |#2|) $)) (-15 -1783 (|#2| $ (-240 |#1| |#2|))))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 9)) (-4127 (((-863) $) 15) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-995) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $))))) (T -995)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-995))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3715 (($ $) 47)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-2334 (((-772) $) 46)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2006 ((|#1| $) 45)) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-4030 ((|#1| |#1| $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1818 ((|#1| $) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2058 ((|#1| $) 44)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-996 |#1|) (-140) (-1217)) (T -996)) -((-4030 (*1 *2 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217)))) (-3715 (*1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -4030 (|t#1| |t#1| $)) (-15 -1818 (|t#1| $)) (-15 -3715 ($ $)) (-15 -2334 ((-772) $)) (-15 -2006 (|t#1| $)) (-15 -2058 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2840 (((-112) $) 43)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-2240 (((-3 (-410 (-567)) "failed") $) 78)) (-1426 (((-112) $) 72)) (-2242 (((-410 (-567)) $) 76)) (-2843 (((-112) $) 42)) (-2896 ((|#2| $) 22)) (-3822 (($ (-1 |#2| |#2|) $) 19)) (-2933 (($ $) 58)) (-1621 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3880 (((-539) $) 67)) (-2073 (($ $) 17)) (-4127 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-1772 (((-772)) 10)) (-4137 ((|#2| $) 71)) (-2929 (((-112) $ $) 26)) (-2952 (((-112) $ $) 69)) (-3037 (($ $) 30) (($ $ $) 29)) (-3024 (($ $ $) 27)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-997 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| (-410 (-567)))) (-15 -2952 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2933 (|#1| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -2843 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-998 |#2|) (-172)) (T -997)) -((-1772 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-997 *3 *4)) (-4 *3 (-998 *4))))) -(-10 -8 (-15 -4127 (|#1| (-410 (-567)))) (-15 -2952 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2933 (|#1| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -2896 (|#2| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -3822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -2843 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3747 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-2033 (((-567) $) 126 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 123)) (-1868 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-3153 (((-3 $ "failed") $) 37)) (-2724 ((|#1| $) 87)) (-2240 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-1426 (((-112) $) 85 (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-4003 (($ |#1| |#1| |#1| |#1|) 88)) (-2843 (((-112) $) 35)) (-2896 ((|#1| $) 89)) (-2010 (($ $ $) 76 (|has| |#1| (-851)))) (-2998 (($ $ $) 75 (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) 98)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 80 (|has| |#1| (-365)))) (-2979 ((|#1| $) 90)) (-1340 ((|#1| $) 91)) (-4217 ((|#1| $) 92)) (-3430 (((-1121) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) 99 (|has| |#1| (-517 (-1177) |#1|)))) (-1783 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-1621 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1177)) 117 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 116 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 115 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 114 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3880 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-2073 (($ $) 93)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-1467 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4137 ((|#1| $) 86 (|has| |#1| (-1061)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1177)) 113 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 112 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 111 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 110 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2988 (((-112) $ $) 73 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 72 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 74 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365))))) -(((-998 |#1|) (-140) (-172)) (T -998)) -((-2073 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-4003 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2240 (*1 *2 *1) (|partial| -12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) -(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2073 ($ $)) (-15 -4217 (|t#1| $)) (-15 -1340 (|t#1| $)) (-15 -2979 (|t#1| $)) (-15 -2896 (|t#1| $)) (-15 -4003 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2724 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1061)) (-15 -4137 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1426 ((-112) $)) (-15 -2242 ((-410 (-567)) $)) (-15 -2240 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2797 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1177) |#1|) |has| |#1| (-517 (-1177) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-365)) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1057 #0#) |has| |#1| (-365)) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3822 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) (-998 |#2|) (-172) (-998 |#4|) (-172)) (T -999)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-998 *6)) (-5 *1 (-999 *4 *5 *2 *6)) (-4 *4 (-998 *5))))) -(-10 -7 (-15 -3822 (|#3| (-1 |#4| |#2|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2724 ((|#1| $) 12)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1426 (((-112) $) NIL (|has| |#1| (-548)))) (-2242 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-4003 (($ |#1| |#1| |#1| |#1|) 16)) (-2843 (((-112) $) NIL)) (-2896 ((|#1| $) NIL)) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-2979 ((|#1| $) 15)) (-1340 ((|#1| $) 14)) (-4217 ((|#1| $) 13)) (-3430 (((-1121) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1177) |#1|))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-517 (-1177) |#1|)))) (-1783 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1621 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2073 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4137 ((|#1| $) NIL (|has| |#1| (-1061)))) (-1710 (($) 8 T CONST)) (-1722 (($) 10 T CONST)) (-2636 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))))) -(((-1000 |#1|) (-998 |#1|) (-172)) (T -1000)) -NIL -(-998 |#1|) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-3715 (($ $) 23)) (-4060 (($ (-645 |#1|)) 33)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-2334 (((-772) $) 26)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) 28)) (-1330 (($ |#1| $) 17)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2006 ((|#1| $) 27)) (-3060 ((|#1| $) 22)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-4030 ((|#1| |#1| $) 16)) (-3240 (((-112) $) 18)) (-3347 (($) NIL)) (-1818 ((|#1| $) 21)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) NIL)) (-2058 ((|#1| $) 30)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1001 |#1|) (-13 (-996 |#1|) (-10 -8 (-15 -4060 ($ (-645 |#1|))))) (-1101)) (T -1001)) -((-4060 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-1001 *3))))) -(-13 (-996 |#1|) (-10 -8 (-15 -4060 ($ (-645 |#1|))))) -((-2714 (($ $) 12)) (-1709 (($ $ (-567)) 13))) -(((-1002 |#1|) (-10 -8 (-15 -2714 (|#1| |#1|)) (-15 -1709 (|#1| |#1| (-567)))) (-1003)) (T -1002)) -NIL -(-10 -8 (-15 -2714 (|#1| |#1|)) (-15 -1709 (|#1| |#1| (-567)))) -((-2714 (($ $) 6)) (-1709 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8))) -(((-1003) (-140)) (T -1003)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-410 (-567))))) (-1709 (*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-567)))) (-2714 (*1 *1 *1) (-4 *1 (-1003)))) -(-13 (-10 -8 (-15 -2714 ($ $)) (-15 -1709 ($ $ (-567))) (-15 ** ($ $ (-410 (-567)))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-1485 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-1312 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2318 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2981 (((-690 (-410 |#2|)) (-1267 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4290 (((-410 |#2|) $) NIL)) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2833 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2373 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2371 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-2456 (((-112)) NIL)) (-1778 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-4025 (($ (-1267 (-410 |#2|)) (-1267 $)) NIL) (($ (-1267 (-410 |#2|))) 81) (($ (-1267 |#2|) |#2|) NIL)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2344 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1937 (((-690 (-410 |#2|)) $ (-1267 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-410 |#2|))) (|:| |vec| (-1267 (-410 |#2|)))) (-690 $) (-1267 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-2963 (((-1267 $) (-1267 $)) NIL)) (-2499 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3153 (((-3 $ "failed") $) NIL)) (-2084 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-1589 (((-112) |#1| |#1|) NIL)) (-1979 (((-922)) NIL)) (-1378 (($) NIL (|has| (-410 |#2|) (-370)))) (-3062 (((-112)) NIL)) (-3495 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2355 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-4334 (($ $) NIL)) (-3005 (($) NIL (|has| (-410 |#2|) (-351)))) (-4284 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4112 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-4341 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2937 (((-922) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-351)))) (-2843 (((-112) $) NIL)) (-1921 (((-772)) NIL)) (-3487 (((-1267 $) (-1267 $)) NIL)) (-2896 (((-410 |#2|) $) NIL)) (-3178 (((-645 (-953 |#1|)) (-1177)) NIL (|has| |#1| (-365)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2612 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3425 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-2488 ((|#3| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3739 (((-1159) $) NIL)) (-4366 (((-690 (-410 |#2|))) 57)) (-2325 (((-690 (-410 |#2|))) 56)) (-2933 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1913 (($ (-1267 |#2|) |#2|) 82)) (-3764 (((-690 (-410 |#2|))) 55)) (-3186 (((-690 (-410 |#2|))) 54)) (-4154 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3030 (((-2 (|:| |num| (-1267 |#2|)) (|:| |den| |#2|)) $) 88)) (-2879 (((-1267 $)) 51)) (-1593 (((-1267 $)) 50)) (-2606 (((-112) $) NIL)) (-1789 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2701 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3763 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-3615 (((-3 |#2| "failed")) 70)) (-3430 (((-1121) $) NIL)) (-1445 (((-772)) NIL)) (-1394 (($) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| (-410 |#2|) (-365)))) (-2771 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2703 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2387 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4197 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1783 ((|#1| $ |#1| |#1|) NIL)) (-3237 (((-3 |#2| "failed")) 68)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1999 (((-410 |#2|) (-1267 $)) NIL) (((-410 |#2|)) 47)) (-3942 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1621 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3337 (((-690 (-410 |#2|)) (-1267 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2530 ((|#3|) 58)) (-3057 (($) NIL (|has| (-410 |#2|) (-351)))) (-2446 (((-1267 (-410 |#2|)) $ (-1267 $)) NIL) (((-690 (-410 |#2|)) (-1267 $) (-1267 $)) NIL) (((-1267 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1267 $)) NIL)) (-3880 (((-1267 (-410 |#2|)) $) NIL) (($ (-1267 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-1370 (((-1267 $) (-1267 $)) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2797 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1467 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-3116 ((|#3| $) NIL)) (-1772 (((-772)) NIL T CONST)) (-3750 (((-112)) 65)) (-2861 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 143)) (-4380 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3596 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3222 (((-112)) NIL)) (-1710 (($) 109 T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1177))))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2797 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) -(((-1004 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1221) (-1243 |#1|) (-1243 (-410 |#2|)) (-410 |#2|) (-772)) (T -1004)) +((-2847 (((-645 |#4|) $) 23)) (-2017 (((-112) $) 55)) (-3623 (((-112) $) 54)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#4|) 42)) (-1490 (((-112) $) 56)) (-2752 (((-112) $ $) 62)) (-4224 (((-112) $ $) 65)) (-3547 (((-112) $) 60)) (-1724 (((-645 |#5|) (-645 |#5|) $) 98)) (-3197 (((-645 |#5|) (-645 |#5|) $) 95)) (-4194 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2826 (((-645 |#4|) $) 27)) (-2808 (((-112) |#4| $) 34)) (-2430 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2397 (($ $ |#4|) 39)) (-2120 (($ $ |#4|) 38)) (-2813 (($ $ |#4|) 40)) (-2936 (((-112) $ $) 46))) +(((-977 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3623 ((-112) |#1|)) (-15 -1724 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3197 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -4194 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2430 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1490 ((-112) |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4396 ((-2 (|:| |under| |#1|) (|:| -2780 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -2808 ((-112) |#4| |#1|)) (-15 -2826 ((-645 |#4|) |#1|)) (-15 -2847 ((-645 |#4|) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-978 |#2| |#3| |#4| |#5|) (-1051) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -977)) +NIL +(-10 -8 (-15 -3623 ((-112) |#1|)) (-15 -1724 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3197 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -4194 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2430 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1490 ((-112) |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4396 ((-2 (|:| |under| |#1|) (|:| -2780 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -2808 ((-112) |#4| |#1|)) (-15 -2826 ((-645 |#4|) |#1|)) (-15 -2847 ((-645 |#4|) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418)))) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418)))) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3430 (((-1122) $) 11)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-978 |#1| |#2| |#3| |#4|) (-140) (-1051) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -978)) +((-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2808 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-2120 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-2397 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-4396 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2780 *1) (|:| |upper| *1))) (-4 *1 (-978 *4 *5 *3 *6)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2752 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2430 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4194 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3197 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-1724 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112))))) +(-13 (-1102) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4418) (-15 -3753 ((-3 $ "failed") (-645 |t#4|))) (-15 -2038 ($ (-645 |t#4|))) (-15 -1679 (|t#3| $)) (-15 -2847 ((-645 |t#3|) $)) (-15 -2826 ((-645 |t#3|) $)) (-15 -2808 ((-112) |t#3| $)) (-15 -2120 ($ $ |t#3|)) (-15 -2813 ($ $ |t#3|)) (-15 -2397 ($ $ |t#3|)) (-15 -4396 ((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |t#3|)) (-15 -2017 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -3547 ((-112) $)) (-15 -2752 ((-112) $ $)) (-15 -4224 ((-112) $ $)) (-15 -1490 ((-112) $)) (-15 -2430 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4194 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3197 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -1724 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -3623 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-1102) . T) ((-1218) . T)) +((-2890 (((-645 |#4|) |#4| |#4|) 136)) (-1678 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-3614 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-1641 (((-112) |#4|) 43)) (-3652 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3434 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-2511 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-3104 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-3228 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-3409 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2377 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3936 (((-645 |#4|) (-645 |#4|)) 128)) (-4360 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3885 ((|#4| |#4| (-645 |#4|)) 60)) (-4065 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-3369 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-3322 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-2771 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-1694 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1937 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-4256 (((-112) (-645 |#4|)) 79)) (-4274 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-2329 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-4119 (((-112) |#4|) 36)) (-2747 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2541 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2516 (((-645 |#4|) (-645 |#4|)) 83)) (-3693 (((-645 |#4|) (-645 |#4|)) 97)) (-3127 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2515 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-4187 (((-112) |#4|) 45))) +(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 ((-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) |#4| |#4|)) (-15 -3936 ((-645 |#4|) (-645 |#4|))) (-15 -2890 ((-645 |#4|) |#4| |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -3127 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4274 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4256 ((-112) (-645 |#4|))) (-15 -3434 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2511 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3104 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1641 ((-112) |#4|)) (-15 -3614 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4119 ((-112) |#4|)) (-15 -2329 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4187 ((-112) |#4|)) (-15 -2515 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3885 (|#4| |#4| (-645 |#4|))) (-15 -2516 ((-645 |#4|) (-645 |#4|))) (-15 -3228 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3693 ((-645 |#4|) (-645 |#4|))) (-15 -3409 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3652 ((-645 |#4|) |#4|)) (-15 -1678 ((-645 |#4|) (-645 |#4|))) (-15 -1678 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -4065 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3322 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3369 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2541 ((-645 |#4|) (-645 |#4|))) (-15 -2747 ((-645 |#4|) (-645 |#4|))) (-15 -1694 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -979)) +((-1694 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3369 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3322 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-4065 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1678 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2377 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))) (-3409 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2262 (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))) (-4360 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-4360 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4187 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2329 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))) (-3127 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-2771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-2771 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2771 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) (-2890 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2771 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) +(-10 -7 (-15 -2771 ((-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) |#4| |#4|)) (-15 -3936 ((-645 |#4|) (-645 |#4|))) (-15 -2890 ((-645 |#4|) |#4| |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -3127 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4274 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4256 ((-112) (-645 |#4|))) (-15 -3434 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2511 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3104 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1641 ((-112) |#4|)) (-15 -3614 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4119 ((-112) |#4|)) (-15 -2329 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4187 ((-112) |#4|)) (-15 -2515 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3885 (|#4| |#4| (-645 |#4|))) (-15 -2516 ((-645 |#4|) (-645 |#4|))) (-15 -3228 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3693 ((-645 |#4|) (-645 |#4|))) (-15 -3409 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3652 ((-645 |#4|) |#4|)) (-15 -1678 ((-645 |#4|) (-645 |#4|))) (-15 -1678 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -4065 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3322 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3369 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2541 ((-645 |#4|) (-645 |#4|))) (-15 -2747 ((-645 |#4|) (-645 |#4|))) (-15 -1694 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) +((-4092 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2986 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)) 44)) (-2057 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-980 |#1|) (-10 -7 (-15 -4092 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2057 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2986 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)))) (-365)) (T -980)) +((-2986 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)))) (-2057 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-980 *5)))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-690 *6))))) +(-10 -7 (-15 -4092 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2057 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2986 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)))) +((-2908 (((-421 |#4|) |#4|) 56))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2908 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-951 |#3| |#2| |#1|)) (T -981)) +((-2908 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) +(-10 -7 (-15 -2908 ((-421 |#4|) |#4|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772)) 113 (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-4371 (($ (-645 |#1|)) 119)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3908 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2863 (((-112) $ (-772)) 10)) (-1699 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-2410 (($ $ (-645 |#1|)) 117)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3366 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1879 (((-923) $) 118)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-4295 (($ $ $) 105)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3045 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3033 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-982 |#1|) (-140) (-1051)) (T -982)) +((-4371 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051))))) +(-13 (-1266 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -4371 ($ (-645 |t#1|))) (-15 -1879 ((-923) $)) (-15 -4295 ($ $ $)) (-15 -2410 ($ $ (-645 |t#1|))))) +(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T) ((-1266 |#1|) . T)) +((-3829 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 17))) +(((-983 |#1| |#2|) (-10 -7 (-15 -3829 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1051) (-1051)) (T -983)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6))))) +(-10 -7 (-15 -3829 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) +((-4198 ((|#1| (-945 |#1|)) 14)) (-3292 ((|#1| (-945 |#1|)) 13)) (-4366 ((|#1| (-945 |#1|)) 12)) (-1608 ((|#1| (-945 |#1|)) 16)) (-4315 ((|#1| (-945 |#1|)) 24)) (-4272 ((|#1| (-945 |#1|)) 15)) (-3447 ((|#1| (-945 |#1|)) 17)) (-3811 ((|#1| (-945 |#1|)) 23)) (-4039 ((|#1| (-945 |#1|)) 22))) +(((-984 |#1|) (-10 -7 (-15 -4366 (|#1| (-945 |#1|))) (-15 -3292 (|#1| (-945 |#1|))) (-15 -4198 (|#1| (-945 |#1|))) (-15 -4272 (|#1| (-945 |#1|))) (-15 -1608 (|#1| (-945 |#1|))) (-15 -3447 (|#1| (-945 |#1|))) (-15 -4039 (|#1| (-945 |#1|))) (-15 -3811 (|#1| (-945 |#1|))) (-15 -4315 (|#1| (-945 |#1|)))) (-1051)) (T -984)) +((-4315 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(-10 -7 (-15 -4366 (|#1| (-945 |#1|))) (-15 -3292 (|#1| (-945 |#1|))) (-15 -4198 (|#1| (-945 |#1|))) (-15 -4272 (|#1| (-945 |#1|))) (-15 -1608 (|#1| (-945 |#1|))) (-15 -3447 (|#1| (-945 |#1|))) (-15 -4039 (|#1| (-945 |#1|))) (-15 -3811 (|#1| (-945 |#1|))) (-15 -4315 (|#1| (-945 |#1|)))) +((-2376 (((-3 |#1| "failed") |#1|) 18)) (-3599 (((-3 |#1| "failed") |#1|) 6)) (-1649 (((-3 |#1| "failed") |#1|) 16)) (-4350 (((-3 |#1| "failed") |#1|) 4)) (-1349 (((-3 |#1| "failed") |#1|) 20)) (-2305 (((-3 |#1| "failed") |#1|) 8)) (-3769 (((-3 |#1| "failed") |#1| (-772)) 1)) (-1557 (((-3 |#1| "failed") |#1|) 3)) (-1632 (((-3 |#1| "failed") |#1|) 2)) (-1872 (((-3 |#1| "failed") |#1|) 21)) (-2874 (((-3 |#1| "failed") |#1|) 9)) (-3114 (((-3 |#1| "failed") |#1|) 19)) (-2579 (((-3 |#1| "failed") |#1|) 7)) (-2136 (((-3 |#1| "failed") |#1|) 17)) (-2247 (((-3 |#1| "failed") |#1|) 5)) (-4213 (((-3 |#1| "failed") |#1|) 24)) (-2363 (((-3 |#1| "failed") |#1|) 12)) (-3484 (((-3 |#1| "failed") |#1|) 22)) (-2440 (((-3 |#1| "failed") |#1|) 10)) (-1886 (((-3 |#1| "failed") |#1|) 26)) (-3391 (((-3 |#1| "failed") |#1|) 14)) (-2682 (((-3 |#1| "failed") |#1|) 27)) (-4109 (((-3 |#1| "failed") |#1|) 15)) (-1625 (((-3 |#1| "failed") |#1|) 25)) (-1812 (((-3 |#1| "failed") |#1|) 13)) (-2287 (((-3 |#1| "failed") |#1|) 23)) (-2224 (((-3 |#1| "failed") |#1|) 11))) +(((-985 |#1|) (-140) (-1203)) (T -985)) +((-2682 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1886 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1625 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4213 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2287 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3484 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1872 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1349 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3114 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2376 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2136 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1649 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4109 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3391 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1812 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2363 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2224 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2440 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2874 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2305 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2579 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3599 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2247 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4350 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1557 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1632 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3769 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(-13 (-10 -7 (-15 -3769 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -1632 ((-3 |t#1| "failed") |t#1|)) (-15 -1557 ((-3 |t#1| "failed") |t#1|)) (-15 -4350 ((-3 |t#1| "failed") |t#1|)) (-15 -2247 ((-3 |t#1| "failed") |t#1|)) (-15 -3599 ((-3 |t#1| "failed") |t#1|)) (-15 -2579 ((-3 |t#1| "failed") |t#1|)) (-15 -2305 ((-3 |t#1| "failed") |t#1|)) (-15 -2874 ((-3 |t#1| "failed") |t#1|)) (-15 -2440 ((-3 |t#1| "failed") |t#1|)) (-15 -2224 ((-3 |t#1| "failed") |t#1|)) (-15 -2363 ((-3 |t#1| "failed") |t#1|)) (-15 -1812 ((-3 |t#1| "failed") |t#1|)) (-15 -3391 ((-3 |t#1| "failed") |t#1|)) (-15 -4109 ((-3 |t#1| "failed") |t#1|)) (-15 -1649 ((-3 |t#1| "failed") |t#1|)) (-15 -2136 ((-3 |t#1| "failed") |t#1|)) (-15 -2376 ((-3 |t#1| "failed") |t#1|)) (-15 -3114 ((-3 |t#1| "failed") |t#1|)) (-15 -1349 ((-3 |t#1| "failed") |t#1|)) (-15 -1872 ((-3 |t#1| "failed") |t#1|)) (-15 -3484 ((-3 |t#1| "failed") |t#1|)) (-15 -2287 ((-3 |t#1| "failed") |t#1|)) (-15 -4213 ((-3 |t#1| "failed") |t#1|)) (-15 -1625 ((-3 |t#1| "failed") |t#1|)) (-15 -1886 ((-3 |t#1| "failed") |t#1|)) (-15 -2682 ((-3 |t#1| "failed") |t#1|)))) +((-3876 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2802 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3829 ((|#4| (-1 |#4| (-954 |#1|)) |#4|) 31))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2802 (|#4| |#4| |#3|)) (-15 -2802 (|#4| |#4| (-645 |#3|))) (-15 -3876 (|#4| |#4| |#3|)) (-15 -3876 (|#4| |#4| (-645 |#3|))) (-15 -3829 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) (-1051) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-951 (-954 |#1|) |#2| |#3|)) (T -986)) +((-3829 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *6 *2)))) (-3876 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-3876 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) (-2802 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-2802 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))) +(-10 -7 (-15 -2802 (|#4| |#4| |#3|)) (-15 -2802 (|#4| |#4| (-645 |#3|))) (-15 -3876 (|#4| |#4| |#3|)) (-15 -3876 (|#4| |#4| (-645 |#3|))) (-15 -3829 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) +((-1346 ((|#2| |#3|) 35)) (-3454 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-3675 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103))) +(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1346 (|#2| |#3|))) (-351) (-1244 |#1|) (-1244 |#2|) (-725 |#2| |#3|)) (T -987)) +((-1346 (*1 *2 *3) (-12 (-4 *3 (-1244 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-987 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-3675 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))) +(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1346 (|#2| |#3|))) +((-3754 (((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84))) +(((-988 |#1| |#2|) (-10 -7 (-15 -3754 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1178)) (-772)) (T -988)) +((-3754 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4))))) +(-10 -7 (-15 -3754 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) +((-2403 (((-112) $ $) NIL)) (-2913 (((-3 (-112) "failed") $) 71)) (-3269 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3426 (($ $ (-3 (-112) "failed")) 72)) (-3699 (($ (-645 |#4|) |#4|) 25)) (-1419 (((-1160) $) NIL)) (-3618 (($ $) 69)) (-3430 (((-1122) $) NIL)) (-3572 (((-112) $) 70)) (-3498 (($) 30)) (-2472 ((|#4| $) 74)) (-2248 (((-645 |#4|) $) 73)) (-4132 (((-863) $) 68)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-989 |#1| |#2| |#3| |#4|) (-13 (-1102) (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3699 ($ (-645 |#4|) |#4|)) (-15 -2913 ((-3 (-112) "failed") $)) (-15 -3426 ($ $ (-3 (-112) "failed"))) (-15 -3572 ((-112) $)) (-15 -2248 ((-645 |#4|) $)) (-15 -2472 (|#4| $)) (-15 -3618 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3269 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-951 |#1| |#3| |#2|)) (T -989)) +((-3498 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2913 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3426 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3572 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-2472 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-3618 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-3269 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))) +(-13 (-1102) (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3699 ($ (-645 |#4|) |#4|)) (-15 -2913 ((-3 (-112) "failed") $)) (-15 -3426 ($ $ (-3 (-112) "failed"))) (-15 -3572 ((-112) $)) (-15 -2248 ((-645 |#4|) $)) (-15 -2472 (|#4| $)) (-15 -3618 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3269 ($ $)) |%noBranch|) |%noBranch|))) +((-2993 (((-112) |#5| |#5|) 45)) (-2203 (((-112) |#5| |#5|) 60)) (-3363 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2763 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2892 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 71)) (-2452 (((-1273)) 33)) (-2519 (((-1273) (-1160) (-1160) (-1160)) 29)) (-3864 (((-645 |#5|) (-645 |#5|)) 101)) (-3524 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) 93)) (-3625 (((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-4195 (((-112) |#5| |#5|) 54)) (-3300 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1913 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3150 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3392 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1833 (((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2354 (((-645 |#5|) (-645 |#5|)) 50))) +(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -990)) +((-1833 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-3625 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4195 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2452 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2519 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3644 (((-1178) $) 15)) (-3802 (((-1160) $) 16)) (-2537 (($ (-1178) (-1160)) 14)) (-4132 (((-863) $) 13))) +(((-991) (-13 (-614 (-863)) (-10 -8 (-15 -2537 ($ (-1178) (-1160))) (-15 -3644 ((-1178) $)) (-15 -3802 ((-1160) $))))) (T -991)) +((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-991)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-991)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-991))))) +(-13 (-614 (-863)) (-10 -8 (-15 -2537 ($ (-1178) (-1160))) (-15 -3644 ((-1178) $)) (-15 -3802 ((-1160) $)))) +((-3829 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-994 |#1|) (-994 |#2|)) (T -992)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) +((-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-1178) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-2038 ((|#2| $) NIL) (((-1178) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-1348 (($) 99)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 76) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 85)) (-3530 (($ $) 10)) (-3972 (((-3 $ "failed") $) 20)) (-3829 (($ (-1 |#2| |#2|) $) 22)) (-2672 (($) 16)) (-4094 (($ $) 55)) (-1593 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1967 (($ $) 12)) (-3893 (((-894 (-567)) $) 71) (((-894 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1178)) 58)) (-4221 (((-772)) 31)) (-2958 (((-112) $ $) 51))) +(((-993 |#1| |#2|) (-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -1348 (|#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1967 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-994 |#2|) (-559)) (T -993)) +((-4221 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) +(-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -1348 (|#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1967 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 ((|#1| $) 147 (|has| |#1| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 138 (|has| |#1| (-911)))) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-911)))) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 128 (|has| |#1| (-821)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 185) (((-3 (-1178) "failed") $) 136 (|has| |#1| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 186) (((-1178) $) 137 (|has| |#1| (-1040 (-1178)))) (((-410 (-567)) $) 120 (|has| |#1| (-1040 (-567)))) (((-567) $) 118 (|has| |#1| (-1040 (-567))))) (-2349 (($ $ $) 61)) (-2630 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 145 (|has| |#1| (-548)))) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4336 (((-112) $) 130 (|has| |#1| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 154 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 153 (|has| |#1| (-888 (-381))))) (-1433 (((-112) $) 35)) (-3530 (($ $) 149)) (-1448 ((|#1| $) 151)) (-3972 (((-3 $ "failed") $) 116 (|has| |#1| (-1153)))) (-3494 (((-112) $) 129 (|has| |#1| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 126 (|has| |#1| (-851)))) (-2981 (($ $ $) 125 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 177)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 115 (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 146 (|has| |#1| (-308)))) (-2780 ((|#1| $) 143 (|has| |#1| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 140 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 139 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 178 (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) 64)) (-1787 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-1593 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1178)) 172 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 171 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 170 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 169 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1967 (($ $) 148)) (-1460 ((|#1| $) 150)) (-3893 (((-894 (-567)) $) 156 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 155 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1024))) (((-225) $) 131 (|has| |#1| (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 142 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1178)) 135 (|has| |#1| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) 134 (-2800 (|has| |#1| (-145)) (-1667 (|has| $ (-145)) (|has| |#1| (-911)))))) (-4221 (((-772)) 32 T CONST)) (-1423 ((|#1| $) 144 (|has| |#1| (-548)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 127 (|has| |#1| (-821)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1178)) 168 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 167 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 166 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 165 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2997 (((-112) $ $) 123 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 122 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 124 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3060 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +(((-994 |#1|) (-140) (-559)) (T -994)) +((-3060 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1967 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-4094 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1348 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))) +(-13 (-365) (-38 |t#1|) (-1040 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-886 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3060 ($ |t#1| |t#1|)) (-15 -1448 (|t#1| $)) (-15 -1460 (|t#1| $)) (-15 -3530 ($ $)) (-15 -1967 ($ $)) (IF (|has| |t#1| (-1153)) (-6 (-1153)) |%noBranch|) (IF (|has| |t#1| (-1040 (-567))) (PROGN (-6 (-1040 (-567))) (-6 (-1040 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1040 (-1178))) (-6 (-1040 (-1178))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3093 (|t#1| $)) (-15 -4094 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1348 ($)) (-15 -1423 (|t#1| $)) (-15 -2780 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1178)) |has| |#1| (-1040 (-1178))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1024)) ((-615 (-381)) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2800 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) |has| |#1| (-911)) ((-922) . T) ((-1024) |has| |#1| (-1024)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-567))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #1#) |has| |#1| (-1040 (-1178))) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-1153)) ((-1218) . T) ((-1222) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-1919 (($ (-1144 |#1| |#2|)) 11)) (-2114 (((-1144 |#1| |#2|) $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL))) +(((-995 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1919 ($ (-1144 |#1| |#2|))) (-15 -2114 ((-1144 |#1| |#2|) $)) (-15 -1787 (|#2| $ (-240 |#1| |#2|))))) (-923) (-365)) (T -995)) +((-1919 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) (-5 *1 (-995 *3 *4)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) (-5 *1 (-995 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1919 ($ (-1144 |#1| |#2|))) (-15 -2114 ((-1144 |#1| |#2|) $)) (-15 -1787 (|#2| $ (-240 |#1| |#2|))))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-996) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))) (T -996)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-3061 (($ $) 47)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1699 (((-772) $) 46)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3303 ((|#1| $) 45)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3136 ((|#1| |#1| $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2234 ((|#1| $) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-3090 ((|#1| $) 44)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-997 |#1|) (-140) (-1218)) (T -997)) +((-3136 (*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-3061 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -3136 (|t#1| |t#1| $)) (-15 -2234 (|t#1| $)) (-15 -3061 ($ $)) (-15 -1699 ((-772) $)) (-15 -3303 (|t#1| $)) (-15 -3090 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2460 (((-112) $) 43)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-2085 (((-3 (-410 (-567)) "failed") $) 78)) (-1862 (((-112) $) 72)) (-2331 (((-410 (-567)) $) 76)) (-1433 (((-112) $) 42)) (-2475 ((|#2| $) 22)) (-3829 (($ (-1 |#2| |#2|) $) 19)) (-2939 (($ $) 58)) (-1593 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3893 (((-539) $) 67)) (-1823 (($ $) 17)) (-4132 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 10)) (-2219 ((|#2| $) 71)) (-2936 (((-112) $ $) 26)) (-2958 (((-112) $ $) 69)) (-3045 (($ $) 30) (($ $ $) 29)) (-3033 (($ $ $) 27)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) +(((-998 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -2958 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2939 (|#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -1433 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-999 |#2|) (-172)) (T -998)) +((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) (-4 *3 (-999 *4))))) +(-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -2958 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2939 (|#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -1433 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-2038 (((-567) $) 126 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 123)) (-2630 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 87)) (-2085 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-1862 (((-112) $) 85 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-3079 (($ |#1| |#1| |#1| |#1|) 88)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 89)) (-1354 (($ $ $) 76 (|has| |#1| (-851)))) (-2981 (($ $ $) 75 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 98)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 80 (|has| |#1| (-365)))) (-2048 ((|#1| $) 90)) (-3926 ((|#1| $) 91)) (-3421 ((|#1| $) 92)) (-3430 (((-1122) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 99 (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-1593 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1178)) 117 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 116 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 115 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 114 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3893 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 93)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 ((|#1| $) 86 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1178)) 113 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 112 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 111 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 110 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2997 (((-112) $ $) 73 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 72 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 74 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365))))) +(((-999 |#1|) (-140) (-172)) (T -999)) +((-1823 (*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3079 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) +(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1823 ($ $)) (-15 -3421 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -2048 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -3079 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2727 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-365)) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1058 #0#) |has| |#1| (-365)) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-999 |#2|) (-172) (-999 |#4|) (-172)) (T -1000)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5))))) +(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 12)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-3079 (($ |#1| |#1| |#1| |#1|) 16)) (-1433 (((-112) $) NIL)) (-2475 ((|#1| $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2048 ((|#1| $) 15)) (-3926 ((|#1| $) 14)) (-3421 ((|#1| $) 13)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1716 (($) 8 T CONST)) (-1728 (($) 10 T CONST)) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))))) +(((-1001 |#1|) (-999 |#1|) (-172)) (T -1001)) +NIL +(-999 |#1|) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-3061 (($ $) 23)) (-2314 (($ (-645 |#1|)) 33)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1699 (((-772) $) 26)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 28)) (-2531 (($ |#1| $) 17)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3303 ((|#1| $) 27)) (-1793 ((|#1| $) 22)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3136 ((|#1| |#1| $) 16)) (-3572 (((-112) $) 18)) (-3498 (($) NIL)) (-2234 ((|#1| $) 21)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-3090 ((|#1| $) 30)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1002 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2314 ($ (-645 |#1|))))) (-1102)) (T -1002)) +((-2314 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3))))) +(-13 (-997 |#1|) (-10 -8 (-15 -2314 ($ (-645 |#1|))))) +((-2716 (($ $) 12)) (-2651 (($ $ (-567)) 13))) +(((-1003 |#1|) (-10 -8 (-15 -2716 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-567)))) (-1004)) (T -1003)) +NIL +(-10 -8 (-15 -2716 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-567)))) +((-2716 (($ $) 6)) (-2651 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8))) +(((-1004) (-140)) (T -1004)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))) (-2716 (*1 *1 *1) (-4 *1 (-1004)))) +(-13 (-10 -8 (-15 -2716 ($ $)) (-15 -2651 ($ $ (-567))) (-15 ** ($ $ (-410 (-567)))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4381 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) NIL)) (-1404 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) NIL) (($ (-1268 (-410 |#2|))) 81) (($ (-1268 |#2|) |#2|) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-1639 (((-1268 $) (-1268 $)) NIL)) (-2477 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1381 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) NIL)) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) NIL)) (-3347 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2360 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-3501 (($ $) NIL)) (-3431 (($) NIL (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) NIL)) (-3663 (((-772)) NIL)) (-4126 (((-1268 $) (-1268 $)) NIL)) (-2475 (((-410 |#2|) $) NIL)) (-4334 (((-645 (-954 |#1|)) (-1178)) NIL (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) NIL)) (-4143 (((-690 (-410 |#2|))) 57)) (-3264 (((-690 (-410 |#2|))) 56)) (-2939 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 82)) (-1900 (((-690 (-410 |#2|))) 55)) (-3564 (((-690 (-410 |#2|))) 54)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 88)) (-3992 (((-1268 $)) 51)) (-3675 (((-1268 $)) 50)) (-1928 (((-112) $) NIL)) (-4255 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2672 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) 70)) (-3430 (((-1122) $) NIL)) (-2666 (((-772)) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) NIL)) (-3346 (((-3 |#2| "failed")) 68)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) NIL) (((-410 |#2|)) 47)) (-2491 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 58)) (-1527 (($) NIL (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1268 $)) NIL)) (-3893 (((-1268 (-410 |#2|)) $) NIL) (($ (-1268 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1903 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-2104 (((-112)) 65)) (-2542 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 143)) (-3816 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1562 (((-112)) NIL)) (-1716 (($) 109 T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) +(((-1005 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1222) (-1244 |#1|) (-1244 (-410 |#2|)) (-410 |#2|) (-772)) (T -1005)) NIL (-344 |#1| |#2| |#3|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3351 (((-645 (-567)) $) 73)) (-1782 (($ (-645 (-567))) 81)) (-2660 (((-567) $) 48 (|has| (-567) (-308)))) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL (|has| (-567) (-821)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) 60) (((-3 (-1177) "failed") $) NIL (|has| (-567) (-1039 (-1177)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1039 (-567))))) (-2033 (((-567) $) NIL) (((-1177) $) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2344 (($ $ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-1378 (($) NIL (|has| (-567) (-548)))) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3101 (((-645 (-567)) $) 79)) (-4357 (((-112) $) NIL (|has| (-567) (-821)))) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL)) (-1441 (((-567) $) 45)) (-3641 (((-3 $ "failed") $) NIL (|has| (-567) (-1152)))) (-2102 (((-112) $) NIL (|has| (-567) (-821)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-567) (-851)))) (-3822 (($ (-1 (-567) (-567)) $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL)) (-2701 (($) NIL (|has| (-567) (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2721 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-1723 (((-1157 (-567)) $) 78)) (-3563 (($ (-645 (-567)) (-645 (-567))) 82)) (-1842 (((-567) $) 64 (|has| (-567) (-548)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| (-567) (-910)))) (-2703 (((-421 $) $) NIL)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1177)) (-645 (-567))) NIL (|has| (-567) (-517 (-1177) (-567)))) (($ $ (-1177) (-567)) NIL (|has| (-567) (-517 (-1177) (-567))))) (-4197 (((-772) $) NIL)) (-1783 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3168 (($ $) NIL)) (-1455 (((-567) $) 47)) (-4242 (((-645 (-567)) $) 80)) (-3880 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4127 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1177)) NIL (|has| (-567) (-1039 (-1177)))) (((-410 (-567)) $) 25)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-1772 (((-772)) 13 T CONST)) (-1687 (((-567) $) 62 (|has| (-567) (-548)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-4137 (($ $) NIL (|has| (-567) (-821)))) (-1710 (($) 14 T CONST)) (-1722 (($) 17 T CONST)) (-2636 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1177)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| (-567) (-901 (-1177)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2988 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2929 (((-112) $ $) 21)) (-2977 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2952 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3050 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3037 (($ $) 23) (($ $ $) 30)) (-3024 (($ $ $) 28)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL))) -(((-1005 |#1|) (-13 (-993 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -3351 ((-645 (-567)) $)) (-15 -1723 ((-1157 (-567)) $)) (-15 -3101 ((-645 (-567)) $)) (-15 -4242 ((-645 (-567)) $)) (-15 -1782 ($ (-645 (-567)))) (-15 -3563 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1005)) -((-2721 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3563 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(-13 (-993 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -2721 ((-410 (-567)) $)) (-15 -3351 ((-645 (-567)) $)) (-15 -1723 ((-1157 (-567)) $)) (-15 -3101 ((-645 (-567)) $)) (-15 -4242 ((-645 (-567)) $)) (-15 -1782 ($ (-645 (-567)))) (-15 -3563 ($ (-645 (-567)) (-645 (-567)))))) -((-3416 (((-52) (-410 (-567)) (-567)) 9))) -(((-1006) (-10 -7 (-15 -3416 ((-52) (-410 (-567)) (-567))))) (T -1006)) -((-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1006))))) -(-10 -7 (-15 -3416 ((-52) (-410 (-567)) (-567)))) -((-2371 (((-567)) 23)) (-1320 (((-567)) 28)) (-3515 (((-1272) (-567)) 26)) (-2153 (((-567) (-567)) 29) (((-567)) 22))) -(((-1007) (-10 -7 (-15 -2153 ((-567))) (-15 -2371 ((-567))) (-15 -2153 ((-567) (-567))) (-15 -3515 ((-1272) (-567))) (-15 -1320 ((-567))))) (T -1007)) -((-1320 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1007)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-2371 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-2153 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007))))) -(-10 -7 (-15 -2153 ((-567))) (-15 -2371 ((-567))) (-15 -2153 ((-567) (-567))) (-15 -3515 ((-1272) (-567))) (-15 -1320 ((-567)))) -((-2443 (((-421 |#1|) |#1|) 43)) (-2703 (((-421 |#1|) |#1|) 41))) -(((-1008 |#1|) (-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1|))) (-1243 (-410 (-567)))) (T -1008)) -((-2443 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1243 (-410 (-567)))))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1243 (-410 (-567))))))) -(-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1|))) -((-2240 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-1426 (((-112) |#1|) 14)) (-2242 (((-410 (-567)) |#1|) 10))) -(((-1009 |#1|) (-10 -7 (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|))) (-1039 (-410 (-567)))) (T -1009)) -((-2240 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2)))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1009 *3)) (-4 *3 (-1039 (-410 (-567)))))) (-2242 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2))))) -(-10 -7 (-15 -2242 ((-410 (-567)) |#1|)) (-15 -1426 ((-112) |#1|)) (-15 -2240 ((-3 (-410 (-567)) "failed") |#1|))) -((-4281 ((|#2| $ "value" |#2|) 12)) (-1783 ((|#2| $ "value") 10)) (-2588 (((-112) $ $) 18))) -(((-1010 |#1| |#2|) (-10 -8 (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -2588 ((-112) |#1| |#1|)) (-15 -1783 (|#2| |#1| "value"))) (-1011 |#2|) (-1217)) (T -1010)) -NIL -(-10 -8 (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -2588 ((-112) |#1| |#1|)) (-15 -1783 (|#2| |#1| "value"))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-2245 (($) 7 T CONST)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48)) (-4126 (((-567) $ $) 45)) (-3340 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1011 |#1|) (-140) (-1217)) (T -1011)) -((-3602 (*1 *2 *1) (-12 (-4 *3 (-1217)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))) (-4343 (*1 *2 *1) (-12 (-4 *3 (-1217)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1217)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1011 *2)) (-4 *2 (-1217)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-645 *3)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-567)))) (-2588 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-4218 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-3850 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4418)) (-4 *1 (-1011 *3)) (-4 *3 (-1217)))) (-4281 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4418)) (-4 *1 (-1011 *2)) (-4 *2 (-1217)))) (-3785 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1011 *2)) (-4 *2 (-1217))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -3602 ((-645 $) $)) (-15 -4343 ((-645 $) $)) (-15 -2915 ((-112) $)) (-15 -3794 (|t#1| $)) (-15 -1783 (|t#1| $ "value")) (-15 -3340 ((-112) $)) (-15 -3781 ((-645 |t#1|) $)) (-15 -4126 ((-567) $ $)) (IF (|has| |t#1| (-1101)) (PROGN (-15 -2588 ((-112) $ $)) (-15 -4218 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3850 ($ $ (-645 $))) (-15 -4281 (|t#1| $ "value" |t#1|)) (-15 -3785 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-2714 (($ $) 9) (($ $ (-922)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-3070 (((-3 $ "failed") (-1173 $) (-922) (-863)) 24) (((-3 $ "failed") (-1173 $) (-922)) 32)) (-1709 (($ $ (-567)) 58)) (-1772 (((-772)) 18)) (-3279 (((-645 $) (-1173 $)) NIL) (((-645 $) (-1173 (-410 (-567)))) 63) (((-645 $) (-1173 (-567))) 68) (((-645 $) (-953 $)) 72) (((-645 $) (-953 (-410 (-567)))) 76) (((-645 $) (-953 (-567))) 80)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53))) -(((-1012 |#1|) (-10 -8 (-15 -2714 (|#1| (-567))) (-15 -2714 (|#1| (-410 (-567)))) (-15 -2714 (|#1| |#1| (-922))) (-15 -3279 ((-645 |#1|) (-953 (-567)))) (-15 -3279 ((-645 |#1|) (-953 (-410 (-567))))) (-15 -3279 ((-645 |#1|) (-953 |#1|))) (-15 -3279 ((-645 |#1|) (-1173 (-567)))) (-15 -3279 ((-645 |#1|) (-1173 (-410 (-567))))) (-15 -3279 ((-645 |#1|) (-1173 |#1|))) (-15 -3070 ((-3 |#1| "failed") (-1173 |#1|) (-922))) (-15 -3070 ((-3 |#1| "failed") (-1173 |#1|) (-922) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1709 (|#1| |#1| (-567))) (-15 -2714 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -1772 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) (-1013)) (T -1012)) -((-1772 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))) -(-10 -8 (-15 -2714 (|#1| (-567))) (-15 -2714 (|#1| (-410 (-567)))) (-15 -2714 (|#1| |#1| (-922))) (-15 -3279 ((-645 |#1|) (-953 (-567)))) (-15 -3279 ((-645 |#1|) (-953 (-410 (-567))))) (-15 -3279 ((-645 |#1|) (-953 |#1|))) (-15 -3279 ((-645 |#1|) (-1173 (-567)))) (-15 -3279 ((-645 |#1|) (-1173 (-410 (-567))))) (-15 -3279 ((-645 |#1|) (-1173 |#1|))) (-15 -3070 ((-3 |#1| "failed") (-1173 |#1|) (-922))) (-15 -3070 ((-3 |#1| "failed") (-1173 |#1|) (-922) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1709 (|#1| |#1| (-567))) (-15 -2714 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -1772 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 102)) (-1312 (($ $) 103)) (-2318 (((-112) $) 105)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 122)) (-2833 (((-421 $) $) 123)) (-2714 (($ $) 86) (($ $ (-922)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-2373 (((-112) $ $) 113)) (-3449 (((-567) $) 139)) (-2245 (($) 18 T CONST)) (-3070 (((-3 $ "failed") (-1173 $) (-922) (-863)) 80) (((-3 $ "failed") (-1173 $) (-922)) 79)) (-3747 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-2033 (((-567) $) 98 (|has| (-410 (-567)) (-1039 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-410 (-567)) $) 95)) (-2208 (($ $ (-863)) 69)) (-3575 (($ $ (-863)) 68)) (-2344 (($ $ $) 117)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 116)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 111)) (-4341 (((-112) $) 124)) (-4357 (((-112) $) 137)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 85)) (-2102 (((-112) $) 138)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-2010 (($ $ $) 136)) (-2998 (($ $ $) 135)) (-2370 (((-3 (-1173 $) "failed") $) 81)) (-3844 (((-3 (-863) "failed") $) 83)) (-1758 (((-3 (-1173 $) "failed") $) 82)) (-2735 (($ (-645 $)) 109) (($ $ $) 108)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 125)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 110)) (-2771 (($ (-645 $)) 107) (($ $ $) 106)) (-2703 (((-421 $) $) 121)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 118)) (-2387 (((-3 $ "failed") $ $) 101)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-4197 (((-772) $) 114)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 115)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 104)) (-3040 (((-410 (-567)) $ $) 67)) (-3279 (((-645 $) (-1173 $)) 78) (((-645 $) (-1173 (-410 (-567)))) 77) (((-645 $) (-1173 (-567))) 76) (((-645 $) (-953 $)) 75) (((-645 $) (-953 (-410 (-567)))) 74) (((-645 $) (-953 (-567))) 73)) (-4137 (($ $) 140)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 133)) (-2964 (((-112) $ $) 132)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 134)) (-2952 (((-112) $ $) 131)) (-3050 (($ $ $) 130)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87))) -(((-1013) (-140)) (T -1013)) -((-2714 (*1 *1 *1) (-4 *1 (-1013))) (-3844 (*1 *2 *1) (|partial| -12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-1758 (*1 *2 *1) (|partial| -12 (-5 *2 (-1173 *1)) (-4 *1 (-1013)))) (-2370 (*1 *2 *1) (|partial| -12 (-5 *2 (-1173 *1)) (-4 *1 (-1013)))) (-3070 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1173 *1)) (-5 *3 (-922)) (-5 *4 (-863)) (-4 *1 (-1013)))) (-3070 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1173 *1)) (-5 *3 (-922)) (-4 *1 (-1013)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1173 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1173 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-2714 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-922)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1013)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1013)))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-410 (-567)))))) -(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1003) (-10 -8 (-15 -3844 ((-3 (-863) "failed") $)) (-15 -1758 ((-3 (-1173 $) "failed") $)) (-15 -2370 ((-3 (-1173 $) "failed") $)) (-15 -3070 ((-3 $ "failed") (-1173 $) (-922) (-863))) (-15 -3070 ((-3 $ "failed") (-1173 $) (-922))) (-15 -3279 ((-645 $) (-1173 $))) (-15 -3279 ((-645 $) (-1173 (-410 (-567))))) (-15 -3279 ((-645 $) (-1173 (-567)))) (-15 -3279 ((-645 $) (-953 $))) (-15 -3279 ((-645 $) (-953 (-410 (-567))))) (-15 -3279 ((-645 $) (-953 (-567)))) (-15 -2714 ($ $ (-922))) (-15 -2714 ($ $)) (-15 -2714 ($ (-410 (-567)))) (-15 -2714 ($ (-567))) (-15 -2208 ($ $ (-863))) (-15 -3575 ($ $ (-863))) (-15 -3040 ((-410 (-567)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-921) . T) ((-1003) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) |has| (-410 (-567)) (-1039 (-567))) ((-1052 #0#) . T) ((-1052 #1#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-2921 (((-2 (|:| |ans| |#2|) (|:| -2956 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1014 |#1| |#2|) (-10 -7 (-15 -2921 ((-2 (|:| |ans| |#2|) (|:| -2956 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-27) (-433 |#1|))) (T -1014)) -((-2921 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1177)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1202) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2956 *4) (|:| |sol?| (-112)))) (-5 *1 (-1014 *8 *4))))) -(-10 -7 (-15 -2921 ((-2 (|:| |ans| |#2|) (|:| -2956 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-4373 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -4373 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1202) (-27) (-433 |#1|))) (T -1015)) -((-4373 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1177)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1202) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1015 *8 *4))))) -(-10 -7 (-15 -4373 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1177) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -4012 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3513 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3827 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-2540 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-3713 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -2540 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3713 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3513 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3827 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1039 (-567))) (-1243 |#1|)) (T -1016)) -((-3513 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1243 *6)) (-4 *6 (-13 (-365) (-147) (-1039 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3827 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1016 *6 *3)))) (-3713 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-410 *5)))) (-2540 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -2082 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -2540 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3713 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3513 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3827 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) -((-2678 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-4392 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -2678 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -4392 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1039 (-567))) (-1243 |#1|)) (T -1017)) -((-4392 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-2678 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2082 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -2678 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2082 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -4392 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) -((-3692 (((-1 |#1|) (-645 (-2 (|:| -3794 |#1|) (|:| -2415 (-567))))) 37)) (-2238 (((-1 |#1|) (-1103 |#1|)) 45)) (-2595 (((-1 |#1|) (-1267 |#1|) (-1267 (-567)) (-567)) 34))) -(((-1018 |#1|) (-10 -7 (-15 -2238 ((-1 |#1|) (-1103 |#1|))) (-15 -3692 ((-1 |#1|) (-645 (-2 (|:| -3794 |#1|) (|:| -2415 (-567)))))) (-15 -2595 ((-1 |#1|) (-1267 |#1|) (-1267 (-567)) (-567)))) (-1101)) (T -1018)) -((-2595 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1267 *6)) (-5 *4 (-1267 (-567))) (-5 *5 (-567)) (-4 *6 (-1101)) (-5 *2 (-1 *6)) (-5 *1 (-1018 *6)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3794 *4) (|:| -2415 (-567))))) (-4 *4 (-1101)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1103 *4)) (-4 *4 (-1101)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4))))) -(-10 -7 (-15 -2238 ((-1 |#1|) (-1103 |#1|))) (-15 -3692 ((-1 |#1|) (-645 (-2 (|:| -3794 |#1|) (|:| -2415 (-567)))))) (-15 -2595 ((-1 |#1|) (-1267 |#1|) (-1267 (-567)) (-567)))) -((-2937 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2937 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1243 |#1|) (-1243 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1019)) -((-2937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1243 *6)) (-4 *4 (-1243 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1019 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2937 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2652 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 11)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1020) (-13 (-1084) (-10 -8 (-15 -2652 ((-1136) $)) (-15 -1998 ((-1136) $))))) (T -1020)) -((-2652 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1020)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1020))))) -(-13 (-1084) (-10 -8 (-15 -2652 ((-1136) $)) (-15 -1998 ((-1136) $)))) -((-1906 (((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) 32) (((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567))) 29)) (-3503 (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) 33) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|) 28)) (-1359 (((-645 (-410 (-567))) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) 20)) (-4067 (((-410 (-567)) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) 17))) -(((-1021 |#1|) (-10 -7 (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|)) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -4067 ((-410 (-567)) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -1359 ((-645 (-410 (-567))) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))))) (-1243 (-567))) (T -1021)) -((-1359 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1021 *4)) (-4 *4 (-1243 (-567))))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1021 *4)) (-4 *4 (-1243 (-567))))) (-1906 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))))) (-1906 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))))) (-3503 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2944 *5) (|:| -2956 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))) (-5 *4 (-2 (|:| -2944 *5) (|:| -2956 *5))))) (-3503 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))) (-5 *4 (-410 (-567))))) (-3503 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))) (-5 *4 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) (-3503 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567)))))) -(-10 -7 (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|)) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -4067 ((-410 (-567)) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -1359 ((-645 (-410 (-567))) (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))))) -((-1906 (((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) 35) (((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567))) 32)) (-3503 (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) 28) (((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|) 24))) -(((-1022 |#1|) (-10 -7 (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|)) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) (-1243 (-410 (-567)))) (T -1022)) -((-1906 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567)))))) (-1906 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 *4)))) (-3503 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2944 *5) (|:| -2956 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 *5)) (-5 *4 (-2 (|:| -2944 *5) (|:| -2956 *5))))) (-3503 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2944 *4) (|:| -2956 *4)))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 *4)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567)))) (-5 *4 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) (-3503 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567))))))) -(-10 -7 (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1|)) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3503 ((-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-410 (-567)))) (-15 -1906 ((-3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) "failed") |#1| (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))) (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) -((-3880 (((-225) $) 6) (((-381) $) 9))) -(((-1023) (-140)) (T -1023)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2766 (((-645 (-567)) $) 73)) (-1814 (($ (-645 (-567))) 81)) (-3093 (((-567) $) 48 (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 60) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4294 (((-645 (-567)) $) 79)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) 45)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-2497 (((-1158 (-567)) $) 78)) (-2258 (($ (-645 (-567)) (-645 (-567))) 82)) (-2780 (((-567) $) 64 (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) 47)) (-3855 (((-645 (-567)) $) 80)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) 25)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) 13 T CONST)) (-1423 (((-567) $) 62 (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) 14 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3060 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3045 (($ $) 23) (($ $ $) 30)) (-3033 (($ $ $) 28)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL))) +(((-1006 |#1|) (-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2766 ((-645 (-567)) $)) (-15 -2497 ((-1158 (-567)) $)) (-15 -4294 ((-645 (-567)) $)) (-15 -3855 ((-645 (-567)) $)) (-15 -1814 ($ (-645 (-567)))) (-15 -2258 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1006)) +((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2258 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) +(-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2766 ((-645 (-567)) $)) (-15 -2497 ((-1158 (-567)) $)) (-15 -4294 ((-645 (-567)) $)) (-15 -3855 ((-645 (-567)) $)) (-15 -1814 ($ (-645 (-567)))) (-15 -2258 ($ (-645 (-567)) (-645 (-567)))))) +((-2629 (((-52) (-410 (-567)) (-567)) 9))) +(((-1007) (-10 -7 (-15 -2629 ((-52) (-410 (-567)) (-567))))) (T -1007)) +((-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1007))))) +(-10 -7 (-15 -2629 ((-52) (-410 (-567)) (-567)))) +((-2375 (((-567)) 23)) (-3298 (((-567)) 28)) (-1559 (((-1273) (-567)) 26)) (-3144 (((-567) (-567)) 29) (((-567)) 22))) +(((-1008) (-10 -7 (-15 -3144 ((-567))) (-15 -2375 ((-567))) (-15 -3144 ((-567) (-567))) (-15 -1559 ((-1273) (-567))) (-15 -3298 ((-567))))) (T -1008)) +((-3298 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1008)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-2375 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-3144 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) +(-10 -7 (-15 -3144 ((-567))) (-15 -2375 ((-567))) (-15 -3144 ((-567) (-567))) (-15 -1559 ((-1273) (-567))) (-15 -3298 ((-567)))) +((-2688 (((-421 |#1|) |#1|) 43)) (-2706 (((-421 |#1|) |#1|) 41))) +(((-1009 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|))) (-1244 (-410 (-567)))) (T -1009)) +((-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1244 (-410 (-567)))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1244 (-410 (-567))))))) +(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|))) +((-2085 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-1862 (((-112) |#1|) 14)) (-2331 (((-410 (-567)) |#1|) 10))) +(((-1010 |#1|) (-10 -7 (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|))) (-1040 (-410 (-567)))) (T -1010)) +((-2085 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))) (-1862 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))) (-2331 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2))))) +(-10 -7 (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|))) +((-4284 ((|#2| $ "value" |#2|) 12)) (-1787 ((|#2| $ "value") 10)) (-3606 (((-112) $ $) 18))) +(((-1011 |#1| |#2|) (-10 -8 (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -1787 (|#2| |#1| "value"))) (-1012 |#2|) (-1218)) (T -1011)) +NIL +(-10 -8 (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -1787 (|#2| |#1| "value"))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1012 |#1|) (-140) (-1218)) (T -1012)) +((-1531 (*1 *2 *1) (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-2182 (*1 *2 *1) (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))) (-3606 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-1301 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4419)) (-4 *1 (-1012 *3)) (-4 *3 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-2138 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218))))) +(-13 (-492 |t#1|) (-10 -8 (-15 -1531 ((-645 $) $)) (-15 -2182 ((-645 $) $)) (-15 -2769 ((-112) $)) (-15 -3802 (|t#1| $)) (-15 -1787 (|t#1| $ "value")) (-15 -3900 ((-112) $)) (-15 -3773 ((-645 |t#1|) $)) (-15 -2658 ((-567) $ $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3606 ((-112) $ $)) (-15 -3512 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -1301 ($ $ (-645 $))) (-15 -4284 (|t#1| $ "value" |t#1|)) (-15 -2138 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-2716 (($ $) 9) (($ $ (-923)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) 24) (((-3 $ "failed") (-1174 $) (-923)) 32)) (-2651 (($ $ (-567)) 58)) (-4221 (((-772)) 18)) (-4262 (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 (-410 (-567)))) 63) (((-645 $) (-1174 (-567))) 68) (((-645 $) (-954 $)) 72) (((-645 $) (-954 (-410 (-567)))) 76) (((-645 $) (-954 (-567))) 80)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53))) +(((-1013 |#1|) (-10 -8 (-15 -2716 (|#1| (-567))) (-15 -2716 (|#1| (-410 (-567)))) (-15 -2716 (|#1| |#1| (-923))) (-15 -4262 ((-645 |#1|) (-954 (-567)))) (-15 -4262 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-954 |#1|))) (-15 -4262 ((-645 |#1|) (-1174 (-567)))) (-15 -4262 ((-645 |#1|) (-1174 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-1174 |#1|))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2651 (|#1| |#1| (-567))) (-15 -2716 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -4221 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-1014)) (T -1013)) +((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014))))) +(-10 -8 (-15 -2716 (|#1| (-567))) (-15 -2716 (|#1| (-410 (-567)))) (-15 -2716 (|#1| |#1| (-923))) (-15 -4262 ((-645 |#1|) (-954 (-567)))) (-15 -4262 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-954 |#1|))) (-15 -4262 ((-645 |#1|) (-1174 (-567)))) (-15 -4262 ((-645 |#1|) (-1174 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-1174 |#1|))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2651 (|#1| |#1| (-567))) (-15 -2716 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -4221 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102)) (-4381 (($ $) 103)) (-3949 (((-112) $) 105)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122)) (-2908 (((-421 $) $) 123)) (-2716 (($ $) 86) (($ $ (-923)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-3609 (((-112) $ $) 113)) (-1750 (((-567) $) 139)) (-2585 (($) 18 T CONST)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) 80) (((-3 $ "failed") (-1174 $) (-923)) 79)) (-3753 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-2038 (((-567) $) 98 (|has| (-410 (-567)) (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 95)) (-2522 (($ $ (-863)) 69)) (-3988 (($ $ (-863)) 68)) (-2349 (($ $ $) 117)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 116)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111)) (-3184 (((-112) $) 124)) (-4336 (((-112) $) 137)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 85)) (-3494 (((-112) $) 138)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-1354 (($ $ $) 136)) (-2981 (($ $ $) 135)) (-3448 (((-3 (-1174 $) "failed") $) 81)) (-3838 (((-3 (-863) "failed") $) 83)) (-2188 (((-3 (-1174 $) "failed") $) 82)) (-2740 (($ (-645 $)) 109) (($ $ $) 108)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110)) (-2774 (($ (-645 $)) 107) (($ $ $) 106)) (-2706 (((-421 $) $) 121)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118)) (-2391 (((-3 $ "failed") $ $) 101)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-1990 (((-772) $) 114)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 104)) (-3050 (((-410 (-567)) $ $) 67)) (-4262 (((-645 $) (-1174 $)) 78) (((-645 $) (-1174 (-410 (-567)))) 77) (((-645 $) (-1174 (-567))) 76) (((-645 $) (-954 $)) 75) (((-645 $) (-954 (-410 (-567)))) 74) (((-645 $) (-954 (-567))) 73)) (-2219 (($ $) 140)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 133)) (-2971 (((-112) $ $) 132)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 134)) (-2958 (((-112) $ $) 131)) (-3060 (($ $ $) 130)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87))) +(((-1014) (-140)) (T -1014)) +((-2716 (*1 *1 *1) (-4 *1 (-1014))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-2188 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))) (-3448 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))) (-3483 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-5 *4 (-863)) (-4 *1 (-1014)))) (-3483 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) (-2522 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3988 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3050 (*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567)))))) +(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1004) (-10 -8 (-15 -3838 ((-3 (-863) "failed") $)) (-15 -2188 ((-3 (-1174 $) "failed") $)) (-15 -3448 ((-3 (-1174 $) "failed") $)) (-15 -3483 ((-3 $ "failed") (-1174 $) (-923) (-863))) (-15 -3483 ((-3 $ "failed") (-1174 $) (-923))) (-15 -4262 ((-645 $) (-1174 $))) (-15 -4262 ((-645 $) (-1174 (-410 (-567))))) (-15 -4262 ((-645 $) (-1174 (-567)))) (-15 -4262 ((-645 $) (-954 $))) (-15 -4262 ((-645 $) (-954 (-410 (-567))))) (-15 -4262 ((-645 $) (-954 (-567)))) (-15 -2716 ($ $ (-923))) (-15 -2716 ($ $)) (-15 -2716 ($ (-410 (-567)))) (-15 -2716 ($ (-567))) (-15 -2522 ($ $ (-863))) (-15 -3988 ($ $ (-863))) (-15 -3050 ((-410 (-567)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) |has| (-410 (-567)) (-1040 (-567))) ((-1053 #0#) . T) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-2232 (((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1015 |#1| |#2|) (-10 -7 (-15 -2232 ((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-27) (-433 |#1|))) (T -1015)) +((-2232 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1178)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1203) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112)))) (-5 *1 (-1015 *8 *4))))) +(-10 -7 (-15 -2232 ((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2538 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -2538 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-27) (-433 |#1|))) (T -1016)) +((-2538 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1178)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1203) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4))))) +(-10 -7 (-15 -2538 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2593 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-1987 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-2927 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -1987 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2593 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -1017)) +((-2593 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1017 *6 *3)))) (-2927 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-1987 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -2087 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -1987 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2593 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) +((-3967 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3707 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3967 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3707 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -1018)) +((-3707 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3967 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2087 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -3967 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3707 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) +((-2398 (((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567))))) 37)) (-3055 (((-1 |#1|) (-1104 |#1|)) 45)) (-3174 (((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567)) 34))) +(((-1019 |#1|) (-10 -7 (-15 -3055 ((-1 |#1|) (-1104 |#1|))) (-15 -2398 ((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567)))))) (-15 -3174 ((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567)))) (-1102)) (T -1019)) +((-3174 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1268 *6)) (-5 *4 (-1268 (-567))) (-5 *5 (-567)) (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3802 *4) (|:| -3729 (-567))))) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4))))) +(-10 -7 (-15 -3055 ((-1 |#1|) (-1104 |#1|))) (-15 -2398 ((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567)))))) (-15 -3174 ((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567)))) +((-4384 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1020)) +((-4384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-4 *4 (-1244 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1020 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2654 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1021) (-13 (-1085) (-10 -8 (-15 -2654 ((-1137) $)) (-15 -2006 ((-1137) $))))) (T -1021)) +((-2654 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021))))) +(-13 (-1085) (-10 -8 (-15 -2654 ((-1137) $)) (-15 -2006 ((-1137) $)))) +((-2298 (((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 32) (((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 29)) (-2932 (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 33) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|) 28)) (-4312 (((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) 20)) (-1655 (((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 17))) +(((-1022 |#1|) (-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -1655 ((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -4312 ((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))) (-1244 (-567))) (T -1022)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567))))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567))))) (-2298 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) (-2298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-410 (-567))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567)))))) +(-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -1655 ((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -4312 ((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))) +((-2298 (((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 35) (((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 32)) (-2932 (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 28) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|) 24))) +(((-1023 |#1|) (-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-1244 (-410 (-567)))) (T -1023)) +((-2298 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))))) (-2298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4)))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *5)) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *4) (|:| -2963 *4)))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))) (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567))))))) +(-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) +((-3893 (((-225) $) 6) (((-381) $) 9))) +(((-1024) (-140)) (T -1024)) NIL (-13 (-615 (-225)) (-615 (-381))) (((-615 (-225)) . T) ((-615 (-381)) . T)) -((-1754 (((-645 (-381)) (-953 (-567)) (-381)) 28) (((-645 (-381)) (-953 (-410 (-567))) (-381)) 27)) (-4135 (((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1177)) (-381)) 37))) -(((-1024) (-10 -7 (-15 -1754 ((-645 (-381)) (-953 (-410 (-567))) (-381))) (-15 -1754 ((-645 (-381)) (-953 (-567)) (-381))) (-15 -4135 ((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1177)) (-381))))) (T -1024)) -((-4135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-645 (-1177))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1024)) (-5 *5 (-381)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1024)) (-5 *4 (-381)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1024)) (-5 *4 (-381))))) -(-10 -7 (-15 -1754 ((-645 (-381)) (-953 (-410 (-567))) (-381))) (-15 -1754 ((-645 (-381)) (-953 (-567)) (-381))) (-15 -4135 ((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1177)) (-381)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 75)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2714 (($ $) NIL) (($ $ (-922)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) 70)) (-2245 (($) NIL T CONST)) (-3070 (((-3 $ "failed") (-1173 $) (-922) (-863)) NIL) (((-3 $ "failed") (-1173 $) (-922)) 55)) (-3747 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2797 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))))) (-2033 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2797 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))))) (-2208 (($ $ (-863)) 47)) (-3575 (($ $ (-863)) 48)) (-2344 (($ $ $) NIL)) (-2177 (((-410 (-567)) $ $) 21)) (-3153 (((-3 $ "failed") $) 88)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-4357 (((-112) $) 66)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL)) (-2102 (((-112) $) 69)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-2370 (((-3 (-1173 $) "failed") $) 83)) (-3844 (((-3 (-863) "failed") $) 82)) (-1758 (((-3 (-1173 $) "failed") $) 80)) (-3779 (((-3 (-1062 $ (-1173 $)) "failed") $) 78)) (-2735 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 89)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-4127 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-3040 (((-410 (-567)) $ $) 27)) (-3279 (((-645 $) (-1173 $)) 61) (((-645 $) (-1173 (-410 (-567)))) NIL) (((-645 $) (-1173 (-567))) NIL) (((-645 $) (-953 $)) NIL) (((-645 $) (-953 (-410 (-567)))) NIL) (((-645 $) (-953 (-567))) NIL)) (-1409 (($ (-1062 $ (-1173 $)) (-863)) 46)) (-4137 (($ $) 22)) (-1710 (($) 32 T CONST)) (-1722 (($) 39 T CONST)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 76)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 24)) (-3050 (($ $ $) 37)) (-3037 (($ $) 38) (($ $ $) 74)) (-3024 (($ $ $) 112)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1025 |#1|) (-13 (-1013) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -1409 ($ (-1062 $ (-1173 $)) (-863))) (-15 -3779 ((-3 (-1062 $ (-1173 $)) "failed") $)) (-15 -2177 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1023))) (T -1025)) -((-1409 (*1 *1 *2 *3) (-12 (-5 *2 (-1062 (-1025 *4) (-1173 (-1025 *4)))) (-5 *3 (-863)) (-5 *1 (-1025 *4)) (-4 *4 (-13 (-849) (-365) (-1023))))) (-3779 (*1 *2 *1) (|partial| -12 (-5 *2 (-1062 (-1025 *3) (-1173 (-1025 *3)))) (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023))))) (-2177 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023)))))) -(-13 (-1013) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -1409 ($ (-1062 $ (-1173 $)) (-863))) (-15 -3779 ((-3 (-1062 $ (-1173 $)) "failed") $)) (-15 -2177 ((-410 (-567)) $ $)))) -((-2287 (((-2 (|:| -3827 |#2|) (|:| -4174 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -2287 (|#2| |#2| |#1|)) (-15 -2287 ((-2 (|:| -3827 |#2|) (|:| -4174 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1026)) -((-2287 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3827 *3) (|:| -4174 (-645 *5)))) (-5 *1 (-1026 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-2287 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1026 *3 *2)) (-4 *2 (-657 *3))))) -(-10 -7 (-15 -2287 (|#2| |#2| |#1|)) (-15 -2287 ((-2 (|:| -3827 |#2|) (|:| -4174 (-645 |#1|))) |#2| (-645 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2973 ((|#1| $ |#1|) 14)) (-4281 ((|#1| $ |#1|) 12)) (-1392 (($ |#1|) 10)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-1783 ((|#1| $) 11)) (-2997 ((|#1| $) 13)) (-4127 (((-863) $) 21 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2929 (((-112) $ $) 9))) -(((-1027 |#1|) (-13 (-1217) (-10 -8 (-15 -1392 ($ |#1|)) (-15 -1783 (|#1| $)) (-15 -4281 (|#1| $ |#1|)) (-15 -2997 (|#1| $)) (-15 -2973 (|#1| $ |#1|)) (-15 -2929 ((-112) $ $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) (-1217)) (T -1027)) -((-1392 (*1 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) (-1783 (*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) (-4281 (*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) (-2997 (*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) (-2973 (*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) (-2929 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1217))))) -(-13 (-1217) (-10 -8 (-15 -1392 ($ |#1|)) (-15 -1783 (|#1| $)) (-15 -4281 (|#1| $ |#1|)) (-15 -2997 (|#1| $)) (-15 -2973 (|#1| $ |#1|)) (-15 -2929 ((-112) $ $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3645 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2845 (((-645 |#3|) $) NIL)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4124 ((|#4| |#4| $) NIL)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 112)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 66)) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) 29 (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4267 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2033 (($ (-645 |#4|)) NIL)) (-2417 (((-3 $ "failed") $) 45)) (-4042 ((|#4| |#4| $) 69)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3230 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3670 ((|#4| |#4| $) NIL)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) NIL)) (-2091 (((-112) |#4| $) NIL)) (-2605 (((-112) |#4| $) NIL)) (-4136 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3957 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-3397 (((-645 |#4|) $) 18 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4146 ((|#3| $) 38)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#4|) $) 19 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 23)) (-3254 (((-645 |#3|) $) NIL)) (-3377 (((-112) |#3| $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 110)) (-3250 (((-3 |#4| "failed") $) 42)) (-1424 (((-645 $) |#4| $) 93)) (-3536 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1877 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-4036 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-2702 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2200 (((-645 |#4|) $) NIL)) (-2815 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1626 ((|#4| |#4| $) NIL)) (-1835 (((-112) $ $) NIL)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1471 ((|#4| |#4| $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-3 |#4| "failed") $) 40)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3454 (((-3 $ "failed") $ |#4|) 59)) (-3981 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 14)) (-1813 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) 13)) (-3880 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 22)) (-2388 (($ $ |#3|) 52)) (-2155 (($ $ |#3|) 54)) (-2961 (($ $) NIL)) (-3712 (($ $ |#3|) NIL)) (-4127 (((-863) $) 35) (((-645 |#4|) $) 46)) (-4191 (((-772) $) NIL (|has| |#3| (-370)))) (-4104 (((-112) $ $) NIL)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3175 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) NIL)) (-3620 (((-112) |#4| $) NIL)) (-3113 (((-112) |#3| $) 65)) (-2929 (((-112) $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1028 |#1| |#2| |#3| |#4|) (-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2702 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -4036 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -3957 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -1028)) -((-2702 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *3))) (-5 *1 (-1028 *5 *6 *7 *3)) (-4 *3 (-1066 *5 *6 *7)))) (-3645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-3645 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-4036 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1028 *5 *6 *7 *8))))) (-5 *1 (-1028 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2702 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -4036 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -3957 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) -((-1947 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-3190 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922)) 66) (((-690 |#1|) (-690 |#1|) (-922)) 65)) (-3226 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-906 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-906 (-567)) (-567)) 78)) (-1651 (((-690 (-953 |#1|)) (-772)) 98)) (-4035 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922)) 52 (|has| |#1| (-6 (-4419 "*")))) (((-690 |#1|) (-690 |#1|) (-922)) 50 (|has| |#1| (-6 (-4419 "*")))))) -(((-1029 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -4035 ((-690 |#1|) (-690 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -4035 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) |%noBranch|) (-15 -1651 ((-690 (-953 |#1|)) (-772))) (-15 -3190 ((-690 |#1|) (-690 |#1|) (-922))) (-15 -3190 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) (-15 -1947 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1947 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -1947 ((-690 |#1|) (-690 |#1|))) (-15 -1947 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3226 ((-690 (-567)) (-906 (-567)) (-567))) (-15 -3226 ((-690 (-567)) (-645 (-567)))) (-15 -3226 ((-645 (-690 (-567))) (-645 (-906 (-567))) (-567))) (-15 -3226 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1050)) (T -1029)) -((-3226 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-906 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-906 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-953 *4))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -4035 ((-690 |#1|) (-690 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -4035 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) |%noBranch|) (-15 -1651 ((-690 (-953 |#1|)) (-772))) (-15 -3190 ((-690 |#1|) (-690 |#1|) (-922))) (-15 -3190 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) (-15 -1947 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1947 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -1947 ((-690 |#1|) (-690 |#1|))) (-15 -1947 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3226 ((-690 (-567)) (-906 (-567)) (-567))) (-15 -3226 ((-690 (-567)) (-645 (-567)))) (-15 -3226 ((-645 (-690 (-567))) (-645 (-906 (-567))) (-567))) (-15 -3226 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) -((-3218 (((-690 |#1|) (-645 (-690 |#1|)) (-1267 |#1|)) 71 (|has| |#1| (-308)))) (-1800 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 (-1267 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 |#1|)) 119 (|has| |#1| (-365)))) (-2419 (((-1267 |#1|) (-645 (-1267 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-2041 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-2902 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-3876 (((-1267 (-1267 |#1|)) (-645 (-690 |#1|)) (-1267 |#1|)) 68 (|has| |#1| (-308)))) (-4347 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-2930 (((-690 |#1|) (-1267 (-1267 |#1|))) 41)) (-3402 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365))))) -(((-1030 |#1|) (-10 -7 (-15 -2930 ((-690 |#1|) (-1267 (-1267 |#1|)))) (-15 -4347 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3876 ((-1267 (-1267 |#1|)) (-645 (-690 |#1|)) (-1267 |#1|))) (-15 -3218 ((-690 |#1|) (-645 (-690 |#1|)) (-1267 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -2902 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -2902 ((-112) (-645 (-690 |#1|)))) (-15 -1800 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 |#1|))) (-15 -1800 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 (-1267 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922))) (-15 -2419 ((-1267 |#1|) (-645 (-1267 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1050)) (T -1030)) -((-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1267 *5))) (-5 *4 (-567)) (-5 *2 (-1267 *5)) (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1050)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1030 *4)) (-5 *3 (-645 (-690 *4))))) (-2041 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1050)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1030 *6)) (-5 *3 (-645 (-690 *6))))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1267 (-1267 *5))) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1267 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *4)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *5)))) (-3402 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-1050)))) (-3402 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4)) (-4 *4 (-365)) (-4 *4 (-1050)))) (-3402 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1030 *6)) (-4 *6 (-365)) (-4 *6 (-1050)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1267 *5)) (-4 *5 (-308)) (-4 *5 (-1050)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1050)) (-5 *2 (-1267 (-1267 *5))) (-5 *1 (-1030 *5)) (-5 *4 (-1267 *5)))) (-4347 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1030 *4)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1267 (-1267 *4))) (-4 *4 (-1050)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4))))) -(-10 -7 (-15 -2930 ((-690 |#1|) (-1267 (-1267 |#1|)))) (-15 -4347 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3876 ((-1267 (-1267 |#1|)) (-645 (-690 |#1|)) (-1267 |#1|))) (-15 -3218 ((-690 |#1|) (-645 (-690 |#1|)) (-1267 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3402 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -2902 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -2902 ((-112) (-645 (-690 |#1|)))) (-15 -1800 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 |#1|))) (-15 -1800 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1267 (-1267 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -2041 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922))) (-15 -2419 ((-1267 |#1|) (-645 (-1267 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) -((-2680 ((|#1| (-922) |#1|) 18))) -(((-1031 |#1|) (-10 -7 (-15 -2680 (|#1| (-922) |#1|))) (-13 (-1101) (-10 -8 (-15 -3024 ($ $ $))))) (T -1031)) -((-2680 (*1 *2 *3 *2) (-12 (-5 *3 (-922)) (-5 *1 (-1031 *2)) (-4 *2 (-13 (-1101) (-10 -8 (-15 -3024 ($ $ $)))))))) -(-10 -7 (-15 -2680 (|#1| (-922) |#1|))) -((-1396 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567))))) 67)) (-1549 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567))))) 52)) (-2569 (((-645 (-317 (-567))) (-690 (-410 (-953 (-567))))) 45)) (-3306 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567))))) 88)) (-4131 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-2509 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-4081 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567))))) 85))) -(((-1032) (-10 -7 (-15 -1396 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567)))))) (-15 -1549 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567)))))) (-15 -2569 ((-645 (-317 (-567))) (-690 (-410 (-953 (-567)))))) (-15 -4081 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567)))))) (-15 -4131 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2509 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -3306 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567)))))))) (T -1032)) -((-3306 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))) (-4081 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1032)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)) (-5 *3 (-317 (-567))))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1032))))) -(-10 -7 (-15 -1396 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567)))))) (-15 -1549 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567)))))) (-15 -2569 ((-645 (-317 (-567))) (-690 (-410 (-953 (-567)))))) (-15 -4081 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567)))))) (-15 -4131 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2509 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -3306 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567))))))) -((-4379 ((|#1| |#1| (-922)) 18))) -(((-1033 |#1|) (-10 -7 (-15 -4379 (|#1| |#1| (-922)))) (-13 (-1101) (-10 -8 (-15 * ($ $ $))))) (T -1033)) -((-4379 (*1 *2 *2 *3) (-12 (-5 *3 (-922)) (-5 *1 (-1033 *2)) (-4 *2 (-13 (-1101) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -4379 (|#1| |#1| (-922)))) -((-4127 ((|#1| (-313)) 11) (((-1272) |#1|) 9))) -(((-1034 |#1|) (-10 -7 (-15 -4127 ((-1272) |#1|)) (-15 -4127 (|#1| (-313)))) (-1217)) (T -1034)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1034 *2)) (-4 *2 (-1217)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-1272)) (-5 *1 (-1034 *3)) (-4 *3 (-1217))))) -(-10 -7 (-15 -4127 ((-1272) |#1|)) (-15 -4127 (|#1| (-313)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-2499 (($ |#4|) 25)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-2488 ((|#4| $) 27)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1772 (((-772)) 43 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 21 T CONST)) (-1722 (($) 23 T CONST)) (-2929 (((-112) $ $) 40)) (-3037 (($ $) 31) (($ $ $) NIL)) (-3024 (($ $ $) 29)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1035 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2499 ($ |#4|)) (-15 -4127 ($ |#4|)) (-15 -2488 (|#4| $)))) (-365) (-794) (-851) (-950 |#1| |#2| |#3|) (-645 |#4|)) (T -1035)) -((-2499 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-645 *2)))) (-4127 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2488 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2499 ($ |#4|)) (-15 -4127 ($ |#4|)) (-15 -2488 (|#4| $)))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-2848 (((-1272) $ (-1177) (-1177)) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-3389 (((-112) (-112)) 43)) (-1533 (((-112) (-112)) 42)) (-4281 (((-52) $ (-1177) (-52)) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 (-52) "failed") (-1177) $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2774 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1177) $) NIL)) (-3230 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3759 (((-52) $ (-1177) (-52)) NIL (|has| $ (-6 -4418)))) (-3702 (((-52) $ (-1177)) NIL)) (-3397 (((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-1177) $) NIL (|has| (-1177) (-851)))) (-2513 (((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-1958 (((-1177) $) NIL (|has| (-1177) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-1422 (((-645 (-1177)) $) 37)) (-1528 (((-112) (-1177) $) NIL)) (-1881 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL)) (-1330 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL)) (-2732 (((-645 (-1177)) $) NIL)) (-2479 (((-112) (-1177) $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2405 (((-52) $) NIL (|has| (-1177) (-851)))) (-3424 (((-3 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) "failed") (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL)) (-4271 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-295 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-3564 (((-645 (-52)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 (((-52) $ (-1177)) 39) (((-52) $ (-1177) (-52)) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-4127 (((-863) $) 41 (-2797 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1036) (-13 (-1193 (-1177) (-52)) (-10 -7 (-15 -3389 ((-112) (-112))) (-15 -1533 ((-112) (-112))) (-6 -4417)))) (T -1036)) -((-3389 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036))))) -(-13 (-1193 (-1177) (-52)) (-10 -7 (-15 -3389 ((-112) (-112))) (-15 -1533 ((-112) (-112))) (-6 -4417))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 9)) (-4127 (((-863) $) 15) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1037) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $))))) (T -1037)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1037))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)))) -((-2033 ((|#2| $) 10))) -(((-1038 |#1| |#2|) (-10 -8 (-15 -2033 (|#2| |#1|))) (-1039 |#2|) (-1217)) (T -1038)) -NIL -(-10 -8 (-15 -2033 (|#2| |#1|))) -((-3747 (((-3 |#1| "failed") $) 9)) (-2033 ((|#1| $) 8)) (-4127 (($ |#1|) 6))) -(((-1039 |#1|) (-140) (-1217)) (T -1039)) -((-3747 (*1 *2 *1) (|partial| -12 (-4 *1 (-1039 *2)) (-4 *2 (-1217)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1217))))) -(-13 (-617 |t#1|) (-10 -8 (-15 -3747 ((-3 |t#1| "failed") $)) (-15 -2033 (|t#1| $)))) +((-3018 (((-645 (-381)) (-954 (-567)) (-381)) 28) (((-645 (-381)) (-954 (-410 (-567))) (-381)) 27)) (-2032 (((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381)) 37))) +(((-1025) (-10 -7 (-15 -3018 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -3018 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -2032 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381))))) (T -1025)) +((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381))))) +(-10 -7 (-15 -3018 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -3018 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -2032 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 75)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL) (($ $ (-923)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) 70)) (-2585 (($) NIL T CONST)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) NIL) (((-3 $ "failed") (-1174 $) (-923)) 55)) (-3753 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2038 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2522 (($ $ (-863)) 47)) (-3988 (($ $ (-863)) 48)) (-2349 (($ $ $) NIL)) (-4122 (((-410 (-567)) $ $) 21)) (-2109 (((-3 $ "failed") $) 88)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) 66)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-3494 (((-112) $) 69)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3448 (((-3 (-1174 $) "failed") $) 83)) (-3838 (((-3 (-863) "failed") $) 82)) (-2188 (((-3 (-1174 $) "failed") $) 80)) (-2864 (((-3 (-1063 $ (-1174 $)) "failed") $) 78)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 89)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ $) 27)) (-4262 (((-645 $) (-1174 $)) 61) (((-645 $) (-1174 (-410 (-567)))) NIL) (((-645 $) (-1174 (-567))) NIL) (((-645 $) (-954 $)) NIL) (((-645 $) (-954 (-410 (-567)))) NIL) (((-645 $) (-954 (-567))) NIL)) (-4004 (($ (-1063 $ (-1174 $)) (-863)) 46)) (-2219 (($ $) 22)) (-1716 (($) 32 T CONST)) (-1728 (($) 39 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 76)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 24)) (-3060 (($ $ $) 37)) (-3045 (($ $) 38) (($ $ $) 74)) (-3033 (($ $ $) 112)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1026 |#1|) (-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1063 $ (-1174 $)) (-863))) (-15 -2864 ((-3 (-1063 $ (-1174 $)) "failed") $)) (-15 -4122 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1024))) (T -1026)) +((-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-1063 (-1026 *4) (-1174 (-1026 *4)))) (-5 *3 (-863)) (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))) (-2864 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1174 (-1026 *3)))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024)))))) +(-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1063 $ (-1174 $)) (-863))) (-15 -2864 ((-3 (-1063 $ (-1174 $)) "failed") $)) (-15 -4122 ((-410 (-567)) $ $)))) +((-4365 (((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1027 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| |#2| |#1|)) (-15 -4365 ((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1027)) +((-4365 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3845 *3) (|:| -4179 (-645 *5)))) (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-4365 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3))))) +(-10 -7 (-15 -4365 (|#2| |#2| |#1|)) (-15 -4365 ((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2717 ((|#1| $ |#1|) 14)) (-4284 ((|#1| $ |#1|) 12)) (-4397 (($ |#1|) 10)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1787 ((|#1| $) 11)) (-4090 ((|#1| $) 13)) (-4132 (((-863) $) 21 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 9))) +(((-1028 |#1|) (-13 (-1218) (-10 -8 (-15 -4397 ($ |#1|)) (-15 -1787 (|#1| $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4090 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -2936 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1028)) +((-4397 (*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-4090 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-2717 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-2936 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1218))))) +(-13 (-1218) (-10 -8 (-15 -4397 ($ |#1|)) (-15 -1787 (|#1| $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4090 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -2936 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 112)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 66)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) 69)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-3783 (((-112) |#4| $) NIL)) (-1829 (((-112) |#4| $) NIL)) (-2127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1653 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 110)) (-3257 (((-3 |#4| "failed") $) 42)) (-1756 (((-645 $) |#4| $) 93)) (-4057 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2370 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-2545 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-3101 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 59)) (-2410 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-4021 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2012 (((-112) |#3| $) 65)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1029 |#1| |#2| |#3| |#4|) (-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1029)) +((-3101 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-2545 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-1653 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) +(-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) +((-3474 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-2787 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 66) (((-690 |#1|) (-690 |#1|) (-923)) 65)) (-3775 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-907 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-907 (-567)) (-567)) 78)) (-3192 (((-690 (-954 |#1|)) (-772)) 98)) (-2448 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 52 (|has| |#1| (-6 (-4420 "*")))) (((-690 |#1|) (-690 |#1|) (-923)) 50 (|has| |#1| (-6 (-4420 "*")))))) +(((-1030 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3192 ((-690 (-954 |#1|)) (-772))) (-15 -2787 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -2787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3474 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3474 ((-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3775 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3775 ((-690 (-567)) (-645 (-567)))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1051)) (T -1030)) +((-3775 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-2448 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2448 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3192 ((-690 (-954 |#1|)) (-772))) (-15 -2787 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -2787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3474 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3474 ((-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3775 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3775 ((-690 (-567)) (-645 (-567)))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) +((-1374 (((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)) 71 (|has| |#1| (-308)))) (-4323 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|)) 119 (|has| |#1| (-365)))) (-4045 (((-1268 |#1|) (-645 (-1268 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-4114 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1915 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-2741 (((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|)) 68 (|has| |#1| (-308)))) (-2610 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-1896 (((-690 |#1|) (-1268 (-1268 |#1|))) 41)) (-3782 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365))))) +(((-1031 |#1|) (-10 -7 (-15 -1896 ((-690 |#1|) (-1268 (-1268 |#1|)))) (-15 -2610 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2741 ((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -1374 ((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -4045 ((-1268 |#1|) (-645 (-1268 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1051)) (T -1031)) +((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1268 *5))) (-5 *4 (-567)) (-5 *2 (-1268 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4114 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-645 (-690 *4))))) (-4114 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) (-5 *3 (-645 (-690 *6))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1268 (-1268 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *4)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))) (-3782 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) (-4 *4 (-365)) (-4 *4 (-1051)))) (-3782 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) (-1374 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1268 *5)) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-1268 (-1268 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1268 *5)))) (-2610 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1031 *4)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1268 (-1268 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4))))) +(-10 -7 (-15 -1896 ((-690 |#1|) (-1268 (-1268 |#1|)))) (-15 -2610 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2741 ((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -1374 ((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -4045 ((-1268 |#1|) (-645 (-1268 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) +((-2685 ((|#1| (-923) |#1|) 18))) +(((-1032 |#1|) (-10 -7 (-15 -2685 (|#1| (-923) |#1|))) (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $))))) (T -1032)) +((-2685 (*1 *2 *3 *2) (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)))))))) +(-10 -7 (-15 -2685 (|#1| (-923) |#1|))) +((-1525 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567))))) 67)) (-4345 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567))))) 52)) (-3121 (((-645 (-317 (-567))) (-690 (-410 (-954 (-567))))) 45)) (-1574 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))) 88)) (-3054 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-3075 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-3568 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567))))) 85))) +(((-1033) (-10 -7 (-15 -1525 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -4345 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -3121 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -3568 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -3054 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -3075 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1574 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))) (T -1033)) +((-1574 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-3568 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1033)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) (-5 *3 (-317 (-567))))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1033))))) +(-10 -7 (-15 -1525 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -4345 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -3121 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -3568 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -3054 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -3075 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1574 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))))) +((-1922 ((|#1| |#1| (-923)) 18))) +(((-1034 |#1|) (-10 -7 (-15 -1922 (|#1| |#1| (-923)))) (-13 (-1102) (-10 -8 (-15 * ($ $ $))))) (T -1034)) +((-1922 (*1 *2 *2 *3) (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1922 (|#1| |#1| (-923)))) +((-4132 ((|#1| (-313)) 11) (((-1273) |#1|) 9))) +(((-1035 |#1|) (-10 -7 (-15 -4132 ((-1273) |#1|)) (-15 -4132 (|#1| (-313)))) (-1218)) (T -1035)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1218)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1273)) (-5 *1 (-1035 *3)) (-4 *3 (-1218))))) +(-10 -7 (-15 -4132 ((-1273) |#1|)) (-15 -4132 (|#1| (-313)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ |#4|) 25)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2465 ((|#4| $) 27)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4221 (((-772)) 43 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 23 T CONST)) (-2936 (((-112) $ $) 40)) (-3045 (($ $) 31) (($ $ $) NIL)) (-3033 (($ $ $) 29)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1036 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2477 ($ |#4|)) (-15 -4132 ($ |#4|)) (-15 -2465 (|#4| $)))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|) (-645 |#4|)) (T -1036)) +((-2477 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2465 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2477 ($ |#4|)) (-15 -4132 ($ |#4|)) (-15 -2465 (|#4| $)))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1178) (-1178)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-1763 (((-112) (-112)) 43)) (-3523 (((-112) (-112)) 42)) (-4284 (((-52) $ (-1178) (-52)) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1178) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1178) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1178)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1178) $) NIL (|has| (-1178) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1178) $) NIL (|has| (-1178) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1178)) $) 37)) (-4251 (((-112) (-1178) $) NIL)) (-1566 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-1789 (((-645 (-1178)) $) NIL)) (-2996 (((-112) (-1178) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2409 (((-52) $) NIL (|has| (-1178) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1178)) 39) (((-52) $ (-1178) (-52)) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-4132 (((-863) $) 41 (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1037) (-13 (-1194 (-1178) (-52)) (-10 -7 (-15 -1763 ((-112) (-112))) (-15 -3523 ((-112) (-112))) (-6 -4418)))) (T -1037)) +((-1763 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) +(-13 (-1194 (-1178) (-52)) (-10 -7 (-15 -1763 ((-112) (-112))) (-15 -3523 ((-112) (-112))) (-6 -4418))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1038) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))) (T -1038)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)))) +((-2038 ((|#2| $) 10))) +(((-1039 |#1| |#2|) (-10 -8 (-15 -2038 (|#2| |#1|))) (-1040 |#2|) (-1218)) (T -1039)) +NIL +(-10 -8 (-15 -2038 (|#2| |#1|))) +((-3753 (((-3 |#1| "failed") $) 9)) (-2038 ((|#1| $) 8)) (-4132 (($ |#1|) 6))) +(((-1040 |#1|) (-140) (-1218)) (T -1040)) +((-3753 (*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1218)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1218))))) +(-13 (-617 |t#1|) (-10 -8 (-15 -3753 ((-3 |t#1| "failed") $)) (-15 -2038 (|t#1| $)))) (((-617 |#1|) . T)) -((-2601 (((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1177))) 38))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -2601 ((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1177))))) (-559) (-13 (-559) (-1039 |#1|))) (T -1040)) -((-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) (-4 *6 (-13 (-559) (-1039 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *6)))))) (-5 *1 (-1040 *5 *6))))) -(-10 -7 (-15 -2601 ((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1177))))) -((-2257 (((-381)) 17)) (-2238 (((-1 (-381)) (-381) (-381)) 22)) (-2082 (((-1 (-381)) (-772)) 50)) (-1459 (((-381)) 37)) (-4176 (((-1 (-381)) (-381) (-381)) 38)) (-3268 (((-381)) 29)) (-1728 (((-1 (-381)) (-381)) 30)) (-1769 (((-381) (-772)) 45)) (-1525 (((-1 (-381)) (-772)) 46)) (-3867 (((-1 (-381)) (-772) (-772)) 49)) (-2947 (((-1 (-381)) (-772) (-772)) 47))) -(((-1041) (-10 -7 (-15 -2257 ((-381))) (-15 -1459 ((-381))) (-15 -3268 ((-381))) (-15 -1769 ((-381) (-772))) (-15 -2238 ((-1 (-381)) (-381) (-381))) (-15 -4176 ((-1 (-381)) (-381) (-381))) (-15 -1728 ((-1 (-381)) (-381))) (-15 -1525 ((-1 (-381)) (-772))) (-15 -2947 ((-1 (-381)) (-772) (-772))) (-15 -3867 ((-1 (-381)) (-772) (-772))) (-15 -2082 ((-1 (-381)) (-772))))) (T -1041)) -((-2082 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-3867 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-2947 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-4176 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-2238 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1041)))) (-3268 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))) (-1459 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))) (-2257 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041))))) -(-10 -7 (-15 -2257 ((-381))) (-15 -1459 ((-381))) (-15 -3268 ((-381))) (-15 -1769 ((-381) (-772))) (-15 -2238 ((-1 (-381)) (-381) (-381))) (-15 -4176 ((-1 (-381)) (-381) (-381))) (-15 -1728 ((-1 (-381)) (-381))) (-15 -1525 ((-1 (-381)) (-772))) (-15 -2947 ((-1 (-381)) (-772) (-772))) (-15 -3867 ((-1 (-381)) (-772) (-772))) (-15 -2082 ((-1 (-381)) (-772)))) -((-2703 (((-421 |#1|) |#1|) 33))) -(((-1042 |#1|) (-10 -7 (-15 -2703 ((-421 |#1|) |#1|))) (-1243 (-410 (-953 (-567))))) (T -1042)) -((-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1042 *3)) (-4 *3 (-1243 (-410 (-953 (-567)))))))) -(-10 -7 (-15 -2703 ((-421 |#1|) |#1|))) -((-4273 (((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|))) 14))) -(((-1043 |#1|) (-10 -7 (-15 -4273 ((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|))))) (-308)) (T -1043)) -((-4273 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-953 *4)))) (-5 *1 (-1043 *4))))) -(-10 -7 (-15 -4273 ((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|))))) -((-2845 (((-645 (-1177)) (-410 (-953 |#1|))) 17)) (-2670 (((-410 (-1173 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177)) 24)) (-2832 (((-410 (-953 |#1|)) (-410 (-1173 (-410 (-953 |#1|)))) (-1177)) 26)) (-1902 (((-3 (-1177) "failed") (-410 (-953 |#1|))) 20)) (-2631 (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|))))) 32) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 33) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1177)) (-645 (-410 (-953 |#1|)))) 28) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|))) 29)) (-4127 (((-410 (-953 |#1|)) |#1|) 11))) -(((-1044 |#1|) (-10 -7 (-15 -2845 ((-645 (-1177)) (-410 (-953 |#1|)))) (-15 -1902 ((-3 (-1177) "failed") (-410 (-953 |#1|)))) (-15 -2670 ((-410 (-1173 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177))) (-15 -2832 ((-410 (-953 |#1|)) (-410 (-1173 (-410 (-953 |#1|)))) (-1177))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|)))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1177)) (-645 (-410 (-953 |#1|))))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4127 ((-410 (-953 |#1|)) |#1|))) (-559)) (T -1044)) -((-4127 (*1 *2 *3) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-559)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-5 *2 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-5 *2 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1177))) (-5 *4 (-645 (-410 (-953 *5)))) (-5 *2 (-410 (-953 *5))) (-4 *5 (-559)) (-5 *1 (-1044 *5)))) (-2631 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1173 (-410 (-953 *5))))) (-5 *4 (-1177)) (-5 *2 (-410 (-953 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-559)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-559)) (-5 *2 (-410 (-1173 (-410 (-953 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-410 (-953 *5))))) (-1902 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-1177)) (-5 *1 (-1044 *4)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1177))) (-5 *1 (-1044 *4))))) -(-10 -7 (-15 -2845 ((-645 (-1177)) (-410 (-953 |#1|)))) (-15 -1902 ((-3 (-1177) "failed") (-410 (-953 |#1|)))) (-15 -2670 ((-410 (-1173 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177))) (-15 -2832 ((-410 (-953 |#1|)) (-410 (-1173 (-410 (-953 |#1|)))) (-1177))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|)))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1177)) (-645 (-410 (-953 |#1|))))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -2631 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4127 ((-410 (-953 |#1|)) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2245 (($) 18 T CONST)) (-2196 ((|#1| $) 23)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4088 ((|#1| $) 22)) (-4065 ((|#1|) 20 T CONST)) (-4127 (((-863) $) 12)) (-3390 ((|#1| $) 21)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16))) -(((-1045 |#1|) (-140) (-23)) (T -1045)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-4065 (*1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2196 (|t#1| $)) (-15 -4088 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -4065 (|t#1|) -3280))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-1851 (($) 25 T CONST)) (-2245 (($) 18 T CONST)) (-2196 ((|#1| $) 23)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4088 ((|#1| $) 22)) (-4065 ((|#1|) 20 T CONST)) (-4127 (((-863) $) 12)) (-3390 ((|#1| $) 21)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16))) +((-2600 (((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178))) 38))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -2600 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178))))) (-559) (-13 (-559) (-1040 |#1|))) (T -1041)) +((-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6))))) +(-10 -7 (-15 -2600 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178))))) +((-3314 (((-381)) 17)) (-3055 (((-1 (-381)) (-381) (-381)) 22)) (-2087 (((-1 (-381)) (-772)) 50)) (-2520 (((-381)) 37)) (-4180 (((-1 (-381)) (-381) (-381)) 38)) (-1495 (((-381)) 29)) (-1617 (((-1 (-381)) (-381)) 30)) (-3850 (((-381) (-772)) 45)) (-3889 (((-1 (-381)) (-772)) 46)) (-3879 (((-1 (-381)) (-772) (-772)) 49)) (-3944 (((-1 (-381)) (-772) (-772)) 47))) +(((-1042) (-10 -7 (-15 -3314 ((-381))) (-15 -2520 ((-381))) (-15 -1495 ((-381))) (-15 -3850 ((-381) (-772))) (-15 -3055 ((-1 (-381)) (-381) (-381))) (-15 -4180 ((-1 (-381)) (-381) (-381))) (-15 -1617 ((-1 (-381)) (-381))) (-15 -3889 ((-1 (-381)) (-772))) (-15 -3944 ((-1 (-381)) (-772) (-772))) (-15 -3879 ((-1 (-381)) (-772) (-772))) (-15 -2087 ((-1 (-381)) (-772))))) (T -1042)) +((-2087 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3879 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3944 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-1617 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-4180 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-3055 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))) (-1495 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-2520 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-3314 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) +(-10 -7 (-15 -3314 ((-381))) (-15 -2520 ((-381))) (-15 -1495 ((-381))) (-15 -3850 ((-381) (-772))) (-15 -3055 ((-1 (-381)) (-381) (-381))) (-15 -4180 ((-1 (-381)) (-381) (-381))) (-15 -1617 ((-1 (-381)) (-381))) (-15 -3889 ((-1 (-381)) (-772))) (-15 -3944 ((-1 (-381)) (-772) (-772))) (-15 -3879 ((-1 (-381)) (-772) (-772))) (-15 -2087 ((-1 (-381)) (-772)))) +((-2706 (((-421 |#1|) |#1|) 33))) +(((-1043 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|))) (-1244 (-410 (-954 (-567))))) (T -1043)) +((-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-1244 (-410 (-954 (-567)))))))) +(-10 -7 (-15 -2706 ((-421 |#1|) |#1|))) +((-4260 (((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))) 14))) +(((-1044 |#1|) (-10 -7 (-15 -4260 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) (-308)) (T -1044)) +((-4260 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4))))) +(-10 -7 (-15 -4260 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) +((-2847 (((-645 (-1178)) (-410 (-954 |#1|))) 17)) (-2675 (((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178)) 24)) (-2836 (((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178)) 26)) (-3046 (((-3 (-1178) "failed") (-410 (-954 |#1|))) 20)) (-2631 (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|))))) 32) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 33) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|)))) 28) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))) 29)) (-4132 (((-410 (-954 |#1|)) |#1|) 11))) +(((-1045 |#1|) (-10 -7 (-15 -2847 ((-645 (-1178)) (-410 (-954 |#1|)))) (-15 -3046 ((-3 (-1178) "failed") (-410 (-954 |#1|)))) (-15 -2675 ((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -2836 ((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4132 ((-410 (-954 |#1|)) |#1|))) (-559)) (T -1045)) +((-4132 (*1 *2 *3) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-5 *4 (-645 (-410 (-954 *5)))) (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) (-2631 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 (-410 (-954 *5))))) (-5 *4 (-1178)) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-410 (-1174 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-410 (-954 *5))))) (-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-1178)) (-5 *1 (-1045 *4)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1178))) (-5 *1 (-1045 *4))))) +(-10 -7 (-15 -2847 ((-645 (-1178)) (-410 (-954 |#1|)))) (-15 -3046 ((-3 (-1178) "failed") (-410 (-954 |#1|)))) (-15 -2675 ((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -2836 ((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4132 ((-410 (-954 |#1|)) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2585 (($) 18 T CONST)) (-3695 ((|#1| $) 23)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3043 ((|#1| $) 22)) (-1462 ((|#1|) 20 T CONST)) (-4132 (((-863) $) 12)) (-1904 ((|#1| $) 21)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) (((-1046 |#1|) (-140) (-23)) (T -1046)) -((-1851 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(-13 (-1045 |t#1|) (-10 -8 (-15 -1851 ($) -3280))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1045 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3645 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-2845 (((-645 (-865 |#2|)) $) NIL)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-2545 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-4124 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3081 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2564 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) NIL (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4159 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-4267 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3828 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2033 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2417 (((-3 $ "failed") $) NIL)) (-4042 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-781 |#1| (-865 |#2|)) (-1101))))) (-3230 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-2197 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-3670 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2499 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4417))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-3163 (((-2 (|:| -3988 (-645 (-781 |#1| (-865 |#2|)))) (|:| -3815 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-2091 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2605 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-4136 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3397 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2847 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-4146 (((-865 |#2|) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-781 |#1| (-865 |#2|)) (-1101))))) (-3751 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-3254 (((-645 (-865 |#2|)) $) NIL)) (-3377 (((-112) (-865 |#2|) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1801 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2707 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2564 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3250 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-1424 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-3536 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-1877 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-2702 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2200 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2815 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1626 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-1835 (((-112) $ $) NIL)) (-3121 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-2924 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1471 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-3424 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-3454 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-3981 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-3256 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1813 (((-772) $) NIL)) (-3439 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-781 |#1| (-865 |#2|)) (-1101)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2388 (($ $ (-865 |#2|)) NIL)) (-2155 (($ $ (-865 |#2|)) NIL)) (-2961 (($ $) NIL)) (-3712 (($ $ (-865 |#2|)) NIL)) (-4127 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-4191 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-4104 (((-112) $ $) NIL)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2862 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-3175 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-2461 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1760 (((-645 (-865 |#2|)) $) NIL)) (-3620 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-3113 (((-112) (-865 |#2|) $) NIL)) (-2929 (((-112) $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1047 |#1| |#2|) (-13 (-1072 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3645 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1177))) (T -1047)) -((-3645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1047 *5 *6))))) -(-13 (-1072 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3645 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) -((-2238 (((-1 (-567)) (-1095 (-567))) 32)) (-2226 (((-567) (-567) (-567) (-567) (-567)) 29)) (-4264 (((-1 (-567)) |RationalNumber|) NIL)) (-2078 (((-1 (-567)) |RationalNumber|) NIL)) (-2092 (((-1 (-567)) (-567) |RationalNumber|) NIL))) -(((-1048) (-10 -7 (-15 -2238 ((-1 (-567)) (-1095 (-567)))) (-15 -2092 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4264 ((-1 (-567)) |RationalNumber|)) (-15 -2078 ((-1 (-567)) |RationalNumber|)) (-15 -2226 ((-567) (-567) (-567) (-567) (-567))))) (T -1048)) -((-2226 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1048)))) (-2078 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))) (-4264 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)) (-5 *3 (-567)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1095 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1048))))) -(-10 -7 (-15 -2238 ((-1 (-567)) (-1095 (-567)))) (-15 -2092 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4264 ((-1 (-567)) |RationalNumber|)) (-15 -2078 ((-1 (-567)) |RationalNumber|)) (-15 -2226 ((-567) (-567) (-567) (-567) (-567)))) -((-4127 (((-863) $) NIL) (($ (-567)) 10))) -(((-1049 |#1|) (-10 -8 (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-1050)) (T -1049)) -NIL -(-10 -8 (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-1050) (-140)) (T -1050)) -((-1772 (*1 *2) (-12 (-4 *1 (-1050)) (-5 *2 (-772))))) -(-13 (-1059) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -1772 ((-772)) -3280) (-6 -4414))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-1905 (((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60))) -(((-1051 |#1| |#2|) (-10 -7 (-15 -1905 ((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1177) (-365)) (T -1051)) -((-1905 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-953 *6))) (-5 *1 (-1051 *5 *6)) (-14 *5 (-1177))))) -(-10 -7 (-15 -1905 ((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 15)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 16 T CONST)) (-2929 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1052 |#1|) (-140) (-1059)) (T -1052)) -((-1710 (*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1059)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-1059)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1059))))) -(-13 (-1101) (-10 -8 (-15 (-1710) ($) -3280) (-15 -2840 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2449 (((-112) $) 40)) (-2038 (((-112) $) 17)) (-4313 (((-772) $) 13)) (-4325 (((-772) $) 14)) (-4116 (((-112) $) 30)) (-3777 (((-112) $) 42))) -(((-1053 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4325 ((-772) |#1|)) (-15 -4313 ((-772) |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -2449 ((-112) |#1|)) (-15 -4116 ((-112) |#1|)) (-15 -2038 ((-112) |#1|))) (-1054 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1050) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1053)) -NIL -(-10 -8 (-15 -4325 ((-772) |#1|)) (-15 -4313 ((-772) |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -2449 ((-112) |#1|)) (-15 -4116 ((-112) |#1|)) (-15 -2038 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2449 (((-112) $) 56)) (-3460 (((-3 $ "failed") $ $) 20)) (-2038 (((-112) $) 58)) (-2112 (((-112) $ (-772)) 66)) (-2245 (($) 18 T CONST)) (-2838 (($ $) 39 (|has| |#3| (-308)))) (-1938 ((|#4| $ (-567)) 44)) (-1979 (((-772) $) 38 (|has| |#3| (-559)))) (-3702 ((|#3| $ (-567) (-567)) 46)) (-3397 (((-645 |#3|) $) 73 (|has| $ (-6 -4417)))) (-2978 (((-772) $) 37 (|has| |#3| (-559)))) (-2407 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-4313 (((-772) $) 50)) (-4325 (((-772) $) 49)) (-1904 (((-112) $ (-772)) 65)) (-2971 (((-567) $) 54)) (-2970 (((-567) $) 52)) (-2513 (((-645 |#3|) $) 74 (|has| $ (-6 -4417)))) (-3136 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1101)) (|has| $ (-6 -4417))))) (-4289 (((-567) $) 53)) (-2233 (((-567) $) 51)) (-2109 (($ (-645 (-645 |#3|))) 59)) (-3751 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1633 (((-645 (-645 |#3|)) $) 48)) (-1596 (((-112) $ (-772)) 64)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-3256 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))))) (-2480 (((-112) $ $) 60)) (-3240 (((-112) $) 63)) (-3347 (($) 62)) (-1783 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-4116 (((-112) $) 57)) (-3439 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4417)))) (-4303 (($ $) 61)) (-1454 ((|#5| $ (-567)) 43)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2461 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4417)))) (-3777 (((-112) $) 55)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2410 (((-772) $) 67 (|has| $ (-6 -4417))))) -(((-1054 |#1| |#2| |#3| |#4| |#5|) (-140) (-772) (-772) (-1050) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1054)) -((-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1050)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))) (-3702 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))) (-1783 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *2 (-1050)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1938 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *2 *7)) (-4 *6 (-1050)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *7 *2)) (-4 *6 (-1050)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3822 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2387 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2838 (*1 *1 *1) (-12 (-4 *1 (-1054 *2 *3 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7))))) -(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4417) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -2109 ($ (-645 (-645 |t#3|)))) (-15 -2038 ((-112) $)) (-15 -4116 ((-112) $)) (-15 -2449 ((-112) $)) (-15 -3777 ((-112) $)) (-15 -2971 ((-567) $)) (-15 -4289 ((-567) $)) (-15 -2970 ((-567) $)) (-15 -2233 ((-567) $)) (-15 -4313 ((-772) $)) (-15 -4325 ((-772) $)) (-15 -1633 ((-645 (-645 |t#3|)) $)) (-15 -1783 (|t#3| $ (-567) (-567))) (-15 -3702 (|t#3| $ (-567) (-567))) (-15 -1783 (|t#3| $ (-567) (-567) |t#3|)) (-15 -1938 (|t#4| $ (-567))) (-15 -1454 (|t#5| $ (-567))) (-15 -3822 ($ (-1 |t#3| |t#3|) $)) (-15 -3822 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2387 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3050 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2838 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -1979 ((-772) $)) (-15 -2978 ((-772) $)) (-15 -2407 ((-645 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1052 |#3|) . T) ((-1057 |#3|) . T) ((-1101) . T) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2449 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2038 (((-112) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-2838 (($ $) 47 (|has| |#3| (-308)))) (-1938 (((-240 |#2| |#3|) $ (-567)) 36)) (-3894 (($ (-690 |#3|)) 45)) (-1979 (((-772) $) 49 (|has| |#3| (-559)))) (-3702 ((|#3| $ (-567) (-567)) NIL)) (-3397 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2978 (((-772) $) 51 (|has| |#3| (-559)))) (-2407 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-4313 (((-772) $) NIL)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-2109 (($ (-645 (-645 |#3|))) 31)) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1633 (((-645 (-645 |#3|)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-3256 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-1635 (((-134)) 59 (|has| |#3| (-365)))) (-4116 (((-112) $) NIL)) (-3439 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-1454 (((-240 |#1| |#3|) $ (-567)) 40)) (-4127 (((-863) $) 19) (((-690 |#3|) $) 42)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-1710 (($) 16 T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1055 |#1| |#2| |#3|) (-13 (-1054 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1274 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -3894 ($ (-690 |#3|))))) (-772) (-772) (-1050)) (T -1055)) -((-3894 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1050)) (-5 *1 (-1055 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772))))) -(-13 (-1054 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1274 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -3894 ($ (-690 |#3|))))) -((-2499 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3822 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1056 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3822 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2499 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1050) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1054 |#1| |#2| |#3| |#4| |#5|) (-1050) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1054 |#1| |#2| |#7| |#8| |#9|)) (T -1056)) -((-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1050)) (-4 *2 (-1050)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *12 (-1054 *5 *6 *2 *10 *11)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1050)) (-4 *10 (-1050)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1054 *5 *6 *10 *11 *12)) (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -3822 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2499 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27))) -(((-1057 |#1|) (-140) (-1059)) (T -1057)) -NIL -(-13 (-21) (-1052 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1052 |#1|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3638 (((-1177) $) 11)) (-3092 ((|#1| $) 12)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2534 (($ (-1177) |#1|) 10)) (-4127 (((-863) $) 22 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2929 (((-112) $ $) 17 (|has| |#1| (-1101))))) -(((-1058 |#1| |#2|) (-13 (-1217) (-10 -8 (-15 -2534 ($ (-1177) |#1|)) (-15 -3638 ((-1177) $)) (-15 -3092 (|#1| $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) (-1094 |#2|) (-1217)) (T -1058)) -((-2534 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-4 *4 (-1217)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-1094 *4)))) (-3638 (*1 *2 *1) (-12 (-4 *4 (-1217)) (-5 *2 (-1177)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-1094 *4)))) (-3092 (*1 *2 *1) (-12 (-4 *2 (-1094 *3)) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1217))))) -(-13 (-1217) (-10 -8 (-15 -2534 ($ (-1177) |#1|)) (-15 -3638 ((-1177) $)) (-15 -3092 (|#1| $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-1059) (-140)) (T -1059)) -NIL -(-13 (-21) (-1113)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1113) . T) ((-1101) . T)) -((-1873 (($ $) 17)) (-2273 (($ $) 25)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 55)) (-2896 (($ $) 27)) (-2721 (($ $) 12)) (-1842 (($ $) 43)) (-3880 (((-381) $) NIL) (((-225) $) NIL) (((-893 (-381)) $) 36)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-1772 (((-772)) 9)) (-1687 (($ $) 45))) -(((-1060 |#1|) (-10 -8 (-15 -2273 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| |#1|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-1061)) (T -1060)) -((-1772 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1060 *3)) (-4 *3 (-1061))))) -(-10 -8 (-15 -2273 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -3489 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 -3880 ((-225) |#1|)) (-15 -3880 ((-381) |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| |#1|)) (-15 -1772 ((-772))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2660 (((-567) $) 97)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-1873 (($ $) 95)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2714 (($ $) 105)) (-2373 (((-112) $ $) 65)) (-3449 (((-567) $) 122)) (-2245 (($) 18 T CONST)) (-2273 (($ $) 94)) (-3747 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2033 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4341 (((-112) $) 79)) (-4357 (((-112) $) 120)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 101)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 104)) (-2896 (($ $) 100)) (-2102 (((-112) $) 121)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2010 (($ $ $) 119)) (-2998 (($ $ $) 118)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2721 (($ $) 96)) (-1842 (($ $) 98)) (-2703 (((-421 $) $) 82)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3880 (((-381) $) 113) (((-225) $) 112) (((-893 (-381)) $) 102)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-1772 (((-772)) 32 T CONST)) (-1687 (($ $) 99)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-4137 (($ $) 123)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2988 (((-112) $ $) 116)) (-2964 (((-112) $ $) 115)) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 117)) (-2952 (((-112) $ $) 114)) (-3050 (($ $ $) 73)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) -(((-1061) (-140)) (T -1061)) -((-4137 (*1 *1 *1) (-4 *1 (-1061))) (-2896 (*1 *1 *1) (-4 *1 (-1061))) (-1687 (*1 *1 *1) (-4 *1 (-1061))) (-1842 (*1 *1 *1) (-4 *1 (-1061))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-567)))) (-2721 (*1 *1 *1) (-4 *1 (-1061))) (-1873 (*1 *1 *1) (-4 *1 (-1061))) (-2273 (*1 *1 *1) (-4 *1 (-1061)))) -(-13 (-365) (-849) (-1023) (-1039 (-567)) (-1039 (-410 (-567))) (-1003) (-615 (-893 (-381))) (-887 (-381)) (-147) (-10 -8 (-15 -2896 ($ $)) (-15 -1687 ($ $)) (-15 -1842 ($ $)) (-15 -2660 ((-567) $)) (-15 -2721 ($ $)) (-15 -1873 ($ $)) (-15 -2273 ($ $)) (-15 -4137 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-893 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-887 (-381)) . T) ((-921) . T) ((-1003) . T) ((-1023) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) |#2| $) 26)) (-2371 ((|#1| $) 10)) (-3449 (((-567) |#2| $) 116)) (-3070 (((-3 $ "failed") |#2| (-922)) 75)) (-2956 ((|#1| $) 31)) (-2177 ((|#1| |#2| $ |#1|) 40)) (-1906 (($ $) 28)) (-3153 (((-3 |#2| "failed") |#2| $) 111)) (-4357 (((-112) |#2| $) NIL)) (-2102 (((-112) |#2| $) NIL)) (-1855 (((-112) |#2| $) 27)) (-1845 ((|#1| $) 117)) (-2944 ((|#1| $) 30)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2530 ((|#2| $) 102)) (-4127 (((-863) $) 92)) (-4104 (((-112) $ $) NIL)) (-3040 ((|#1| |#2| $ |#1|) 41)) (-3279 (((-645 $) |#2|) 77)) (-2929 (((-112) $ $) 97))) -(((-1062 |#1| |#2|) (-13 (-1069 |#1| |#2|) (-10 -8 (-15 -2944 (|#1| $)) (-15 -2956 (|#1| $)) (-15 -2371 (|#1| $)) (-15 -1845 (|#1| $)) (-15 -1906 ($ $)) (-15 -1855 ((-112) |#2| $)) (-15 -2177 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1243 |#1|)) (T -1062)) -((-2177 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-2944 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-2956 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-2371 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-1845 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-1906 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1243 *2)))) (-1855 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1062 *4 *3)) (-4 *3 (-1243 *4))))) -(-13 (-1069 |#1| |#2|) (-10 -8 (-15 -2944 (|#1| $)) (-15 -2956 (|#1| $)) (-15 -2371 (|#1| $)) (-15 -1845 (|#1| $)) (-15 -1906 ($ $)) (-15 -1855 ((-112) |#2| $)) (-15 -2177 (|#1| |#2| $ |#1|)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-2478 (($ $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3262 (($ $ $ $) NIL)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-3449 (((-567) $) NIL)) (-4125 (($ $ $) NIL)) (-2245 (($) NIL T CONST)) (-3091 (($ (-1177)) 10) (($ (-567)) 7)) (-3747 (((-3 (-567) "failed") $) NIL)) (-2033 (((-567) $) NIL)) (-2344 (($ $ $) NIL)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL)) (-1426 (((-112) $) NIL)) (-2242 (((-410 (-567)) $) NIL)) (-1378 (($) NIL) (($ $) NIL)) (-2355 (($ $ $) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3816 (($ $ $ $) NIL)) (-1411 (($ $ $) NIL)) (-4357 (((-112) $) NIL)) (-2057 (($ $ $) NIL)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-2843 (((-112) $) NIL)) (-2904 (((-112) $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-2102 (((-112) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3383 (($ $ $ $) NIL)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1466 (($ $) NIL)) (-2334 (($ $) NIL)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-3382 (($ $ $) NIL)) (-2701 (($) NIL T CONST)) (-2281 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1520 (($ $) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-2303 (($ $) NIL)) (-4303 (($ $) NIL)) (-3880 (((-567) $) 16) (((-539) $) NIL) (((-893 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1177)) 9)) (-4127 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-1772 (((-772)) NIL T CONST)) (-2722 (((-112) $ $) NIL)) (-2092 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-3074 (($) NIL)) (-4380 (((-112) $ $) NIL)) (-1944 (($ $ $ $) NIL)) (-4137 (($ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3037 (($ $) 22) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-1063) (-13 (-548) (-619 (-1177)) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -3091 ($ (-1177))) (-15 -3091 ($ (-567)))))) (T -1063)) -((-3091 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1063)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1063))))) -(-13 (-548) (-619 (-1177)) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -3091 ($ (-1177))) (-15 -3091 ($ (-567))))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-2848 (((-1272) $ (-1177) (-1177)) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-2923 (($) 9)) (-4281 (((-52) $ (-1177) (-52)) NIL)) (-4244 (($ $) 32)) (-2796 (($ $) 30)) (-1388 (($ $) 29)) (-2069 (($ $) 31)) (-4072 (($ $) 35)) (-3465 (($ $) 36)) (-3014 (($ $) 28)) (-2420 (($ $) 33)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) 27 (|has| $ (-6 -4417)))) (-4013 (((-3 (-52) "failed") (-1177) $) 43)) (-2245 (($) NIL T CONST)) (-3796 (($) 7)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2774 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) 53 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1177) $) NIL)) (-3230 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2012 (((-3 (-1159) "failed") $ (-1159) (-567)) 74)) (-3759 (((-52) $ (-1177) (-52)) NIL (|has| $ (-6 -4418)))) (-3702 (((-52) $ (-1177)) NIL)) (-3397 (((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-1177) $) NIL (|has| (-1177) (-851)))) (-2513 (((-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) 38 (|has| $ (-6 -4417))) (((-645 (-52)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-1958 (((-1177) $) NIL (|has| (-1177) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-1422 (((-645 (-1177)) $) NIL)) (-1528 (((-112) (-1177) $) NIL)) (-1881 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL)) (-1330 (($ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) 46)) (-2732 (((-645 (-1177)) $) NIL)) (-2479 (((-112) (-1177) $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-3196 (((-381) $ (-1177)) 52)) (-1412 (((-645 (-1159)) $ (-1159)) 76)) (-2405 (((-52) $) NIL (|has| (-1177) (-851)))) (-3424 (((-3 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) "failed") (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL)) (-4271 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-295 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL (-12 (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-310 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101))))) (-3564 (((-645 (-52)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 (((-52) $ (-1177)) NIL) (((-52) $ (-1177) (-52)) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-3324 (($ $ (-1177)) 54)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1101)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) 40)) (-2260 (($ $ $) 41)) (-4127 (((-863) $) NIL (-2797 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-614 (-863)))))) (-2023 (($ $ (-1177) (-381)) 50)) (-4139 (($ $ (-1177) (-381)) 51)) (-4104 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 (-1177)) (|:| -4232 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-52) (-1101)) (|has| (-2 (|:| -1791 (-1177)) (|:| -4232 (-52))) (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1064) (-13 (-1193 (-1177) (-52)) (-10 -8 (-15 -2260 ($ $ $)) (-15 -3796 ($)) (-15 -3014 ($ $)) (-15 -1388 ($ $)) (-15 -2796 ($ $)) (-15 -2069 ($ $)) (-15 -2420 ($ $)) (-15 -4244 ($ $)) (-15 -4072 ($ $)) (-15 -3465 ($ $)) (-15 -2023 ($ $ (-1177) (-381))) (-15 -4139 ($ $ (-1177) (-381))) (-15 -3196 ((-381) $ (-1177))) (-15 -1412 ((-645 (-1159)) $ (-1159))) (-15 -3324 ($ $ (-1177))) (-15 -2923 ($)) (-15 -2012 ((-3 (-1159) "failed") $ (-1159) (-567))) (-6 -4417)))) (T -1064)) -((-2260 (*1 *1 *1 *1) (-5 *1 (-1064))) (-3796 (*1 *1) (-5 *1 (-1064))) (-3014 (*1 *1 *1) (-5 *1 (-1064))) (-1388 (*1 *1 *1) (-5 *1 (-1064))) (-2796 (*1 *1 *1) (-5 *1 (-1064))) (-2069 (*1 *1 *1) (-5 *1 (-1064))) (-2420 (*1 *1 *1) (-5 *1 (-1064))) (-4244 (*1 *1 *1) (-5 *1 (-1064))) (-4072 (*1 *1 *1) (-5 *1 (-1064))) (-3465 (*1 *1 *1) (-5 *1 (-1064))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-381)) (-5 *1 (-1064)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-381)) (-5 *1 (-1064)))) (-3196 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-381)) (-5 *1 (-1064)))) (-1412 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1064)) (-5 *3 (-1159)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1064)))) (-2923 (*1 *1) (-5 *1 (-1064))) (-2012 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-1064))))) -(-13 (-1193 (-1177) (-52)) (-10 -8 (-15 -2260 ($ $ $)) (-15 -3796 ($)) (-15 -3014 ($ $)) (-15 -1388 ($ $)) (-15 -2796 ($ $)) (-15 -2069 ($ $)) (-15 -2420 ($ $)) (-15 -4244 ($ $)) (-15 -4072 ($ $)) (-15 -3465 ($ $)) (-15 -2023 ($ $ (-1177) (-381))) (-15 -4139 ($ $ (-1177) (-381))) (-15 -3196 ((-381) $ (-1177))) (-15 -1412 ((-645 (-1159)) $ (-1159))) (-15 -3324 ($ $ (-1177))) (-15 -2923 ($)) (-15 -2012 ((-3 (-1159) "failed") $ (-1159) (-567))) (-6 -4417))) -((-4280 (($ $) 46)) (-2450 (((-112) $ $) 82)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-953 (-410 (-567)))) 253) (((-3 $ "failed") (-953 (-567))) 252) (((-3 $ "failed") (-953 |#2|)) 255)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-953 (-410 (-567)))) 241) (($ (-953 (-567))) 237) (($ (-953 |#2|)) 257)) (-3006 (($ $) NIL) (($ $ |#4|) 44)) (-2197 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-4101 (((-112) $) 60)) (-1950 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 125)) (-2211 (($ $) 160)) (-3967 (($ $) 156)) (-1804 (($ $) 155)) (-2365 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4052 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2847 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-4146 ((|#4| $) 32)) (-3605 (($ $ $) 128)) (-1729 (((-112) $) 59)) (-3558 (((-772) $) 35)) (-4254 (($ $) 174)) (-1371 (($ $) 171)) (-2687 (((-645 $) $) 72)) (-1470 (($ $) 62)) (-1652 (($ $) 167)) (-1976 (((-645 $) $) 69)) (-4203 (($ $) 64)) (-2980 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2307 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1951 (-772))) $ $) 130)) (-3693 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $) 126) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $ |#4|) 127)) (-4354 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $) 121) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $ |#4|) 123)) (-2602 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1711 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1547 (((-645 $) $) 54)) (-2815 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-1626 (($ $ $) 116)) (-2701 (($ $) 37)) (-1835 (((-112) $ $) 80)) (-2924 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-1471 (($ $ $) 112)) (-3146 (($ $) 41)) (-2771 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-2901 (($ $ |#2|) NIL) (($ $ $) 153)) (-3997 (($ $ |#2|) 148) (($ $ $) 151)) (-3945 (($ $) 49)) (-4283 (($ $) 55)) (-3880 (((-893 (-381)) $) NIL) (((-893 (-567)) $) NIL) (((-539) $) NIL) (($ (-953 (-410 (-567)))) 243) (($ (-953 (-567))) 239) (($ (-953 |#2|)) 254) (((-1159) $) 281) (((-953 |#2|) $) 184)) (-4127 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-953 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4330 (((-3 (-112) "failed") $ $) 79))) -(((-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 ((-953 |#2|) |#1|)) (-15 -3880 ((-953 |#2|) |#1|)) (-15 -3880 ((-1159) |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2771 (|#2| |#2| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3967 (|#1| |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -3880 (|#1| (-953 |#2|))) (-15 -2033 (|#1| (-953 |#2|))) (-15 -3747 ((-3 |#1| "failed") (-953 |#2|))) (-15 -3880 (|#1| (-953 (-567)))) (-15 -2033 (|#1| (-953 (-567)))) (-15 -3747 ((-3 |#1| "failed") (-953 (-567)))) (-15 -3880 (|#1| (-953 (-410 (-567))))) (-15 -2033 (|#1| (-953 (-410 (-567))))) (-15 -3747 ((-3 |#1| "failed") (-953 (-410 (-567))))) (-15 -1626 (|#1| |#1| |#1|)) (-15 -1471 (|#1| |#1| |#1|)) (-15 -2307 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1951 (-772))) |#1| |#1|)) (-15 -3605 (|#1| |#1| |#1|)) (-15 -1950 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -4354 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -4354 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1711 (|#1| |#1| |#1| |#4|)) (-15 -2602 (|#1| |#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| |#1|)) (-15 -4052 (|#1| |#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#1| |#4|)) (-15 -4052 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2847 ((-112) |#1| (-645 |#1|))) (-15 -2847 ((-112) |#1| |#1|)) (-15 -2815 ((-112) |#1| (-645 |#1|))) (-15 -2815 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| (-645 |#1|))) (-15 -2924 ((-112) |#1| |#1|)) (-15 -2197 ((-112) |#1| (-645 |#1|))) (-15 -2197 ((-112) |#1| |#1|)) (-15 -2450 ((-112) |#1| |#1|)) (-15 -1835 ((-112) |#1| |#1|)) (-15 -4330 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2687 ((-645 |#1|) |#1|)) (-15 -1976 ((-645 |#1|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -1729 ((-112) |#1|)) (-15 -3006 (|#1| |#1| |#4|)) (-15 -2980 (|#1| |#1| |#4|)) (-15 -4283 (|#1| |#1|)) (-15 -1547 ((-645 |#1|) |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3558 ((-772) |#1|)) (-15 -4146 (|#4| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -4127 (|#1| |#4|)) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2033 (|#4| |#1|)) (-15 -2980 (|#2| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-1066 |#2| |#3| |#4|) (-1050) (-794) (-851)) (T -1065)) -NIL -(-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2771 (|#1| (-645 |#1|))) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 ((-953 |#2|) |#1|)) (-15 -3880 ((-953 |#2|) |#1|)) (-15 -3880 ((-1159) |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2771 (|#2| |#2| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3967 (|#1| |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -3880 (|#1| (-953 |#2|))) (-15 -2033 (|#1| (-953 |#2|))) (-15 -3747 ((-3 |#1| "failed") (-953 |#2|))) (-15 -3880 (|#1| (-953 (-567)))) (-15 -2033 (|#1| (-953 (-567)))) (-15 -3747 ((-3 |#1| "failed") (-953 (-567)))) (-15 -3880 (|#1| (-953 (-410 (-567))))) (-15 -2033 (|#1| (-953 (-410 (-567))))) (-15 -3747 ((-3 |#1| "failed") (-953 (-410 (-567))))) (-15 -1626 (|#1| |#1| |#1|)) (-15 -1471 (|#1| |#1| |#1|)) (-15 -2307 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1951 (-772))) |#1| |#1|)) (-15 -3605 (|#1| |#1| |#1|)) (-15 -1950 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -3693 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -4354 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1608 |#1|)) |#1| |#1| |#4|)) (-15 -4354 ((-2 (|:| -3686 |#1|) (|:| |gap| (-772)) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1711 (|#1| |#1| |#1| |#4|)) (-15 -2602 (|#1| |#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| |#1|)) (-15 -4052 (|#1| |#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#1| |#4|)) (-15 -4052 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2847 ((-112) |#1| (-645 |#1|))) (-15 -2847 ((-112) |#1| |#1|)) (-15 -2815 ((-112) |#1| (-645 |#1|))) (-15 -2815 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| (-645 |#1|))) (-15 -2924 ((-112) |#1| |#1|)) (-15 -2197 ((-112) |#1| (-645 |#1|))) (-15 -2197 ((-112) |#1| |#1|)) (-15 -2450 ((-112) |#1| |#1|)) (-15 -1835 ((-112) |#1| |#1|)) (-15 -4330 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2687 ((-645 |#1|) |#1|)) (-15 -1976 ((-645 |#1|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -1729 ((-112) |#1|)) (-15 -3006 (|#1| |#1| |#4|)) (-15 -2980 (|#1| |#1| |#4|)) (-15 -4283 (|#1| |#1|)) (-15 -1547 ((-645 |#1|) |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3558 ((-772) |#1|)) (-15 -4146 (|#4| |#1|)) (-15 -3880 ((-539) |#1|)) (-15 -3880 ((-893 (-567)) |#1|)) (-15 -3880 ((-893 (-381)) |#1|)) (-15 -4127 (|#1| |#4|)) (-15 -3747 ((-3 |#4| "failed") |#1|)) (-15 -2033 (|#4| |#1|)) (-15 -2980 (|#2| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 |#3|) $) 112)) (-2670 (((-1173 $) $ |#3|) 127) (((-1173 |#1|) $) 126)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1312 (($ $) 90 (|has| |#1| (-559)))) (-2318 (((-112) $) 92 (|has| |#1| (-559)))) (-2350 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4280 (($ $) 273)) (-2450 (((-112) $ $) 259)) (-3460 (((-3 $ "failed") $ $) 20)) (-3412 (($ $ $) 218 (|has| |#1| (-559)))) (-1661 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) 102 (|has| |#1| (-910)))) (-3081 (($ $) 100 (|has| |#1| (-455)))) (-2833 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 105 (|has| |#1| (-910)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-953 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177))))) (((-3 $ "failed") (-953 (-567))) 230 (-2797 (-12 (-1653 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1177)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177)))))) (((-3 $ "failed") (-953 |#1|)) 227 (-2797 (-12 (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1177)))) (-12 (-1653 (|has| |#1| (-548))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1177)))) (-12 (-1653 (|has| |#1| (-993 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177))))))) (-2033 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139) (($ (-953 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177))))) (($ (-953 (-567))) 229 (-2797 (-12 (-1653 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1177)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177)))))) (($ (-953 |#1|)) 226 (-2797 (-12 (-1653 (|has| |#1| (-38 (-410 (-567))))) (-1653 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1177)))) (-12 (-1653 (|has| |#1| (-548))) (-1653 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1177)))) (-12 (-1653 (|has| |#1| (-993 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177))))))) (-3621 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-3006 (($ $) 156) (($ $ |#3|) 268)) (-1868 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2197 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-3153 (((-3 $ "failed") $) 37)) (-4101 (((-112) $) 266)) (-1950 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 238)) (-2211 (($ $) 207 (|has| |#1| (-455)))) (-4334 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2992 (((-645 $) $) 111)) (-4341 (((-112) $) 98 (|has| |#1| (-910)))) (-3967 (($ $) 223 (|has| |#1| (-559)))) (-1804 (($ $) 224 (|has| |#1| (-559)))) (-2365 (($ $ $) 250) (($ $ $ |#3|) 248)) (-4052 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2543 (($ $ |#1| |#2| $) 174)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2843 (((-112) $) 35)) (-4183 (((-772) $) 171)) (-2847 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-2054 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-4146 ((|#3| $) 277)) (-2832 (($ (-1173 |#1|) |#3|) 119) (($ (-1173 $) |#3|) 118)) (-2604 (((-645 $) $) 128)) (-2014 (((-112) $) 154)) (-2821 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-3605 (($ $ $) 237)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#3|) 122)) (-1729 (((-112) $) 267)) (-2752 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3558 (((-772) $) 276)) (-3345 (($ (-1 |#2| |#2|) $) 173)) (-3822 (($ (-1 |#1| |#1|) $) 153)) (-1902 (((-3 |#3| "failed") $) 125)) (-4254 (($ $) 204 (|has| |#1| (-455)))) (-1371 (($ $) 205 (|has| |#1| (-455)))) (-2687 (((-645 $) $) 262)) (-1470 (($ $) 265)) (-1652 (($ $) 206 (|has| |#1| (-455)))) (-1976 (((-645 $) $) 263)) (-4203 (($ $) 264)) (-2969 (($ $) 151)) (-2980 ((|#1| $) 150) (($ $ |#3|) 269)) (-2735 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2307 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1951 (-772))) $ $) 236)) (-3693 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $) 240) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $ |#3|) 239)) (-4354 (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $) 242) (((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $ |#3|) 241)) (-2602 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1711 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3739 (((-1159) $) 10)) (-2707 (($ $ $) 212 (|has| |#1| (-559)))) (-1547 (((-645 $) $) 271)) (-2662 (((-3 (-645 $) "failed") $) 116)) (-2432 (((-3 (-645 $) "failed") $) 117)) (-4026 (((-3 (-2 (|:| |var| |#3|) (|:| -4250 (-772))) "failed") $) 115)) (-2815 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-1626 (($ $ $) 234)) (-2701 (($ $) 275)) (-1835 (((-112) $ $) 260)) (-2924 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-1471 (($ $ $) 235)) (-3146 (($ $) 274)) (-3430 (((-1121) $) 11)) (-2965 (((-2 (|:| -2771 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-3770 (((-2 (|:| -2771 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-2943 (((-112) $) 168)) (-2955 ((|#1| $) 169)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 97 (|has| |#1| (-455)))) (-2771 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 104 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 103 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 101 (|has| |#1| (-910)))) (-3987 (((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2387 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2901 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-3997 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-1999 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1621 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-1813 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3945 (($ $) 272)) (-4283 (($ $) 270)) (-3880 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-953 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177))))) (($ (-953 (-567))) 228 (-2797 (-12 (-1653 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1177)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1177)))))) (($ (-953 |#1|)) 225 (|has| |#3| (-615 (-1177)))) (((-1159) $) 203 (-12 (|has| |#1| (-1039 (-567))) (|has| |#3| (-615 (-1177))))) (((-953 |#1|) $) 202 (|has| |#3| (-615 (-1177))))) (-4385 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 106 (-1664 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-953 |#1|) $) 201 (|has| |#3| (-615 (-1177)))) (($ (-410 (-567))) 80 (-2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) 170)) (-2253 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1467 (((-3 $ "failed") $) 81 (-2797 (-1664 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 32 T CONST)) (-2079 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-4330 (((-3 (-112) "failed") $ $) 261)) (-1722 (($) 34 T CONST)) (-2541 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-2279 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2636 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1066 |#1| |#2| |#3|) (-140) (-1050) (-794) (-851)) (T -1066)) -((-4146 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2701 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4280 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3945 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1547 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1066 *3 *4 *5)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2980 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3006 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1470 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1976 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1066 *3 *4 *5)))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1066 *3 *4 *5)))) (-4330 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1835 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2450 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2197 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2197 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2924 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2924 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2847 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2847 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2365 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4052 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2365 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-4052 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2602 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2602 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1711 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-4354 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1608 *1))) (-4 *1 (-1066 *3 *4 *5)))) (-4354 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1608 *1))) (-4 *1 (-1066 *4 *5 *3)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1066 *3 *4 *5)))) (-3693 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1066 *4 *5 *3)))) (-1950 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1066 *3 *4 *5)))) (-3605 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2307 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1951 (-772)))) (-4 *1 (-1066 *3 *4 *5)))) (-1471 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1626 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3747 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3747 (*1 *1 *2) (|partial| -2797 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2033 (*1 *1 *2) (-2797 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3880 (*1 *1 *2) (-2797 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3747 (*1 *1 *2) (|partial| -2797 (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-1653 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-548))) (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2033 (*1 *1 *2) (-2797 (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-1653 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-548))) (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1653 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *5 (-615 (-1177))) (-4 *4 (-794)) (-4 *5 (-851)))) (-1804 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3967 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3997 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2901 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3997 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2901 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3412 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3987 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2771 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1066 *3 *4 *5)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2771 *1) (|:| |coef1| *1))) (-4 *1 (-1066 *3 *4 *5)))) (-2965 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2771 *1) (|:| |coef2| *1))) (-4 *1 (-1066 *3 *4 *5)))) (-3621 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1661 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1066 *3 *4 *5)))) (-2707 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2279 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2541 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2054 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2771 (*1 *2 *2 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2211 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1652 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-4254 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455))))) -(-13 (-950 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4146 (|t#3| $)) (-15 -3558 ((-772) $)) (-15 -2701 ($ $)) (-15 -3146 ($ $)) (-15 -4280 ($ $)) (-15 -3945 ($ $)) (-15 -1547 ((-645 $) $)) (-15 -4283 ($ $)) (-15 -2980 ($ $ |t#3|)) (-15 -3006 ($ $ |t#3|)) (-15 -1729 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -1470 ($ $)) (-15 -4203 ($ $)) (-15 -1976 ((-645 $) $)) (-15 -2687 ((-645 $) $)) (-15 -4330 ((-3 (-112) "failed") $ $)) (-15 -1835 ((-112) $ $)) (-15 -2450 ((-112) $ $)) (-15 -2197 ((-112) $ $)) (-15 -2197 ((-112) $ (-645 $))) (-15 -2924 ((-112) $ $)) (-15 -2924 ((-112) $ (-645 $))) (-15 -2815 ((-112) $ $)) (-15 -2815 ((-112) $ (-645 $))) (-15 -2847 ((-112) $ $)) (-15 -2847 ((-112) $ (-645 $))) (-15 -2365 ($ $ $)) (-15 -4052 ($ $ $)) (-15 -2365 ($ $ $ |t#3|)) (-15 -4052 ($ $ $ |t#3|)) (-15 -2602 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -2602 ($ $ $ |t#3|)) (-15 -1711 ($ $ $ |t#3|)) (-15 -4354 ((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $)) (-15 -4354 ((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1608 $)) $ $ |t#3|)) (-15 -3693 ((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3693 ((-2 (|:| -3686 $) (|:| |gap| (-772)) (|:| -1598 $) (|:| -1608 $)) $ $ |t#3|)) (-15 -1950 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -3605 ($ $ $)) (-15 -2307 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1951 (-772))) $ $)) (-15 -1471 ($ $ $)) (-15 -1626 ($ $ $)) (IF (|has| |t#3| (-615 (-1177))) (PROGN (-6 (-614 (-953 |t#1|))) (-6 (-615 (-953 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3747 ((-3 $ "failed") (-953 (-410 (-567))))) (-15 -2033 ($ (-953 (-410 (-567))))) (-15 -3880 ($ (-953 (-410 (-567))))) (-15 -3747 ((-3 $ "failed") (-953 (-567)))) (-15 -2033 ($ (-953 (-567)))) (-15 -3880 ($ (-953 (-567)))) (IF (|has| |t#1| (-993 (-567))) |%noBranch| (PROGN (-15 -3747 ((-3 $ "failed") (-953 |t#1|))) (-15 -2033 ($ (-953 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3747 ((-3 $ "failed") (-953 (-567)))) (-15 -2033 ($ (-953 (-567)))) (-15 -3880 ($ (-953 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3747 ((-3 $ "failed") (-953 |t#1|))) (-15 -2033 ($ (-953 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3747 ((-3 $ "failed") (-953 |t#1|))) (-15 -2033 ($ (-953 |t#1|)))))) (-15 -3880 ($ (-953 |t#1|))) (IF (|has| |t#1| (-1039 (-567))) (-6 (-615 (-1159))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1804 ($ $)) (-15 -3967 ($ $)) (-15 -3997 ($ $ |t#1|)) (-15 -2901 ($ $ |t#1|)) (-15 -3997 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -3412 ($ $ $)) (-15 -3987 ((-2 (|:| -2771 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3770 ((-2 (|:| -2771 $) (|:| |coef1| $)) $ $)) (-15 -2965 ((-2 (|:| -2771 $) (|:| |coef2| $)) $ $)) (-15 -3621 ($ $ $)) (-15 -1661 ((-645 $) $ $)) (-15 -2707 ($ $ $)) (-15 -2279 ($ $ $ (-772))) (-15 -2541 ($ $ $ $ (-772))) (-15 -2054 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -2771 (|t#1| |t#1| $)) (-15 -2211 ($ $)) (-15 -1652 ($ $)) (-15 -1371 ($ $)) (-15 -4254 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-953 |#1|)) |has| |#3| (-615 (-1177))) ((-172) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-615 (-953 |#1|)) |has| |#3| (-615 (-1177))) ((-615 (-1159)) -12 (|has| |#1| (-1039 (-567))) (|has| |#3| (-615 (-1177)))) ((-291) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-950 |#1| |#2| |#3|) . T) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) |has| |#1| (-910))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3647 (((-645 (-1136)) $) 18)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 27) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-1136) $) 20)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1067) (-13 (-1084) (-10 -8 (-15 -3647 ((-645 (-1136)) $)) (-15 -1998 ((-1136) $))))) (T -1067)) -((-3647 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1067)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1067))))) -(-13 (-1084) (-10 -8 (-15 -3647 ((-645 (-1136)) $)) (-15 -1998 ((-1136) $)))) -((-2840 (((-112) |#3| $) 15)) (-3070 (((-3 $ "failed") |#3| (-922)) 29)) (-3153 (((-3 |#3| "failed") |#3| $) 45)) (-4357 (((-112) |#3| $) 19)) (-2102 (((-112) |#3| $) 17))) -(((-1068 |#1| |#2| |#3|) (-10 -8 (-15 -3070 ((-3 |#1| "failed") |#3| (-922))) (-15 -3153 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4357 ((-112) |#3| |#1|)) (-15 -2102 ((-112) |#3| |#1|)) (-15 -2840 ((-112) |#3| |#1|))) (-1069 |#2| |#3|) (-13 (-849) (-365)) (-1243 |#2|)) (T -1068)) -NIL -(-10 -8 (-15 -3070 ((-3 |#1| "failed") |#3| (-922))) (-15 -3153 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4357 ((-112) |#3| |#1|)) (-15 -2102 ((-112) |#3| |#1|)) (-15 -2840 ((-112) |#3| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) |#2| $) 22)) (-3449 (((-567) |#2| $) 23)) (-3070 (((-3 $ "failed") |#2| (-922)) 16)) (-2177 ((|#1| |#2| $ |#1|) 14)) (-3153 (((-3 |#2| "failed") |#2| $) 19)) (-4357 (((-112) |#2| $) 20)) (-2102 (((-112) |#2| $) 21)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2530 ((|#2| $) 18)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-3040 ((|#1| |#2| $ |#1|) 15)) (-3279 (((-645 $) |#2|) 17)) (-2929 (((-112) $ $) 6))) -(((-1069 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1243 |t#1|)) (T -1069)) -((-3449 (*1 *2 *3 *1) (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-567)))) (-2840 (*1 *2 *3 *1) (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-112)))) (-2102 (*1 *2 *3 *1) (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-112)))) (-4357 (*1 *2 *3 *1) (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-112)))) (-3153 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1069 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1243 *3)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1243 *3)))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1069 *4 *3)))) (-3070 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1069 *4 *2)) (-4 *2 (-1243 *4)))) (-3040 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1069 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1243 *2)))) (-2177 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1069 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1243 *2))))) -(-13 (-1101) (-10 -8 (-15 -3449 ((-567) |t#2| $)) (-15 -2840 ((-112) |t#2| $)) (-15 -2102 ((-112) |t#2| $)) (-15 -4357 ((-112) |t#2| $)) (-15 -3153 ((-3 |t#2| "failed") |t#2| $)) (-15 -2530 (|t#2| $)) (-15 -3279 ((-645 $) |t#2|)) (-15 -3070 ((-3 $ "failed") |t#2| (-922))) (-15 -3040 (|t#1| |t#2| $ |t#1|)) (-15 -2177 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-1865 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772)) 115)) (-4054 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772)) 63)) (-3264 (((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)) 100)) (-3494 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3036 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-3349 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-3880 (((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) 92)) (-2414 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-112)) 62)) (-2467 (((-772) (-645 |#4|) (-645 |#5|)) 21))) -(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2467 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3494 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2414 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-112))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1865 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772))) (-15 -3880 ((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3264 ((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1070)) -((-3264 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) (-5 *4 (-772)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1272)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1159)) (-5 *1 (-1070 *4 *5 *6 *7 *8)))) (-1865 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2564 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2564 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1066 *7 *8 *9)) (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1070 *7 *8 *9 *10 *11)))) (-3349 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) (-3349 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3036 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3036 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1066 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) (-4054 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4054 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1070 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2467 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3494 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2414 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-112))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1865 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772))) (-15 -3880 ((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3264 ((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)))) -((-2091 (((-112) |#5| $) 26)) (-2605 (((-112) |#5| $) 29)) (-4136 (((-112) |#5| $) 18) (((-112) $) 52)) (-1877 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-3981 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-3175 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-3620 (((-112) |#5| $) 32))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3981 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3981 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3981 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3981 ((-645 |#1|) |#5| |#1|)) (-15 -3175 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3175 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3175 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3175 ((-645 |#1|) |#5| |#1|)) (-15 -1877 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1877 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1877 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1877 ((-645 |#1|) |#5| |#1|)) (-15 -2605 ((-112) |#5| |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -3620 ((-112) |#5| |#1|)) (-15 -2091 ((-112) |#5| |#1|)) (-15 -4136 ((-112) |#5| |#1|)) (-15 -3981 (|#1| |#1| |#5|))) (-1072 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1066 |#2| |#3| |#4|)) (T -1071)) -NIL -(-10 -8 (-15 -3981 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3981 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3981 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3981 ((-645 |#1|) |#5| |#1|)) (-15 -3175 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3175 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3175 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3175 ((-645 |#1|) |#5| |#1|)) (-15 -1877 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1877 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1877 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1877 ((-645 |#1|) |#5| |#1|)) (-15 -2605 ((-112) |#5| |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -3620 ((-112) |#5| |#1|)) (-15 -2091 ((-112) |#5| |#1|)) (-15 -4136 ((-112) |#5| |#1|)) (-15 -3981 (|#1| |#1| |#5|))) -((-2399 (((-112) $ $) 7)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) 86)) (-3645 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) 102) (((-112) $) 98)) (-4124 ((|#4| |#4| $) 93)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 127)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2417 (((-3 $ "failed") $) 83)) (-4042 ((|#4| |#4| $) 90)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3670 ((|#4| |#4| $) 88)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) 106)) (-2091 (((-112) |#4| $) 137)) (-2605 (((-112) |#4| $) 134)) (-4136 (((-112) |#4| $) 138) (((-112) $) 135)) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) 105) (((-112) $) 104)) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 128)) (-3250 (((-3 |#4| "failed") $) 84)) (-1424 (((-645 $) |#4| $) 130)) (-3536 (((-3 (-112) (-645 $)) |#4| $) 133)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1877 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2702 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2200 (((-645 |#4|) $) 108)) (-2815 (((-112) |#4| $) 100) (((-112) $) 96)) (-1626 ((|#4| |#4| $) 91)) (-1835 (((-112) $ $) 111)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) 101) (((-112) $) 97)) (-1471 ((|#4| |#4| $) 92)) (-3430 (((-1121) $) 11)) (-2405 (((-3 |#4| "failed") $) 85)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3454 (((-3 $ "failed") $ |#4|) 79)) (-3981 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-1813 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-2961 (($ $) 89)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4191 (((-772) $) 77 (|has| |#3| (-370)))) (-4104 (((-112) $ $) 9)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3175 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) 82)) (-3620 (((-112) |#4| $) 136)) (-3113 (((-112) |#3| $) 81)) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-1072 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -1072)) -((-4136 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2091 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-3620 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1072 *4 *5 *6 *3)))) (-2049 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *1)))) (-4 *1 (-1072 *4 *5 *6 *3)))) (-2049 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-1424 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)))) (-1801 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1072 *4 *5 *6 *3)))) (-2707 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *1)))) (-4 *1 (-1072 *4 *5 *6 *3)))) (-3081 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *1)))) (-4 *1 (-1072 *4 *5 *6 *3)))) (-1877 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)))) (-1877 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *7)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) (-3175 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *7)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)))) (-2702 (*1 *1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-2702 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)))) (-3981 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)))) (-3981 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) (-3981 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1072 *5 *6 *7 *8))))) -(-13 (-1210 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4136 ((-112) |t#4| $)) (-15 -2091 ((-112) |t#4| $)) (-15 -3620 ((-112) |t#4| $)) (-15 -4136 ((-112) $)) (-15 -2605 ((-112) |t#4| $)) (-15 -3536 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -2049 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |t#4| $)) (-15 -2049 ((-112) |t#4| $)) (-15 -1424 ((-645 $) |t#4| $)) (-15 -1801 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -2707 ((-645 (-2 (|:| |val| |t#4|) (|:| -2564 $))) |t#4| |t#4| $)) (-15 -3081 ((-645 (-2 (|:| |val| |t#4|) (|:| -2564 $))) |t#4| $)) (-15 -1877 ((-645 $) |t#4| $)) (-15 -1877 ((-645 $) (-645 |t#4|) $)) (-15 -1877 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -1877 ((-645 $) |t#4| (-645 $))) (-15 -3175 ((-645 $) |t#4| $)) (-15 -3175 ((-645 $) |t#4| (-645 $))) (-15 -3175 ((-645 $) (-645 |t#4|) $)) (-15 -3175 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2702 ($ |t#4| $)) (-15 -2702 ($ (-645 |t#4|) $)) (-15 -3981 ((-645 $) |t#4| $)) (-15 -3981 ((-645 $) |t#4| (-645 $))) (-15 -3981 ((-645 $) (-645 |t#4|) $)) (-15 -3981 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3645 ((-645 $) (-645 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1101) . T) ((-1210 |#1| |#2| |#3| |#4|) . T) ((-1217) . T)) -((-2321 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|) 87)) (-2007 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|) 128)) (-2359 (((-645 |#5|) |#4| |#5|) 75)) (-3043 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4220 (((-1272)) 37)) (-3552 (((-1272)) 26)) (-3808 (((-1272) (-1159) (-1159) (-1159)) 33)) (-1640 (((-1272) (-1159) (-1159) (-1159)) 22)) (-3354 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|) 108)) (-3471 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4046 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|) 114))) -(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-1272) (-1159) (-1159) (-1159))) (-15 -3552 ((-1272))) (-15 -3808 ((-1272) (-1159) (-1159) (-1159))) (-15 -4220 ((-1272))) (-15 -3354 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -3471 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3471 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112))) (-15 -4046 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -2007 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -3043 ((-112) |#4| |#5|)) (-15 -3043 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -2359 ((-645 |#5|) |#4| |#5|)) (-15 -2321 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1073)) -((-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-2359 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3043 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3043 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-2007 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4046 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) (-5 *5 (-112)) (-4 *8 (-1066 *6 *7 *4)) (-4 *9 (-1072 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2564 *9)))) (-5 *1 (-1073 *6 *7 *4 *8 *9)))) (-3471 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3354 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4220 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-3808 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3552 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-1640 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(-10 -7 (-15 -1640 ((-1272) (-1159) (-1159) (-1159))) (-15 -3552 ((-1272))) (-15 -3808 ((-1272) (-1159) (-1159) (-1159))) (-15 -4220 ((-1272))) (-15 -3354 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -3471 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3471 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112))) (-15 -4046 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -2007 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -3043 ((-112) |#4| |#5|)) (-15 -3043 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -2359 ((-645 |#5|) |#4| |#5|)) (-15 -2321 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|))) -((-2399 (((-112) $ $) NIL)) (-3568 (((-1216) $) 13)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3089 (((-1136) $) 10)) (-4127 (((-863) $) 20) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1074) (-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $))))) (T -1074)) -((-3089 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1074)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-1074))))) -(-13 (-1084) (-10 -8 (-15 -3089 ((-1136) $)) (-15 -3568 ((-1216) $)))) -((-3827 (((-112) $ $) 7))) -(((-1075) (-13 (-1217) (-10 -8 (-15 -3827 ((-112) $ $))))) (T -1075)) -((-3827 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1075))))) -(-13 (-1217) (-10 -8 (-15 -3827 ((-112) $ $)))) -((-2399 (((-112) $ $) NIL)) (-1988 (((-1177) $) 8)) (-3739 (((-1159) $) 17)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 11)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 14))) -(((-1076 |#1|) (-13 (-1101) (-10 -8 (-15 -1988 ((-1177) $)))) (-1177)) (T -1076)) -((-1988 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1076 *3)) (-14 *3 *2)))) -(-13 (-1101) (-10 -8 (-15 -1988 ((-1177) $)))) -((-2399 (((-112) $ $) NIL)) (-2135 (($ $ (-645 (-1177)) (-1 (-112) (-645 |#3|))) 34)) (-2993 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1177))) 21)) (-4100 ((|#3| $) 13)) (-3747 (((-3 (-295 |#3|) "failed") $) 60)) (-2033 (((-295 |#3|) $) NIL)) (-4270 (((-645 (-1177)) $) 16)) (-3368 (((-893 |#1|) $) 11)) (-4084 ((|#3| $) 12)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1783 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-922)) 41)) (-4127 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 38))) -(((-1077 |#1| |#2| |#3|) (-13 (-1101) (-287 |#3| |#3|) (-1039 (-295 |#3|)) (-10 -8 (-15 -2993 ($ |#3| |#3|)) (-15 -2993 ($ |#3| |#3| (-645 (-1177)))) (-15 -2135 ($ $ (-645 (-1177)) (-1 (-112) (-645 |#3|)))) (-15 -3368 ((-893 |#1|) $)) (-15 -4084 (|#3| $)) (-15 -4100 (|#3| $)) (-15 -1783 (|#3| $ |#3| (-922))) (-15 -4270 ((-645 (-1177)) $)))) (-1101) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -1077)) -((-2993 (*1 *1 *2 *2) (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1077 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))) (-2993 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1077 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-2135 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1077 *4 *5 *6)))) (-3368 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 *2))) (-5 *2 (-893 *3)) (-5 *1 (-1077 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 *2))))) (-4084 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1077 *3 *4 *2)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) (-4100 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1077 *3 *4 *2)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) (-1783 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1077 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-4270 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *2 (-645 (-1177))) (-5 *1 (-1077 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))))) -(-13 (-1101) (-287 |#3| |#3|) (-1039 (-295 |#3|)) (-10 -8 (-15 -2993 ($ |#3| |#3|)) (-15 -2993 ($ |#3| |#3| (-645 (-1177)))) (-15 -2135 ($ $ (-645 (-1177)) (-1 (-112) (-645 |#3|)))) (-15 -3368 ((-893 |#1|) $)) (-15 -4084 (|#3| $)) (-15 -4100 (|#3| $)) (-15 -1783 (|#3| $ |#3| (-922))) (-15 -4270 ((-645 (-1177)) $)))) -((-2399 (((-112) $ $) NIL)) (-2105 (($ (-645 (-1077 |#1| |#2| |#3|))) 14)) (-3802 (((-645 (-1077 |#1| |#2| |#3|)) $) 21)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1783 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-922)) 27)) (-4127 (((-863) $) 17)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 20))) -(((-1078 |#1| |#2| |#3|) (-13 (-1101) (-287 |#3| |#3|) (-10 -8 (-15 -2105 ($ (-645 (-1077 |#1| |#2| |#3|)))) (-15 -3802 ((-645 (-1077 |#1| |#2| |#3|)) $)) (-15 -1783 (|#3| $ |#3| (-922))))) (-1101) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -1078)) -((-2105 (*1 *1 *2) (-12 (-5 *2 (-645 (-1077 *3 *4 *5))) (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1078 *3 *4 *5)))) (-3802 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *2 (-645 (-1077 *3 *4 *5))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))) (-1783 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1101)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))))) -(-13 (-1101) (-287 |#3| |#3|) (-10 -8 (-15 -2105 ($ (-645 (-1077 |#1| |#2| |#3|)))) (-15 -3802 ((-645 (-1077 |#1| |#2| |#3|)) $)) (-15 -1783 (|#3| $ |#3| (-922))))) -((-2356 (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|))) 92) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112)) 90))) -(((-1079 |#1| |#2|) (-10 -7 (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1177))) (T -1079)) -((-2356 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) (-5 *1 (-1079 *5 *6)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1177))))) (-2356 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) (-5 *1 (-1079 *4 *5)) (-5 *3 (-645 (-953 *4))) (-14 *5 (-645 (-1177))))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) (-5 *1 (-1079 *5 *6)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1177)))))) -(-10 -7 (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -2356 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)))) -((-2703 (((-421 |#3|) |#3|) 18))) -(((-1080 |#1| |#2| |#3|) (-10 -7 (-15 -2703 ((-421 |#3|) |#3|))) (-1243 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1243 |#2|)) (T -1080)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1243 *5))))) -(-10 -7 (-15 -2703 ((-421 |#3|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 141)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-1312 (($ $) NIL (|has| |#1| (-365)))) (-2318 (((-112) $) NIL (|has| |#1| (-365)))) (-2981 (((-690 |#1|) (-1267 $)) NIL) (((-690 |#1|)) 125)) (-4290 ((|#1| $) 130)) (-3581 (((-1190 (-922) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2371 (((-772)) 46 (|has| |#1| (-370)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-4025 (($ (-1267 |#1|) (-1267 $)) NIL) (($ (-1267 |#1|)) 49)) (-4008 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-1937 (((-690 |#1|) $ (-1267 $)) NIL) (((-690 |#1|) $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-2499 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-3153 (((-3 $ "failed") $) NIL)) (-1979 (((-922)) 84)) (-1378 (($) 50 (|has| |#1| (-370)))) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3005 (($) NIL (|has| |#1| (-351)))) (-4284 (((-112) $) NIL (|has| |#1| (-351)))) (-4112 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-2937 (((-922) $) NIL (|has| |#1| (-351))) (((-834 (-922)) $) NIL (|has| |#1| (-351)))) (-2843 (((-112) $) NIL)) (-2896 ((|#1| $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2612 ((|#2| $) 91 (|has| |#1| (-365)))) (-3425 (((-922) $) 150 (|has| |#1| (-370)))) (-2488 ((|#2| $) 64)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-2701 (($) NIL (|has| |#1| (-351)) CONST)) (-3763 (($ (-922)) 140 (|has| |#1| (-370)))) (-3430 (((-1121) $) NIL)) (-1394 (($) 132)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3762 (((-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567))))) NIL (|has| |#1| (-351)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1999 ((|#1| (-1267 $)) NIL) ((|#1|) 119)) (-3942 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1621 (($ $) NIL (-2797 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2797 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3337 (((-690 |#1|) (-1267 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2530 ((|#2|) 80)) (-3057 (($) NIL (|has| |#1| (-351)))) (-2446 (((-1267 |#1|) $ (-1267 $)) 96) (((-690 |#1|) (-1267 $) (-1267 $)) NIL) (((-1267 |#1|) $) 77) (((-690 |#1|) (-1267 $)) 92)) (-3880 (((-1267 |#1|) $) NIL) (($ (-1267 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-4127 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-1467 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3116 ((|#2| $) 89)) (-1772 (((-772)) 82 T CONST)) (-4104 (((-112) $ $) NIL)) (-1975 (((-1267 $)) 88)) (-4380 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1710 (($) 32 T CONST)) (-1722 (($) 19 T CONST)) (-2636 (($ $) NIL (-2797 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2797 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1177))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2929 (((-112) $ $) 69)) (-3050 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) 73) (($ $ $) NIL)) (-3024 (($ $ $) 71)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) -(((-1081 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1243 |#1|) |#2|) (T -1081)) +((-3695 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-1462 (*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3695 (|t#1| $)) (-15 -3043 (|t#1| $)) (-15 -1904 (|t#1| $)) (-15 -1462 (|t#1|) -3286))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2457 (($) 25 T CONST)) (-2585 (($) 18 T CONST)) (-3695 ((|#1| $) 23)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3043 ((|#1| $) 22)) (-1462 ((|#1|) 20 T CONST)) (-4132 (((-863) $) 12)) (-1904 ((|#1| $) 21)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) +(((-1047 |#1|) (-140) (-23)) (T -1047)) +((-2457 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(-13 (-1046 |t#1|) (-10 -8 (-15 -2457 ($) -3286))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1046 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3244 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-2847 (((-645 (-865 |#2|)) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3722 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3248 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1724 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2038 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2421 (((-3 $ "failed") $) NIL)) (-1999 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3238 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-3786 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-3730 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2477 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4418))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1585 (((-2 (|:| -3995 (-645 (-781 |#1| (-865 |#2|)))) (|:| -3823 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-3783 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-1829 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2127 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2777 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-1664 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1679 (((-865 |#2|) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3731 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-2826 (((-645 (-865 |#2|)) $) NIL)) (-2808 (((-112) (-865 |#2|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2272 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3257 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-1756 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-4057 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2370 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-3101 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-4051 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-1791 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3159 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-2554 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-4164 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-4128 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-4077 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-2410 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-3025 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-3077 (((-772) $) NIL)) (-3439 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2397 (($ $ (-865 |#2|)) NIL)) (-2120 (($ $ (-865 |#2|)) NIL)) (-4129 (($ $) NIL)) (-2813 (($ $ (-865 |#2|)) NIL)) (-4132 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2073 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2668 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-4021 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 (-865 |#2|)) $) NIL)) (-2848 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2012 (((-112) (-865 |#2|) $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1048 |#1| |#2|) (-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3244 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1178))) (T -1048)) +((-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1048 *5 *6))))) +(-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3244 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) +((-3055 (((-1 (-567)) (-1096 (-567))) 32)) (-3966 (((-567) (-567) (-567) (-567) (-567)) 29)) (-1609 (((-1 (-567)) |RationalNumber|) NIL)) (-4066 (((-1 (-567)) |RationalNumber|) NIL)) (-3881 (((-1 (-567)) (-567) |RationalNumber|) NIL))) +(((-1049) (-10 -7 (-15 -3055 ((-1 (-567)) (-1096 (-567)))) (-15 -3881 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -1609 ((-1 (-567)) |RationalNumber|)) (-15 -4066 ((-1 (-567)) |RationalNumber|)) (-15 -3966 ((-567) (-567) (-567) (-567) (-567))))) (T -1049)) +((-3966 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))) (-4066 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-1609 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) (-5 *3 (-567)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) +(-10 -7 (-15 -3055 ((-1 (-567)) (-1096 (-567)))) (-15 -3881 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -1609 ((-1 (-567)) |RationalNumber|)) (-15 -4066 ((-1 (-567)) |RationalNumber|)) (-15 -3966 ((-567) (-567) (-567) (-567) (-567)))) +((-4132 (((-863) $) NIL) (($ (-567)) 10))) +(((-1050 |#1|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1051)) (T -1050)) +NIL +(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-1051) (-140)) (T -1051)) +((-4221 (*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772))))) +(-13 (-1060) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -4221 ((-772)) -3286) (-6 -4415))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2190 (((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60))) +(((-1052 |#1| |#2|) (-10 -7 (-15 -2190 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1178) (-365)) (T -1052)) +((-2190 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1178))))) +(-10 -7 (-15 -2190 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1053 |#1|) (-140) (-1060)) (T -1053)) +((-1716 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060))))) +(-13 (-1102) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-1981 (((-112) $) 40)) (-1948 (((-112) $) 17)) (-3633 (((-772) $) 13)) (-3643 (((-772) $) 14)) (-3339 (((-112) $) 30)) (-2619 (((-112) $) 42))) +(((-1054 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3643 ((-772) |#1|)) (-15 -3633 ((-772) |#1|)) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|))) (-1055 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1051) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1054)) +NIL +(-10 -8 (-15 -3643 ((-772) |#1|)) (-15 -3633 ((-772) |#1|)) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1981 (((-112) $) 56)) (-3472 (((-3 $ "failed") $ $) 20)) (-1948 (((-112) $) 58)) (-3445 (((-112) $ (-772)) 66)) (-2585 (($) 18 T CONST)) (-2233 (($ $) 39 (|has| |#3| (-308)))) (-1944 ((|#4| $ (-567)) 44)) (-1954 (((-772) $) 38 (|has| |#3| (-559)))) (-3680 ((|#3| $ (-567) (-567)) 46)) (-2777 (((-645 |#3|) $) 73 (|has| $ (-6 -4418)))) (-1940 (((-772) $) 37 (|has| |#3| (-559)))) (-1325 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-3633 (((-772) $) 50)) (-3643 (((-772) $) 49)) (-2077 (((-112) $ (-772)) 65)) (-2527 (((-567) $) 54)) (-4043 (((-567) $) 52)) (-2279 (((-645 |#3|) $) 74 (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 53)) (-2646 (((-567) $) 51)) (-2114 (($ (-645 (-645 |#3|))) 59)) (-3731 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1603 (((-645 (-645 |#3|)) $) 48)) (-2863 (((-112) $ (-772)) 64)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-3025 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) 60)) (-3572 (((-112) $) 63)) (-3498 (($) 62)) (-1787 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-3339 (((-112) $) 57)) (-3439 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4418)))) (-4305 (($ $) 61)) (-2237 ((|#5| $ (-567)) 43)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 55)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2414 (((-772) $) 67 (|has| $ (-6 -4418))))) +(((-1055 |#1| |#2| |#3| |#4| |#5|) (-140) (-772) (-772) (-1051) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1055)) +((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-3680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-1787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7))))) +(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4418) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -2114 ($ (-645 (-645 |t#3|)))) (-15 -1948 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -2527 ((-567) $)) (-15 -2107 ((-567) $)) (-15 -4043 ((-567) $)) (-15 -2646 ((-567) $)) (-15 -3633 ((-772) $)) (-15 -3643 ((-772) $)) (-15 -1603 ((-645 (-645 |t#3|)) $)) (-15 -1787 (|t#3| $ (-567) (-567))) (-15 -3680 (|t#3| $ (-567) (-567))) (-15 -1787 (|t#3| $ (-567) (-567) |t#3|)) (-15 -1944 (|t#4| $ (-567))) (-15 -2237 (|t#5| $ (-567))) (-15 -3829 ($ (-1 |t#3| |t#3|) $)) (-15 -3829 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3060 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2233 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -1954 ((-772) $)) (-15 -1940 ((-772) $)) (-15 -1325 ((-645 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1053 |#3|) . T) ((-1058 |#3|) . T) ((-1102) . T) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 47 (|has| |#3| (-308)))) (-1944 (((-240 |#2| |#3|) $ (-567)) 36)) (-2529 (($ (-690 |#3|)) 45)) (-1954 (((-772) $) 49 (|has| |#3| (-559)))) (-3680 ((|#3| $ (-567) (-567)) NIL)) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1940 (((-772) $) 51 (|has| |#3| (-559)))) (-1325 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-3633 (((-772) $) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#3|))) 31)) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1603 (((-645 (-645 |#3|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-1879 (((-134)) 59 (|has| |#3| (-365)))) (-3339 (((-112) $) NIL)) (-3439 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-2237 (((-240 |#1| |#3|) $ (-567)) 40)) (-4132 (((-863) $) 19) (((-690 |#3|) $) 42)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1056 |#1| |#2| |#3|) (-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1275 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2529 ($ (-690 |#3|))))) (-772) (-772) (-1051)) (T -1056)) +((-2529 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772))))) +(-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1275 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2529 ($ (-690 |#3|))))) +((-2477 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3829 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1057 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3829 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2477 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1051) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1051) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1055 |#1| |#2| |#7| |#8| |#9|)) (T -1057)) +((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -3829 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2477 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27))) +(((-1058 |#1|) (-140) (-1060)) (T -1058)) +NIL +(-13 (-21) (-1053 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1053 |#1|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3644 (((-1178) $) 11)) (-3099 ((|#1| $) 12)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2537 (($ (-1178) |#1|) 10)) (-4132 (((-863) $) 22 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 17 (|has| |#1| (-1102))))) +(((-1059 |#1| |#2|) (-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) |#1|)) (-15 -3644 ((-1178) $)) (-15 -3099 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1095 |#2|) (-1218)) (T -1059)) +((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-4 *4 (-1218)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *4 (-1218)) (-5 *2 (-1178)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3099 (*1 *2 *1) (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1218))))) +(-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) |#1|)) (-15 -3644 ((-1178) $)) (-15 -3099 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-1060) (-140)) (T -1060)) +NIL +(-13 (-21) (-1114)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1114) . T) ((-1102) . T)) +((-1950 (($ $) 17)) (-2535 (($ $) 25)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 55)) (-2475 (($ $) 27)) (-4094 (($ $) 12)) (-2780 (($ $) 43)) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) 36)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-4221 (((-772)) 9)) (-1423 (($ $) 45))) +(((-1061 |#1|) (-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -1950 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1062)) (T -1061)) +((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062))))) +(-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -1950 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 (((-567) $) 97)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-1950 (($ $) 95)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 105)) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 122)) (-2585 (($) 18 T CONST)) (-2535 (($ $) 94)) (-3753 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2038 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4336 (((-112) $) 120)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 104)) (-2475 (($ $) 100)) (-3494 (((-112) $) 121)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 119)) (-2981 (($ $ $) 118)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 96)) (-2780 (($ $) 98)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3893 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-4221 (((-772)) 32 T CONST)) (-1423 (($ $) 99)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 123)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 116)) (-2971 (((-112) $ $) 115)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 117)) (-2958 (((-112) $ $) 114)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +(((-1062) (-140)) (T -1062)) +((-2219 (*1 *1 *1) (-4 *1 (-1062))) (-2475 (*1 *1 *1) (-4 *1 (-1062))) (-1423 (*1 *1 *1) (-4 *1 (-1062))) (-2780 (*1 *1 *1) (-4 *1 (-1062))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))) (-4094 (*1 *1 *1) (-4 *1 (-1062))) (-1950 (*1 *1 *1) (-4 *1 (-1062))) (-2535 (*1 *1 *1) (-4 *1 (-1062)))) +(-13 (-365) (-849) (-1024) (-1040 (-567)) (-1040 (-410 (-567))) (-1004) (-615 (-894 (-381))) (-888 (-381)) (-147) (-10 -8 (-15 -2475 ($ $)) (-15 -1423 ($ $)) (-15 -2780 ($ $)) (-15 -3093 ((-567) $)) (-15 -4094 ($ $)) (-15 -1950 ($ $)) (-15 -2535 ($ $)) (-15 -2219 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) |#2| $) 26)) (-2375 ((|#1| $) 10)) (-1750 (((-567) |#2| $) 116)) (-3483 (((-3 $ "failed") |#2| (-923)) 75)) (-2963 ((|#1| $) 31)) (-4122 ((|#1| |#2| $ |#1|) 40)) (-2298 (($ $) 28)) (-2109 (((-3 |#2| "failed") |#2| $) 111)) (-4336 (((-112) |#2| $) NIL)) (-3494 (((-112) |#2| $) NIL)) (-3479 (((-112) |#2| $) 27)) (-3082 ((|#1| $) 117)) (-2950 ((|#1| $) 30)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3341 ((|#2| $) 102)) (-4132 (((-863) $) 92)) (-1745 (((-112) $ $) NIL)) (-3050 ((|#1| |#2| $ |#1|) 41)) (-4262 (((-645 $) |#2|) 77)) (-2936 (((-112) $ $) 97))) +(((-1063 |#1| |#2|) (-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| $)) (-15 -2963 (|#1| $)) (-15 -2375 (|#1| $)) (-15 -3082 (|#1| $)) (-15 -2298 ($ $)) (-15 -3479 ((-112) |#2| $)) (-15 -4122 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1244 |#1|)) (T -1063)) +((-4122 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2963 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2375 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2298 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-3479 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) (-4 *3 (-1244 *4))))) +(-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| $)) (-15 -2963 (|#1| $)) (-15 -2375 (|#1| $)) (-15 -3082 (|#1| $)) (-15 -2298 ($ $)) (-15 -3479 ((-112) |#2| $)) (-15 -4122 (|#1| |#2| $ |#1|)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-1673 (($ (-1178)) 10) (($ (-567)) 7)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) NIL) (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) NIL)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1446 (($ $) NIL)) (-1699 (($ $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) NIL)) (-4305 (($ $) NIL)) (-3893 (((-567) $) 16) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1178)) 9)) (-4132 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) NIL)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3045 (($ $) 22) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) +(((-1064) (-13 (-548) (-619 (-1178)) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1673 ($ (-1178))) (-15 -1673 ($ (-567)))))) (T -1064)) +((-1673 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1064)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064))))) +(-13 (-548) (-619 (-1178)) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1673 ($ (-1178))) (-15 -1673 ($ (-567))))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1178) (-1178)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-2459 (($) 9)) (-4284 (((-52) $ (-1178) (-52)) NIL)) (-4085 (($ $) 32)) (-3736 (($ $) 30)) (-3919 (($ $) 29)) (-1414 (($ $) 31)) (-3973 (($ $) 35)) (-2671 (($ $) 36)) (-1965 (($ $) 28)) (-4168 (($ $) 33)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) 27 (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1178) $) 43)) (-2585 (($) NIL T CONST)) (-1597 (($) 7)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) 53 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1178) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2608 (((-3 (-1160) "failed") $ (-1160) (-567)) 74)) (-3741 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1178)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1178) $) NIL (|has| (-1178) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) 38 (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1178) $) NIL (|has| (-1178) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1178)) $) NIL)) (-4251 (((-112) (-1178) $) NIL)) (-1566 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) 46)) (-1789 (((-645 (-1178)) $) NIL)) (-2996 (((-112) (-1178) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2064 (((-381) $ (-1178)) 52)) (-1324 (((-645 (-1160)) $ (-1160)) 76)) (-2409 (((-52) $) NIL (|has| (-1178) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1178)) NIL) (((-52) $ (-1178) (-52)) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-2988 (($ $ (-1178)) 54)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) 40)) (-2269 (($ $ $) 41)) (-4132 (((-863) $) NIL (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-614 (-863)))))) (-2378 (($ $ (-1178) (-381)) 50)) (-2420 (($ $ (-1178) (-381)) 51)) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1065) (-13 (-1194 (-1178) (-52)) (-10 -8 (-15 -2269 ($ $ $)) (-15 -1597 ($)) (-15 -1965 ($ $)) (-15 -3919 ($ $)) (-15 -3736 ($ $)) (-15 -1414 ($ $)) (-15 -4168 ($ $)) (-15 -4085 ($ $)) (-15 -3973 ($ $)) (-15 -2671 ($ $)) (-15 -2378 ($ $ (-1178) (-381))) (-15 -2420 ($ $ (-1178) (-381))) (-15 -2064 ((-381) $ (-1178))) (-15 -1324 ((-645 (-1160)) $ (-1160))) (-15 -2988 ($ $ (-1178))) (-15 -2459 ($)) (-15 -2608 ((-3 (-1160) "failed") $ (-1160) (-567))) (-6 -4418)))) (T -1065)) +((-2269 (*1 *1 *1 *1) (-5 *1 (-1065))) (-1597 (*1 *1) (-5 *1 (-1065))) (-1965 (*1 *1 *1) (-5 *1 (-1065))) (-3919 (*1 *1 *1) (-5 *1 (-1065))) (-3736 (*1 *1 *1) (-5 *1 (-1065))) (-1414 (*1 *1 *1) (-5 *1 (-1065))) (-4168 (*1 *1 *1) (-5 *1 (-1065))) (-4085 (*1 *1 *1) (-5 *1 (-1065))) (-3973 (*1 *1 *1) (-5 *1 (-1065))) (-2671 (*1 *1 *1) (-5 *1 (-1065))) (-2378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2420 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-381)) (-5 *1 (-1065)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1065)) (-5 *3 (-1160)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1065)))) (-2459 (*1 *1) (-5 *1 (-1065))) (-2608 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-1065))))) +(-13 (-1194 (-1178) (-52)) (-10 -8 (-15 -2269 ($ $ $)) (-15 -1597 ($)) (-15 -1965 ($ $)) (-15 -3919 ($ $)) (-15 -3736 ($ $)) (-15 -1414 ($ $)) (-15 -4168 ($ $)) (-15 -4085 ($ $)) (-15 -3973 ($ $)) (-15 -2671 ($ $)) (-15 -2378 ($ $ (-1178) (-381))) (-15 -2420 ($ $ (-1178) (-381))) (-15 -2064 ((-381) $ (-1178))) (-15 -1324 ((-645 (-1160)) $ (-1160))) (-15 -2988 ($ $ (-1178))) (-15 -2459 ($)) (-15 -2608 ((-3 (-1160) "failed") $ (-1160) (-567))) (-6 -4418))) +((-4283 (($ $) 46)) (-2061 (((-112) $ $) 82)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) 253) (((-3 $ "failed") (-954 (-567))) 252) (((-3 $ "failed") (-954 |#2|)) 255)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-954 (-410 (-567)))) 241) (($ (-954 (-567))) 237) (($ (-954 |#2|)) 257)) (-3014 (($ $) NIL) (($ $ |#4|) 44)) (-3786 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-1479 (((-112) $) 60)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 125)) (-2872 (($ $) 160)) (-3411 (($ $) 156)) (-3395 (($ $) 155)) (-4205 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1824 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1664 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-1679 ((|#4| $) 32)) (-1838 (($ $ $) 128)) (-1721 (((-112) $) 59)) (-2991 (((-772) $) 35)) (-2964 (($ $) 174)) (-4146 (($ $) 171)) (-3388 (((-645 $) $) 72)) (-4040 (($ $) 62)) (-2091 (($ $) 167)) (-2719 (((-645 $) $) 69)) (-1359 (($ $) 64)) (-2989 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 130)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 126) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#4|) 127)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) 121) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#4|) 123)) (-1491 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2767 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2300 (((-645 $) $) 54)) (-1791 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-3159 (($ $ $) 116)) (-2672 (($ $) 37)) (-3392 (((-112) $ $) 80)) (-2554 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-4164 (($ $ $) 112)) (-2724 (($ $) 41)) (-2774 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-1772 (($ $ |#2|) NIL) (($ $ $) 153)) (-3288 (($ $ |#2|) 148) (($ $ $) 151)) (-2804 (($ $) 49)) (-2606 (($ $) 55)) (-3893 (((-894 (-381)) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (($ (-954 (-410 (-567)))) 243) (($ (-954 (-567))) 239) (($ (-954 |#2|)) 254) (((-1160) $) 281) (((-954 |#2|) $) 184)) (-4132 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-954 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4222 (((-3 (-112) "failed") $ $) 79))) +(((-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 ((-954 |#2|) |#1|)) (-15 -3893 ((-954 |#2|) |#1|)) (-15 -3893 ((-1160) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2774 (|#2| |#2| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3411 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3893 (|#1| (-954 |#2|))) (-15 -2038 (|#1| (-954 |#2|))) (-15 -3753 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3893 (|#1| (-954 (-567)))) (-15 -2038 (|#1| (-954 (-567)))) (-15 -3753 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3893 (|#1| (-954 (-410 (-567))))) (-15 -2038 (|#1| (-954 (-410 (-567))))) (-15 -3753 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -3159 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2673 (-772))) |#1| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -3708 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1| |#4|)) (-15 -1491 (|#1| |#1| |#1| |#4|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| |#4|)) (-15 -4205 (|#1| |#1| |#1| |#4|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -1664 ((-112) |#1| (-645 |#1|))) (-15 -1664 ((-112) |#1| |#1|)) (-15 -1791 ((-112) |#1| (-645 |#1|))) (-15 -1791 ((-112) |#1| |#1|)) (-15 -2554 ((-112) |#1| (-645 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1| (-645 |#1|))) (-15 -3786 ((-112) |#1| |#1|)) (-15 -2061 ((-112) |#1| |#1|)) (-15 -3392 ((-112) |#1| |#1|)) (-15 -4222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3388 ((-645 |#1|) |#1|)) (-15 -2719 ((-645 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -4040 (|#1| |#1|)) (-15 -1479 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3014 (|#1| |#1| |#4|)) (-15 -2989 (|#1| |#1| |#4|)) (-15 -2606 (|#1| |#1|)) (-15 -2300 ((-645 |#1|) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2991 ((-772) |#1|)) (-15 -1679 (|#4| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1067 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -1066)) +NIL +(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 ((-954 |#2|) |#1|)) (-15 -3893 ((-954 |#2|) |#1|)) (-15 -3893 ((-1160) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2774 (|#2| |#2| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3411 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3893 (|#1| (-954 |#2|))) (-15 -2038 (|#1| (-954 |#2|))) (-15 -3753 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3893 (|#1| (-954 (-567)))) (-15 -2038 (|#1| (-954 (-567)))) (-15 -3753 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3893 (|#1| (-954 (-410 (-567))))) (-15 -2038 (|#1| (-954 (-410 (-567))))) (-15 -3753 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -3159 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2673 (-772))) |#1| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -3708 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1| |#4|)) (-15 -1491 (|#1| |#1| |#1| |#4|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| |#4|)) (-15 -4205 (|#1| |#1| |#1| |#4|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -1664 ((-112) |#1| (-645 |#1|))) (-15 -1664 ((-112) |#1| |#1|)) (-15 -1791 ((-112) |#1| (-645 |#1|))) (-15 -1791 ((-112) |#1| |#1|)) (-15 -2554 ((-112) |#1| (-645 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1| (-645 |#1|))) (-15 -3786 ((-112) |#1| |#1|)) (-15 -2061 ((-112) |#1| |#1|)) (-15 -3392 ((-112) |#1| |#1|)) (-15 -4222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3388 ((-645 |#1|) |#1|)) (-15 -2719 ((-645 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -4040 (|#1| |#1|)) (-15 -1479 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3014 (|#1| |#1| |#4|)) (-15 -2989 (|#1| |#1| |#4|)) (-15 -2606 (|#1| |#1|)) (-15 -2300 ((-645 |#1|) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2991 ((-772) |#1|)) (-15 -1679 (|#4| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4283 (($ $) 273)) (-2061 (((-112) $ $) 259)) (-3472 (((-3 $ "failed") $ $) 20)) (-2323 (($ $ $) 218 (|has| |#1| (-559)))) (-1734 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-954 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (((-3 $ "failed") (-954 (-567))) 230 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (((-3 $ "failed") (-954 |#1|)) 227 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-548))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))))) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) (($ (-954 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (($ (-954 (-567))) 229 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (($ (-954 |#1|)) 226 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-548))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))))) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-3014 (($ $) 156) (($ $ |#3|) 268)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3786 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-2109 (((-3 $ "failed") $) 37)) (-1479 (((-112) $) 266)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 238)) (-2872 (($ $) 207 (|has| |#1| (-455)))) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-3411 (($ $) 223 (|has| |#1| (-559)))) (-3395 (($ $) 224 (|has| |#1| (-559)))) (-4205 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1824 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2320 (($ $ |#1| |#2| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-1664 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-2689 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-1679 ((|#3| $) 277)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1838 (($ $ $) 237)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-1721 (((-112) $) 267)) (-2656 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-2991 (((-772) $) 276)) (-3273 (($ (-1 |#2| |#2|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-3046 (((-3 |#3| "failed") $) 125)) (-2964 (($ $) 204 (|has| |#1| (-455)))) (-4146 (($ $) 205 (|has| |#1| (-455)))) (-3388 (((-645 $) $) 262)) (-4040 (($ $) 265)) (-2091 (($ $) 206 (|has| |#1| (-455)))) (-2719 (((-645 $) $) 263)) (-1359 (($ $) 264)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150) (($ $ |#3|) 269)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 236)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 240) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 239)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) 242) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#3|) 241)) (-1491 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2767 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1419 (((-1160) $) 10)) (-2272 (($ $ $) 212 (|has| |#1| (-559)))) (-2300 (((-645 $) $) 271)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-1791 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-3159 (($ $ $) 234)) (-2672 (($ $) 275)) (-3392 (((-112) $ $) 260)) (-2554 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-4164 (($ $ $) 235)) (-2724 (($ $) 274)) (-3430 (((-1122) $) 11)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-1772 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-3288 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3077 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-2804 (($ $) 272)) (-2606 (($ $) 270)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-954 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (($ (-954 (-567))) 228 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (($ (-954 |#1|)) 225 (|has| |#3| (-615 (-1178)))) (((-1160) $) 203 (-12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1178))))) (((-954 |#1|) $) 202 (|has| |#3| (-615 (-1178))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-954 |#1|) $) 201 (|has| |#3| (-615 (-1178)))) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-4222 (((-3 (-112) "failed") $ $) 261)) (-1728 (($) 34 T CONST)) (-2097 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-1875 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1067 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -1067)) +((-1679 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2672 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2300 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2606 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2989 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3014 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4040 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2719 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-4222 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3392 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2061 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3786 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2554 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2554 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1791 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1664 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-4205 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1824 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4205 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1824 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1491 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1491 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2767 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3983 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2521 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-1838 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1451 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2673 (-772)))) (-4 *1 (-1067 *3 *4 *5)))) (-4164 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3753 (*1 *1 *2) (|partial| -2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2038 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3893 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3753 (*1 *1 *2) (|partial| -2800 (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2038 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *5 (-615 (-1178))) (-4 *4 (-794)) (-4 *5 (-851)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3411 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3288 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1772 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1772 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1893 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-4348 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3521 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2951 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1875 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2097 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2689 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2774 (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2964 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455))))) +(-13 (-951 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1679 (|t#3| $)) (-15 -2991 ((-772) $)) (-15 -2672 ($ $)) (-15 -2724 ($ $)) (-15 -4283 ($ $)) (-15 -2804 ($ $)) (-15 -2300 ((-645 $) $)) (-15 -2606 ($ $)) (-15 -2989 ($ $ |t#3|)) (-15 -3014 ($ $ |t#3|)) (-15 -1721 ((-112) $)) (-15 -1479 ((-112) $)) (-15 -4040 ($ $)) (-15 -1359 ($ $)) (-15 -2719 ((-645 $) $)) (-15 -3388 ((-645 $) $)) (-15 -4222 ((-3 (-112) "failed") $ $)) (-15 -3392 ((-112) $ $)) (-15 -2061 ((-112) $ $)) (-15 -3786 ((-112) $ $)) (-15 -3786 ((-112) $ (-645 $))) (-15 -2554 ((-112) $ $)) (-15 -2554 ((-112) $ (-645 $))) (-15 -1791 ((-112) $ $)) (-15 -1791 ((-112) $ (-645 $))) (-15 -1664 ((-112) $ $)) (-15 -1664 ((-112) $ (-645 $))) (-15 -4205 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -4205 ($ $ $ |t#3|)) (-15 -1824 ($ $ $ |t#3|)) (-15 -1491 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -1491 ($ $ $ |t#3|)) (-15 -2767 ($ $ $ |t#3|)) (-15 -3983 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $)) (-15 -3983 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |t#3|)) (-15 -2521 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2521 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |t#3|)) (-15 -3708 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $)) (-15 -4164 ($ $ $)) (-15 -3159 ($ $ $)) (IF (|has| |t#3| (-615 (-1178))) (PROGN (-6 (-614 (-954 |t#1|))) (-6 (-615 (-954 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3753 ((-3 $ "failed") (-954 (-410 (-567))))) (-15 -2038 ($ (-954 (-410 (-567))))) (-15 -3893 ($ (-954 (-410 (-567))))) (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3893 ($ (-954 (-567)))) (IF (|has| |t#1| (-994 (-567))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3893 ($ (-954 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|)))))) (-15 -3893 ($ (-954 |t#1|))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-615 (-1160))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3395 ($ $)) (-15 -3411 ($ $)) (-15 -3288 ($ $ |t#1|)) (-15 -1772 ($ $ |t#1|)) (-15 -3288 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -2323 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -2951 ($ $ $)) (-15 -1734 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1875 ($ $ $ (-772))) (-15 -2097 ($ $ $ $ (-772))) (-15 -2689 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -2774 (|t#1| |t#1| $)) (-15 -2872 ($ $)) (-15 -2091 ($ $)) (-15 -4146 ($ $)) (-15 -2964 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-954 |#1|)) |has| |#3| (-615 (-1178))) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-615 (-954 |#1|)) |has| |#3| (-615 (-1178))) ((-615 (-1160)) -12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1178)))) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#2| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3653 (((-645 (-1137)) $) 18)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 20)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1068) (-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))) (T -1068)) +((-3653 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068))))) +(-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $)))) +((-2460 (((-112) |#3| $) 15)) (-3483 (((-3 $ "failed") |#3| (-923)) 29)) (-2109 (((-3 |#3| "failed") |#3| $) 45)) (-4336 (((-112) |#3| $) 19)) (-3494 (((-112) |#3| $) 17))) +(((-1069 |#1| |#2| |#3|) (-10 -8 (-15 -3483 ((-3 |#1| "failed") |#3| (-923))) (-15 -2109 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4336 ((-112) |#3| |#1|)) (-15 -3494 ((-112) |#3| |#1|)) (-15 -2460 ((-112) |#3| |#1|))) (-1070 |#2| |#3|) (-13 (-849) (-365)) (-1244 |#2|)) (T -1069)) +NIL +(-10 -8 (-15 -3483 ((-3 |#1| "failed") |#3| (-923))) (-15 -2109 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4336 ((-112) |#3| |#1|)) (-15 -3494 ((-112) |#3| |#1|)) (-15 -2460 ((-112) |#3| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) |#2| $) 22)) (-1750 (((-567) |#2| $) 23)) (-3483 (((-3 $ "failed") |#2| (-923)) 16)) (-4122 ((|#1| |#2| $ |#1|) 14)) (-2109 (((-3 |#2| "failed") |#2| $) 19)) (-4336 (((-112) |#2| $) 20)) (-3494 (((-112) |#2| $) 21)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3341 ((|#2| $) 18)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3050 ((|#1| |#2| $ |#1|) 15)) (-4262 (((-645 $) |#2|) 17)) (-2936 (((-112) $ $) 6))) +(((-1070 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1244 |t#1|)) (T -1070)) +((-1750 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-567)))) (-2460 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-3494 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-4336 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-2109 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1244 *3)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1244 *3)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1070 *4 *3)))) (-3483 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1070 *4 *2)) (-4 *2 (-1244 *4)))) (-3050 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1244 *2)))) (-4122 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1244 *2))))) +(-13 (-1102) (-10 -8 (-15 -1750 ((-567) |t#2| $)) (-15 -2460 ((-112) |t#2| $)) (-15 -3494 ((-112) |t#2| $)) (-15 -4336 ((-112) |t#2| $)) (-15 -2109 ((-3 |t#2| "failed") |t#2| $)) (-15 -3341 (|t#2| $)) (-15 -4262 ((-645 $) |t#2|)) (-15 -3483 ((-3 $ "failed") |t#2| (-923))) (-15 -3050 (|t#1| |t#2| $ |t#1|)) (-15 -4122 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2595 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772)) 115)) (-3958 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 63)) (-3262 (((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)) 100)) (-3252 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3574 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-2532 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-3893 (((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 92)) (-1836 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112)) 62)) (-4230 (((-772) (-645 |#4|) (-645 |#5|)) 21))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1071)) +((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) (-5 *1 (-1071 *4 *5 *6 *7 *8)))) (-2595 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) (-2532 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2532 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-1836 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) +((-3783 (((-112) |#5| $) 26)) (-1829 (((-112) |#5| $) 29)) (-2127 (((-112) |#5| $) 18) (((-112) $) 52)) (-2370 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-2410 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-4021 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-2848 (((-112) |#5| $) 32))) +(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2410 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2410 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2410 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2410 ((-645 |#1|) |#5| |#1|)) (-15 -4021 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -4021 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -4021 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -4021 ((-645 |#1|) |#5| |#1|)) (-15 -2370 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2370 ((-645 |#1|) |#5| |#1|)) (-15 -1829 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -3783 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#5| |#1|)) (-15 -2410 (|#1| |#1| |#5|))) (-1073 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1072)) +NIL +(-10 -8 (-15 -2410 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2410 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2410 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2410 ((-645 |#1|) |#5| |#1|)) (-15 -4021 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -4021 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -4021 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -4021 ((-645 |#1|) |#5| |#1|)) (-15 -2370 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2370 ((-645 |#1|) |#5| |#1|)) (-15 -1829 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -3783 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#5| |#1|)) (-15 -2410 (|#1| |#1| |#5|))) +((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-1073 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1073)) +((-2127 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3783 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2848 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1829 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4057 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3573 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3573 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1756 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3232 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2272 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3248 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2370 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2370 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-2370 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-2370 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-4021 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-4021 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-4021 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3101 (*1 *1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3101 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) (-2410 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2410 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-2410 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-2410 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *5 *6 *7 *8))))) +(-13 (-1211 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2127 ((-112) |t#4| $)) (-15 -3783 ((-112) |t#4| $)) (-15 -2848 ((-112) |t#4| $)) (-15 -2127 ((-112) $)) (-15 -1829 ((-112) |t#4| $)) (-15 -4057 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -3573 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |t#4| $)) (-15 -3573 ((-112) |t#4| $)) (-15 -1756 ((-645 $) |t#4| $)) (-15 -3232 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -2272 ((-645 (-2 (|:| |val| |t#4|) (|:| -2566 $))) |t#4| |t#4| $)) (-15 -3248 ((-645 (-2 (|:| |val| |t#4|) (|:| -2566 $))) |t#4| $)) (-15 -2370 ((-645 $) |t#4| $)) (-15 -2370 ((-645 $) (-645 |t#4|) $)) (-15 -2370 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2370 ((-645 $) |t#4| (-645 $))) (-15 -4021 ((-645 $) |t#4| $)) (-15 -4021 ((-645 $) |t#4| (-645 $))) (-15 -4021 ((-645 $) (-645 |t#4|) $)) (-15 -4021 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3101 ($ |t#4| $)) (-15 -3101 ($ (-645 |t#4|) $)) (-15 -2410 ((-645 $) |t#4| $)) (-15 -2410 ((-645 $) |t#4| (-645 $))) (-15 -2410 ((-645 $) (-645 |t#4|) $)) (-15 -2410 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3244 ((-645 $) (-645 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T)) +((-4188 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 87)) (-3401 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 128)) (-3897 (((-645 |#5|) |#4| |#5|) 75)) (-2754 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3687 (((-1273)) 37)) (-3571 (((-1273)) 26)) (-4268 (((-1273) (-1160) (-1160) (-1160)) 33)) (-4378 (((-1273) (-1160) (-1160) (-1160)) 22)) (-3123 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|) 108)) (-2089 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4280 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 114))) +(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3123 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -4280 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3401 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2754 ((-112) |#4| |#5|)) (-15 -2754 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3897 ((-645 |#5|) |#4| |#5|)) (-15 -4188 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1074)) +((-4188 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3897 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3401 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4280 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-2089 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3123 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3687 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3571 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4378 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3123 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -4280 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3401 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2754 ((-112) |#4| |#5|)) (-15 -2754 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3897 ((-645 |#5|) |#4| |#5|)) (-15 -4188 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) +((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1075) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -1075)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-1075))))) +(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $)))) +((-3845 (((-112) $ $) 7))) +(((-1076) (-13 (-1218) (-10 -8 (-15 -3845 ((-112) $ $))))) (T -1076)) +((-3845 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076))))) +(-13 (-1218) (-10 -8 (-15 -3845 ((-112) $ $)))) +((-2403 (((-112) $ $) NIL)) (-1996 (((-1178) $) 8)) (-1419 (((-1160) $) 17)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 14))) +(((-1077 |#1|) (-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) (-1178)) (T -1077)) +((-1996 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1077 *3)) (-14 *3 *2)))) +(-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) +((-2403 (((-112) $ $) NIL)) (-2111 (($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|))) 34)) (-3001 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1178))) 21)) (-4104 ((|#3| $) 13)) (-3753 (((-3 (-295 |#3|) "failed") $) 60)) (-2038 (((-295 |#3|) $) NIL)) (-3860 (((-645 (-1178)) $) 16)) (-3370 (((-894 |#1|) $) 11)) (-4089 ((|#3| $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-923)) 41)) (-4132 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 38))) +(((-1078 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3001 ($ |#3| |#3|)) (-15 -3001 ($ |#3| |#3| (-645 (-1178)))) (-15 -2111 ($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|)))) (-15 -3370 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4104 (|#3| $)) (-15 -1787 (|#3| $ |#3| (-923))) (-15 -3860 ((-645 (-1178)) $)))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1078)) +((-3001 (*1 *1 *2 *2) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-3001 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-2111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-3370 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2))))) (-4089 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-4104 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-1787 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-3860 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1178))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) +(-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3001 ($ |#3| |#3|)) (-15 -3001 ($ |#3| |#3| (-645 (-1178)))) (-15 -2111 ($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|)))) (-15 -3370 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4104 (|#3| $)) (-15 -1787 (|#3| $ |#3| (-923))) (-15 -3860 ((-645 (-1178)) $)))) +((-2403 (((-112) $ $) NIL)) (-2081 (($ (-645 (-1078 |#1| |#2| |#3|))) 14)) (-3810 (((-645 (-1078 |#1| |#2| |#3|)) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-923)) 27)) (-4132 (((-863) $) 17)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 20))) +(((-1079 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2081 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3810 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1787 (|#3| $ |#3| (-923))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1079)) +((-2081 (*1 *1 *2) (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1079 *3 *4 *5)))) (-3810 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-1787 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))))) +(-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2081 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3810 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1787 (|#3| $ |#3| (-923))))) +((-1839 (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 92) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 90))) +(((-1080 |#1| |#2|) (-10 -7 (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1178))) (T -1080)) +((-1839 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1178))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178)))))) +(-10 -7 (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) +((-2706 (((-421 |#3|) |#3|) 18))) +(((-1081 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) (-1244 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1244 |#2|)) (T -1081)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1244 *5))))) +(-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 141)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-4381 (($ $) NIL (|has| |#1| (-365)))) (-3949 (((-112) $) NIL (|has| |#1| (-365)))) (-2141 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) 125)) (-4293 ((|#1| $) 130)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2375 (((-772)) 46 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) 49)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-1811 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-2477 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1954 (((-923)) 84)) (-1348 (($) 50 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3431 (($) NIL (|has| |#1| (-351)))) (-2722 (((-112) $) NIL (|has| |#1| (-351)))) (-4225 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4384 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-1433 (((-112) $) NIL)) (-2475 ((|#1| $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4206 ((|#2| $) 91 (|has| |#1| (-365)))) (-4249 (((-923) $) 150 (|has| |#1| (-370)))) (-2465 ((|#2| $) 64)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2672 (($) NIL (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 140 (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-1398 (($) 132)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-351)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3788 ((|#1| (-1268 $)) NIL) ((|#1|) 119)) (-2491 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1593 (($ $) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3341 ((|#2|) 80)) (-1527 (($) NIL (|has| |#1| (-351)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 96) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) 77) (((-690 |#1|) (-1268 $)) 92)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-4132 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2155 ((|#2| $) 89)) (-4221 (((-772)) 82 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 88)) (-3816 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1716 (($) 32 T CONST)) (-1728 (($) 19 T CONST)) (-2637 (($ $) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2936 (((-112) $ $) 69)) (-3060 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) 73) (($ $ $) NIL)) (-3033 (($ $ $) 71)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) +(((-1082 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1244 |#1|) |#2|) (T -1082)) NIL (-725 |#1| |#2|) -((-2703 (((-421 |#3|) |#3|) 19))) -(((-1082 |#1| |#2| |#3|) (-10 -7 (-15 -2703 ((-421 |#3|) |#3|))) (-1243 (-410 (-953 (-567)))) (-13 (-365) (-147) (-725 (-410 (-953 (-567))) |#1|)) (-1243 |#2|)) (T -1082)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-1243 (-410 (-953 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-953 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1082 *4 *5 *3)) (-4 *3 (-1243 *5))))) -(-10 -7 (-15 -2703 ((-421 |#3|) |#3|))) -((-2399 (((-112) $ $) NIL)) (-2010 (($ $ $) 16)) (-2998 (($ $ $) 17)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4113 (($) 6)) (-3880 (((-1177) $) 20)) (-4127 (((-863) $) 13)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 15)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) -(((-1083) (-13 (-851) (-615 (-1177)) (-10 -8 (-15 -4113 ($))))) (T -1083)) -((-4113 (*1 *1) (-5 *1 (-1083)))) -(-13 (-851) (-615 (-1177)) (-10 -8 (-15 -4113 ($)))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-1182)) 17) (((-1182) $) 16)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-1084) (-140)) (T -1084)) +((-2706 (((-421 |#3|) |#3|) 19))) +(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) (-1244 (-410 (-954 (-567)))) (-13 (-365) (-147) (-725 (-410 (-954 (-567))) |#1|)) (-1244 |#2|)) (T -1083)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 (-954 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1244 *5))))) +(-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) +((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) 16)) (-2981 (($ $ $) 17)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4314 (($) 6)) (-3893 (((-1178) $) 20)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 9))) +(((-1084) (-13 (-851) (-615 (-1178)) (-10 -8 (-15 -4314 ($))))) (T -1084)) +((-4314 (*1 *1) (-5 *1 (-1084)))) +(-13 (-851) (-615 (-1178)) (-10 -8 (-15 -4314 ($)))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-1085) (-140)) (T -1085)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-617 #0=(-1182)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1101) . T)) -((-2470 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2021 (((-1272)) 22)) (-2859 (((-645 |#1|)) 13))) -(((-1085 |#1|) (-10 -7 (-15 -2021 ((-1272))) (-15 -2859 ((-645 |#1|))) (-15 -2470 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2470 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1085)) -((-2470 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1085 *2)))) (-2470 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1085 *2)))) (-2859 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-132)))) (-2021 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1085 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -2021 ((-1272))) (-15 -2859 ((-645 |#1|))) (-15 -2470 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2470 (|#1| |#1| (-1 (-567) |#1| |#1|)))) -((-2160 (($ (-109) $) 20)) (-2154 (((-692 (-109)) (-509) $) 19)) (-3347 (($) 7)) (-2116 (($) 21)) (-4095 (($) 22)) (-2003 (((-645 (-175)) $) 10)) (-4127 (((-863) $) 25))) -(((-1086) (-13 (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -2003 ((-645 (-175)) $)) (-15 -2154 ((-692 (-109)) (-509) $)) (-15 -2160 ($ (-109) $)) (-15 -2116 ($)) (-15 -4095 ($))))) (T -1086)) -((-3347 (*1 *1) (-5 *1 (-1086))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1086)))) (-2154 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1086)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1086)))) (-2116 (*1 *1) (-5 *1 (-1086))) (-4095 (*1 *1) (-5 *1 (-1086)))) -(-13 (-614 (-863)) (-10 -8 (-15 -3347 ($)) (-15 -2003 ((-645 (-175)) $)) (-15 -2154 ((-692 (-109)) (-509) $)) (-15 -2160 ($ (-109) $)) (-15 -2116 ($)) (-15 -4095 ($)))) -((-3316 (((-1267 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1267 (-690 (-953 |#1|))) (-645 (-1177)) (-690 (-953 |#1|))) 75) (((-1267 (-690 (-410 (-953 |#1|)))) (-645 (-1177)) (-690 (-410 (-953 |#1|)))) 92)) (-2446 (((-1267 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41))) -(((-1087 |#1|) (-10 -7 (-15 -3316 ((-1267 (-690 (-410 (-953 |#1|)))) (-645 (-1177)) (-690 (-410 (-953 |#1|))))) (-15 -3316 ((-1267 (-690 (-953 |#1|))) (-645 (-1177)) (-690 (-953 |#1|)))) (-15 -3316 ((-1267 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2446 ((-1267 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1087)) -((-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1267 *5)) (-5 *1 (-1087 *5)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1267 (-690 *4))) (-5 *1 (-1087 *4)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1177))) (-4 *5 (-365)) (-5 *2 (-1267 (-690 (-953 *5)))) (-5 *1 (-1087 *5)) (-5 *4 (-690 (-953 *5))))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1177))) (-4 *5 (-365)) (-5 *2 (-1267 (-690 (-410 (-953 *5))))) (-5 *1 (-1087 *5)) (-5 *4 (-690 (-410 (-953 *5))))))) -(-10 -7 (-15 -3316 ((-1267 (-690 (-410 (-953 |#1|)))) (-645 (-1177)) (-690 (-410 (-953 |#1|))))) (-15 -3316 ((-1267 (-690 (-953 |#1|))) (-645 (-1177)) (-690 (-953 |#1|)))) (-15 -3316 ((-1267 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2446 ((-1267 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2100 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1177)) NIL)) (-2415 (((-772) $) NIL) (((-772) $ (-1177)) NIL)) (-2845 (((-645 (-1089 (-1177))) $) NIL)) (-2670 (((-1173 $) $ (-1089 (-1177))) NIL) (((-1173 |#1|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1089 (-1177)))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2533 (($ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1089 (-1177)) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL) (((-3 (-1126 |#1| (-1177)) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1089 (-1177)) $) NIL) (((-1177) $) NIL) (((-1126 |#1| (-1177)) $) NIL)) (-3621 (($ $ $ (-1089 (-1177))) NIL (|has| |#1| (-172)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1089 (-1177))) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-534 (-1089 (-1177))) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1089 (-1177)) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1089 (-1177)) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ (-1177)) NIL) (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2832 (($ (-1173 |#1|) (-1089 (-1177))) NIL) (($ (-1173 $) (-1089 (-1177))) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-534 (-1089 (-1177)))) NIL) (($ $ (-1089 (-1177)) (-772)) NIL) (($ $ (-645 (-1089 (-1177))) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1089 (-1177))) NIL)) (-2752 (((-534 (-1089 (-1177))) $) NIL) (((-772) $ (-1089 (-1177))) NIL) (((-645 (-772)) $ (-645 (-1089 (-1177)))) NIL)) (-3345 (($ (-1 (-534 (-1089 (-1177))) (-534 (-1089 (-1177)))) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1518 (((-1 $ (-772)) (-1177)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-1902 (((-3 (-1089 (-1177)) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3714 (((-1089 (-1177)) $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-4162 (((-112) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1089 (-1177))) (|:| -4250 (-772))) "failed") $) NIL)) (-2339 (($ $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1089 (-1177)) |#1|) NIL) (($ $ (-645 (-1089 (-1177))) (-645 |#1|)) NIL) (($ $ (-1089 (-1177)) $) NIL) (($ $ (-645 (-1089 (-1177))) (-645 $)) NIL) (($ $ (-1177) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1177)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1177)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-1999 (($ $ (-1089 (-1177))) NIL (|has| |#1| (-172)))) (-1621 (($ $ (-1089 (-1177))) NIL) (($ $ (-645 (-1089 (-1177)))) NIL) (($ $ (-1089 (-1177)) (-772)) NIL) (($ $ (-645 (-1089 (-1177))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1516 (((-645 (-1177)) $) NIL)) (-1813 (((-534 (-1089 (-1177))) $) NIL) (((-772) $ (-1089 (-1177))) NIL) (((-645 (-772)) $ (-645 (-1089 (-1177)))) NIL) (((-772) $ (-1177)) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1089 (-1177)) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1089 (-1177)) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1089 (-1177)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1089 (-1177))) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1089 (-1177))) NIL) (($ (-1177)) NIL) (($ (-1126 |#1| (-1177))) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-534 (-1089 (-1177)))) NIL) (($ $ (-1089 (-1177)) (-772)) NIL) (($ $ (-645 (-1089 (-1177))) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1089 (-1177))) NIL) (($ $ (-645 (-1089 (-1177)))) NIL) (($ $ (-1089 (-1177)) (-772)) NIL) (($ $ (-645 (-1089 (-1177))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1088 |#1|) (-13 (-254 |#1| (-1177) (-1089 (-1177)) (-534 (-1089 (-1177)))) (-1039 (-1126 |#1| (-1177)))) (-1050)) (T -1088)) -NIL -(-13 (-254 |#1| (-1177) (-1089 (-1177)) (-534 (-1089 (-1177)))) (-1039 (-1126 |#1| (-1177)))) -((-2399 (((-112) $ $) NIL)) (-2415 (((-772) $) NIL)) (-3638 ((|#1| $) 10)) (-3747 (((-3 |#1| "failed") $) NIL)) (-2033 ((|#1| $) NIL)) (-2937 (((-772) $) 11)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1518 (($ |#1| (-772)) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1621 (($ $) NIL) (($ $ (-772)) NIL)) (-4127 (((-863) $) NIL) (($ |#1|) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 16))) -(((-1089 |#1|) (-267 |#1|) (-851)) (T -1089)) +(((-93) . T) ((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) +((-3313 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2026 (((-1273)) 22)) (-2862 (((-645 |#1|)) 13))) +(((-1086 |#1|) (-10 -7 (-15 -2026 ((-1273))) (-15 -2862 ((-645 |#1|))) (-15 -3313 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3313 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1086)) +((-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-2862 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))) (-2026 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -2026 ((-1273))) (-15 -2862 ((-645 |#1|))) (-15 -3313 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3313 (|#1| |#1| (-1 (-567) |#1| |#1|)))) +((-1386 (($ (-109) $) 20)) (-2025 (((-692 (-109)) (-509) $) 19)) (-3498 (($) 7)) (-2632 (($) 21)) (-2265 (($) 22)) (-4229 (((-645 (-175)) $) 10)) (-4132 (((-863) $) 25))) +(((-1087) (-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -4229 ((-645 (-175)) $)) (-15 -2025 ((-692 (-109)) (-509) $)) (-15 -1386 ($ (-109) $)) (-15 -2632 ($)) (-15 -2265 ($))))) (T -1087)) +((-3498 (*1 *1) (-5 *1 (-1087))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))) (-1386 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))) (-2632 (*1 *1) (-5 *1 (-1087))) (-2265 (*1 *1) (-5 *1 (-1087)))) +(-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -4229 ((-645 (-175)) $)) (-15 -2025 ((-692 (-109)) (-509) $)) (-15 -1386 ($ (-109) $)) (-15 -2632 ($)) (-15 -2265 ($)))) +((-2189 (((-1268 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|))) 75) (((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|)))) 92)) (-2887 (((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41))) +(((-1088 |#1|) (-10 -7 (-15 -2189 ((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|))))) (-15 -2189 ((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|)))) (-15 -2189 ((-1268 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2887 ((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1088)) +((-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1268 *5)) (-5 *1 (-1088 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-1088 *4)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) (-5 *2 (-1268 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-954 *5))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) (-5 *2 (-1268 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) +(-10 -7 (-15 -2189 ((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|))))) (-15 -2189 ((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|)))) (-15 -2189 ((-1268 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2887 ((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1178)) NIL)) (-3729 (((-772) $) NIL) (((-772) $ (-1178)) NIL)) (-2847 (((-645 (-1090 (-1178))) $) NIL)) (-2675 (((-1174 $) $ (-1090 (-1178))) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1090 (-1178)))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1090 (-1178)) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL) (((-3 (-1127 |#1| (-1178)) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1090 (-1178)) $) NIL) (((-1178) $) NIL) (((-1127 |#1| (-1178)) $) NIL)) (-2951 (($ $ $ (-1090 (-1178))) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1178))) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-1090 (-1178))) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1090 (-1178)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1090 (-1178)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-1090 (-1178))) NIL) (($ (-1174 $) (-1090 (-1178))) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1090 (-1178))) NIL)) (-2656 (((-534 (-1090 (-1178))) $) NIL) (((-772) $ (-1090 (-1178))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1178)))) NIL)) (-3273 (($ (-1 (-534 (-1090 (-1178))) (-534 (-1090 (-1178)))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) (-1178)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 (-1090 (-1178)) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 (((-1090 (-1178)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1090 (-1178))) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1090 (-1178)) |#1|) NIL) (($ $ (-645 (-1090 (-1178))) (-645 |#1|)) NIL) (($ $ (-1090 (-1178)) $) NIL) (($ $ (-645 (-1090 (-1178))) (-645 $)) NIL) (($ $ (-1178) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ (-1090 (-1178))) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1090 (-1178))) NIL) (($ $ (-645 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 (-1178)) $) NIL)) (-3077 (((-534 (-1090 (-1178))) $) NIL) (((-772) $ (-1090 (-1178))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1178)))) NIL) (((-772) $ (-1178)) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1178))) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1090 (-1178))) NIL) (($ (-1178)) NIL) (($ (-1127 |#1| (-1178))) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1090 (-1178))) NIL) (($ $ (-645 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1089 |#1|) (-13 (-254 |#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) (-1040 (-1127 |#1| (-1178)))) (-1051)) (T -1089)) +NIL +(-13 (-254 |#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) (-1040 (-1127 |#1| (-1178)))) +((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) NIL)) (-3644 ((|#1| $) 10)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4384 (((-772) $) 11)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1369 (($ |#1| (-772)) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 16))) +(((-1090 |#1|) (-267 |#1|) (-851)) (T -1090)) NIL (-267 |#1|) -((-3822 (((-645 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 29 (|has| |#1| (-849))) (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 14))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -3822 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (IF (|has| |#1| (-849)) (-15 -3822 ((-645 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) |%noBranch|)) (-1217) (-1217)) (T -1090)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-849)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-645 *6)) (-5 *1 (-1090 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1095 *6)) (-5 *1 (-1090 *5 *6))))) -(-10 -7 (-15 -3822 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (IF (|has| |#1| (-849)) (-15 -3822 ((-645 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 16) (($ (-1182)) NIL) (((-1182) $) NIL)) (-3322 (((-645 (-1136)) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1091) (-13 (-1084) (-10 -8 (-15 -3322 ((-645 (-1136)) $))))) (T -1091)) -((-3322 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1091))))) -(-13 (-1084) (-10 -8 (-15 -3322 ((-645 (-1136)) $)))) -((-3822 (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 19))) -(((-1092 |#1| |#2|) (-10 -7 (-15 -3822 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)))) (-1217) (-1217)) (T -1092)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1093 *6)) (-5 *1 (-1092 *5 *6))))) -(-10 -7 (-15 -3822 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1101)))) (-3638 (((-1177) $) NIL)) (-3092 (((-1095 |#1|) $) NIL)) (-3739 (((-1159) $) NIL (|has| (-1095 |#1|) (-1101)))) (-3430 (((-1121) $) NIL (|has| (-1095 |#1|) (-1101)))) (-2534 (($ (-1177) (-1095 |#1|)) NIL)) (-4127 (((-863) $) NIL (|has| (-1095 |#1|) (-1101)))) (-4104 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1101)))) (-2929 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1101))))) -(((-1093 |#1|) (-13 (-1217) (-10 -8 (-15 -2534 ($ (-1177) (-1095 |#1|))) (-15 -3638 ((-1177) $)) (-15 -3092 ((-1095 |#1|) $)) (IF (|has| (-1095 |#1|) (-1101)) (-6 (-1101)) |%noBranch|))) (-1217)) (T -1093)) -((-2534 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1095 *4)) (-4 *4 (-1217)) (-5 *1 (-1093 *4)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1093 *3)) (-4 *3 (-1217)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-1217))))) -(-13 (-1217) (-10 -8 (-15 -2534 ($ (-1177) (-1095 |#1|))) (-15 -3638 ((-1177) $)) (-15 -3092 ((-1095 |#1|) $)) (IF (|has| (-1095 |#1|) (-1101)) (-6 (-1101)) |%noBranch|))) -((-3092 (($ |#1| |#1|) 8)) (-1933 ((|#1| $) 11)) (-1403 ((|#1| $) 13)) (-1425 (((-567) $) 9)) (-3112 ((|#1| $) 10)) (-1435 ((|#1| $) 12)) (-3880 (($ |#1|) 6)) (-2174 (($ |#1| |#1|) 15)) (-2713 (($ $ (-567)) 14))) -(((-1094 |#1|) (-140) (-1217)) (T -1094)) -((-2174 (*1 *1 *2 *2) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1094 *3)) (-4 *3 (-1217)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1217)) (-5 *2 (-567)))) (-3092 (*1 *1 *2 *2) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217))))) -(-13 (-619 |t#1|) (-10 -8 (-15 -2174 ($ |t#1| |t#1|)) (-15 -2713 ($ $ (-567))) (-15 -1403 (|t#1| $)) (-15 -1435 (|t#1| $)) (-15 -1933 (|t#1| $)) (-15 -3112 (|t#1| $)) (-15 -1425 ((-567) $)) (-15 -3092 ($ |t#1| |t#1|)))) +((-3829 (((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 29 (|has| |#1| (-849))) (((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 14))) +(((-1091 |#1| |#2|) (-10 -7 (-15 -3829 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) (-1218) (-1218)) (T -1091)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-1091 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6))))) +(-10 -7 (-15 -3829 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2783 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1092) (-13 (-1085) (-10 -8 (-15 -2783 ((-645 (-1137)) $))))) (T -1092)) +((-2783 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092))))) +(-13 (-1085) (-10 -8 (-15 -2783 ((-645 (-1137)) $)))) +((-3829 (((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 19))) +(((-1093 |#1| |#2|) (-10 -7 (-15 -3829 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) (-1218) (-1218)) (T -1093)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6))))) +(-10 -7 (-15 -3829 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-3644 (((-1178) $) NIL)) (-3099 (((-1096 |#1|) $) NIL)) (-1419 (((-1160) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3430 (((-1122) $) NIL (|has| (-1096 |#1|) (-1102)))) (-2537 (($ (-1178) (-1096 |#1|)) NIL)) (-4132 (((-863) $) NIL (|has| (-1096 |#1|) (-1102)))) (-1745 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-2936 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102))))) +(((-1094 |#1|) (-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) (-1096 |#1|))) (-15 -3644 ((-1178) $)) (-15 -3099 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1094)) +((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1096 *4)) (-4 *4 (-1218)) (-5 *1 (-1094 *4)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1094 *3)) (-4 *3 (-1218)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1218))))) +(-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) (-1096 |#1|))) (-15 -3644 ((-1178) $)) (-15 -3099 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) +((-3099 (($ |#1| |#1|) 8)) (-2504 ((|#1| $) 11)) (-1407 ((|#1| $) 13)) (-1430 (((-567) $) 9)) (-3131 ((|#1| $) 10)) (-1443 ((|#1| $) 12)) (-3893 (($ |#1|) 6)) (-2179 (($ |#1| |#1|) 15)) (-2715 (($ $ (-567)) 14))) +(((-1095 |#1|) (-140) (-1218)) (T -1095)) +((-2179 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1218)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))) (-3099 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))) +(-13 (-619 |t#1|) (-10 -8 (-15 -2179 ($ |t#1| |t#1|)) (-15 -2715 ($ $ (-567))) (-15 -1407 (|t#1| $)) (-15 -1443 (|t#1| $)) (-15 -2504 (|t#1| $)) (-15 -3131 (|t#1| $)) (-15 -1430 ((-567) $)) (-15 -3099 ($ |t#1| |t#1|)))) (((-619 |#1|) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3092 (($ |#1| |#1|) 16)) (-3822 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-1933 ((|#1| $) 12)) (-1403 ((|#1| $) 11)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1425 (((-567) $) 15)) (-3112 ((|#1| $) 14)) (-1435 ((|#1| $) 13)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3304 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-3880 (($ |#1|) 29)) (-4127 (((-863) $) 28 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2174 (($ |#1| |#1|) 10)) (-2713 (($ $ (-567)) 17)) (-2929 (((-112) $ $) 22 (|has| |#1| (-1101))))) -(((-1095 |#1|) (-13 (-1094 |#1|) (-10 -7 (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1096 |#1| (-645 |#1|))) |%noBranch|))) (-1217)) (T -1095)) -NIL -(-13 (-1094 |#1|) (-10 -7 (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1096 |#1| (-645 |#1|))) |%noBranch|))) -((-3092 (($ |#1| |#1|) 8)) (-3822 ((|#2| (-1 |#1| |#1|) $) 16)) (-1933 ((|#1| $) 11)) (-1403 ((|#1| $) 13)) (-1425 (((-567) $) 9)) (-3112 ((|#1| $) 10)) (-1435 ((|#1| $) 12)) (-3304 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-3880 (($ |#1|) 6)) (-2174 (($ |#1| |#1|) 15)) (-2713 (($ $ (-567)) 14))) -(((-1096 |#1| |#2|) (-140) (-849) (-1150 |t#1|)) (T -1096)) -((-3304 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1096 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1150 *4)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1150 *3)))) (-3822 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1096 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1150 *4))))) -(-13 (-1094 |t#1|) (-10 -8 (-15 -3304 (|t#2| (-645 $))) (-15 -3304 (|t#2| $)) (-15 -3822 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-619 |#1|) . T) ((-1094 |#1|) . T)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3250 (((-1136) $) 12)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 18) (($ (-1182)) NIL) (((-1182) $) NIL)) (-1998 (((-645 (-1136)) $) 10)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1097) (-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $)) (-15 -3250 ((-1136) $))))) (T -1097)) -((-1998 (*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1097)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1097))))) -(-13 (-1084) (-10 -8 (-15 -1998 ((-645 (-1136)) $)) (-15 -3250 ((-1136) $)))) -((-4240 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4020 (($ $ $) 10)) (-1739 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1098 |#1| |#2|) (-10 -8 (-15 -4240 (|#1| |#2| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#2|)) (-15 -1739 (|#1| |#1| |#1|))) (-1099 |#2|) (-1101)) (T -1098)) -NIL -(-10 -8 (-15 -4240 (|#1| |#2| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#2|)) (-15 -1739 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-4240 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4020 (($ $ $) 21)) (-4202 (((-112) $ $) 20)) (-2112 (((-112) $ (-772)) 36)) (-4150 (($) 26) (($ (-645 |#1|)) 25)) (-3338 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4417)))) (-2245 (($) 37 T CONST)) (-2440 (($ $) 60 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 59 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4417)))) (-3397 (((-645 |#1|) $) 44 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) 29)) (-1904 (((-112) $ (-772)) 35)) (-2513 (((-645 |#1|) $) 45 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 39)) (-1596 (((-112) $ (-772)) 34)) (-3739 (((-1159) $) 10)) (-1877 (($ $ $) 24)) (-3430 (((-1121) $) 11)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3256 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 30)) (-3240 (((-112) $) 33)) (-3347 (($) 32)) (-1739 (($ $ $) 23) (($ $ |#1|) 22)) (-3439 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4417)))) (-4303 (($ $) 31)) (-3880 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 52)) (-4127 (((-863) $) 12)) (-2768 (($) 28) (($ (-645 |#1|)) 27)) (-4104 (((-112) $ $) 9)) (-2461 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 38 (|has| $ (-6 -4417))))) -(((-1099 |#1|) (-140) (-1101)) (T -1099)) -((-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-2768 (*1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-2768 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-1099 *3)))) (-4150 (*1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-1099 *3)))) (-1877 (*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-1739 (*1 *1 *1 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1101)) (-5 *2 (-112)))) (-4240 (*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-4240 (*1 *1 *1 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) (-4240 (*1 *1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(-13 (-1101) (-151 |t#1|) (-10 -8 (-6 -4407) (-15 -3834 ((-112) $ $)) (-15 -2768 ($)) (-15 -2768 ($ (-645 |t#1|))) (-15 -4150 ($)) (-15 -4150 ($ (-645 |t#1|))) (-15 -1877 ($ $ $)) (-15 -1739 ($ $ $)) (-15 -1739 ($ $ |t#1|)) (-15 -4020 ($ $ $)) (-15 -4202 ((-112) $ $)) (-15 -4240 ($ $ $)) (-15 -4240 ($ $ |t#1|)) (-15 -4240 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) . T) ((-1217) . T)) -((-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 8)) (-4104 (((-112) $ $) 12))) -(((-1100 |#1|) (-10 -8 (-15 -4104 ((-112) |#1| |#1|)) (-15 -3739 ((-1159) |#1|)) (-15 -3430 ((-1121) |#1|))) (-1101)) (T -1100)) -NIL -(-10 -8 (-15 -4104 ((-112) |#1| |#1|)) (-15 -3739 ((-1159) |#1|)) (-15 -3430 ((-1121) |#1|))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-1101) (-140)) (T -1101)) -((-3430 (*1 *2 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-1121)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-1159)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-112))))) -(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3430 ((-1121) $)) (-15 -3739 ((-1159) $)) (-15 -4104 ((-112) $ $)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3099 (($ |#1| |#1|) 16)) (-3829 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-2504 ((|#1| $) 12)) (-1407 ((|#1| $) 11)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1430 (((-567) $) 15)) (-3131 ((|#1| $) 14)) (-1443 ((|#1| $) 13)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3317 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-3893 (($ |#1|) 29)) (-4132 (((-863) $) 28 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2179 (($ |#1| |#1|) 10)) (-2715 (($ $ (-567)) 17)) (-2936 (((-112) $ $) 22 (|has| |#1| (-1102))))) +(((-1096 |#1|) (-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) (-1218)) (T -1096)) +NIL +(-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) +((-3099 (($ |#1| |#1|) 8)) (-3829 ((|#2| (-1 |#1| |#1|) $) 16)) (-2504 ((|#1| $) 11)) (-1407 ((|#1| $) 13)) (-1430 (((-567) $) 9)) (-3131 ((|#1| $) 10)) (-1443 ((|#1| $) 12)) (-3317 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-3893 (($ |#1|) 6)) (-2179 (($ |#1| |#1|) 15)) (-2715 (($ $ (-567)) 14))) +(((-1097 |#1| |#2|) (-140) (-849) (-1151 |t#1|)) (T -1097)) +((-3317 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) (-3829 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4))))) +(-13 (-1095 |t#1|) (-10 -8 (-15 -3317 (|t#2| (-645 $))) (-15 -3317 (|t#2| $)) (-15 -3829 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-619 |#1|) . T) ((-1095 |#1|) . T)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-1137) $) 12)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1098) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)) (-15 -3257 ((-1137) $))))) (T -1098)) +((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098))))) +(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)) (-15 -3257 ((-1137) $)))) +((-4244 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4287 (($ $ $) 10)) (-4071 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1099 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4071 (|#1| |#1| |#1|))) (-1100 |#2|) (-1102)) (T -1099)) +NIL +(-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4071 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-4244 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4287 (($ $ $) 21)) (-2493 (((-112) $ $) 20)) (-3445 (((-112) $ (-772)) 36)) (-4155 (($) 26) (($ (-645 |#1|)) 25)) (-3350 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4418)))) (-2585 (($) 37 T CONST)) (-2444 (($ $) 60 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 44 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 29)) (-2077 (((-112) $ (-772)) 35)) (-2279 (((-645 |#1|) $) 45 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 39)) (-2863 (((-112) $ (-772)) 34)) (-1419 (((-1160) $) 10)) (-2370 (($ $ $) 24)) (-3430 (((-1122) $) 11)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3025 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 30)) (-3572 (((-112) $) 33)) (-3498 (($) 32)) (-4071 (($ $ $) 23) (($ $ |#1|) 22)) (-3439 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4418)))) (-4305 (($ $) 31)) (-3893 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 52)) (-4132 (((-863) $) 12)) (-2772 (($) 28) (($ (-645 |#1|)) 27)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 38 (|has| $ (-6 -4418))))) +(((-1100 |#1|) (-140) (-1102)) (T -1100)) +((-2548 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2772 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-4155 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4071 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4071 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2493 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(-13 (-1102) (-151 |t#1|) (-10 -8 (-6 -4408) (-15 -2548 ((-112) $ $)) (-15 -2772 ($)) (-15 -2772 ($ (-645 |t#1|))) (-15 -4155 ($)) (-15 -4155 ($ (-645 |t#1|))) (-15 -2370 ($ $ $)) (-15 -4071 ($ $ $)) (-15 -4071 ($ $ |t#1|)) (-15 -4287 ($ $ $)) (-15 -2493 ((-112) $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $ |t#1|)) (-15 -4244 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) . T) ((-1218) . T)) +((-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 8)) (-1745 (((-112) $ $) 12))) +(((-1101 |#1|) (-10 -8 (-15 -1745 ((-112) |#1| |#1|)) (-15 -1419 ((-1160) |#1|)) (-15 -3430 ((-1122) |#1|))) (-1102)) (T -1101)) +NIL +(-10 -8 (-15 -1745 ((-112) |#1| |#1|)) (-15 -1419 ((-1160) |#1|)) (-15 -3430 ((-1122) |#1|))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-1102) (-140)) (T -1102)) +((-3430 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1160)))) (-1745 (*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112))))) +(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3430 ((-1122) $)) (-15 -1419 ((-1160) $)) (-15 -1745 ((-112) $ $)))) (((-102) . T) ((-614 (-863)) . T)) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) 36)) (-2437 (($ (-645 (-922))) 73)) (-4274 (((-3 $ "failed") $ (-922) (-922)) 84)) (-1378 (($) 40)) (-3136 (((-112) (-922) $) 44)) (-3425 (((-922) $) 66)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) 39)) (-3481 (((-3 $ "failed") $ (-922)) 80)) (-3430 (((-1121) $) NIL)) (-2163 (((-1267 $)) 49)) (-2173 (((-645 (-922)) $) 27)) (-3120 (((-772) $ (-922) (-922)) 81)) (-4127 (((-863) $) 32)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 24))) -(((-1102 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -3481 ((-3 $ "failed") $ (-922))) (-15 -4274 ((-3 $ "failed") $ (-922) (-922))) (-15 -2173 ((-645 (-922)) $)) (-15 -2437 ($ (-645 (-922)))) (-15 -2163 ((-1267 $))) (-15 -3136 ((-112) (-922) $)) (-15 -3120 ((-772) $ (-922) (-922))))) (-922) (-922)) (T -1102)) -((-3481 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1102 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4274 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1102 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1102 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1102 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-2163 (*1 *2) (-12 (-5 *2 (-1267 (-1102 *3 *4))) (-5 *1 (-1102 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3136 (*1 *2 *3 *1) (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1102 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3120 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-772)) (-5 *1 (-1102 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-370) (-10 -8 (-15 -3481 ((-3 $ "failed") $ (-922))) (-15 -4274 ((-3 $ "failed") $ (-922) (-922))) (-15 -2173 ((-645 (-922)) $)) (-15 -2437 ($ (-645 (-922)))) (-15 -2163 ((-1267 $))) (-15 -3136 ((-112) (-922) $)) (-15 -3120 ((-772) $ (-922) (-922))))) -((-2399 (((-112) $ $) NIL)) (-3007 (($) NIL (|has| |#1| (-370)))) (-4240 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4020 (($ $ $) 81)) (-4202 (((-112) $ $) 82)) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#1| (-370)))) (-4150 (($ (-645 |#1|)) NIL) (($) 13)) (-3502 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2774 (($ |#1| $) 74 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4417)))) (-1378 (($) NIL (|has| |#1| (-370)))) (-3397 (((-645 |#1|) $) 19 (|has| $ (-6 -4417)))) (-3834 (((-112) $ $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2010 ((|#1| $) 55 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2998 ((|#1| $) 53 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 34)) (-3425 (((-922) $) NIL (|has| |#1| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1877 (($ $ $) 79)) (-1881 ((|#1| $) 25)) (-1330 (($ |#1| $) 69)) (-3763 (($ (-922)) NIL (|has| |#1| (-370)))) (-3430 (((-1121) $) NIL)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3060 ((|#1| $) 27)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 21)) (-3347 (($) 11)) (-1739 (($ $ |#1|) NIL) (($ $ $) 80)) (-3253 (($) NIL) (($ (-645 |#1|)) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 16)) (-3880 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 62)) (-4092 (($ $) NIL (|has| |#1| (-370)))) (-4127 (((-863) $) NIL)) (-3725 (((-772) $) NIL)) (-2768 (($ (-645 |#1|)) NIL) (($) 12)) (-4104 (((-112) $ $) NIL)) (-3911 (($ (-645 |#1|)) NIL)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 52)) (-2410 (((-772) $) 10 (|has| $ (-6 -4417))))) -(((-1103 |#1|) (-428 |#1|) (-1101)) (T -1103)) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 36)) (-3415 (($ (-645 (-923))) 73)) (-3171 (((-3 $ "failed") $ (-923) (-923)) 84)) (-1348 (($) 40)) (-4337 (((-112) (-923) $) 44)) (-4249 (((-923) $) 66)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 39)) (-1733 (((-3 $ "failed") $ (-923)) 80)) (-3430 (((-1122) $) NIL)) (-1661 (((-1268 $)) 49)) (-2559 (((-645 (-923)) $) 27)) (-1781 (((-772) $ (-923) (-923)) 81)) (-4132 (((-863) $) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 24))) +(((-1103 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1733 ((-3 $ "failed") $ (-923))) (-15 -3171 ((-3 $ "failed") $ (-923) (-923))) (-15 -2559 ((-645 (-923)) $)) (-15 -3415 ($ (-645 (-923)))) (-15 -1661 ((-1268 $))) (-15 -4337 ((-112) (-923) $)) (-15 -1781 ((-772) $ (-923) (-923))))) (-923) (-923)) (T -1103)) +((-1733 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3171 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1661 (*1 *2) (-12 (-5 *2 (-1268 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-4337 (*1 *2 *3 *1) (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1781 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-370) (-10 -8 (-15 -1733 ((-3 $ "failed") $ (-923))) (-15 -3171 ((-3 $ "failed") $ (-923) (-923))) (-15 -2559 ((-645 (-923)) $)) (-15 -3415 ($ (-645 (-923)))) (-15 -1661 ((-1268 $))) (-15 -4337 ((-112) (-923) $)) (-15 -1781 ((-772) $ (-923) (-923))))) +((-2403 (((-112) $ $) NIL)) (-3533 (($) NIL (|has| |#1| (-370)))) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4287 (($ $ $) 81)) (-2493 (((-112) $ $) 82)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) NIL) (($) 13)) (-2839 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 74 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4418)))) (-1348 (($) NIL (|has| |#1| (-370)))) (-2777 (((-645 |#1|) $) 19 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-1354 ((|#1| $) 55 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2981 ((|#1| $) 53 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 34)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 79)) (-1566 ((|#1| $) 25)) (-2531 (($ |#1| $) 69)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1793 ((|#1| $) 27)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 21)) (-3498 (($) 11)) (-4071 (($ $ |#1|) NIL) (($ $ $) 80)) (-2718 (($) NIL) (($ (-645 |#1|)) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 16)) (-3893 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 62)) (-2099 (($ $) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL)) (-1480 (((-772) $) NIL)) (-2772 (($ (-645 |#1|)) NIL) (($) 12)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 |#1|)) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 52)) (-2414 (((-772) $) 10 (|has| $ (-6 -4418))))) +(((-1104 |#1|) (-428 |#1|) (-1102)) (T -1104)) NIL (-428 |#1|) -((-2399 (((-112) $ $) 7)) (-3986 (((-112) $) 33)) (-3077 ((|#2| $) 28)) (-4296 (((-112) $) 34)) (-3651 ((|#1| $) 29)) (-4093 (((-112) $) 36)) (-2692 (((-112) $) 38)) (-3045 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-4353 (((-112) $) 32)) (-3099 ((|#3| $) 27)) (-3430 (((-1121) $) 11)) (-3972 (((-112) $) 31)) (-2319 ((|#4| $) 26)) (-3599 ((|#5| $) 25)) (-3827 (((-112) $ $) 39)) (-1783 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-2780 (((-645 $) $) 30)) (-3880 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-4127 (((-863) $) 12)) (-2299 (($ $) 23)) (-2288 (($ $) 24)) (-4104 (((-112) $ $) 9)) (-3105 (((-112) $) 37)) (-2929 (((-112) $ $) 6)) (-2410 (((-567) $) 22))) -(((-1104 |#1| |#2| |#3| |#4| |#5|) (-140) (-1101) (-1101) (-1101) (-1101) (-1101)) (T -1104)) -((-3827 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112)))) (-2780 (*1 *2 *1) (-12 (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-645 *1)) (-4 *1 (-1104 *3 *4 *5 *6 *7)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *2 *4 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *2 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *2)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) (-2288 (*1 *1 *1) (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *2 (-1101)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *2 (-1101)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-567)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101))))) -(-13 (-1101) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -3827 ((-112) $ $)) (-15 -2692 ((-112) $)) (-15 -3105 ((-112) $)) (-15 -4093 ((-112) $)) (-15 -3045 ((-112) $)) (-15 -4296 ((-112) $)) (-15 -3986 ((-112) $)) (-15 -4353 ((-112) $)) (-15 -3972 ((-112) $)) (-15 -2780 ((-645 $) $)) (-15 -3651 (|t#1| $)) (-15 -3077 (|t#2| $)) (-15 -3099 (|t#3| $)) (-15 -2319 (|t#4| $)) (-15 -3599 (|t#5| $)) (-15 -2288 ($ $)) (-15 -2299 ($ $)) (-15 -2410 ((-567) $)) (-15 -1783 ($ $ (-567))) (-15 -1783 ($ $ (-645 (-567)))))) -(((-102) . T) ((-614 (-863)) . T) ((-619 (-645 $)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 |#4|) . T) ((-619 |#5|) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3986 (((-112) $) NIL)) (-3077 (((-1177) $) NIL)) (-4296 (((-112) $) NIL)) (-3651 (((-1159) $) NIL)) (-4093 (((-112) $) NIL)) (-2692 (((-112) $) NIL)) (-3045 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-4353 (((-112) $) NIL)) (-3099 (((-567) $) NIL)) (-3430 (((-1121) $) NIL)) (-3972 (((-112) $) NIL)) (-2319 (((-225) $) NIL)) (-3599 (((-863) $) NIL)) (-3827 (((-112) $ $) NIL)) (-1783 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2780 (((-645 $) $) NIL)) (-3880 (($ (-1159)) NIL) (($ (-1177)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL)) (-2299 (($ $) NIL)) (-2288 (($ $) NIL)) (-4104 (((-112) $ $) NIL)) (-3105 (((-112) $) NIL)) (-2929 (((-112) $ $) NIL)) (-2410 (((-567) $) NIL))) -(((-1105) (-1104 (-1159) (-1177) (-567) (-225) (-863))) (T -1105)) -NIL -(-1104 (-1159) (-1177) (-567) (-225) (-863)) -((-2399 (((-112) $ $) NIL)) (-3986 (((-112) $) 45)) (-3077 ((|#2| $) 48)) (-4296 (((-112) $) 20)) (-3651 ((|#1| $) 21)) (-4093 (((-112) $) 42)) (-2692 (((-112) $) 14)) (-3045 (((-112) $) 44)) (-3739 (((-1159) $) NIL)) (-4353 (((-112) $) 46)) (-3099 ((|#3| $) 50)) (-3430 (((-1121) $) NIL)) (-3972 (((-112) $) 47)) (-2319 ((|#4| $) 49)) (-3599 ((|#5| $) 51)) (-3827 (((-112) $ $) 41)) (-1783 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-2780 (((-645 $) $) 27)) (-3880 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-4127 (((-863) $) 28)) (-2299 (($ $) 26)) (-2288 (($ $) 58)) (-4104 (((-112) $ $) NIL)) (-3105 (((-112) $) 23)) (-2929 (((-112) $ $) 40)) (-2410 (((-567) $) 60))) -(((-1106 |#1| |#2| |#3| |#4| |#5|) (-1104 |#1| |#2| |#3| |#4| |#5|) (-1101) (-1101) (-1101) (-1101) (-1101)) (T -1106)) -NIL -(-1104 |#1| |#2| |#3| |#4| |#5|) -((-1484 (((-1272) $) 23)) (-2170 (($ (-1177) (-437) |#2|) 11)) (-4127 (((-863) $) 16))) -(((-1107 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -2170 ($ (-1177) (-437) |#2|)))) (-1101) (-433 |#1|)) (T -1107)) -((-2170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *3 (-437)) (-4 *5 (-1101)) (-5 *1 (-1107 *5 *4)) (-4 *4 (-433 *5))))) -(-13 (-398) (-10 -8 (-15 -2170 ($ (-1177) (-437) |#2|)))) -((-2700 (((-112) |#5| |#5|) 45)) (-3299 (((-112) |#5| |#5|) 60)) (-3283 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-3884 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-1712 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) 71)) (-3755 (((-1272)) 33)) (-1991 (((-1272) (-1159) (-1159) (-1159)) 29)) (-3521 (((-645 |#5|) (-645 |#5|)) 102)) (-3774 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) 94)) (-2146 (((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-1971 (((-112) |#5| |#5|) 54)) (-2045 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3274 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-4134 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-1835 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1692 (((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-3199 (((-645 |#5|) (-645 |#5|)) 50))) -(((-1108 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1991 ((-1272) (-1159) (-1159) (-1159))) (-15 -3755 ((-1272))) (-15 -2700 ((-112) |#5| |#5|)) (-15 -3199 ((-645 |#5|) (-645 |#5|))) (-15 -1971 ((-112) |#5| |#5|)) (-15 -3299 ((-112) |#5| |#5|)) (-15 -3884 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3274 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4134 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1835 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2045 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3283 ((-112) |#5| |#5|)) (-15 -3283 ((-112) |#5| (-645 |#5|))) (-15 -3521 ((-645 |#5|) (-645 |#5|))) (-15 -1712 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3774 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-15 -2146 ((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1692 ((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1108)) -((-1692 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| -3827 (-645 *9)) (|:| -2564 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1108 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1072 *6 *7 *8 *9)))) (-2146 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1072 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3827 (-645 *9)) (|:| -2564 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1108 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2564 *7)))) (-4 *6 (-1066 *3 *4 *5)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1108 *3 *4 *5 *6 *7)))) (-1712 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *8)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-1108 *3 *4 *5 *6 *7)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1108 *5 *6 *7 *8 *3)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-2045 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-1835 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-4134 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3884 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-1971 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-1108 *3 *4 *5 *6 *7)))) (-2700 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) (-3755 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-1991 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(-10 -7 (-15 -1991 ((-1272) (-1159) (-1159) (-1159))) (-15 -3755 ((-1272))) (-15 -2700 ((-112) |#5| |#5|)) (-15 -3199 ((-645 |#5|) (-645 |#5|))) (-15 -1971 ((-112) |#5| |#5|)) (-15 -3299 ((-112) |#5| |#5|)) (-15 -3884 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3274 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4134 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1835 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2045 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3283 ((-112) |#5| |#5|)) (-15 -3283 ((-112) |#5| (-645 |#5|))) (-15 -3521 ((-645 |#5|) (-645 |#5|))) (-15 -1712 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3774 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-15 -2146 ((-645 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1692 ((-3 (-2 (|:| -3827 (-645 |#4|)) (|:| -2564 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2122 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|) 109)) (-4078 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|) 81)) (-2413 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|) 103)) (-2589 (((-645 |#5|) |#4| |#5|) 125)) (-4167 (((-645 |#5|) |#4| |#5|) 132)) (-3730 (((-645 |#5|) |#4| |#5|) 133)) (-1418 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|) 110)) (-1328 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|) 131)) (-1437 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1519 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3307 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|) 88)) (-4220 (((-1272)) 37)) (-3552 (((-1272)) 26)) (-3808 (((-1272) (-1159) (-1159) (-1159)) 33)) (-1640 (((-1272) (-1159) (-1159) (-1159)) 22))) -(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-1272) (-1159) (-1159) (-1159))) (-15 -3552 ((-1272))) (-15 -3808 ((-1272) (-1159) (-1159) (-1159))) (-15 -4220 ((-1272))) (-15 -4078 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -1519 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1519 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112))) (-15 -3307 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -2413 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -1437 ((-112) |#4| |#5|)) (-15 -1418 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -2589 ((-645 |#5|) |#4| |#5|)) (-15 -1328 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -4167 ((-645 |#5|) |#4| |#5|)) (-15 -1437 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -3730 ((-645 |#5|) |#4| |#5|)) (-15 -2122 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1109)) -((-2122 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1437 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4167 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1418 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1437 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-2413 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3307 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1519 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) (-5 *5 (-112)) (-4 *8 (-1066 *6 *7 *4)) (-4 *9 (-1072 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2564 *9)))) (-5 *1 (-1109 *6 *7 *4 *8 *9)))) (-1519 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1109 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-4078 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))) (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4220 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-3808 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) (-3552 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) (-1640 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(-10 -7 (-15 -1640 ((-1272) (-1159) (-1159) (-1159))) (-15 -3552 ((-1272))) (-15 -3808 ((-1272) (-1159) (-1159) (-1159))) (-15 -4220 ((-1272))) (-15 -4078 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -1519 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1519 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) |#3| (-112))) (-15 -3307 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -2413 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#4| |#5|)) (-15 -1437 ((-112) |#4| |#5|)) (-15 -1418 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -2589 ((-645 |#5|) |#4| |#5|)) (-15 -1328 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -4167 ((-645 |#5|) |#4| |#5|)) (-15 -1437 ((-645 (-2 (|:| |val| (-112)) (|:| -2564 |#5|))) |#4| |#5|)) (-15 -3730 ((-645 |#5|) |#4| |#5|)) (-15 -2122 ((-645 (-2 (|:| |val| |#4|) (|:| -2564 |#5|))) |#4| |#5|))) -((-2399 (((-112) $ $) 7)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) 86)) (-3645 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) 102) (((-112) $) 98)) (-4124 ((|#4| |#4| $) 93)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 127)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2417 (((-3 $ "failed") $) 83)) (-4042 ((|#4| |#4| $) 90)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3670 ((|#4| |#4| $) 88)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) 106)) (-2091 (((-112) |#4| $) 137)) (-2605 (((-112) |#4| $) 134)) (-4136 (((-112) |#4| $) 138) (((-112) $) 135)) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) 105) (((-112) $) 104)) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 128)) (-3250 (((-3 |#4| "failed") $) 84)) (-1424 (((-645 $) |#4| $) 130)) (-3536 (((-3 (-112) (-645 $)) |#4| $) 133)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1877 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2702 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2200 (((-645 |#4|) $) 108)) (-2815 (((-112) |#4| $) 100) (((-112) $) 96)) (-1626 ((|#4| |#4| $) 91)) (-1835 (((-112) $ $) 111)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) 101) (((-112) $) 97)) (-1471 ((|#4| |#4| $) 92)) (-3430 (((-1121) $) 11)) (-2405 (((-3 |#4| "failed") $) 85)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3454 (((-3 $ "failed") $ |#4|) 79)) (-3981 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-1813 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-2961 (($ $) 89)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4191 (((-772) $) 77 (|has| |#3| (-370)))) (-4104 (((-112) $ $) 9)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3175 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) 82)) (-3620 (((-112) |#4| $) 136)) (-3113 (((-112) |#3| $) 81)) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-1110 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -1110)) -NIL -(-13 (-1072 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1101) . T) ((-1210 |#1| |#2| |#3| |#4|) . T) ((-1217) . T)) -((-3339 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-1662 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-2710 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-1805 (((-567) (-567) (-567)) 23)) (-3561 (((-1267 (-567)) (-645 (-567)) (-1267 (-567)) (-567)) 75) (((-1267 (-567)) (-1267 (-567)) (-1267 (-567)) (-567)) 70)) (-3603 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-3381 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-1682 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-1882 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-2585 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-3075 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88))) -(((-1111) (-10 -7 (-15 -3075 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2585 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1882 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1682 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3381 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3603 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -3561 ((-1267 (-567)) (-1267 (-567)) (-1267 (-567)) (-567))) (-15 -3561 ((-1267 (-567)) (-645 (-567)) (-1267 (-567)) (-567))) (-15 -1805 ((-567) (-567) (-567))) (-15 -2710 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1662 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3339 ((-645 (-567)) (-567) (-567) (-567))))) (T -1111)) -((-3339 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567)))) (-1662 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567)))) (-2710 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567)))) (-1805 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1111)))) (-3561 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1267 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1111)))) (-3561 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1267 (-567))) (-5 *3 (-567)) (-5 *1 (-1111)))) (-3603 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1111)))) (-3381 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1111)))) (-1682 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1111)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1111)))) (-2585 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1111)))) (-3075 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1111))))) -(-10 -7 (-15 -3075 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2585 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1882 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1682 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3381 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3603 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -3561 ((-1267 (-567)) (-1267 (-567)) (-1267 (-567)) (-567))) (-15 -3561 ((-1267 (-567)) (-645 (-567)) (-1267 (-567)) (-567))) (-15 -1805 ((-567) (-567) (-567))) (-15 -2710 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1662 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3339 ((-645 (-567)) (-567) (-567) (-567)))) -((** (($ $ (-922)) 10))) -(((-1112 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922)))) (-1113)) (T -1112)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-922)))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 15))) -(((-1113) (-140)) (T -1113)) -((* (*1 *1 *1 *1) (-4 *1 (-1113))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-922))))) -(-13 (-1101) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-922))))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL (|has| |#3| (-1101)))) (-2840 (((-112) $) NIL (|has| |#3| (-131)))) (-3457 (($ (-922)) NIL (|has| |#3| (-1050)))) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2825 (($ $ $) NIL (|has| |#3| (-794)))) (-3460 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2112 (((-112) $ (-772)) NIL)) (-2371 (((-772)) NIL (|has| |#3| (-370)))) (-3449 (((-567) $) NIL (|has| |#3| (-849)))) (-4281 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1101)))) (-2033 (((-567) $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) ((|#3| $) NIL (|has| |#3| (-1101)))) (-1868 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 $) (-1267 $)) NIL (|has| |#3| (-1050))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1050)))) (-3153 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-1378 (($) NIL (|has| |#3| (-370)))) (-3759 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#3| $ (-567)) 12)) (-4357 (((-112) $) NIL (|has| |#3| (-849)))) (-3397 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL (|has| |#3| (-727)))) (-2102 (((-112) $) NIL (|has| |#3| (-849)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2513 (((-645 |#3|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#3| |#3|) $) NIL)) (-3425 (((-922) $) NIL (|has| |#3| (-370)))) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#3| (-1101)))) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3763 (($ (-922)) NIL (|has| |#3| (-370)))) (-3430 (((-1121) $) NIL (|has| |#3| (-1101)))) (-2405 ((|#3| $) NIL (|has| (-567) (-851)))) (-4271 (($ $ |#3|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-3564 (((-645 |#3|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-3246 ((|#3| $ $) NIL (|has| |#3| (-1050)))) (-2746 (($ (-1267 |#3|)) NIL)) (-1635 (((-134)) NIL (|has| |#3| (-365)))) (-1621 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050)))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1101))))) (-4303 (($ $) NIL)) (-4127 (((-1267 |#3|) $) NIL) (($ (-567)) NIL (-2797 (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1101))) (|has| |#3| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1101)))) (($ |#3|) NIL (|has| |#3| (-1101))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-1772 (((-772)) NIL (|has| |#3| (-1050)) CONST)) (-4104 (((-112) $ $) NIL (|has| |#3| (-1101)))) (-2461 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-4137 (($ $) NIL (|has| |#3| (-849)))) (-1710 (($) NIL (|has| |#3| (-131)) CONST)) (-1722 (($) NIL (|has| |#3| (-727)) CONST)) (-2636 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-1177)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1177))) (|has| |#3| (-1050)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050)))) (-2988 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2964 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2929 (((-112) $ $) NIL (|has| |#3| (-1101)))) (-2977 (((-112) $ $) NIL (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2952 (((-112) $ $) 24 (-2797 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3050 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3037 (($ $ $) NIL (|has| |#3| (-1050))) (($ $) NIL (|has| |#3| (-1050)))) (-3024 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-922)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1050))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-922) $) NIL (|has| |#3| (-25)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1114 |#1| |#2| |#3|) (-238 |#1| |#3|) (-772) (-772) (-794)) (T -1114)) +((-2403 (((-112) $ $) 7)) (-1765 (((-112) $) 33)) (-3085 ((|#2| $) 28)) (-1583 (((-112) $) 34)) (-3657 ((|#1| $) 29)) (-2181 (((-112) $) 36)) (-3582 (((-112) $) 38)) (-2968 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-2047 (((-112) $) 32)) (-3108 ((|#3| $) 27)) (-3430 (((-1122) $) 11)) (-2660 (((-112) $) 31)) (-2327 ((|#4| $) 26)) (-3602 ((|#5| $) 25)) (-3845 (((-112) $ $) 39)) (-1787 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-2784 (((-645 $) $) 30)) (-3893 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-4132 (((-863) $) 12)) (-2307 (($ $) 23)) (-2296 (($ $) 24)) (-1745 (((-112) $ $) 9)) (-2633 (((-112) $) 37)) (-2936 (((-112) $ $) 6)) (-2414 (((-567) $) 22))) +(((-1105 |#1| |#2| |#3| |#4| |#5|) (-140) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1105)) +((-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2784 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102))))) +(-13 (-1102) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -3845 ((-112) $ $)) (-15 -3582 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2181 ((-112) $)) (-15 -2968 ((-112) $)) (-15 -1583 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2660 ((-112) $)) (-15 -2784 ((-645 $) $)) (-15 -3657 (|t#1| $)) (-15 -3085 (|t#2| $)) (-15 -3108 (|t#3| $)) (-15 -2327 (|t#4| $)) (-15 -3602 (|t#5| $)) (-15 -2296 ($ $)) (-15 -2307 ($ $)) (-15 -2414 ((-567) $)) (-15 -1787 ($ $ (-567))) (-15 -1787 ($ $ (-645 (-567)))))) +(((-102) . T) ((-614 (-863)) . T) ((-619 (-645 $)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 |#4|) . T) ((-619 |#5|) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-1765 (((-112) $) NIL)) (-3085 (((-1178) $) NIL)) (-1583 (((-112) $) NIL)) (-3657 (((-1160) $) NIL)) (-2181 (((-112) $) NIL)) (-3582 (((-112) $) NIL)) (-2968 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-2047 (((-112) $) NIL)) (-3108 (((-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2660 (((-112) $) NIL)) (-2327 (((-225) $) NIL)) (-3602 (((-863) $) NIL)) (-3845 (((-112) $ $) NIL)) (-1787 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2784 (((-645 $) $) NIL)) (-3893 (($ (-1160)) NIL) (($ (-1178)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL)) (-2307 (($ $) NIL)) (-2296 (($ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-567) $) NIL))) +(((-1106) (-1105 (-1160) (-1178) (-567) (-225) (-863))) (T -1106)) +NIL +(-1105 (-1160) (-1178) (-567) (-225) (-863)) +((-2403 (((-112) $ $) NIL)) (-1765 (((-112) $) 45)) (-3085 ((|#2| $) 48)) (-1583 (((-112) $) 20)) (-3657 ((|#1| $) 21)) (-2181 (((-112) $) 42)) (-3582 (((-112) $) 14)) (-2968 (((-112) $) 44)) (-1419 (((-1160) $) NIL)) (-2047 (((-112) $) 46)) (-3108 ((|#3| $) 50)) (-3430 (((-1122) $) NIL)) (-2660 (((-112) $) 47)) (-2327 ((|#4| $) 49)) (-3602 ((|#5| $) 51)) (-3845 (((-112) $ $) 41)) (-1787 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-2784 (((-645 $) $) 27)) (-3893 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-4132 (((-863) $) 28)) (-2307 (($ $) 26)) (-2296 (($ $) 58)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) 23)) (-2936 (((-112) $ $) 40)) (-2414 (((-567) $) 60))) +(((-1107 |#1| |#2| |#3| |#4| |#5|) (-1105 |#1| |#2| |#3| |#4| |#5|) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1107)) +NIL +(-1105 |#1| |#2| |#3| |#4| |#5|) +((-1453 (((-1273) $) 23)) (-2146 (($ (-1178) (-437) |#2|) 11)) (-4132 (((-863) $) 16))) +(((-1108 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -2146 ($ (-1178) (-437) |#2|)))) (-1102) (-433 |#1|)) (T -1108)) +((-2146 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-437)) (-4 *5 (-1102)) (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5))))) +(-13 (-398) (-10 -8 (-15 -2146 ($ (-1178) (-437) |#2|)))) +((-2993 (((-112) |#5| |#5|) 45)) (-2203 (((-112) |#5| |#5|) 60)) (-3363 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2763 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2892 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 71)) (-2452 (((-1273)) 33)) (-2519 (((-1273) (-1160) (-1160) (-1160)) 29)) (-3864 (((-645 |#5|) (-645 |#5|)) 102)) (-3524 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) 94)) (-3625 (((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-4195 (((-112) |#5| |#5|) 54)) (-3300 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1913 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3150 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3392 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1833 (((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-2354 (((-645 |#5|) (-645 |#5|)) 50))) +(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1109)) +((-1833 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-3625 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4195 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2452 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2519 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2021 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 109)) (-3284 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|) 81)) (-1731 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 103)) (-3728 (((-645 |#5|) |#4| |#5|) 125)) (-3954 (((-645 |#5|) |#4| |#5|) 132)) (-2037 (((-645 |#5|) |#4| |#5|) 133)) (-2498 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 110)) (-2283 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 131)) (-3368 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1471 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1672 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 88)) (-3687 (((-1273)) 37)) (-3571 (((-1273)) 26)) (-4268 (((-1273) (-1160) (-1160) (-1160)) 33)) (-4378 (((-1273) (-1160) (-1160) (-1160)) 22))) +(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3284 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -1672 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1731 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3368 ((-112) |#4| |#5|)) (-15 -2498 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3728 ((-645 |#5|) |#4| |#5|)) (-15 -2283 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3954 ((-645 |#5|) |#4| |#5|)) (-15 -3368 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2037 ((-645 |#5|) |#4| |#5|)) (-15 -2021 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1110)) +((-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3954 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2283 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1731 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1672 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) (-5 *1 (-1110 *6 *7 *4 *8 *9)))) (-1471 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3687 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3571 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4378 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3284 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -1672 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1731 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3368 ((-112) |#4| |#5|)) (-15 -2498 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3728 ((-645 |#5|) |#4| |#5|)) (-15 -2283 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3954 ((-645 |#5|) |#4| |#5|)) (-15 -3368 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2037 ((-645 |#5|) |#4| |#5|)) (-15 -2021 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) +((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-1111 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1111)) +NIL +(-13 (-1073 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T)) +((-3779 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-1852 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-2560 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-3485 (((-567) (-567) (-567)) 23)) (-2072 (((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567)) 75) (((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567)) 70)) (-1627 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-2096 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-2197 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-1686 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-1372 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-2793 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88))) +(((-1112) (-10 -7 (-15 -2793 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -1372 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1686 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2197 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2096 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1627 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -2072 ((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567))) (-15 -2072 ((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567))) (-15 -3485 ((-567) (-567) (-567))) (-15 -2560 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1852 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3779 ((-645 (-567)) (-567) (-567) (-567))))) (T -1112)) +((-3779 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-1852 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-2560 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-3485 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1112)))) (-2072 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) (-1627 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))) (-2096 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))) (-2197 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1112)))) (-1372 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))) (-2793 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) +(-10 -7 (-15 -2793 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -1372 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1686 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2197 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2096 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1627 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -2072 ((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567))) (-15 -2072 ((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567))) (-15 -3485 ((-567) (-567) (-567))) (-15 -2560 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1852 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3779 ((-645 (-567)) (-567) (-567) (-567)))) +((** (($ $ (-923)) 10))) +(((-1113 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923)))) (-1114)) (T -1113)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-923)))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 15))) +(((-1114) (-140)) (T -1114)) +((* (*1 *1 *1 *1) (-4 *1 (-1114))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1114)) (-5 *2 (-923))))) +(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-923))))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2460 (((-112) $) NIL (|has| |#3| (-131)))) (-4387 (($ (-923)) NIL (|has| |#3| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#3| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#3| (-370)))) (-1750 (((-567) $) NIL (|has| |#3| (-849)))) (-4284 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) ((|#3| $) NIL (|has| |#3| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-1348 (($) NIL (|has| |#3| (-370)))) (-3741 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#3| $ (-567)) 12)) (-4336 (((-112) $) NIL (|has| |#3| (-849)))) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#3| (-727)))) (-3494 (((-112) $) NIL (|has| |#3| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#3| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#3| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#3| (-370)))) (-3430 (((-1122) $) NIL (|has| |#3| (-1102)))) (-2409 ((|#3| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#3|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2339 (((-645 |#3|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2749 (($ (-1268 |#3|)) NIL)) (-1879 (((-134)) NIL (|has| |#3| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (($ |#3|) NIL (|has| |#3| (-1102))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#3| (-849)))) (-1716 (($) NIL (|has| |#3| (-131)) CONST)) (-1728 (($) NIL (|has| |#3| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2958 (((-112) $ $) 24 (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $ $) NIL (|has| |#3| (-1051))) (($ $) NIL (|has| |#3| (-1051)))) (-3033 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-923)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1051))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-923) $) NIL (|has| |#3| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1115 |#1| |#2| |#3|) (-238 |#1| |#3|) (-772) (-772) (-794)) (T -1115)) NIL (-238 |#1| |#3|) -((-3902 (((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|)) 53)) (-1488 (((-567) (-1240 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-1985 (((-567) (-1240 |#2| |#1|)) 82)) (-2770 (((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|)) 63)) (-3352 (((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-3584 (((-645 |#1|) (-1240 |#2| |#1|) (-1240 |#2| |#1|)) 67)) (-2939 (((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|)) 81))) -(((-1115 |#1| |#2|) (-10 -7 (-15 -3902 ((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -2770 ((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -3584 ((-645 |#1|) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -2939 ((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -1985 ((-567) (-1240 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3352 ((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -1488 ((-567) (-1240 |#2| |#1|)))) |%noBranch|)) (-821) (-1177)) (T -1115)) -((-1488 (*1 *2 *3) (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5)))) (-3352 (*1 *2 *3 *3) (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5)))) (-2939 (*1 *2 *3 *3) (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5)))) (-3584 (*1 *2 *3 *3) (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-645 *4)) (-5 *1 (-1115 *4 *5)))) (-2770 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-645 (-1240 *5 *4))) (-5 *1 (-1115 *4 *5)) (-5 *3 (-1240 *5 *4)))) (-3902 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-645 (-1240 *5 *4))) (-5 *1 (-1115 *4 *5)) (-5 *3 (-1240 *5 *4))))) -(-10 -7 (-15 -3902 ((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -2770 ((-645 (-1240 |#2| |#1|)) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -3584 ((-645 |#1|) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -2939 ((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -1985 ((-567) (-1240 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3352 ((-567) (-1240 |#2| |#1|) (-1240 |#2| |#1|))) (-15 -1488 ((-567) (-1240 |#2| |#1|)))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-1724 (($ (-509) (-1119)) 13)) (-3384 (((-1119) $) 19)) (-1988 (((-509) $) 16)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 26) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1116) (-13 (-1084) (-10 -8 (-15 -1724 ($ (-509) (-1119))) (-15 -1988 ((-509) $)) (-15 -3384 ((-1119) $))))) (T -1116)) -((-1724 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1119)) (-5 *1 (-1116)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1116)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1116))))) -(-13 (-1084) (-10 -8 (-15 -1724 ($ (-509) (-1119))) (-15 -1988 ((-509) $)) (-15 -3384 ((-1119) $)))) -((-3449 (((-3 (-567) "failed") |#2| (-1177) |#2| (-1159)) 19) (((-3 (-567) "failed") |#2| (-1177) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -3449 ((-3 (-567) "failed") |#2|)) (-15 -3449 ((-3 (-567) "failed") |#2| (-1177) (-844 |#2|))) (-15 -3449 ((-3 (-567) "failed") |#2| (-1177) |#2| (-1159)))) (-13 (-559) (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1202) (-433 |#1|))) (T -1117)) -((-3449 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-1159)) (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1117 *6 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))))) (-3449 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1117 *6 *3)))) (-3449 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4)))))) -(-10 -7 (-15 -3449 ((-3 (-567) "failed") |#2|)) (-15 -3449 ((-3 (-567) "failed") |#2| (-1177) (-844 |#2|))) (-15 -3449 ((-3 (-567) "failed") |#2| (-1177) |#2| (-1159)))) -((-3449 (((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|)) (-1159)) 38) (((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-844 (-410 (-953 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-953 |#1|))) 14))) -(((-1118 |#1|) (-10 -7 (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)))) (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-844 (-410 (-953 |#1|))))) (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|)) (-1159)))) (-455)) (T -1118)) -((-3449 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1177)) (-5 *5 (-1159)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1118 *6)))) (-3449 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-844 (-410 (-953 *6)))) (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1118 *6)))) (-3449 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1118 *4))))) -(-10 -7 (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)))) (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-844 (-410 (-953 |#1|))))) (-15 -3449 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1177) (-410 (-953 |#1|)) (-1159)))) -((-2399 (((-112) $ $) NIL)) (-3568 (((-1182) $) 12)) (-3519 (((-645 (-1182)) $) 14)) (-3384 (($ (-645 (-1182)) (-1182)) 10)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 29)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 17))) -(((-1119) (-13 (-1101) (-10 -8 (-15 -3384 ($ (-645 (-1182)) (-1182))) (-15 -3568 ((-1182) $)) (-15 -3519 ((-645 (-1182)) $))))) (T -1119)) -((-3384 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1182))) (-5 *3 (-1182)) (-5 *1 (-1119)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1119)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1119))))) -(-13 (-1101) (-10 -8 (-15 -3384 ($ (-645 (-1182)) (-1182))) (-15 -3568 ((-1182) $)) (-15 -3519 ((-645 (-1182)) $)))) -((-3245 (((-317 (-567)) (-48)) 12))) -(((-1120) (-10 -7 (-15 -3245 ((-317 (-567)) (-48))))) (T -1120)) -((-3245 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1120))))) -(-10 -7 (-15 -3245 ((-317 (-567)) (-48)))) -((-2399 (((-112) $ $) NIL)) (-2421 (($ $) 44)) (-2840 (((-112) $) 69)) (-1688 (($ $ $) 51)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 97)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-2478 (($ $ $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3262 (($ $ $ $) 80)) (-3081 (($ $) NIL)) (-2833 (((-421 $) $) NIL)) (-2373 (((-112) $ $) NIL)) (-2371 (((-772)) 82)) (-3449 (((-567) $) NIL)) (-4125 (($ $ $) 77)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL)) (-2033 (((-567) $) NIL)) (-2344 (($ $ $) 63)) (-1868 (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-3153 (((-3 $ "failed") $) NIL)) (-2240 (((-3 (-410 (-567)) "failed") $) NIL)) (-1426 (((-112) $) NIL)) (-2242 (((-410 (-567)) $) NIL)) (-1378 (($) 94) (($ $) 95)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL)) (-4341 (((-112) $) NIL)) (-3816 (($ $ $ $) NIL)) (-1411 (($ $ $) 92)) (-4357 (((-112) $) NIL)) (-2057 (($ $ $) NIL)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-2843 (((-112) $) 71)) (-2904 (((-112) $) 68)) (-1653 (($ $) 45)) (-3641 (((-3 $ "failed") $) NIL)) (-2102 (((-112) $) 81)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3383 (($ $ $ $) 78)) (-2010 (($ $ $) 73) (($) 42 T CONST)) (-2998 (($ $ $) 72) (($) 41 T CONST)) (-1466 (($ $) NIL)) (-3425 (((-922) $) 87)) (-2334 (($ $) 76)) (-2735 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3739 (((-1159) $) NIL)) (-3382 (($ $ $) NIL)) (-2701 (($) NIL T CONST)) (-3763 (($ (-922)) 86)) (-2281 (($ $) 56)) (-3430 (((-1121) $) 75)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL)) (-2771 (($ $ $) 66) (($ (-645 $)) NIL)) (-1520 (($ $) NIL)) (-2703 (((-421 $) $) NIL)) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL)) (-2387 (((-3 $ "failed") $ $) NIL)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2799 (((-112) $) NIL)) (-4197 (((-772) $) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 65)) (-1621 (($ $ (-772)) NIL) (($ $) NIL)) (-2303 (($ $) 57)) (-4303 (($ $) NIL)) (-3880 (((-567) $) 17) (((-539) $) NIL) (((-893 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-4127 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-1772 (((-772)) NIL T CONST)) (-2722 (((-112) $ $) NIL)) (-2092 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-3074 (($) 40)) (-4380 (((-112) $ $) NIL)) (-1944 (($ $ $ $) 79)) (-4137 (($ $) 67)) (-2465 (($ $ $) 47)) (-1710 (($) 7 T CONST)) (-1350 (($ $ $) 50)) (-1722 (($) 39 T CONST)) (-4224 (((-1159) $) 26) (((-1159) $ (-112)) 27) (((-1272) (-823) $) 28) (((-1272) (-823) $ (-112)) 29)) (-1362 (($ $) 48)) (-2636 (($ $ (-772)) NIL) (($ $) NIL)) (-1338 (($ $ $) 49)) (-2988 (((-112) $ $) 55)) (-2964 (((-112) $ $) 52)) (-2929 (((-112) $ $) 43)) (-2977 (((-112) $ $) 54)) (-2952 (((-112) $ $) 10)) (-2455 (($ $ $) 46)) (-3037 (($ $) 16) (($ $ $) 59)) (-3024 (($ $ $) 58)) (** (($ $ (-922)) NIL) (($ $ (-772)) 61)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37))) -(((-1121) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -1653 ($ $)) (-15 -1688 ($ $ $)) (-15 -1362 ($ $)) (-15 -1338 ($ $ $)) (-15 -1350 ($ $ $))))) (T -1121)) -((-1653 (*1 *1 *1) (-5 *1 (-1121))) (-1688 (*1 *1 *1 *1) (-5 *1 (-1121))) (-1362 (*1 *1 *1) (-5 *1 (-1121))) (-1338 (*1 *1 *1 *1) (-5 *1 (-1121))) (-1350 (*1 *1 *1 *1) (-5 *1 (-1121)))) -(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -1653 ($ $)) (-15 -1688 ($ $ $)) (-15 -1362 ($ $)) (-15 -1338 ($ $ $)) (-15 -1350 ($ $ $)))) +((-3826 (((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 53)) (-4203 (((-567) (-1241 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-2094 (((-567) (-1241 |#2| |#1|)) 82)) (-2226 (((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 63)) (-2881 (((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-3577 (((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 67)) (-1397 (((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 81))) +(((-1116 |#1| |#2|) (-10 -7 (-15 -3826 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2226 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3577 ((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -1397 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2094 ((-567) (-1241 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2881 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -4203 ((-567) (-1241 |#2| |#1|)))) |%noBranch|)) (-821) (-1178)) (T -1116)) +((-4203 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-2881 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-1397 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-3577 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))) (-2226 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4)))) (-3826 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4))))) +(-10 -7 (-15 -3826 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2226 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3577 ((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -1397 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2094 ((-567) (-1241 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2881 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -4203 ((-567) (-1241 |#2| |#1|)))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-2577 (($ (-509) (-1120)) 13)) (-3386 (((-1120) $) 19)) (-1996 (((-509) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 26) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1117) (-13 (-1085) (-10 -8 (-15 -2577 ($ (-509) (-1120))) (-15 -1996 ((-509) $)) (-15 -3386 ((-1120) $))))) (T -1117)) +((-2577 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117))))) +(-13 (-1085) (-10 -8 (-15 -2577 ($ (-509) (-1120))) (-15 -1996 ((-509) $)) (-15 -3386 ((-1120) $)))) +((-1750 (((-3 (-567) "failed") |#2| (-1178) |#2| (-1160)) 19) (((-3 (-567) "failed") |#2| (-1178) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") |#2|)) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) (-844 |#2|))) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) |#2| (-1160)))) (-13 (-559) (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|))) (T -1118)) +((-1750 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-1160)) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))))) (-1750 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)))) (-1750 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))) +(-10 -7 (-15 -1750 ((-3 (-567) "failed") |#2|)) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) (-844 |#2|))) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) |#2| (-1160)))) +((-1750 (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160)) 38) (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-954 |#1|))) 14))) +(((-1119 |#1|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|))))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160)))) (-455)) (T -1119)) +((-1750 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1178)) (-5 *5 (-1160)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-1750 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-1750 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *4))))) +(-10 -7 (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|))))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160)))) +((-2403 (((-112) $ $) NIL)) (-3570 (((-1183) $) 12)) (-3527 (((-645 (-1183)) $) 14)) (-3386 (($ (-645 (-1183)) (-1183)) 10)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 29)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 17))) +(((-1120) (-13 (-1102) (-10 -8 (-15 -3386 ($ (-645 (-1183)) (-1183))) (-15 -3570 ((-1183) $)) (-15 -3527 ((-645 (-1183)) $))))) (T -1120)) +((-3386 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1183))) (-5 *3 (-1183)) (-5 *1 (-1120)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1120)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1120))))) +(-13 (-1102) (-10 -8 (-15 -3386 ($ (-645 (-1183)) (-1183))) (-15 -3570 ((-1183) $)) (-15 -3527 ((-645 (-1183)) $)))) +((-3269 (((-317 (-567)) (-48)) 12))) +(((-1121) (-10 -7 (-15 -3269 ((-317 (-567)) (-48))))) (T -1121)) +((-3269 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121))))) +(-10 -7 (-15 -3269 ((-317 (-567)) (-48)))) +((-2403 (((-112) $ $) NIL)) (-2425 (($ $) 44)) (-2460 (((-112) $) 69)) (-1689 (($ $ $) 51)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 97)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) 80)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 82)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) 77)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) 63)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) 94) (($ $) 95)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) 92)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) 71)) (-3837 (((-112) $) 68)) (-1657 (($ $) 45)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) 81)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) 78)) (-1354 (($ $ $) 73) (($) 42 T CONST)) (-2981 (($ $ $) 72) (($) 41 T CONST)) (-1446 (($ $) NIL)) (-4249 (((-923) $) 87)) (-1699 (($ $) 76)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) 86)) (-2289 (($ $) 56)) (-3430 (((-1122) $) 75)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) 66) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 65)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) 57)) (-4305 (($ $) NIL)) (-3893 (((-567) $) 17) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-4132 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) 40)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) 79)) (-2219 (($ $) 67)) (-2470 (($ $ $) 47)) (-1716 (($) 7 T CONST)) (-1355 (($ $ $) 50)) (-1728 (($) 39 T CONST)) (-2904 (((-1160) $) 26) (((-1160) $ (-112)) 27) (((-1273) (-823) $) 28) (((-1273) (-823) $ (-112)) 29)) (-1366 (($ $) 48)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-1341 (($ $ $) 49)) (-2997 (((-112) $ $) 55)) (-2971 (((-112) $ $) 52)) (-2936 (((-112) $ $) 43)) (-2984 (((-112) $ $) 54)) (-2958 (((-112) $ $) 10)) (-2458 (($ $ $) 46)) (-3045 (($ $) 16) (($ $ $) 59)) (-3033 (($ $ $) 58)) (** (($ $ (-923)) NIL) (($ $ (-772)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37))) +(((-1122) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1657 ($ $)) (-15 -1689 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1355 ($ $ $))))) (T -1122)) +((-1657 (*1 *1 *1) (-5 *1 (-1122))) (-1689 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1366 (*1 *1 *1) (-5 *1 (-1122))) (-1341 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1122)))) +(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1657 ($ $)) (-15 -1689 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1355 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-2254 ((|#1| $) 45)) (-2112 (((-112) $ (-772)) 8)) (-2245 (($) 7 T CONST)) (-3009 ((|#1| |#1| $) 47)) (-4214 ((|#1| $) 46)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-1881 ((|#1| $) 40)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-3060 ((|#1| $) 42)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-3298 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) 43)) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1122 |#1|) (-140) (-1217)) (T -1122)) -((-3009 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1217)) (-5 *2 (-772))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -3009 (|t#1| |t#1| $)) (-15 -4214 (|t#1| $)) (-15 -2254 (|t#1| $)) (-15 -3298 ((-772) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-4290 ((|#3| $) 87)) (-3747 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2033 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-1868 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL) (((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 $) (-1267 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-1621 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1997 ((|#3| $) 89)) (-2156 ((|#4| $) 43)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-922)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1997 (|#3| |#1|)) (-15 -4290 (|#3| |#1|)) (-15 -2156 (|#4| |#1|)) (-15 -1868 ((-690 |#3|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -4127 (|#1| |#3|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -4127 ((-863) |#1|))) (-1124 |#2| |#3| |#4| |#5|) (-772) (-1050) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1123)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1997 (|#3| |#1|)) (-15 -4290 (|#3| |#1|)) (-15 -2156 (|#4| |#1|)) (-15 -1868 ((-690 |#3|) (-690 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 |#3|)) (|:| |vec| (-1267 |#3|))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 |#1|) (-1267 |#1|))) (-15 -1868 ((-690 (-567)) (-690 |#1|))) (-15 -4127 (|#1| |#3|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1621 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-4290 ((|#2| $) 77)) (-2449 (((-112) $) 117)) (-3460 (((-3 $ "failed") $ $) 20)) (-2038 (((-112) $) 115)) (-2112 (((-112) $ (-772)) 107)) (-1644 (($ |#2|) 80)) (-2245 (($) 18 T CONST)) (-2838 (($ $) 134 (|has| |#2| (-308)))) (-1938 ((|#3| $ (-567)) 129)) (-3747 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-2033 (((-567) $) 91 (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) 87)) (-1868 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-3153 (((-3 $ "failed") $) 37)) (-1979 (((-772) $) 135 (|has| |#2| (-559)))) (-3702 ((|#2| $ (-567) (-567)) 127)) (-3397 (((-645 |#2|) $) 100 (|has| $ (-6 -4417)))) (-2843 (((-112) $) 35)) (-2978 (((-772) $) 136 (|has| |#2| (-559)))) (-2407 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-4313 (((-772) $) 123)) (-4325 (((-772) $) 124)) (-1904 (((-112) $ (-772)) 108)) (-2570 ((|#2| $) 72 (|has| |#2| (-6 (-4419 "*"))))) (-2971 (((-567) $) 119)) (-2970 (((-567) $) 121)) (-2513 (((-645 |#2|) $) 99 (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-4289 (((-567) $) 120)) (-2233 (((-567) $) 122)) (-2109 (($ (-645 (-645 |#2|))) 114)) (-3751 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1633 (((-645 (-645 |#2|)) $) 125)) (-1596 (((-112) $ (-772)) 109)) (-3739 (((-1159) $) 10)) (-2634 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3430 (((-1121) $) 11)) (-2387 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-3256 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) 113)) (-3240 (((-112) $) 110)) (-3347 (($) 111)) (-1783 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-1621 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1177)) (-645 (-772))) 48 (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) 47 (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) 46 (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) 45 (|has| |#2| (-901 (-1177)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1997 ((|#2| $) 76)) (-1449 (($ (-645 |#2|)) 79)) (-4116 (((-112) $) 116)) (-2156 ((|#3| $) 78)) (-2880 ((|#2| $) 73 (|has| |#2| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4417))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 112)) (-1454 ((|#4| $ (-567)) 130)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) 85)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-2461 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4417)))) (-3777 (((-112) $) 118)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1177)) (-645 (-772))) 52 (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) 51 (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) 50 (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) 49 (|has| |#2| (-901 (-1177)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2410 (((-772) $) 106 (|has| $ (-6 -4417))))) -(((-1124 |#1| |#2| |#3| |#4|) (-140) (-772) (-1050) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1124)) -((-1644 (*1 *1 *2) (-12 (-4 *2 (-1050)) (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1050)) (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) (-2634 (*1 *1 *1) (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1054 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -1644 ($ |t#2|)) (-15 -1449 ($ (-645 |t#2|))) (-15 -2156 (|t#3| $)) (-15 -4290 (|t#2| $)) (-15 -1997 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4419 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2880 (|t#2| $)) (-15 -2570 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -2634 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4419 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-6 (-4419 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2797 (|has| |#2| (-172)) (|has| |#2| (-6 (-4419 "*")))) ((-727) . T) ((-901 (-1177)) |has| |#2| (-901 (-1177))) ((-1054 |#1| |#1| |#2| |#3| |#4|) . T) ((-1039 #0#) |has| |#2| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#2| (-1039 (-567))) ((-1039 |#2|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1217) . T)) -((-1499 ((|#4| |#4|) 81)) (-1755 ((|#4| |#4|) 76)) (-2139 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|) 91)) (-3587 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3546 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1125 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1755 (|#4| |#4|)) (-15 -3546 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1499 (|#4| |#4|)) (-15 -3587 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2139 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1125)) -((-2139 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) (-5 *1 (-1125 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1125 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1499 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3546 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1125 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -1755 (|#4| |#4|)) (-15 -3546 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1499 (|#4| |#4|)) (-15 -3587 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2139 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1975 (-645 |#3|))) |#4| |#3|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 18)) (-2845 (((-645 |#2|) $) 178)) (-2670 (((-1173 $) $ |#2|) 63) (((-1173 |#1|) $) 52)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-1312 (($ $) 120 (|has| |#1| (-559)))) (-2318 (((-112) $) 122 (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#2| "failed") $) NIL)) (-2033 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#2| $) NIL)) (-3621 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3006 (($ $) 221)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) 92)) (-4334 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-534 |#2|) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2843 (((-112) $) 20)) (-4183 (((-772) $) 30)) (-2832 (($ (-1173 |#1|) |#2|) 57) (($ (-1173 $) |#2|) 74)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) 41)) (-2821 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ |#2|) NIL)) (-2752 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-3345 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) 130)) (-1902 (((-3 |#2| "failed") $) 181)) (-2969 (($ $) 220)) (-2980 ((|#1| $) 46)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| |#2|) (|:| -4250 (-772))) "failed") $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) 42)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 150 (|has| |#1| (-455)))) (-2771 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#1| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2387 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-1999 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1621 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1813 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4127 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-3468 (((-645 |#1|) $) 164)) (-2253 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 89 T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1710 (($) 12 T CONST)) (-1722 (($) 14 T CONST)) (-2636 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2929 (((-112) $ $) 108)) (-3050 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3037 (($ $) 95) (($ $ $) 106)) (-3024 (($ $ $) 58)) (** (($ $ (-922)) 112) (($ $ (-772)) 111)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) -(((-1126 |#1| |#2|) (-950 |#1| (-534 |#2|) |#2|) (-1050) (-851)) (T -1126)) -NIL -(-950 |#1| (-534 |#2|) |#2|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 |#2|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-3165 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3184 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3736 (((-953 |#1|) $ (-772)) NIL) (((-953 |#1|) $ (-772) (-772)) NIL)) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2014 (((-112) $) NIL)) (-2821 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-1576 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-1920 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3981 (($ $ (-772)) 16)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3927 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1621 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1813 (((-534 |#2|) $) NIL)) (-3130 (((-1 (-1157 |#3|) |#3|) (-645 |#2|) (-645 (-1157 |#3|))) 87)) (-3192 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 18)) (-4127 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-2253 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 52 T CONST)) (-1722 (($) 62 T CONST)) (-2636 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1127 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -2253 (|#3| $ (-772))) (-15 -4127 ($ |#2|)) (-15 -4127 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3130 ((-1 (-1157 |#3|) |#3|) (-645 |#2|) (-645 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $ |#2| |#1|)) (-15 -1920 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1050) (-851) (-950 |#1| (-534 |#2|) |#2|)) (T -1127)) -((-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-950 *4 (-534 *5) *5)) (-5 *1 (-1127 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-4127 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1127 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-4127 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1127 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1127 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1157 *7))) (-4 *6 (-851)) (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1050)) (-5 *2 (-1 (-1157 *7) *7)) (-5 *1 (-1127 *5 *6 *7)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1127 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-1920 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1127 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *1 (-1127 *4 *3 *5)) (-4 *5 (-950 *4 (-534 *3) *3))))) -(-13 (-741 |#1| |#2|) (-10 -8 (-15 -2253 (|#3| $ (-772))) (-15 -4127 ($ |#2|)) (-15 -4127 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3130 ((-1 (-1157 |#3|) |#3|) (-645 |#2|) (-645 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $ |#2| |#1|)) (-15 -1920 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) 86)) (-3645 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) 102) (((-112) $) 98)) (-4124 ((|#4| |#4| $) 93)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 127)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2417 (((-3 $ "failed") $) 83)) (-4042 ((|#4| |#4| $) 90)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3670 ((|#4| |#4| $) 88)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) 106)) (-2091 (((-112) |#4| $) 137)) (-2605 (((-112) |#4| $) 134)) (-4136 (((-112) |#4| $) 138) (((-112) $) 135)) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) 105) (((-112) $) 104)) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 128)) (-3250 (((-3 |#4| "failed") $) 84)) (-1424 (((-645 $) |#4| $) 130)) (-3536 (((-3 (-112) (-645 $)) |#4| $) 133)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1877 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2702 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2200 (((-645 |#4|) $) 108)) (-2815 (((-112) |#4| $) 100) (((-112) $) 96)) (-1626 ((|#4| |#4| $) 91)) (-1835 (((-112) $ $) 111)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) 101) (((-112) $) 97)) (-1471 ((|#4| |#4| $) 92)) (-3430 (((-1121) $) 11)) (-2405 (((-3 |#4| "failed") $) 85)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3454 (((-3 $ "failed") $ |#4|) 79)) (-3981 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-1813 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-2961 (($ $) 89)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4191 (((-772) $) 77 (|has| |#3| (-370)))) (-4104 (((-112) $ $) 9)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3175 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) 82)) (-3620 (((-112) |#4| $) 136)) (-3113 (((-112) |#3| $) 81)) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-1128 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -1128)) -NIL -(-13 (-1110 |t#1| |t#2| |t#3| |t#4|) (-785 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1101) . T) ((-1110 |#1| |#2| |#3| |#4|) . T) ((-1210 |#1| |#2| |#3| |#4|) . T) ((-1217) . T)) -((-1754 (((-645 |#2|) |#1|) 15)) (-1914 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-2995 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-4315 ((|#2| |#1|) 56)) (-1756 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3718 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-2603 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-2235 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3172 ((|#2| |#2| |#2| |#2|) 53)) (-2905 ((|#2| |#2| |#2|) 52)) (-3903 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -1754 ((-645 |#2|) |#1|)) (-15 -4315 (|#2| |#1|)) (-15 -1756 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3718 ((-645 |#2|) |#1|)) (-15 -2995 ((-645 |#2|) |#1|)) (-15 -2603 ((-645 |#2|) |#1|)) (-15 -1914 ((-645 |#2|) |#1|)) (-15 -3718 ((-645 |#2|) |#2| |#2|)) (-15 -2995 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -2603 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1914 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2905 (|#2| |#2| |#2|)) (-15 -3172 (|#2| |#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2235 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1243 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1129)) -((-2235 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2)))) (-3903 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2)))) (-3172 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2)))) (-2905 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2)))) (-1914 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3)))) (-2603 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3)))) (-2995 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3)))) (-3718 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3)))) (-1914 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) (-2995 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) (-1756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1129 *3 *5)) (-4 *3 (-1243 *5)))) (-4315 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -1754 ((-645 |#2|) |#1|)) (-15 -4315 (|#2| |#1|)) (-15 -1756 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3718 ((-645 |#2|) |#1|)) (-15 -2995 ((-645 |#2|) |#1|)) (-15 -2603 ((-645 |#2|) |#1|)) (-15 -1914 ((-645 |#2|) |#1|)) (-15 -3718 ((-645 |#2|) |#2| |#2|)) (-15 -2995 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -2603 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1914 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2905 (|#2| |#2| |#2|)) (-15 -3172 (|#2| |#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2235 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-4323 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1177))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1177)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1177)) 82)) (-4157 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177))) 117) (((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1177)) 54)) (-4255 (((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1177)) 128) (((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177)) 127))) -(((-1130 |#1|) (-10 -7 (-15 -4323 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177)))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4157 ((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1177))) (-15 -4157 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -4255 ((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -4255 ((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1177)))) (-13 (-308) (-147))) (T -1130)) -((-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1166 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1130 *5)))) (-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1166 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1130 *5)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1130 *5)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1130 *5)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1130 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 *5))))) (-5 *4 (-645 (-1177))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1130 *5)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1130 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1130 *5)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1130 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1130 *5)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1130 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1130 *5))))) -(-10 -7 (-15 -4323 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1177))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -4323 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177)))) (-15 -4323 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4157 ((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1177))) (-15 -4157 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -4255 ((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -4255 ((-1166 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1177)))) -((-1591 (((-410 (-1173 (-317 |#1|))) (-1267 (-317 |#1|)) (-410 (-1173 (-317 |#1|))) (-567)) 38)) (-3773 (((-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|)))) 49))) -(((-1131 |#1|) (-10 -7 (-15 -3773 ((-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))))) (-15 -1591 ((-410 (-1173 (-317 |#1|))) (-1267 (-317 |#1|)) (-410 (-1173 (-317 |#1|))) (-567)))) (-559)) (T -1131)) -((-1591 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1173 (-317 *5)))) (-5 *3 (-1267 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1131 *5)))) (-3773 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1173 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1131 *3))))) -(-10 -7 (-15 -3773 ((-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))) (-410 (-1173 (-317 |#1|))))) (-15 -1591 ((-410 (-1173 (-317 |#1|))) (-1267 (-317 |#1|)) (-410 (-1173 (-317 |#1|))) (-567)))) -((-1754 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1177))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1177)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1177)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24))) -(((-1132 |#1|) (-10 -7 (-15 -1754 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1177))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1177))) (-15 -1754 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1177))))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (T -1132)) -((-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1177))) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1132 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1132 *5)) (-5 *3 (-317 *5)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1132 *5)) (-5 *3 (-295 (-317 *5))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-295 (-317 *4))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-317 *4))))) -(-10 -7 (-15 -1754 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1177))) (-15 -1754 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1177))) (-15 -1754 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1177))))) -((-2681 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3142 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1133 |#1| |#2|) (-10 -7 (-15 -3142 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2681 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3142 (|#2| |#2|)) (-15 -2681 (|#2| |#2|))) |%noBranch|)) (-1217) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4417) (-6 -4418)))) (T -1133)) -((-2681 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1217)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4417) (-6 -4418)))))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1217)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4417) (-6 -4418)))))) (-2681 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-1133 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) (-3142 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-1133 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4417) (-6 -4418))))))) -(-10 -7 (-15 -3142 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2681 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3142 (|#2| |#2|)) (-15 -2681 (|#2| |#2|))) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-1477 (((-1165 3 |#1|) $) 141)) (-3516 (((-112) $) 101)) (-1495 (($ $ (-645 (-944 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-944 |#1|))) 103) (((-645 (-944 |#1|)) $) 102)) (-1767 (((-112) $) 72)) (-1943 (($ $ (-944 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-944 |#1|)) 77) (((-944 |#1|) $) 75)) (-3064 (((-2 (|:| -3310 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-3291 (((-772) $) 53)) (-1921 (((-772) $) 52)) (-1476 (($ $ (-772) (-944 |#1|)) 67)) (-4272 (((-112) $) 111)) (-2451 (($ $ (-645 (-645 (-944 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-944 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-944 |#1|)))) 116) (($ (-645 (-645 (-944 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-944 |#1|))) $) 114)) (-3523 (($ (-645 $)) 56) (($ $ $) 57)) (-3372 (((-645 (-171)) $) 133)) (-3637 (((-645 (-944 |#1|)) $) 130)) (-1982 (((-645 (-645 (-171))) $) 132)) (-2473 (((-645 (-645 (-645 (-944 |#1|)))) $) NIL)) (-2860 (((-645 (-645 (-645 (-772)))) $) 131)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2111 (((-772) $ (-645 (-944 |#1|))) 65)) (-3933 (((-112) $) 84)) (-3334 (($ $ (-645 (-944 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-944 |#1|))) 87) (((-645 (-944 |#1|)) $) 85)) (-1629 (($) 48) (($ (-1165 3 |#1|)) 49)) (-4303 (($ $) 63)) (-1507 (((-645 $) $) 62)) (-2868 (($ (-645 $)) 59)) (-3980 (((-645 $) $) 61)) (-4127 (((-863) $) 146)) (-1393 (((-112) $) 94)) (-4256 (($ $ (-645 (-944 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-944 |#1|))) 97) (((-645 (-944 |#1|)) $) 95)) (-3830 (($ $) 140)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1134 |#1|) (-1135 |#1|) (-1050)) (T -1134)) -NIL -(-1135 |#1|) -((-2399 (((-112) $ $) 7)) (-1477 (((-1165 3 |#1|) $) 14)) (-3516 (((-112) $) 30)) (-1495 (($ $ (-645 (-944 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-944 |#1|))) 32) (((-645 (-944 |#1|)) $) 31)) (-1767 (((-112) $) 45)) (-1943 (($ $ (-944 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-944 |#1|)) 47) (((-944 |#1|) $) 46)) (-3064 (((-2 (|:| -3310 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-3291 (((-772) $) 59)) (-1921 (((-772) $) 60)) (-1476 (($ $ (-772) (-944 |#1|)) 51)) (-4272 (((-112) $) 22)) (-2451 (($ $ (-645 (-645 (-944 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-944 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-944 |#1|)))) 25) (($ (-645 (-645 (-944 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-944 |#1|))) $) 23)) (-3523 (($ (-645 $)) 58) (($ $ $) 57)) (-3372 (((-645 (-171)) $) 17)) (-3637 (((-645 (-944 |#1|)) $) 21)) (-1982 (((-645 (-645 (-171))) $) 18)) (-2473 (((-645 (-645 (-645 (-944 |#1|)))) $) 19)) (-2860 (((-645 (-645 (-645 (-772)))) $) 20)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2111 (((-772) $ (-645 (-944 |#1|))) 52)) (-3933 (((-112) $) 40)) (-3334 (($ $ (-645 (-944 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-944 |#1|))) 42) (((-645 (-944 |#1|)) $) 41)) (-1629 (($) 62) (($ (-1165 3 |#1|)) 61)) (-4303 (($ $) 53)) (-1507 (((-645 $) $) 54)) (-2868 (($ (-645 $)) 56)) (-3980 (((-645 $) $) 55)) (-4127 (((-863) $) 12)) (-1393 (((-112) $) 35)) (-4256 (($ $ (-645 (-944 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-944 |#1|))) 37) (((-645 (-944 |#1|)) $) 36)) (-3830 (($ $) 15)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-1135 |#1|) (-140) (-1050)) (T -1135)) -((-4127 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-863)))) (-1629 (*1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-1165 3 *3)) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-3523 (*1 *1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-3980 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) (-2111 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-944 *4))) (-4 *1 (-1135 *4)) (-4 *4 (-1050)) (-5 *2 (-772)))) (-1476 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-944 *4)) (-4 *1 (-1135 *4)) (-4 *4 (-1050)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-944 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-4256 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-4256 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-4256 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-1495 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-1495 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-2451 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-944 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1135 *5)) (-4 *5 (-1050)))) (-2451 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1135 *5)) (-4 *5 (-1050)))) (-2451 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *1 (-1135 *4)) (-4 *4 (-1050)))) (-2451 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1135 *4)) (-4 *4 (-1050)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 *3)))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) (-2451 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *4 (-1050)) (-4 *1 (-1135 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-944 *3)))))) (-4272 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-645 (-944 *3))))))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-171)))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-171))))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3310 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-1165 3 *3))))) -(-13 (-1101) (-10 -8 (-15 -1629 ($)) (-15 -1629 ($ (-1165 3 |t#1|))) (-15 -1921 ((-772) $)) (-15 -3291 ((-772) $)) (-15 -3523 ($ (-645 $))) (-15 -3523 ($ $ $)) (-15 -2868 ($ (-645 $))) (-15 -3980 ((-645 $) $)) (-15 -1507 ((-645 $) $)) (-15 -4303 ($ $)) (-15 -2111 ((-772) $ (-645 (-944 |t#1|)))) (-15 -1476 ($ $ (-772) (-944 |t#1|))) (-15 -1943 ($ $ (-944 |t#1|))) (-15 -1943 ($ $ (-645 |t#1|))) (-15 -1943 ($ $ (-772))) (-15 -1943 ($ (-944 |t#1|))) (-15 -1943 ((-944 |t#1|) $)) (-15 -1767 ((-112) $)) (-15 -3334 ($ $ (-645 (-944 |t#1|)))) (-15 -3334 ($ $ (-645 (-645 |t#1|)))) (-15 -3334 ($ (-645 (-944 |t#1|)))) (-15 -3334 ((-645 (-944 |t#1|)) $)) (-15 -3933 ((-112) $)) (-15 -4256 ($ $ (-645 (-944 |t#1|)))) (-15 -4256 ($ $ (-645 (-645 |t#1|)))) (-15 -4256 ($ (-645 (-944 |t#1|)))) (-15 -4256 ((-645 (-944 |t#1|)) $)) (-15 -1393 ((-112) $)) (-15 -1495 ($ $ (-645 (-944 |t#1|)))) (-15 -1495 ($ $ (-645 (-645 |t#1|)))) (-15 -1495 ($ (-645 (-944 |t#1|)))) (-15 -1495 ((-645 (-944 |t#1|)) $)) (-15 -3516 ((-112) $)) (-15 -2451 ($ $ (-645 (-645 (-944 |t#1|))) (-645 (-171)) (-171))) (-15 -2451 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -2451 ($ $ (-645 (-645 (-944 |t#1|))) (-112) (-112))) (-15 -2451 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -2451 ($ (-645 (-645 (-944 |t#1|))))) (-15 -2451 ($ (-645 (-645 (-944 |t#1|))) (-112) (-112))) (-15 -2451 ((-645 (-645 (-944 |t#1|))) $)) (-15 -4272 ((-112) $)) (-15 -3637 ((-645 (-944 |t#1|)) $)) (-15 -2860 ((-645 (-645 (-645 (-772)))) $)) (-15 -2473 ((-645 (-645 (-645 (-944 |t#1|)))) $)) (-15 -1982 ((-645 (-645 (-171))) $)) (-15 -3372 ((-645 (-171)) $)) (-15 -3064 ((-2 (|:| -3310 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -3830 ($ $)) (-15 -1477 ((-1165 3 |t#1|) $)) (-15 -4127 ((-863) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 174) (($ (-1182)) NIL) (((-1182) $) 7)) (-1699 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1277))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1116))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-682))) 51) (((-112) $ (|[\|\|]| (-520))) 55) (((-112) $ (|[\|\|]| (-1067))) 59) (((-112) $ (|[\|\|]| (-1278))) 63) (((-112) $ (|[\|\|]| (-528))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-672))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1037))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-971))) 91) (((-112) $ (|[\|\|]| (-1074))) 95) (((-112) $ (|[\|\|]| (-1091))) 99) (((-112) $ (|[\|\|]| (-1097))) 103) (((-112) $ (|[\|\|]| (-627))) 107) (((-112) $ (|[\|\|]| (-1167))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-481))) 123) (((-112) $ (|[\|\|]| (-594))) 127) (((-112) $ (|[\|\|]| (-509))) 131) (((-112) $ (|[\|\|]| (-1159))) 135) (((-112) $ (|[\|\|]| (-567))) 139)) (-4104 (((-112) $ $) NIL)) (-2519 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1277) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1116) $) 44) (((-96) $) 48) (((-682) $) 52) (((-520) $) 56) (((-1067) $) 60) (((-1278) $) 64) (((-528) $) 68) (((-154) $) 72) (((-672) $) 76) (((-312) $) 80) (((-1037) $) 84) (((-180) $) 88) (((-971) $) 92) (((-1074) $) 96) (((-1091) $) 100) (((-1097) $) 104) (((-627) $) 108) (((-1167) $) 112) (((-156) $) 116) (((-137) $) 120) (((-481) $) 124) (((-594) $) 128) (((-509) $) 132) (((-1159) $) 136) (((-567) $) 140)) (-2929 (((-112) $ $) NIL))) -(((-1136) (-1138)) (T -1136)) -NIL -(-1138) -((-1839 (((-645 (-1182)) (-1159)) 9))) -(((-1137) (-10 -7 (-15 -1839 ((-645 (-1182)) (-1159))))) (T -1137)) -((-1839 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-645 (-1182))) (-5 *1 (-1137))))) -(-10 -7 (-15 -1839 ((-645 (-1182)) (-1159)))) -((-2399 (((-112) $ $) 7)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-1182)) 17) (((-1182) $) 16)) (-1699 (((-112) $ (|[\|\|]| (-527))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-677))) 77) (((-112) $ (|[\|\|]| (-1277))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1116))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-682))) 65) (((-112) $ (|[\|\|]| (-520))) 63) (((-112) $ (|[\|\|]| (-1067))) 61) (((-112) $ (|[\|\|]| (-1278))) 59) (((-112) $ (|[\|\|]| (-528))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1037))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-971))) 45) (((-112) $ (|[\|\|]| (-1074))) 43) (((-112) $ (|[\|\|]| (-1091))) 41) (((-112) $ (|[\|\|]| (-1097))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1167))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1159))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-4104 (((-112) $ $) 9)) (-2519 (((-527) $) 80) (((-218) $) 78) (((-677) $) 76) (((-1277) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1116) $) 68) (((-96) $) 66) (((-682) $) 64) (((-520) $) 62) (((-1067) $) 60) (((-1278) $) 58) (((-528) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1037) $) 48) (((-180) $) 46) (((-971) $) 44) (((-1074) $) 42) (((-1091) $) 40) (((-1097) $) 38) (((-627) $) 36) (((-1167) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1159) $) 22) (((-567) $) 20)) (-2929 (((-112) $ $) 6))) -(((-1138) (-140)) (T -1138)) -((-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-527)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-218)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-677)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1277))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1277)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-138)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-133)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1116)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-96)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-682)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-520)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1067)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1278)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-528)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-154)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-672)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-312)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1037))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1037)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-180)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-971)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1091)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1097)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-627)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1167)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-156)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-137)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-481)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-594)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-509)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1159)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-567))))) -(-13 (-1084) (-1262) (-10 -8 (-15 -1699 ((-112) $ (|[\|\|]| (-527)))) (-15 -2519 ((-527) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-218)))) (-15 -2519 ((-218) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-677)))) (-15 -2519 ((-677) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1277)))) (-15 -2519 ((-1277) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-138)))) (-15 -2519 ((-138) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-133)))) (-15 -2519 ((-133) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1116)))) (-15 -2519 ((-1116) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-96)))) (-15 -2519 ((-96) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-682)))) (-15 -2519 ((-682) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-520)))) (-15 -2519 ((-520) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1067)))) (-15 -2519 ((-1067) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1278)))) (-15 -2519 ((-1278) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-528)))) (-15 -2519 ((-528) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-154)))) (-15 -2519 ((-154) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-672)))) (-15 -2519 ((-672) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-312)))) (-15 -2519 ((-312) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1037)))) (-15 -2519 ((-1037) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-180)))) (-15 -2519 ((-180) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-971)))) (-15 -2519 ((-971) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1074)))) (-15 -2519 ((-1074) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1091)))) (-15 -2519 ((-1091) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1097)))) (-15 -2519 ((-1097) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-627)))) (-15 -2519 ((-627) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1167)))) (-15 -2519 ((-1167) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-156)))) (-15 -2519 ((-156) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-137)))) (-15 -2519 ((-137) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-481)))) (-15 -2519 ((-481) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-594)))) (-15 -2519 ((-594) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-509)))) (-15 -2519 ((-509) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-1159)))) (-15 -2519 ((-1159) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-567)))) (-15 -2519 ((-567) $)))) -(((-93) . T) ((-102) . T) ((-617 #0=(-1182)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1101) . T) ((-1084) . T) ((-1262) . T)) -((-1617 (((-1272) (-645 (-863))) 23) (((-1272) (-863)) 22)) (-3644 (((-1272) (-645 (-863))) 21) (((-1272) (-863)) 20)) (-1484 (((-1272) (-645 (-863))) 19) (((-1272) (-863)) 11) (((-1272) (-1159) (-863)) 17))) -(((-1139) (-10 -7 (-15 -1484 ((-1272) (-1159) (-863))) (-15 -1484 ((-1272) (-863))) (-15 -3644 ((-1272) (-863))) (-15 -1617 ((-1272) (-863))) (-15 -1484 ((-1272) (-645 (-863)))) (-15 -3644 ((-1272) (-645 (-863)))) (-15 -1617 ((-1272) (-645 (-863)))))) (T -1139)) -((-1617 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-1159)) (-5 *4 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139))))) -(-10 -7 (-15 -1484 ((-1272) (-1159) (-863))) (-15 -1484 ((-1272) (-863))) (-15 -3644 ((-1272) (-863))) (-15 -1617 ((-1272) (-863))) (-15 -1484 ((-1272) (-645 (-863)))) (-15 -3644 ((-1272) (-645 (-863)))) (-15 -1617 ((-1272) (-645 (-863))))) -((-2217 (($ $ $) 10)) (-3214 (($ $) 9)) (-3975 (($ $ $) 13)) (-3749 (($ $ $) 15)) (-2136 (($ $ $) 12)) (-2889 (($ $ $) 14)) (-4079 (($ $) 17)) (-2622 (($ $) 16)) (-4137 (($ $) 6)) (-4148 (($ $ $) 11) (($ $) 7)) (-2947 (($ $ $) 8))) -(((-1140) (-140)) (T -1140)) -((-4079 (*1 *1 *1) (-4 *1 (-1140))) (-2622 (*1 *1 *1) (-4 *1 (-1140))) (-3749 (*1 *1 *1 *1) (-4 *1 (-1140))) (-2889 (*1 *1 *1 *1) (-4 *1 (-1140))) (-3975 (*1 *1 *1 *1) (-4 *1 (-1140))) (-2136 (*1 *1 *1 *1) (-4 *1 (-1140))) (-4148 (*1 *1 *1 *1) (-4 *1 (-1140))) (-2217 (*1 *1 *1 *1) (-4 *1 (-1140))) (-3214 (*1 *1 *1) (-4 *1 (-1140))) (-2947 (*1 *1 *1 *1) (-4 *1 (-1140))) (-4148 (*1 *1 *1) (-4 *1 (-1140))) (-4137 (*1 *1 *1) (-4 *1 (-1140)))) -(-13 (-10 -8 (-15 -4137 ($ $)) (-15 -4148 ($ $)) (-15 -2947 ($ $ $)) (-15 -3214 ($ $)) (-15 -2217 ($ $ $)) (-15 -4148 ($ $ $)) (-15 -2136 ($ $ $)) (-15 -3975 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -2622 ($ $)) (-15 -4079 ($ $)))) -((-2399 (((-112) $ $) 44)) (-3794 ((|#1| $) 17)) (-1883 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2938 (((-112) $) 19)) (-2118 (($ $ |#1|) 30)) (-1940 (($ $ (-112)) 32)) (-3498 (($ $) 33)) (-3610 (($ $ |#2|) 31)) (-3739 (((-1159) $) NIL)) (-3922 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3430 (((-1121) $) NIL)) (-3240 (((-112) $) 16)) (-3347 (($) 13)) (-4303 (($ $) 29)) (-4142 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2564 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-2050 ((|#2| $) 18)) (-4127 (((-863) $) 53)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 42))) -(((-1141 |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -3347 ($)) (-15 -3240 ((-112) $)) (-15 -3794 (|#1| $)) (-15 -2050 (|#2| $)) (-15 -2938 ((-112) $)) (-15 -4142 ($ |#1| |#2| (-112))) (-15 -4142 ($ |#1| |#2|)) (-15 -4142 ($ (-2 (|:| |val| |#1|) (|:| -2564 |#2|)))) (-15 -4142 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|))))) (-15 -4142 ((-645 $) |#1| (-645 |#2|))) (-15 -4303 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -3610 ($ $ |#2|)) (-15 -1940 ($ $ (-112))) (-15 -3498 ($ $)) (-15 -3922 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1883 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1101) (-34)) (-13 (-1101) (-34))) (T -1141)) -((-3347 (*1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))))) (-3794 (*1 *2 *1) (-12 (-4 *2 (-13 (-1101) (-34))) (-5 *1 (-1141 *2 *3)) (-4 *3 (-13 (-1101) (-34))))) (-2050 (*1 *2 *1) (-12 (-4 *2 (-13 (-1101) (-34))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-13 (-1101) (-34))))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))))) (-4142 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-4142 (*1 *1 *2 *3) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2564 *4))) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1141 *3 *4)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2564 *5)))) (-4 *4 (-13 (-1101) (-34))) (-4 *5 (-13 (-1101) (-34))) (-5 *2 (-645 (-1141 *4 *5))) (-5 *1 (-1141 *4 *5)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1101) (-34))) (-5 *2 (-645 (-1141 *3 *5))) (-5 *1 (-1141 *3 *5)) (-4 *3 (-13 (-1101) (-34))))) (-4303 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-2118 (*1 *1 *1 *2) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-3610 (*1 *1 *1 *2) (-12 (-5 *1 (-1141 *3 *2)) (-4 *3 (-13 (-1101) (-34))) (-4 *2 (-13 (-1101) (-34))))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))))) (-3498 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-3922 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1101) (-34))) (-4 *6 (-13 (-1101) (-34))) (-5 *2 (-112)) (-5 *1 (-1141 *5 *6)))) (-1883 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1101) (-34))) (-5 *2 (-112)) (-5 *1 (-1141 *4 *5)) (-4 *4 (-13 (-1101) (-34)))))) -(-13 (-1101) (-10 -8 (-15 -3347 ($)) (-15 -3240 ((-112) $)) (-15 -3794 (|#1| $)) (-15 -2050 (|#2| $)) (-15 -2938 ((-112) $)) (-15 -4142 ($ |#1| |#2| (-112))) (-15 -4142 ($ |#1| |#2|)) (-15 -4142 ($ (-2 (|:| |val| |#1|) (|:| -2564 |#2|)))) (-15 -4142 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|))))) (-15 -4142 ((-645 $) |#1| (-645 |#2|))) (-15 -4303 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -3610 ($ $ |#2|)) (-15 -1940 ($ $ (-112))) (-15 -3498 ($ $)) (-15 -3922 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1883 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2399 (((-112) $ $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-3794 (((-1141 |#1| |#2|) $) 27)) (-2251 (($ $) 91)) (-2496 (((-112) (-1141 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3117 (($ $ $ (-645 (-1141 |#1| |#2|))) 108) (($ $ $ (-645 (-1141 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2112 (((-112) $ (-772)) NIL)) (-3785 (((-1141 |#1| |#2|) $ (-1141 |#1| |#2|)) 46 (|has| $ (-6 -4418)))) (-4281 (((-1141 |#1| |#2|) $ "value" (-1141 |#1| |#2|)) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 44 (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-4388 (((-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|))) $) 95)) (-2774 (($ (-1141 |#1| |#2|) $) 42)) (-3230 (($ (-1141 |#1| |#2|) $) 34)) (-3397 (((-645 (-1141 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 54)) (-3916 (((-112) (-1141 |#1| |#2|) $) 97)) (-4218 (((-112) $ $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 (-1141 |#1| |#2|)) $) 58 (|has| $ (-6 -4417)))) (-3136 (((-112) (-1141 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-1141 |#1| |#2|) (-1101))))) (-3751 (($ (-1 (-1141 |#1| |#2|) (-1141 |#1| |#2|)) $) 50 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-1141 |#1| |#2|) (-1141 |#1| |#2|)) $) 49)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 (-1141 |#1| |#2|)) $) 56)) (-2915 (((-112) $) 45)) (-3739 (((-1159) $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-3430 (((-1121) $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-4301 (((-3 $ "failed") $) 89)) (-3256 (((-112) (-1 (-112) (-1141 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-1141 |#1| |#2|)))) NIL (-12 (|has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|))) (|has| (-1141 |#1| |#2|) (-1101)))) (($ $ (-295 (-1141 |#1| |#2|))) NIL (-12 (|has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|))) (|has| (-1141 |#1| |#2|) (-1101)))) (($ $ (-1141 |#1| |#2|) (-1141 |#1| |#2|)) NIL (-12 (|has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|))) (|has| (-1141 |#1| |#2|) (-1101)))) (($ $ (-645 (-1141 |#1| |#2|)) (-645 (-1141 |#1| |#2|))) NIL (-12 (|has| (-1141 |#1| |#2|) (-310 (-1141 |#1| |#2|))) (|has| (-1141 |#1| |#2|) (-1101))))) (-2480 (((-112) $ $) 53)) (-3240 (((-112) $) 24)) (-3347 (($) 26)) (-1783 (((-1141 |#1| |#2|) $ "value") NIL)) (-4126 (((-567) $ $) NIL)) (-3340 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) (-1141 |#1| |#2|)) $) NIL (|has| $ (-6 -4417))) (((-772) (-1141 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-1141 |#1| |#2|) (-1101))))) (-4303 (($ $) 52)) (-4142 (($ (-1141 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1141 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-4182 (((-645 |#2|) $) 96)) (-4127 (((-863) $) 87 (|has| (-1141 |#1| |#2|) (-614 (-863))))) (-3602 (((-645 $) $) 31)) (-2588 (((-112) $ $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-4104 (((-112) $ $) NIL (|has| (-1141 |#1| |#2|) (-1101)))) (-2461 (((-112) (-1 (-112) (-1141 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 70 (|has| (-1141 |#1| |#2|) (-1101)))) (-2410 (((-772) $) 64 (|has| $ (-6 -4417))))) -(((-1142 |#1| |#2|) (-13 (-1011 (-1141 |#1| |#2|)) (-10 -8 (-6 -4418) (-6 -4417) (-15 -4301 ((-3 $ "failed") $)) (-15 -2251 ($ $)) (-15 -4142 ($ (-1141 |#1| |#2|))) (-15 -4142 ($ |#1| |#2| (-645 $))) (-15 -4142 ($ |#1| |#2| (-645 (-1141 |#1| |#2|)))) (-15 -4142 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4182 ((-645 |#2|) $)) (-15 -4388 ((-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|))) $)) (-15 -3916 ((-112) (-1141 |#1| |#2|) $)) (-15 -2496 ((-112) (-1141 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3230 ($ (-1141 |#1| |#2|) $)) (-15 -2774 ($ (-1141 |#1| |#2|) $)) (-15 -3117 ($ $ $ (-645 (-1141 |#1| |#2|)))) (-15 -3117 ($ $ $ (-645 (-1141 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1101) (-34)) (-13 (-1101) (-34))) (T -1142)) -((-4301 (*1 *1 *1) (|partial| -12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4)))) (-4142 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1142 *2 *3))) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) (-4142 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1141 *2 *3))) (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))) (-5 *1 (-1142 *2 *3)))) (-4142 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1101) (-34))) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))))) (-4388 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))))) (-3916 (*1 *2 *3 *1) (-12 (-5 *3 (-1141 *4 *5)) (-4 *4 (-13 (-1101) (-34))) (-4 *5 (-13 (-1101) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)))) (-2496 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1141 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1101) (-34))) (-4 *6 (-13 (-1101) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4)))) (-2774 (*1 *1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4)))) (-3117 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1141 *3 *4))) (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4)))) (-3117 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1141 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1101) (-34))) (-4 *5 (-13 (-1101) (-34))) (-5 *1 (-1142 *4 *5))))) -(-13 (-1011 (-1141 |#1| |#2|)) (-10 -8 (-6 -4418) (-6 -4417) (-15 -4301 ((-3 $ "failed") $)) (-15 -2251 ($ $)) (-15 -4142 ($ (-1141 |#1| |#2|))) (-15 -4142 ($ |#1| |#2| (-645 $))) (-15 -4142 ($ |#1| |#2| (-645 (-1141 |#1| |#2|)))) (-15 -4142 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4182 ((-645 |#2|) $)) (-15 -4388 ((-645 (-2 (|:| |val| |#1|) (|:| -2564 |#2|))) $)) (-15 -3916 ((-112) (-1141 |#1| |#2|) $)) (-15 -2496 ((-112) (-1141 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3230 ($ (-1141 |#1| |#2|) $)) (-15 -2774 ($ (-1141 |#1| |#2|) $)) (-15 -3117 ($ $ $ (-645 (-1141 |#1| |#2|)))) (-15 -3117 ($ $ $ (-645 (-1141 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-1650 (($ $) NIL)) (-4290 ((|#2| $) NIL)) (-2449 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-4277 (($ (-690 |#2|)) 56)) (-2038 (((-112) $) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-1644 (($ |#2|) 14)) (-2245 (($) NIL T CONST)) (-2838 (($ $) 69 (|has| |#2| (-308)))) (-1938 (((-240 |#1| |#2|) $ (-567)) 42)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) 83)) (-1979 (((-772) $) 71 (|has| |#2| (-559)))) (-3702 ((|#2| $ (-567) (-567)) NIL)) (-3397 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2843 (((-112) $) NIL)) (-2978 (((-772) $) 73 (|has| |#2| (-559)))) (-2407 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-4313 (((-772) $) NIL)) (-2844 (($ |#2|) 25)) (-4325 (((-772) $) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-2570 ((|#2| $) 67 (|has| |#2| (-6 (-4419 "*"))))) (-2971 (((-567) $) NIL)) (-2970 (((-567) $) NIL)) (-2513 (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4289 (((-567) $) NIL)) (-2233 (((-567) $) NIL)) (-2109 (($ (-645 (-645 |#2|))) 37)) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1633 (((-645 (-645 |#2|)) $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-2634 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3430 (((-1121) $) NIL)) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3256 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-1621 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1997 ((|#2| $) NIL)) (-1449 (($ (-645 |#2|)) 50)) (-4116 (((-112) $) NIL)) (-2156 (((-240 |#1| |#2|) $) NIL)) (-2880 ((|#2| $) 65 (|has| |#2| (-6 (-4419 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-4303 (($ $) NIL)) (-3880 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-1454 (((-240 |#1| |#2|) $ (-567)) 44)) (-4127 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-1772 (((-772)) 23 T CONST)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3777 (((-112) $) NIL)) (-1710 (($) 16 T CONST)) (-1722 (($) 21 T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1143 |#1| |#2|) (-13 (-1124 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2844 ($ |#2|)) (-15 -1650 ($ $)) (-15 -4277 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4419 "*"))) (-6 -4406) |%noBranch|) (IF (|has| |#2| (-6 (-4419 "*"))) (IF (|has| |#2| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1050)) (T -1143)) -((-2844 (*1 *1 *2) (-12 (-5 *1 (-1143 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1050)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1050)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-772))))) -(-13 (-1124 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2844 ($ |#2|)) (-15 -1650 ($ $)) (-15 -4277 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4419 "*"))) (-6 -4406) |%noBranch|) (IF (|has| |#2| (-6 (-4419 "*"))) (IF (|has| |#2| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -((-1863 (($ $) 19)) (-3419 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3703 (((-112) $ $) 24)) (-3585 (($ $) 17)) (-1783 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1234 (-567))) NIL) (($ $ $) 31)) (-4127 (($ (-144)) 29) (((-863) $) NIL))) -(((-1144 |#1|) (-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| (-141))) (-15 -3419 (|#1| |#1| (-144))) (-15 -4127 (|#1| (-144))) (-15 -3703 ((-112) |#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -1783 ((-144) |#1| (-567))) (-15 -1783 ((-144) |#1| (-567) (-144)))) (-1145)) (T -1144)) -NIL -(-10 -8 (-15 -4127 ((-863) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| (-141))) (-15 -3419 (|#1| |#1| (-144))) (-15 -4127 (|#1| (-144))) (-15 -3703 ((-112) |#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -1783 ((-144) |#1| (-567))) (-15 -1783 ((-144) |#1| (-567) (-144)))) -((-2399 (((-112) $ $) 19 (|has| (-144) (-1101)))) (-2168 (($ $) 121)) (-1863 (($ $) 122)) (-3419 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-3683 (((-112) $ $) 119)) (-3664 (((-112) $ $ (-567)) 118)) (-1800 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2871 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-3161 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4418))) (((-144) $ (-1234 (-567)) (-144)) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3272 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-3706 (($ $ (-1234 (-567)) $) 115)) (-2440 (($ $) 79 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ (-144) $) 78 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4417)))) (-2499 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4417)))) (-3759 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4418)))) (-3702 (((-144) $ (-567)) 52)) (-3703 (((-112) $ $) 120)) (-2567 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1101))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1101))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-3397 (((-645 (-144)) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) (-144)) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| (-144) (-851)))) (-3523 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2513 (((-645 (-144)) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| (-144) (-851)))) (-2576 (((-112) $ $ (-144)) 116)) (-4194 (((-772) $ $ (-144)) 117)) (-3751 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4307 (($ $) 123)) (-3585 (($ $) 124)) (-1596 (((-112) $ (-772)) 10)) (-3284 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3739 (((-1159) $) 22 (|has| (-144) (-1101)))) (-2842 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| (-144) (-1101)))) (-2405 (((-144) $) 43 (|has| (-567) (-851)))) (-3424 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4271 (($ $ (-144)) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3564 (((-645 (-144)) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1234 (-567))) 64) (($ $ $) 103)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4417))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4142 (($ (-645 (-144))) 71)) (-2260 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| (-144) (-1101)))) (-2461 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2964 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2929 (((-112) $ $) 20 (|has| (-144) (-1101)))) (-2977 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2952 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1145) (-140)) (T -1145)) -((-3585 (*1 *1 *1) (-4 *1 (-1145))) (-4307 (*1 *1 *1) (-4 *1 (-1145))) (-1863 (*1 *1 *1) (-4 *1 (-1145))) (-2168 (*1 *1 *1) (-4 *1 (-1145))) (-3703 (*1 *2 *1 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-112)))) (-3683 (*1 *2 *1 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-112)))) (-3664 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-567)) (-5 *2 (-112)))) (-4194 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-144)) (-5 *2 (-772)))) (-2576 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3706 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1234 (-567))))) (-2567 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-567)))) (-2567 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-567)) (-5 *3 (-141)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1145)))) (-1800 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1145)))) (-1800 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1145)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) (-3284 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144)))) (-3284 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) (-3272 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144)))) (-3272 (*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) (-1783 (*1 *1 *1 *1) (-4 *1 (-1145)))) -(-13 (-19 (-144)) (-10 -8 (-15 -3585 ($ $)) (-15 -4307 ($ $)) (-15 -1863 ($ $)) (-15 -2168 ($ $)) (-15 -3703 ((-112) $ $)) (-15 -3683 ((-112) $ $)) (-15 -3664 ((-112) $ $ (-567))) (-15 -4194 ((-772) $ $ (-144))) (-15 -2576 ((-112) $ $ (-144))) (-15 -3706 ($ $ (-1234 (-567)) $)) (-15 -2567 ((-567) $ $ (-567))) (-15 -2567 ((-567) (-141) $ (-567))) (-15 -4127 ($ (-144))) (-15 -1800 ((-645 $) $ (-144))) (-15 -1800 ((-645 $) $ (-141))) (-15 -3419 ($ $ (-144))) (-15 -3419 ($ $ (-141))) (-15 -3284 ($ $ (-144))) (-15 -3284 ($ $ (-141))) (-15 -3272 ($ $ (-144))) (-15 -3272 ($ $ (-141))) (-15 -1783 ($ $ $)))) -(((-34) . T) ((-102) -2797 (|has| (-144) (-1101)) (|has| (-144) (-851))) ((-614 (-863)) -2797 (|has| (-144) (-1101)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1101) -2797 (|has| (-144) (-1101)) (|has| (-144) (-851))) ((-1217) . T)) -((-1865 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772)) 113)) (-4054 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772)) 61)) (-3264 (((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)) 98)) (-3494 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3036 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-3349 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-3880 (((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) 90)) (-2414 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|) 60)) (-2467 (((-772) (-645 |#4|) (-645 |#5|)) 21))) -(((-1146 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2467 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3494 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2414 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1865 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772))) (-15 -3880 ((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3264 ((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|) (-1110 |#1| |#2| |#3| |#4|)) (T -1146)) -((-3264 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) (-5 *4 (-772)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1272)) (-5 *1 (-1146 *5 *6 *7 *8 *9)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1110 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1159)) (-5 *1 (-1146 *4 *5 *6 *7 *8)))) (-1865 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2564 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2564 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1066 *7 *8 *9)) (-4 *11 (-1110 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1146 *7 *8 *9 *10 *11)))) (-3349 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1146 *5 *6 *7 *8 *9)))) (-3349 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1146 *5 *6 *7 *8 *9)))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3)))) (-3036 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *6 *7 *8 *3 *4)) (-4 *4 (-1110 *6 *7 *8 *3)))) (-3036 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1066 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *7 *8 *9 *3 *4)) (-4 *4 (-1110 *7 *8 *9 *3)))) (-4054 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3)))) (-4054 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1066 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *6 *7 *8 *3 *4)) (-4 *4 (-1110 *6 *7 *8 *3)))) (-2414 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1146 *5 *6 *7 *8 *9)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1146 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2467 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3494 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2414 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -4054 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5| (-772))) (-15 -3036 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) |#4| |#5|)) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3349 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1865 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))))) (-772))) (-15 -3880 ((-1159) (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|)))) (-15 -3264 ((-1272) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2564 |#5|))) (-772)))) -((-2399 (((-112) $ $) NIL)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3645 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2845 (((-645 |#3|) $) NIL)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4124 ((|#4| |#4| $) NIL)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| $) 97)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 75)) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) 29 (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4267 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2033 (($ (-645 |#4|)) NIL)) (-2417 (((-3 $ "failed") $) 45)) (-4042 ((|#4| |#4| $) 78)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3230 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3670 ((|#4| |#4| $) NIL)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) NIL)) (-2091 (((-112) |#4| $) NIL)) (-2605 (((-112) |#4| $) NIL)) (-4136 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3957 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-3397 (((-645 |#4|) $) 18 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4146 ((|#3| $) 38)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#4|) $) 19 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 23)) (-3254 (((-645 |#3|) $) NIL)) (-3377 (((-112) |#3| $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-1801 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2707 (((-645 (-2 (|:| |val| |#4|) (|:| -2564 $))) |#4| |#4| $) 117)) (-3250 (((-3 |#4| "failed") $) 42)) (-1424 (((-645 $) |#4| $) 102)) (-3536 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-2049 (((-645 (-2 (|:| |val| (-112)) (|:| -2564 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1877 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-4036 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-2702 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2200 (((-645 |#4|) $) NIL)) (-2815 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1626 ((|#4| |#4| $) NIL)) (-1835 (((-112) $ $) NIL)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1471 ((|#4| |#4| $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-3 |#4| "failed") $) 40)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3454 (((-3 $ "failed") $ |#4|) 59)) (-3981 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 17)) (-3347 (($) 14)) (-1813 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) 13)) (-3880 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 22)) (-2388 (($ $ |#3|) 52)) (-2155 (($ $ |#3|) 54)) (-2961 (($ $) NIL)) (-3712 (($ $ |#3|) NIL)) (-4127 (((-863) $) 35) (((-645 |#4|) $) 46)) (-4191 (((-772) $) NIL (|has| |#3| (-370)))) (-4104 (((-112) $ $) NIL)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3175 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) NIL)) (-3620 (((-112) |#4| $) NIL)) (-3113 (((-112) |#3| $) 74)) (-2929 (((-112) $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1147 |#1| |#2| |#3| |#4|) (-13 (-1110 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2702 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -4036 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -3957 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -1147)) -((-2702 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1147 *5 *6 *7 *3))) (-5 *1 (-1147 *5 *6 *7 *3)) (-4 *3 (-1066 *5 *6 *7)))) (-3645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8)))) (-3645 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8)))) (-4036 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1147 *5 *6 *7 *8))))) (-5 *1 (-1147 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(-13 (-1110 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2702 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3645 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -4036 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -3957 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2254 ((|#1| $) 37)) (-2826 (($ (-645 |#1|)) 45)) (-2112 (((-112) $ (-772)) NIL)) (-2245 (($) NIL T CONST)) (-3009 ((|#1| |#1| $) 40)) (-4214 ((|#1| $) 35)) (-3397 (((-645 |#1|) $) 18 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 22)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1881 ((|#1| $) 38)) (-1330 (($ |#1| $) 41)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3060 ((|#1| $) 36)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 32)) (-3347 (($) 43)) (-3298 (((-772) $) 30)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 27)) (-4127 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3911 (($ (-645 |#1|)) NIL)) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 17 (|has| |#1| (-1101)))) (-2410 (((-772) $) 31 (|has| $ (-6 -4417))))) -(((-1148 |#1|) (-13 (-1122 |#1|) (-10 -8 (-15 -2826 ($ (-645 |#1|))))) (-1217)) (T -1148)) -((-2826 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1148 *3))))) -(-13 (-1122 |#1|) (-10 -8 (-15 -2826 ($ (-645 |#1|))))) -((-4281 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1234 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-1578 (((-112) $) 12)) (-3751 (($ (-1 |#2| |#2|) $) 50)) (-2405 ((|#2| $) NIL) (($ $ (-772)) 20)) (-4271 (($ $ |#2|) 51)) (-3580 (((-112) $) 11)) (-1783 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1234 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-3444 (($ $ $) 58) (($ $ |#2|) NIL)) (-2260 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL))) -(((-1149 |#1| |#2|) (-10 -8 (-15 -1578 ((-112) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -4281 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -4271 (|#1| |#1| |#2|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -2260 (|#1| (-645 |#1|))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -4281 (|#2| |#1| (-1234 (-567)) |#2|)) (-15 -4281 (|#2| |#1| "last" |#2|)) (-15 -4281 (|#1| |#1| "rest" |#1|)) (-15 -4281 (|#2| |#1| "first" |#2|)) (-15 -3444 (|#1| |#1| |#2|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -1783 (|#2| |#1| "last")) (-15 -1783 (|#1| |#1| "rest")) (-15 -2405 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "first")) (-15 -2405 (|#2| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|))) (-1150 |#2|) (-1217)) (T -1149)) -NIL -(-10 -8 (-15 -1578 ((-112) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -4281 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567) |#2|)) (-15 -1783 (|#2| |#1| (-567))) (-15 -4271 (|#1| |#1| |#2|)) (-15 -2260 (|#1| |#1| |#2|)) (-15 -2260 (|#1| (-645 |#1|))) (-15 -1783 (|#1| |#1| (-1234 (-567)))) (-15 -4281 (|#2| |#1| (-1234 (-567)) |#2|)) (-15 -4281 (|#2| |#1| "last" |#2|)) (-15 -4281 (|#1| |#1| "rest" |#1|)) (-15 -4281 (|#2| |#1| "first" |#2|)) (-15 -3444 (|#1| |#1| |#2|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -1783 (|#2| |#1| "last")) (-15 -1783 (|#1| |#1| "rest")) (-15 -2405 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "first")) (-15 -2405 (|#2| |#1|)) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-3991 ((|#1| $) 66)) (-4280 (($ $) 68)) (-2848 (((-1272) $ (-567) (-567)) 98 (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 53 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1831 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4417)))) (-3977 ((|#1| $) 67)) (-2245 (($) 7 T CONST)) (-2417 (($ $) 74) (($ $ (-772)) 72)) (-2440 (($ $) 100 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4417))) (($ |#1| $) 101 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3759 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 88)) (-1578 (((-112) $) 84)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) 109)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 96 (|has| (-567) (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 95 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3250 ((|#1| $) 71) (($ $ (-772)) 69)) (-2842 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-2732 (((-645 (-567)) $) 93)) (-2479 (((-112) (-567) $) 92)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 77) (($ $ (-772)) 75)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4271 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-3580 (((-112) $) 85)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 91)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1234 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4126 (((-567) $ $) 45)) (-1558 (($ $ (-1234 (-567))) 115) (($ $ (-567)) 114)) (-3340 (((-112) $) 47)) (-1765 (($ $) 63)) (-4367 (($ $) 60 (|has| $ (-6 -4418)))) (-4387 (((-772) $) 64)) (-4263 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3880 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 108)) (-3444 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-2260 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1150 |#1|) (-140) (-1217)) (T -1150)) -((-3580 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) -(-13 (-1255 |t#1|) (-652 |t#1|) (-10 -8 (-15 -3580 ((-112) $)) (-15 -1578 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T) ((-1255 |#1|) . T)) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) NIL)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1151 |#1| |#2| |#3|) (-1193 |#1| |#2|) (-1101) (-1101) |#2|) (T -1151)) -NIL -(-1193 |#1| |#2|) -((-2399 (((-112) $ $) 7)) (-3641 (((-3 $ "failed") $) 14)) (-3739 (((-1159) $) 10)) (-2701 (($) 15 T CONST)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-2929 (((-112) $ $) 6))) -(((-1152) (-140)) (T -1152)) -((-2701 (*1 *1) (-4 *1 (-1152))) (-3641 (*1 *1 *1) (|partial| -4 *1 (-1152)))) -(-13 (-1101) (-10 -8 (-15 -2701 ($) -3280) (-15 -3641 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1101) . T)) -((-4361 (((-1157 |#1|) (-1157 |#1|)) 17)) (-1346 (((-1157 |#1|) (-1157 |#1|)) 13)) (-3169 (((-1157 |#1|) (-1157 |#1|) (-567) (-567)) 20)) (-2106 (((-1157 |#1|) (-1157 |#1|)) 15))) -(((-1153 |#1|) (-10 -7 (-15 -1346 ((-1157 |#1|) (-1157 |#1|))) (-15 -2106 ((-1157 |#1|) (-1157 |#1|))) (-15 -4361 ((-1157 |#1|) (-1157 |#1|))) (-15 -3169 ((-1157 |#1|) (-1157 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1153)) -((-3169 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1153 *4)))) (-4361 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1153 *3)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1153 *3)))) (-1346 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1153 *3))))) -(-10 -7 (-15 -1346 ((-1157 |#1|) (-1157 |#1|))) (-15 -2106 ((-1157 |#1|) (-1157 |#1|))) (-15 -4361 ((-1157 |#1|) (-1157 |#1|))) (-15 -3169 ((-1157 |#1|) (-1157 |#1|) (-567) (-567)))) -((-2260 (((-1157 |#1|) (-1157 (-1157 |#1|))) 15))) -(((-1154 |#1|) (-10 -7 (-15 -2260 ((-1157 |#1|) (-1157 (-1157 |#1|))))) (-1217)) (T -1154)) -((-2260 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1217))))) -(-10 -7 (-15 -2260 ((-1157 |#1|) (-1157 (-1157 |#1|))))) -((-2565 (((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 25)) (-2499 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 26)) (-3822 (((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)) 16))) -(((-1155 |#1| |#2|) (-10 -7 (-15 -3822 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -2565 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -2499 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) (-1217) (-1217)) (T -1155)) -((-2499 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-1155 *5 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1217)) (-4 *3 (-1217)) (-5 *2 (-1157 *3)) (-5 *1 (-1155 *6 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6))))) -(-10 -7 (-15 -3822 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -2565 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -2499 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) -((-3822 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)) 21))) -(((-1156 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) (-1217) (-1217) (-1217)) (T -1156)) -((-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) (-5 *1 (-1156 *6 *7 *8))))) -(-10 -7 (-15 -3822 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) NIL)) (-3991 ((|#1| $) NIL)) (-4280 (($ $) 67)) (-2848 (((-1272) $ (-567) (-567)) 99 (|has| $ (-6 -4418)))) (-1602 (($ $ (-567)) 129 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-1828 (((-863) $) 56 (|has| |#1| (-1101)))) (-2444 (((-112)) 55 (|has| |#1| (-1101)))) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1831 (($ $ $) 116 (|has| $ (-6 -4418))) (($ $ (-567) $) 142)) (-2125 ((|#1| $ |#1|) 126 (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 121 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4418))) (($ $ "rest" $) 125 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 113 (|has| $ (-6 -4418))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 80)) (-3977 ((|#1| $) NIL)) (-2245 (($) NIL T CONST)) (-2392 (($ $) 14)) (-2417 (($ $) 42) (($ $ (-772)) 111)) (-3554 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1101)))) (-3313 (($ (-645 |#1|)) 131)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) 79)) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-1578 (((-112) $) NIL)) (-3397 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2389 (((-1272) (-567) $) 141 (|has| |#1| (-1101)))) (-3432 (((-772) $) 138)) (-4343 (((-645 $) $) NIL)) (-4218 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1596 (((-112) $ (-772)) NIL)) (-3781 (((-645 |#1|) $) NIL)) (-2915 (((-112) $) NIL)) (-2791 (($ $) 114)) (-3928 (((-112) $) 13)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3250 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2842 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) 96)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3270 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-4053 ((|#1| $) 10)) (-2405 ((|#1| $) 41) (($ $ (-772)) 65)) (-2182 (((-2 (|:| |cycle?| (-112)) (|:| -3842 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3318 (($ (-1 (-112) |#1|) $) 146)) (-3329 (($ (-1 (-112) |#1|) $) 147)) (-4271 (($ $ |#1|) 90 (|has| $ (-6 -4418)))) (-3981 (($ $ (-567)) 45)) (-3580 (((-112) $) 94)) (-1990 (((-112) $) 12)) (-3067 (((-112) $) 137)) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 30)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) 20)) (-3347 (($) 60)) (-1783 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1234 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-4126 (((-567) $ $) 64)) (-1558 (($ $ (-1234 (-567))) NIL) (($ $ (-567)) NIL)) (-3685 (($ (-1 $)) 63)) (-3340 (((-112) $) 91)) (-1765 (($ $) 92)) (-4367 (($ $) 117 (|has| $ (-6 -4418)))) (-4387 (((-772) $) NIL)) (-4263 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 59)) (-3880 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 73)) (-3463 (($ |#1| $) 115)) (-3444 (($ $ $) 119 (|has| $ (-6 -4418))) (($ $ |#1|) 120 (|has| $ (-6 -4418)))) (-2260 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-1546 (($ $) 66)) (-4127 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) NIL)) (-2588 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 133 (|has| |#1| (-1101)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1157 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4418) (-15 -3313 ($ (-645 |#1|))) (IF (|has| |#1| (-1101)) (-15 -3554 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -2182 ((-2 (|:| |cycle?| (-112)) (|:| -3842 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -3685 ($ (-1 $))) (-15 -3463 ($ |#1| $)) (IF (|has| |#1| (-1101)) (PROGN (-15 -2389 ((-1272) (-567) $)) (-15 -1828 ((-863) $)) (-15 -2444 ((-112)))) |%noBranch|) (-15 -1831 ($ $ (-567) $)) (-15 -3270 ($ (-1 |#1|))) (-15 -3270 ($ (-1 |#1| |#1|) |#1|)) (-15 -3318 ($ (-1 (-112) |#1|) $)) (-15 -3329 ($ (-1 (-112) |#1|) $)))) (-1217)) (T -1157)) -((-3313 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3)))) (-3554 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-4 *4 (-1217)) (-5 *2 (-112)) (-5 *1 (-1157 *4)))) (-2182 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3842 (-772)) (|:| |period| (-772)))) (-5 *1 (-1157 *4)) (-4 *4 (-1217)) (-5 *3 (-772)))) (-3685 (*1 *1 *2) (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1217)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1217)))) (-2389 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1157 *4)) (-4 *4 (-1101)) (-4 *4 (-1217)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1157 *3)) (-4 *3 (-1101)) (-4 *3 (-1217)))) (-2444 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1101)) (-4 *3 (-1217)))) (-1831 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1157 *3)) (-4 *3 (-1217)))) (-3270 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3)))) (-3270 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3)))) (-3329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3))))) -(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4418) (-15 -3313 ($ (-645 |#1|))) (IF (|has| |#1| (-1101)) (-15 -3554 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -2182 ((-2 (|:| |cycle?| (-112)) (|:| -3842 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -3685 ($ (-1 $))) (-15 -3463 ($ |#1| $)) (IF (|has| |#1| (-1101)) (PROGN (-15 -2389 ((-1272) (-567) $)) (-15 -1828 ((-863) $)) (-15 -2444 ((-112)))) |%noBranch|) (-15 -1831 ($ $ (-567) $)) (-15 -3270 ($ (-1 |#1|))) (-15 -3270 ($ (-1 |#1| |#1|) |#1|)) (-15 -3318 ($ (-1 (-112) |#1|) $)) (-15 -3329 ($ (-1 (-112) |#1|) $)))) -((-2399 (((-112) $ $) 19)) (-2168 (($ $) 121)) (-1863 (($ $) 122)) (-3419 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-3683 (((-112) $ $) 119)) (-3664 (((-112) $ $ (-567)) 118)) (-3651 (($ (-567)) 128)) (-1800 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2871 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-3161 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4418))) (((-144) $ (-1234 (-567)) (-144)) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3272 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-3706 (($ $ (-1234 (-567)) $) 115)) (-2440 (($ $) 79 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ (-144) $) 78 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4417)))) (-2499 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4417)))) (-3759 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4418)))) (-3702 (((-144) $ (-567)) 52)) (-3703 (((-112) $ $) 120)) (-2567 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1101))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1101))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-3397 (((-645 (-144)) $) 31 (|has| $ (-6 -4417)))) (-2844 (($ (-772) (-144)) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| (-144) (-851)))) (-3523 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2513 (((-645 (-144)) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| (-144) (-851)))) (-2576 (((-112) $ $ (-144)) 116)) (-4194 (((-772) $ $ (-144)) 117)) (-3751 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4307 (($ $) 123)) (-3585 (($ $) 124)) (-1596 (((-112) $ (-772)) 10)) (-3284 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3739 (((-1159) $) 22)) (-2842 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21)) (-2405 (((-144) $) 43 (|has| (-567) (-851)))) (-3424 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4271 (($ $ (-144)) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3564 (((-645 (-144)) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1234 (-567))) 64) (($ $ $) 103)) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4417))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4142 (($ (-645 (-144))) 71)) (-2260 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (($ (-144)) 112) (((-863) $) 18)) (-4104 (((-112) $ $) 23)) (-2461 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4417)))) (-4224 (((-1159) $) 132) (((-1159) $ (-112)) 131) (((-1272) (-823) $) 130) (((-1272) (-823) $ (-112)) 129)) (-2988 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2964 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2929 (((-112) $ $) 20)) (-2977 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2952 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1158) (-140)) (T -1158)) -((-3651 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1158))))) -(-13 (-1145) (-1101) (-829) (-10 -8 (-15 -3651 ($ (-567))))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1101) . T) ((-1145) . T) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2168 (($ $) NIL)) (-1863 (($ $) NIL)) (-3419 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-3683 (((-112) $ $) NIL)) (-3664 (((-112) $ $ (-567)) NIL)) (-3651 (($ (-567)) 8)) (-1800 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-2871 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-3161 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-851))))) (-1332 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4418))) (((-144) $ (-1234 (-567)) (-144)) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3272 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-3706 (($ $ (-1234 (-567)) $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3230 (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3759 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4418)))) (-3702 (((-144) $ (-567)) NIL)) (-3703 (((-112) $ $) NIL)) (-2567 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1101))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1101))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-3397 (((-645 (-144)) $) NIL (|has| $ (-6 -4417)))) (-2844 (($ (-772) (-144)) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| (-144) (-851)))) (-3523 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2513 (((-645 (-144)) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| (-144) (-851)))) (-2576 (((-112) $ $ (-144)) NIL)) (-4194 (((-772) $ $ (-144)) NIL)) (-3751 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4307 (($ $) NIL)) (-3585 (($ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3284 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3739 (((-1159) $) NIL)) (-2842 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-144) $) NIL (|has| (-567) (-851)))) (-3424 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4271 (($ $ (-144)) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-3564 (((-645 (-144)) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1234 (-567))) NIL) (($ $ $) NIL)) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4142 (($ (-645 (-144))) NIL)) (-2260 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (($ (-144)) NIL) (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2461 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-4224 (((-1159) $) 19) (((-1159) $ (-112)) 21) (((-1272) (-823) $) 22) (((-1272) (-823) $ (-112)) 23)) (-2988 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2964 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2952 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1159) (-1158)) (T -1159)) -NIL -(-1158) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)) (|has| |#1| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-2848 (((-1272) $ (-1159) (-1159)) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-1159) |#1|) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#1| "failed") (-1159) $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#1| "failed") (-1159) $) NIL)) (-3230 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-1159) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-1159)) NIL)) (-3397 (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-1159) $) NIL (|has| (-1159) (-851)))) (-2513 (((-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-1159) $) NIL (|has| (-1159) (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)) (|has| |#1| (-1101))))) (-1422 (((-645 (-1159)) $) NIL)) (-1528 (((-112) (-1159) $) NIL)) (-1881 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-2732 (((-645 (-1159)) $) NIL)) (-2479 (((-112) (-1159) $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)) (|has| |#1| (-1101))))) (-2405 ((|#1| $) NIL (|has| (-1159) (-851)))) (-3424 (((-3 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) "failed") (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL (-12 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-310 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-1159)) NIL) ((|#1| $ (-1159) |#1|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)) (|has| |#1| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 (-1159)) (|:| -4232 |#1|)) (-1101)) (|has| |#1| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1160 |#1|) (-13 (-1193 (-1159) |#1|) (-10 -7 (-6 -4417))) (-1101)) (T -1160)) -NIL -(-13 (-1193 (-1159) |#1|) (-10 -7 (-6 -4417))) -((-2699 (((-1157 |#1|) (-1157 |#1|)) 85)) (-3153 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 42)) (-4071 (((-1157 |#1|) (-410 (-567)) (-1157 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1951 (((-1157 |#1|) |#1| (-1157 |#1|)) 142 (|has| |#1| (-365)))) (-4144 (((-1157 |#1|) (-1157 |#1|)) 100)) (-1509 (((-1157 (-567)) (-567)) 64)) (-2744 (((-1157 |#1|) (-1157 (-1157 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-3646 (((-1157 |#1|) (-567) (-567) (-1157 |#1|)) 105)) (-2282 (((-1157 |#1|) |#1| (-567)) 54)) (-3361 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 67)) (-2032 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 139 (|has| |#1| (-365)))) (-3484 (((-1157 |#1|) |#1| (-1 (-1157 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-2214 (((-1157 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1157 |#1|))) 140 (|has| |#1| (-365)))) (-4390 (((-1157 |#1|) (-1157 |#1|)) 99)) (-2070 (((-1157 |#1|) (-1157 |#1|)) 83)) (-2776 (((-1157 |#1|) (-567) (-567) (-1157 |#1|)) 106)) (-1576 (((-1157 |#1|) |#1| (-1157 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-3061 (((-1157 (-567)) (-567)) 63)) (-2697 (((-1157 |#1|) |#1|) 66)) (-2685 (((-1157 |#1|) (-1157 |#1|) (-567) (-567)) 102)) (-3979 (((-1157 |#1|) (-1 |#1| (-567)) (-1157 |#1|)) 73)) (-2387 (((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|)) 40)) (-1429 (((-1157 |#1|) (-1157 |#1|)) 101)) (-2631 (((-1157 |#1|) (-1157 |#1|) |#1|) 78)) (-1919 (((-1157 |#1|) (-1157 |#1|)) 69)) (-1562 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 79)) (-4127 (((-1157 |#1|) |#1|) 74)) (-3537 (((-1157 |#1|) (-1157 (-1157 |#1|))) 90)) (-3050 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41)) (-3037 (((-1157 |#1|) (-1157 |#1|)) 21) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 23)) (-3024 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 17)) (* (((-1157 |#1|) (-1157 |#1|) |#1|) 29) (((-1157 |#1|) |#1| (-1157 |#1|)) 26) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 27))) -(((-1161 |#1|) (-10 -7 (-15 -3024 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3037 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3037 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -2387 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -3050 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3153 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -2282 ((-1157 |#1|) |#1| (-567))) (-15 -3061 ((-1157 (-567)) (-567))) (-15 -1509 ((-1157 (-567)) (-567))) (-15 -2697 ((-1157 |#1|) |#1|)) (-15 -3361 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3979 ((-1157 |#1|) (-1 |#1| (-567)) (-1157 |#1|))) (-15 -4127 ((-1157 |#1|) |#1|)) (-15 -2631 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -1562 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2070 ((-1157 |#1|) (-1157 |#1|))) (-15 -2699 ((-1157 |#1|) (-1157 |#1|))) (-15 -3537 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4390 ((-1157 |#1|) (-1157 |#1|))) (-15 -4144 ((-1157 |#1|) (-1157 |#1|))) (-15 -1429 ((-1157 |#1|) (-1157 |#1|))) (-15 -2685 ((-1157 |#1|) (-1157 |#1|) (-567) (-567))) (-15 -3646 ((-1157 |#1|) (-567) (-567) (-1157 |#1|))) (-15 -2776 ((-1157 |#1|) (-567) (-567) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3484 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -2744 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4071 ((-1157 |#1|) (-410 (-567)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2032 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2214 ((-1157 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1157 |#1|)))) (-15 -1951 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) (-1050)) (T -1161)) -((-1951 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) (-4 *4 (-1050)) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4)))) (-2032 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-4071 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1050)) (-5 *3 (-410 (-567))) (-5 *1 (-1161 *4)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))) (-1576 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2776 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1161 *4)))) (-3646 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1161 *4)))) (-2685 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1161 *4)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4)) (-4 *4 (-1050)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-1050)))) (-3979 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1050)) (-5 *1 (-1161 *4)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3361 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2697 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-1050)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1161 *4)) (-4 *4 (-1050)) (-5 *3 (-567)))) (-3061 (*1 *2 *3) (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1161 *4)) (-4 *4 (-1050)) (-5 *3 (-567)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-1050)))) (-3153 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-2387 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(-10 -7 (-15 -3024 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3037 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3037 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -2387 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -3050 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3153 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -2282 ((-1157 |#1|) |#1| (-567))) (-15 -3061 ((-1157 (-567)) (-567))) (-15 -1509 ((-1157 (-567)) (-567))) (-15 -2697 ((-1157 |#1|) |#1|)) (-15 -3361 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3979 ((-1157 |#1|) (-1 |#1| (-567)) (-1157 |#1|))) (-15 -4127 ((-1157 |#1|) |#1|)) (-15 -2631 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -1562 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2070 ((-1157 |#1|) (-1157 |#1|))) (-15 -2699 ((-1157 |#1|) (-1157 |#1|))) (-15 -3537 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4390 ((-1157 |#1|) (-1157 |#1|))) (-15 -4144 ((-1157 |#1|) (-1157 |#1|))) (-15 -1429 ((-1157 |#1|) (-1157 |#1|))) (-15 -2685 ((-1157 |#1|) (-1157 |#1|) (-567) (-567))) (-15 -3646 ((-1157 |#1|) (-567) (-567) (-1157 |#1|))) (-15 -2776 ((-1157 |#1|) (-567) (-567) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3484 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -2744 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4071 ((-1157 |#1|) (-410 (-567)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2032 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2214 ((-1157 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1157 |#1|)))) (-15 -1951 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) -((-3165 (((-1157 |#1|) (-1157 |#1|)) 60)) (-3039 (((-1157 |#1|) (-1157 |#1|)) 42)) (-3148 (((-1157 |#1|) (-1157 |#1|)) 56)) (-3015 (((-1157 |#1|) (-1157 |#1|)) 38)) (-3184 (((-1157 |#1|) (-1157 |#1|)) 63)) (-3065 (((-1157 |#1|) (-1157 |#1|)) 45)) (-3053 (((-1157 |#1|) (-1157 |#1|)) 34)) (-3927 (((-1157 |#1|) (-1157 |#1|)) 29)) (-3192 (((-1157 |#1|) (-1157 |#1|)) 64)) (-3076 (((-1157 |#1|) (-1157 |#1|)) 46)) (-3174 (((-1157 |#1|) (-1157 |#1|)) 61)) (-3052 (((-1157 |#1|) (-1157 |#1|)) 43)) (-3157 (((-1157 |#1|) (-1157 |#1|)) 58)) (-3026 (((-1157 |#1|) (-1157 |#1|)) 40)) (-3220 (((-1157 |#1|) (-1157 |#1|)) 68)) (-3109 (((-1157 |#1|) (-1157 |#1|)) 50)) (-3201 (((-1157 |#1|) (-1157 |#1|)) 66)) (-3087 (((-1157 |#1|) (-1157 |#1|)) 48)) (-3241 (((-1157 |#1|) (-1157 |#1|)) 71)) (-3128 (((-1157 |#1|) (-1157 |#1|)) 53)) (-3807 (((-1157 |#1|) (-1157 |#1|)) 72)) (-3137 (((-1157 |#1|) (-1157 |#1|)) 54)) (-3228 (((-1157 |#1|) (-1157 |#1|)) 70)) (-3119 (((-1157 |#1|) (-1157 |#1|)) 52)) (-3210 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3098 (((-1157 |#1|) (-1157 |#1|)) 51)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 36))) -(((-1162 |#1|) (-10 -7 (-15 -3927 ((-1157 |#1|) (-1157 |#1|))) (-15 -3053 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3015 ((-1157 |#1|) (-1157 |#1|))) (-15 -3026 ((-1157 |#1|) (-1157 |#1|))) (-15 -3039 ((-1157 |#1|) (-1157 |#1|))) (-15 -3052 ((-1157 |#1|) (-1157 |#1|))) (-15 -3065 ((-1157 |#1|) (-1157 |#1|))) (-15 -3076 ((-1157 |#1|) (-1157 |#1|))) (-15 -3087 ((-1157 |#1|) (-1157 |#1|))) (-15 -3098 ((-1157 |#1|) (-1157 |#1|))) (-15 -3109 ((-1157 |#1|) (-1157 |#1|))) (-15 -3119 ((-1157 |#1|) (-1157 |#1|))) (-15 -3128 ((-1157 |#1|) (-1157 |#1|))) (-15 -3137 ((-1157 |#1|) (-1157 |#1|))) (-15 -3148 ((-1157 |#1|) (-1157 |#1|))) (-15 -3157 ((-1157 |#1|) (-1157 |#1|))) (-15 -3165 ((-1157 |#1|) (-1157 |#1|))) (-15 -3174 ((-1157 |#1|) (-1157 |#1|))) (-15 -3184 ((-1157 |#1|) (-1157 |#1|))) (-15 -3192 ((-1157 |#1|) (-1157 |#1|))) (-15 -3201 ((-1157 |#1|) (-1157 |#1|))) (-15 -3210 ((-1157 |#1|) (-1157 |#1|))) (-15 -3220 ((-1157 |#1|) (-1157 |#1|))) (-15 -3228 ((-1157 |#1|) (-1157 |#1|))) (-15 -3241 ((-1157 |#1|) (-1157 |#1|))) (-15 -3807 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-567)))) (T -1162)) -((-3807 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3220 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3109 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3039 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3))))) -(-10 -7 (-15 -3927 ((-1157 |#1|) (-1157 |#1|))) (-15 -3053 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3015 ((-1157 |#1|) (-1157 |#1|))) (-15 -3026 ((-1157 |#1|) (-1157 |#1|))) (-15 -3039 ((-1157 |#1|) (-1157 |#1|))) (-15 -3052 ((-1157 |#1|) (-1157 |#1|))) (-15 -3065 ((-1157 |#1|) (-1157 |#1|))) (-15 -3076 ((-1157 |#1|) (-1157 |#1|))) (-15 -3087 ((-1157 |#1|) (-1157 |#1|))) (-15 -3098 ((-1157 |#1|) (-1157 |#1|))) (-15 -3109 ((-1157 |#1|) (-1157 |#1|))) (-15 -3119 ((-1157 |#1|) (-1157 |#1|))) (-15 -3128 ((-1157 |#1|) (-1157 |#1|))) (-15 -3137 ((-1157 |#1|) (-1157 |#1|))) (-15 -3148 ((-1157 |#1|) (-1157 |#1|))) (-15 -3157 ((-1157 |#1|) (-1157 |#1|))) (-15 -3165 ((-1157 |#1|) (-1157 |#1|))) (-15 -3174 ((-1157 |#1|) (-1157 |#1|))) (-15 -3184 ((-1157 |#1|) (-1157 |#1|))) (-15 -3192 ((-1157 |#1|) (-1157 |#1|))) (-15 -3201 ((-1157 |#1|) (-1157 |#1|))) (-15 -3210 ((-1157 |#1|) (-1157 |#1|))) (-15 -3220 ((-1157 |#1|) (-1157 |#1|))) (-15 -3228 ((-1157 |#1|) (-1157 |#1|))) (-15 -3241 ((-1157 |#1|) (-1157 |#1|))) (-15 -3807 ((-1157 |#1|) (-1157 |#1|)))) -((-3165 (((-1157 |#1|) (-1157 |#1|)) 108)) (-3039 (((-1157 |#1|) (-1157 |#1|)) 65)) (-3814 (((-2 (|:| -3148 (-1157 |#1|)) (|:| -3157 (-1157 |#1|))) (-1157 |#1|)) 104)) (-3148 (((-1157 |#1|) (-1157 |#1|)) 105)) (-3912 (((-2 (|:| -3015 (-1157 |#1|)) (|:| -3026 (-1157 |#1|))) (-1157 |#1|)) 54)) (-3015 (((-1157 |#1|) (-1157 |#1|)) 55)) (-3184 (((-1157 |#1|) (-1157 |#1|)) 110)) (-3065 (((-1157 |#1|) (-1157 |#1|)) 72)) (-3053 (((-1157 |#1|) (-1157 |#1|)) 40)) (-3927 (((-1157 |#1|) (-1157 |#1|)) 37)) (-3192 (((-1157 |#1|) (-1157 |#1|)) 111)) (-3076 (((-1157 |#1|) (-1157 |#1|)) 73)) (-3174 (((-1157 |#1|) (-1157 |#1|)) 109)) (-3052 (((-1157 |#1|) (-1157 |#1|)) 68)) (-3157 (((-1157 |#1|) (-1157 |#1|)) 106)) (-3026 (((-1157 |#1|) (-1157 |#1|)) 56)) (-3220 (((-1157 |#1|) (-1157 |#1|)) 119)) (-3109 (((-1157 |#1|) (-1157 |#1|)) 94)) (-3201 (((-1157 |#1|) (-1157 |#1|)) 113)) (-3087 (((-1157 |#1|) (-1157 |#1|)) 90)) (-3241 (((-1157 |#1|) (-1157 |#1|)) 123)) (-3128 (((-1157 |#1|) (-1157 |#1|)) 98)) (-3807 (((-1157 |#1|) (-1157 |#1|)) 125)) (-3137 (((-1157 |#1|) (-1157 |#1|)) 100)) (-3228 (((-1157 |#1|) (-1157 |#1|)) 121)) (-3119 (((-1157 |#1|) (-1157 |#1|)) 96)) (-3210 (((-1157 |#1|) (-1157 |#1|)) 115)) (-3098 (((-1157 |#1|) (-1157 |#1|)) 92)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41))) -(((-1163 |#1|) (-10 -7 (-15 -3927 ((-1157 |#1|) (-1157 |#1|))) (-15 -3053 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-2 (|:| -3015 (-1157 |#1|)) (|:| -3026 (-1157 |#1|))) (-1157 |#1|))) (-15 -3015 ((-1157 |#1|) (-1157 |#1|))) (-15 -3026 ((-1157 |#1|) (-1157 |#1|))) (-15 -3039 ((-1157 |#1|) (-1157 |#1|))) (-15 -3052 ((-1157 |#1|) (-1157 |#1|))) (-15 -3065 ((-1157 |#1|) (-1157 |#1|))) (-15 -3076 ((-1157 |#1|) (-1157 |#1|))) (-15 -3087 ((-1157 |#1|) (-1157 |#1|))) (-15 -3098 ((-1157 |#1|) (-1157 |#1|))) (-15 -3109 ((-1157 |#1|) (-1157 |#1|))) (-15 -3119 ((-1157 |#1|) (-1157 |#1|))) (-15 -3128 ((-1157 |#1|) (-1157 |#1|))) (-15 -3137 ((-1157 |#1|) (-1157 |#1|))) (-15 -3814 ((-2 (|:| -3148 (-1157 |#1|)) (|:| -3157 (-1157 |#1|))) (-1157 |#1|))) (-15 -3148 ((-1157 |#1|) (-1157 |#1|))) (-15 -3157 ((-1157 |#1|) (-1157 |#1|))) (-15 -3165 ((-1157 |#1|) (-1157 |#1|))) (-15 -3174 ((-1157 |#1|) (-1157 |#1|))) (-15 -3184 ((-1157 |#1|) (-1157 |#1|))) (-15 -3192 ((-1157 |#1|) (-1157 |#1|))) (-15 -3201 ((-1157 |#1|) (-1157 |#1|))) (-15 -3210 ((-1157 |#1|) (-1157 |#1|))) (-15 -3220 ((-1157 |#1|) (-1157 |#1|))) (-15 -3228 ((-1157 |#1|) (-1157 |#1|))) (-15 -3241 ((-1157 |#1|) (-1157 |#1|))) (-15 -3807 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-567)))) (T -1163)) -((-3807 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3220 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3148 (-1157 *4)) (|:| -3157 (-1157 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-1157 *4)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3109 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3039 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3015 (-1157 *4)) (|:| -3026 (-1157 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-1157 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3))))) -(-10 -7 (-15 -3927 ((-1157 |#1|) (-1157 |#1|))) (-15 -3053 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-2 (|:| -3015 (-1157 |#1|)) (|:| -3026 (-1157 |#1|))) (-1157 |#1|))) (-15 -3015 ((-1157 |#1|) (-1157 |#1|))) (-15 -3026 ((-1157 |#1|) (-1157 |#1|))) (-15 -3039 ((-1157 |#1|) (-1157 |#1|))) (-15 -3052 ((-1157 |#1|) (-1157 |#1|))) (-15 -3065 ((-1157 |#1|) (-1157 |#1|))) (-15 -3076 ((-1157 |#1|) (-1157 |#1|))) (-15 -3087 ((-1157 |#1|) (-1157 |#1|))) (-15 -3098 ((-1157 |#1|) (-1157 |#1|))) (-15 -3109 ((-1157 |#1|) (-1157 |#1|))) (-15 -3119 ((-1157 |#1|) (-1157 |#1|))) (-15 -3128 ((-1157 |#1|) (-1157 |#1|))) (-15 -3137 ((-1157 |#1|) (-1157 |#1|))) (-15 -3814 ((-2 (|:| -3148 (-1157 |#1|)) (|:| -3157 (-1157 |#1|))) (-1157 |#1|))) (-15 -3148 ((-1157 |#1|) (-1157 |#1|))) (-15 -3157 ((-1157 |#1|) (-1157 |#1|))) (-15 -3165 ((-1157 |#1|) (-1157 |#1|))) (-15 -3174 ((-1157 |#1|) (-1157 |#1|))) (-15 -3184 ((-1157 |#1|) (-1157 |#1|))) (-15 -3192 ((-1157 |#1|) (-1157 |#1|))) (-15 -3201 ((-1157 |#1|) (-1157 |#1|))) (-15 -3210 ((-1157 |#1|) (-1157 |#1|))) (-15 -3220 ((-1157 |#1|) (-1157 |#1|))) (-15 -3228 ((-1157 |#1|) (-1157 |#1|))) (-15 -3241 ((-1157 |#1|) (-1157 |#1|))) (-15 -3807 ((-1157 |#1|) (-1157 |#1|)))) -((-3018 (((-959 |#2|) |#2| |#2|) 51)) (-4334 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) -(((-1164 |#1| |#2|) (-10 -7 (-15 -3018 ((-959 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -4334 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1243 |#1|)) (T -1164)) -((-4334 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1164 *3 *2)) (-4 *2 (-1243 *3)))) (-3018 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-959 *3)) (-5 *1 (-1164 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -3018 ((-959 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -4334 (|#2| |#2| |#1|)) |%noBranch|)) -((-2399 (((-112) $ $) NIL)) (-2695 (($ $ (-645 (-772))) 81)) (-1477 (($) 33)) (-2468 (($ $) 51)) (-2887 (((-645 $) $) 60)) (-2723 (((-112) $) 19)) (-3919 (((-645 (-944 |#2|)) $) 88)) (-1878 (($ $) 82)) (-3959 (((-772) $) 47)) (-2844 (($) 32)) (-4248 (($ $ (-645 (-772)) (-944 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-944 |#2|)) 77)) (-3523 (($ $ $) 57) (($ (-645 $)) 59)) (-2679 (((-772) $) 89)) (-2915 (((-112) $) 15)) (-3739 (((-1159) $) NIL)) (-1560 (((-112) $) 22)) (-3430 (((-1121) $) NIL)) (-2175 (((-171) $) 87)) (-3572 (((-944 |#2|) $) 83)) (-3565 (((-772) $) 84)) (-1566 (((-112) $) 86)) (-2342 (($ $ (-645 (-772)) (-171)) 80)) (-1497 (($ $) 52)) (-4127 (((-863) $) 100)) (-2089 (($ $ (-645 (-772)) (-112)) 79)) (-3602 (((-645 $) $) 11)) (-2416 (($ $ (-772)) 46)) (-3704 (($ $) 43)) (-4104 (((-112) $ $) NIL)) (-1956 (($ $ $ (-944 |#2|) (-772)) 70)) (-1879 (($ $ (-944 |#2|)) 69)) (-3438 (($ $ (-645 (-772)) (-944 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-944 |#2|)) 73)) (-2929 (((-112) $ $) 94))) -(((-1165 |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -2915 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -1560 ((-112) $)) (-15 -2844 ($)) (-15 -1477 ($)) (-15 -3704 ($ $)) (-15 -2416 ($ $ (-772))) (-15 -3602 ((-645 $) $)) (-15 -3959 ((-772) $)) (-15 -2468 ($ $)) (-15 -1497 ($ $)) (-15 -3523 ($ $ $)) (-15 -3523 ($ (-645 $))) (-15 -2887 ((-645 $) $)) (-15 -3438 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -1879 ($ $ (-944 |#2|))) (-15 -1956 ($ $ $ (-944 |#2|) (-772))) (-15 -4248 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -3438 ($ $ (-645 (-772)) (-772))) (-15 -4248 ($ $ (-645 (-772)) (-772))) (-15 -3438 ((-772) $ (-944 |#2|))) (-15 -4248 ($ $ (-772) (-944 |#2|))) (-15 -2089 ($ $ (-645 (-772)) (-112))) (-15 -2342 ($ $ (-645 (-772)) (-171))) (-15 -2695 ($ $ (-645 (-772)))) (-15 -3572 ((-944 |#2|) $)) (-15 -3565 ((-772) $)) (-15 -1566 ((-112) $)) (-15 -2175 ((-171) $)) (-15 -2679 ((-772) $)) (-15 -1878 ($ $)) (-15 -3919 ((-645 (-944 |#2|)) $)))) (-922) (-1050)) (T -1165)) -((-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2844 (*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-1477 (*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3704 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-1497 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3523 (*1 *1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3438 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *4)) (-4 *4 (-1050)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)))) (-1956 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-944 *5)) (-5 *3 (-772)) (-4 *5 (-1050)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) (-4248 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) (-3438 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-4248 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *2 (-772)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) (-4248 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) (-2089 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-2342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-944 *4)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-1878 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-645 (-944 *4))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050))))) -(-13 (-1101) (-10 -8 (-15 -2915 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -1560 ((-112) $)) (-15 -2844 ($)) (-15 -1477 ($)) (-15 -3704 ($ $)) (-15 -2416 ($ $ (-772))) (-15 -3602 ((-645 $) $)) (-15 -3959 ((-772) $)) (-15 -2468 ($ $)) (-15 -1497 ($ $)) (-15 -3523 ($ $ $)) (-15 -3523 ($ (-645 $))) (-15 -2887 ((-645 $) $)) (-15 -3438 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -1879 ($ $ (-944 |#2|))) (-15 -1956 ($ $ $ (-944 |#2|) (-772))) (-15 -4248 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -3438 ($ $ (-645 (-772)) (-772))) (-15 -4248 ($ $ (-645 (-772)) (-772))) (-15 -3438 ((-772) $ (-944 |#2|))) (-15 -4248 ($ $ (-772) (-944 |#2|))) (-15 -2089 ($ $ (-645 (-772)) (-112))) (-15 -2342 ($ $ (-645 (-772)) (-171))) (-15 -2695 ($ $ (-645 (-772)))) (-15 -3572 ((-944 |#2|) $)) (-15 -3565 ((-772) $)) (-15 -1566 ((-112) $)) (-15 -2175 ((-171) $)) (-15 -2679 ((-772) $)) (-15 -1878 ($ $)) (-15 -3919 ((-645 (-944 |#2|)) $)))) -((-2399 (((-112) $ $) NIL)) (-4100 ((|#2| $) 11)) (-4084 ((|#1| $) 10)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4142 (($ |#1| |#2|) 9)) (-4127 (((-863) $) 16)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1166 |#1| |#2|) (-13 (-1101) (-10 -8 (-15 -4142 ($ |#1| |#2|)) (-15 -4084 (|#1| $)) (-15 -4100 (|#2| $)))) (-1101) (-1101)) (T -1166)) -((-4142 (*1 *1 *2 *3) (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-4084 (*1 *2 *1) (-12 (-4 *2 (-1101)) (-5 *1 (-1166 *2 *3)) (-4 *3 (-1101)))) (-4100 (*1 *2 *1) (-12 (-4 *2 (-1101)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1101))))) -(-13 (-1101) (-10 -8 (-15 -4142 ($ |#1| |#2|)) (-15 -4084 (|#1| $)) (-15 -4100 (|#2| $)))) -((-2399 (((-112) $ $) NIL)) (-2172 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 15) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1167) (-13 (-1084) (-10 -8 (-15 -2172 ((-1136) $))))) (T -1167)) -((-2172 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1167))))) -(-13 (-1084) (-10 -8 (-15 -2172 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-1175 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 11)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1312 (($ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2318 (((-112) $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1873 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1368 (((-1175 |#1| |#2| |#3|) $) 42)) (-3789 (((-3 (-1175 |#1| |#2| |#3|) "failed") $) 32)) (-2892 (((-1175 |#1| |#2| |#3|) $) 33)) (-3165 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3449 (((-567) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-1175 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1177) "failed") $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-2033 (((-1175 |#1| |#2| |#3|) $) 140) (((-1177) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-3671 (($ $) 37) (($ (-567) $) 38)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-1175 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-1175 |#1| |#2| |#3|))) (|:| |vec| (-1267 (-1175 |#1| |#2| |#3|)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-3153 (((-3 $ "failed") $) 54)) (-2571 (((-410 (-953 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-1378 (($) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4357 (((-112) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-4184 (((-112) $) 28)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-887 (-567))) (|has| |#1| (-365))))) (-2937 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL (|has| |#1| (-365)))) (-1441 (((-1175 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1152)) (|has| |#1| (-365))))) (-2102 (((-112) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3275 (($ $ (-922)) NIL)) (-4344 (($ (-1 |#1| (-567)) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-567)) 19) (($ $ (-1083) (-567)) NIL) (($ $ (-645 (-1083)) (-645 (-567))) NIL)) (-2010 (($ $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2998 (($ $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2903 (($ (-567) (-1175 |#1| |#2| |#3|)) 36)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1152)) (|has| |#1| (-365))) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2721 (($ $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1842 (((-1175 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-567)) 158)) (-2387 (((-3 $ "failed") $ $) 55 (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1177) (-1175 |#1| |#2| |#3|)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-517 (-1177) (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 (-1175 |#1| |#2| |#3|))) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-517 (-1177) (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1175 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1175 |#1| |#2| |#3|))) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1175 |#1| |#2| |#3|)) (-645 (-1175 |#1| |#2| |#3|))) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-310 (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1113))) (($ $ (-1175 |#1| |#2| |#3|)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-287 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-1 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1263 |#2|)) 57) (($ $ (-772)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-3168 (($ $) NIL (|has| |#1| (-365)))) (-1455 (((-1175 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-1813 (((-567) $) 43)) (-3192 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3880 (((-539) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1175 |#1| |#2| |#3|)) 30) (($ (-1263 |#2|)) 25) (($ (-1177)) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (($ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2253 ((|#1| $ (-567)) 77)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 12)) (-1687 (((-1175 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3201 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-4137 (($ $) NIL (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1710 (($) 21 T CONST)) (-1722 (($) 16 T CONST)) (-2636 (($ $ (-1 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-2988 (((-112) $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2964 (((-112) $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2952 (((-112) $ $) NIL (-2797 (-12 (|has| (-1175 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1175 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1175 |#1| |#2| |#3|) (-1175 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1175 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1175 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1168 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1175 |#1| |#2| |#3|)) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1168)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1229 |#1| (-1175 |#1| |#2| |#3|)) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-3593 ((|#2| |#2| (-1093 |#2|)) 26) ((|#2| |#2| (-1177)) 28))) -(((-1169 |#1| |#2|) (-10 -7 (-15 -3593 (|#2| |#2| (-1177))) (-15 -3593 (|#2| |#2| (-1093 |#2|)))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1202))) (T -1169)) -((-3593 (*1 *2 *2 *3) (-12 (-5 *3 (-1093 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1202))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1169 *4 *2)))) (-3593 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1202)))))) -(-10 -7 (-15 -3593 (|#2| |#2| (-1177))) (-15 -3593 (|#2| |#2| (-1093 |#2|)))) -((-3593 (((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1093 (-410 (-953 |#1|)))) 31) (((-410 (-953 |#1|)) (-953 |#1|) (-1093 (-953 |#1|))) 44) (((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1177)) 33) (((-410 (-953 |#1|)) (-953 |#1|) (-1177)) 36))) -(((-1170 |#1|) (-10 -7 (-15 -3593 ((-410 (-953 |#1|)) (-953 |#1|) (-1177))) (-15 -3593 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1177))) (-15 -3593 ((-410 (-953 |#1|)) (-953 |#1|) (-1093 (-953 |#1|)))) (-15 -3593 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1093 (-410 (-953 |#1|)))))) (-13 (-559) (-1039 (-567)))) (T -1170)) -((-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1170 *5)))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-953 *5))) (-5 *3 (-953 *5)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1170 *5)))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 (-410 (-953 *5)) (-317 *5))) (-5 *1 (-1170 *5)) (-5 *3 (-410 (-953 *5))))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-953 *5))) (-5 *1 (-1170 *5)) (-5 *3 (-953 *5))))) -(-10 -7 (-15 -3593 ((-410 (-953 |#1|)) (-953 |#1|) (-1177))) (-15 -3593 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1177))) (-15 -3593 ((-410 (-953 |#1|)) (-953 |#1|) (-1093 (-953 |#1|)))) (-15 -3593 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1093 (-410 (-953 |#1|)))))) -((-3822 (((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)) 13))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -3822 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)))) (-1050) (-1050)) (T -1171)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6))))) -(-10 -7 (-15 -3822 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)))) -((-2833 (((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|))) 51)) (-2703 (((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|))) 52))) -(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|)))) (-15 -2833 ((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|))))) (-794) (-851) (-455) (-950 |#3| |#1| |#2|)) (T -1172)) -((-2833 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 (-410 *7)))) (-5 *1 (-1172 *4 *5 *6 *7)) (-5 *3 (-1173 (-410 *7))))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 (-410 *7)))) (-5 *1 (-1172 *4 *5 *6 *7)) (-5 *3 (-1173 (-410 *7)))))) -(-10 -7 (-15 -2703 ((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|)))) (-15 -2833 ((-421 (-1173 (-410 |#4|))) (-1173 (-410 |#4|))))) -((-2399 (((-112) $ $) 171)) (-2840 (((-112) $) 43)) (-3455 (((-1267 |#1|) $ (-772)) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-2476 (($ (-1173 |#1|)) NIL)) (-2670 (((-1173 $) $ (-1083)) 82) (((-1173 |#1|) $) 71)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) 164 (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1083))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3412 (($ $ $) 158 (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) 95 (|has| |#1| (-910)))) (-3081 (($ $) NIL (|has| |#1| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 115 (|has| |#1| (-910)))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1404 (($ $ (-772)) 61)) (-3229 (($ $ (-772)) 63)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1083) "failed") $) NIL)) (-2033 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1083) $) NIL)) (-3621 (($ $ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) 80)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-1580 (($ $ $) 131)) (-1307 (($ $ $) NIL (|has| |#1| (-559)))) (-1950 (((-2 (|:| -3686 |#1|) (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4334 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-772) $) 69)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1083) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1083) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1808 (((-863) $ (-863)) 148)) (-2937 (((-772) $ $) NIL (|has| |#1| (-559)))) (-2843 (((-112) $) 48)) (-4183 (((-772) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1152)))) (-2832 (($ (-1173 |#1|) (-1083)) 73) (($ (-1173 $) (-1083)) 89)) (-3275 (($ $ (-772)) 51)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) 87) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1083)) NIL) (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 153)) (-2752 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3345 (($ (-1 (-772) (-772)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-1317 (((-1173 |#1|) $) NIL)) (-1902 (((-3 (-1083) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) 76)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3739 (((-1159) $) NIL)) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) 60)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1083)) (|:| -4250 (-772))) "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) NIL (|has| |#1| (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) 50)) (-2955 ((|#1| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 103 (|has| |#1| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-4196 (($ $ (-772) |#1| $) 123)) (-3475 (((-421 (-1173 $)) (-1173 $)) 101 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 100 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 108 (|has| |#1| (-910)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1083) |#1|) NIL) (($ $ (-645 (-1083)) (-645 |#1|)) NIL) (($ $ (-1083) $) NIL) (($ $ (-645 (-1083)) (-645 $)) NIL)) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-1859 (((-3 $ "failed") $ (-772)) 54)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 172 (|has| |#1| (-365)))) (-1999 (($ $ (-1083)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-1621 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1813 (((-772) $) 78) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1083) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1083)) NIL (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-2868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4127 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1083)) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 17 T CONST)) (-1722 (($) 19 T CONST)) (-2636 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2929 (((-112) $ $) 120)) (-3050 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 90)) (** (($ $ (-922)) 14) (($ $ (-772)) 12)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1173 |#1|) (-13 (-1243 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-863))) (-15 -4196 ($ $ (-772) |#1| $)))) (-1050)) (T -1173)) -((-1808 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1173 *3)) (-4 *3 (-1050)))) (-4196 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1173 *3)) (-4 *3 (-1050))))) -(-13 (-1243 |#1|) (-10 -8 (-15 -1808 ((-863) $ (-863))) (-15 -4196 ($ $ (-772) |#1| $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 11)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1175 |#1| |#2| |#3|) "failed") $) 36)) (-2033 (((-1168 |#1| |#2| |#3|) $) NIL) (((-1175 |#1| |#2| |#3|) $) NIL)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3013 (((-410 (-567)) $) 59)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2913 (($ (-410 (-567)) (-1168 |#1| |#2| |#3|)) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-410 (-567))) 20) (($ $ (-1083) (-410 (-567))) NIL) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1397 (((-1168 |#1| |#2| |#3|) $) 41)) (-2285 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) NIL)) (-2903 (((-1168 |#1| |#2| |#3|) $) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1263 |#2|)) 38)) (-1813 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1175 |#1| |#2| |#3|)) 31) (($ (-1263 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 12)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 22 T CONST)) (-1722 (($) 16 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 24)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1174 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1168 |#1| |#2| |#3|)) (-1039 (-1175 |#1| |#2| |#3|)) (-617 (-1263 |#2|)) (-10 -8 (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1174)) -((-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1168 |#1| |#2| |#3|)) (-1039 (-1175 |#1| |#2| |#3|)) (-617 (-1263 |#2|)) (-10 -8 (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 131)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 121)) (-4040 (((-1240 |#2| |#1|) $ (-772)) 69)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-4268 (((-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-3165 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1157 |#1|)) 115)) (-3184 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) 25)) (-2034 (($ $) 28)) (-3736 (((-953 |#1|) $ (-772)) 81) (((-953 |#1|) $ (-772) (-772)) 83)) (-4184 (((-112) $) 126)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $) 128) (((-772) $ (-772)) 130)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) NIL)) (-4344 (($ (-1 |#1| (-567)) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) 13) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-1576 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-3981 (($ $ (-772)) 15)) (-2387 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-3927 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1783 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1113)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1263 |#2|)) 31)) (-1813 (((-772) $) NIL)) (-3192 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1240 |#2| |#1|)) 55) (($ (-1263 |#2|)) 36)) (-3468 (((-1157 |#1|) $) 103)) (-2253 ((|#1| $ (-772)) 123)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 58)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 17 T CONST)) (-1722 (($) 20 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) 200)) (-3024 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1175 |#1| |#2| |#3|) (-13 (-1258 |#1|) (-10 -8 (-15 -4127 ($ (-1240 |#2| |#1|))) (-15 -4040 ((-1240 |#2| |#1|) $ (-772))) (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1175)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1240 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3) (-5 *1 (-1175 *3 *4 *5)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1240 *5 *4)) (-5 *1 (-1175 *4 *5 *6)) (-4 *4 (-1050)) (-14 *5 (-1177)) (-14 *6 *4))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1258 |#1|) (-10 -8 (-15 -4127 ($ (-1240 |#2| |#1|))) (-15 -4040 ((-1240 |#2| |#1|) $ (-772))) (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-4127 (((-863) $) 33) (($ (-1177)) 35)) (-2797 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2786 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2445 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2435 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2423 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2411 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2093 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) -(((-1176) (-13 (-614 (-863)) (-10 -8 (-15 -4127 ($ (-1177))) (-15 -2445 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2423 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2435 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2411 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2093 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2786 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2786 ($ $))))) (T -1176)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1176)))) (-2445 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2423 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2435 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2411 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2797 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2093 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2786 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) (-5 *1 (-1176)))) (-2786 (*1 *1 *1) (-5 *1 (-1176)))) -(-13 (-614 (-863)) (-10 -8 (-15 -4127 ($ (-1177))) (-15 -2445 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2423 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2435 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2411 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2093 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2786 ($ (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2786 ($ $)))) -((-2399 (((-112) $ $) NIL)) (-2688 (($ $ (-645 (-863))) 64)) (-3423 (($ $ (-645 (-863))) 62)) (-3651 (((-1159) $) 103)) (-2348 (((-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-3511 (((-112) $) 23)) (-1741 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-2245 (($) 166 T CONST)) (-2190 (((-1272)) 138)) (-3489 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 71) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 78)) (-2844 (($) 124) (($ $) 133)) (-1988 (($ $) 102)) (-2010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-2276 (((-645 $) $) 139)) (-3739 (((-1159) $) 116)) (-3430 (((-1121) $) NIL)) (-1783 (($ $ (-645 (-863))) 63)) (-3880 (((-539) $) 48) (((-1177) $) 49) (((-893 (-567)) $) 82) (((-893 (-381)) $) 80)) (-4127 (((-863) $) 55) (($ (-1159)) 50)) (-4104 (((-112) $ $) NIL)) (-1779 (($ $ (-645 (-863))) 65)) (-4224 (((-1159) $) 34) (((-1159) $ (-112)) 35) (((-1272) (-823) $) 36) (((-1272) (-823) $ (-112)) 37)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 51)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 52))) -(((-1177) (-13 (-851) (-615 (-539)) (-829) (-615 (-1177)) (-617 (-1159)) (-615 (-893 (-567))) (-615 (-893 (-381))) (-887 (-567)) (-887 (-381)) (-10 -8 (-15 -2844 ($)) (-15 -2844 ($ $)) (-15 -2190 ((-1272))) (-15 -1988 ($ $)) (-15 -3511 ((-112) $)) (-15 -2348 ((-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -1741 ($ $ (-645 (-645 (-863))))) (-15 -1741 ($ $ (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -3423 ($ $ (-645 (-863)))) (-15 -2688 ($ $ (-645 (-863)))) (-15 -1779 ($ $ (-645 (-863)))) (-15 -1783 ($ $ (-645 (-863)))) (-15 -3651 ((-1159) $)) (-15 -2276 ((-645 $) $)) (-15 -2245 ($) -3280)))) (T -1177)) -((-2844 (*1 *1) (-5 *1 (-1177))) (-2844 (*1 *1 *1) (-5 *1 (-1177))) (-2190 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1177)))) (-1988 (*1 *1 *1) (-5 *1 (-1177))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1177)))) (-1741 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1177)))) (-1741 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1177)))) (-3423 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177)))) (-2688 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1177)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1177)))) (-2245 (*1 *1) (-5 *1 (-1177)))) -(-13 (-851) (-615 (-539)) (-829) (-615 (-1177)) (-617 (-1159)) (-615 (-893 (-567))) (-615 (-893 (-381))) (-887 (-567)) (-887 (-381)) (-10 -8 (-15 -2844 ($)) (-15 -2844 ($ $)) (-15 -2190 ((-1272))) (-15 -1988 ($ $)) (-15 -3511 ((-112) $)) (-15 -2348 ((-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -1741 ($ $ (-645 (-645 (-863))))) (-15 -1741 ($ $ (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -3423 ($ $ (-645 (-863)))) (-15 -2688 ($ $ (-645 (-863)))) (-15 -1779 ($ $ (-645 (-863)))) (-15 -1783 ($ $ (-645 (-863)))) (-15 -3651 ((-1159) $)) (-15 -2276 ((-645 $) $)) (-15 -2245 ($) -3280))) -((-2906 (((-1267 |#1|) |#1| (-922)) 18) (((-1267 |#1|) (-645 |#1|)) 25))) -(((-1178 |#1|) (-10 -7 (-15 -2906 ((-1267 |#1|) (-645 |#1|))) (-15 -2906 ((-1267 |#1|) |#1| (-922)))) (-1050)) (T -1178)) -((-2906 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1267 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1050)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1050)) (-5 *2 (-1267 *4)) (-5 *1 (-1178 *4))))) -(-10 -7 (-15 -2906 ((-1267 |#1|) (-645 |#1|))) (-15 -2906 ((-1267 |#1|) |#1| (-922)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2033 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-4334 (($ $) NIL (|has| |#1| (-455)))) (-2543 (($ $ |#1| (-972) $) NIL)) (-2843 (((-112) $) 17)) (-4183 (((-772) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-972)) NIL)) (-2752 (((-972) $) NIL)) (-3345 (($ (-1 (-972) (-972)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#1| $) NIL)) (-4196 (($ $ (-972) |#1| $) NIL (-12 (|has| (-972) (-131)) (|has| |#1| (-559))))) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1813 (((-972) $) NIL)) (-4385 ((|#1| $) NIL (|has| |#1| (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2797 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ (-972)) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1710 (($) 11 T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 21)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1179 |#1|) (-13 (-327 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-972) (-131)) (-15 -4196 ($ $ (-972) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1050)) (T -1179)) -((-4196 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-972)) (-4 *2 (-131)) (-5 *1 (-1179 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))) -(-13 (-327 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-972) (-131)) (-15 -4196 ($ $ (-972) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) -((-3386 (((-1181) (-1177) $) 25)) (-3131 (($) 29)) (-2191 (((-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-1177) $) 22)) (-3696 (((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")) $) 41) (((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) 42) (((-1272) (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) 43)) (-1848 (((-1272) (-1177)) 58)) (-2224 (((-1272) (-1177) $) 55) (((-1272) (-1177)) 56) (((-1272)) 57)) (-3490 (((-1272) (-1177)) 37)) (-3744 (((-1177)) 36)) (-3347 (($) 34)) (-2756 (((-440) (-1177) (-440) (-1177) $) 45) (((-440) (-645 (-1177)) (-440) (-1177) $) 49) (((-440) (-1177) (-440)) 46) (((-440) (-1177) (-440) (-1177)) 50)) (-3469 (((-1177)) 35)) (-4127 (((-863) $) 28)) (-3176 (((-1272)) 30) (((-1272) (-1177)) 33)) (-1448 (((-645 (-1177)) (-1177) $) 24)) (-3668 (((-1272) (-1177) (-645 (-1177)) $) 38) (((-1272) (-1177) (-645 (-1177))) 39) (((-1272) (-645 (-1177))) 40))) -(((-1180) (-13 (-614 (-863)) (-10 -8 (-15 -3131 ($)) (-15 -3176 ((-1272))) (-15 -3176 ((-1272) (-1177))) (-15 -2756 ((-440) (-1177) (-440) (-1177) $)) (-15 -2756 ((-440) (-645 (-1177)) (-440) (-1177) $)) (-15 -2756 ((-440) (-1177) (-440))) (-15 -2756 ((-440) (-1177) (-440) (-1177))) (-15 -3490 ((-1272) (-1177))) (-15 -3469 ((-1177))) (-15 -3744 ((-1177))) (-15 -3668 ((-1272) (-1177) (-645 (-1177)) $)) (-15 -3668 ((-1272) (-1177) (-645 (-1177)))) (-15 -3668 ((-1272) (-645 (-1177)))) (-15 -3696 ((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")) $)) (-15 -3696 ((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")))) (-15 -3696 ((-1272) (-3 (|:| |fst| (-437)) (|:| -4319 "void")))) (-15 -2224 ((-1272) (-1177) $)) (-15 -2224 ((-1272) (-1177))) (-15 -2224 ((-1272))) (-15 -1848 ((-1272) (-1177))) (-15 -3347 ($)) (-15 -2191 ((-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-1177) $)) (-15 -1448 ((-645 (-1177)) (-1177) $)) (-15 -3386 ((-1181) (-1177) $))))) (T -1180)) -((-3131 (*1 *1) (-5 *1 (-1180))) (-3176 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-2756 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) (-2756 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1177))) (-5 *4 (-1177)) (-5 *1 (-1180)))) (-2756 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) (-2756 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3469 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1180)))) (-3744 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1180)))) (-3668 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3696 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1177)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-2224 (*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-2224 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1180)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) (-3347 (*1 *1) (-5 *1 (-1180))) (-2191 (*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *1 (-1180)))) (-1448 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1180)) (-5 *3 (-1177)))) (-3386 (*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-1181)) (-5 *1 (-1180))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3131 ($)) (-15 -3176 ((-1272))) (-15 -3176 ((-1272) (-1177))) (-15 -2756 ((-440) (-1177) (-440) (-1177) $)) (-15 -2756 ((-440) (-645 (-1177)) (-440) (-1177) $)) (-15 -2756 ((-440) (-1177) (-440))) (-15 -2756 ((-440) (-1177) (-440) (-1177))) (-15 -3490 ((-1272) (-1177))) (-15 -3469 ((-1177))) (-15 -3744 ((-1177))) (-15 -3668 ((-1272) (-1177) (-645 (-1177)) $)) (-15 -3668 ((-1272) (-1177) (-645 (-1177)))) (-15 -3668 ((-1272) (-645 (-1177)))) (-15 -3696 ((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")) $)) (-15 -3696 ((-1272) (-1177) (-3 (|:| |fst| (-437)) (|:| -4319 "void")))) (-15 -3696 ((-1272) (-3 (|:| |fst| (-437)) (|:| -4319 "void")))) (-15 -2224 ((-1272) (-1177) $)) (-15 -2224 ((-1272) (-1177))) (-15 -2224 ((-1272))) (-15 -1848 ((-1272) (-1177))) (-15 -3347 ($)) (-15 -2191 ((-3 (|:| |fst| (-437)) (|:| -4319 "void")) (-1177) $)) (-15 -1448 ((-645 (-1177)) (-1177) $)) (-15 -3386 ((-1181) (-1177) $)))) -((-1960 (((-645 (-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567))))))))) $) 66)) (-3518 (((-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567)))))))) (-437) $) 47)) (-1432 (($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-440))))) 17)) (-1848 (((-1272) $) 74)) (-1410 (((-645 (-1177)) $) 22)) (-1464 (((-1105) $) 60)) (-1872 (((-440) (-1177) $) 27)) (-2336 (((-645 (-1177)) $) 30)) (-3347 (($) 19)) (-2756 (((-440) (-645 (-1177)) (-440) $) 25) (((-440) (-1177) (-440) $) 24)) (-4127 (((-863) $) 9) (((-1190 (-1177) (-440)) $) 13))) -(((-1181) (-13 (-614 (-863)) (-10 -8 (-15 -4127 ((-1190 (-1177) (-440)) $)) (-15 -3347 ($)) (-15 -2756 ((-440) (-645 (-1177)) (-440) $)) (-15 -2756 ((-440) (-1177) (-440) $)) (-15 -1872 ((-440) (-1177) $)) (-15 -1410 ((-645 (-1177)) $)) (-15 -3518 ((-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567)))))))) (-437) $)) (-15 -2336 ((-645 (-1177)) $)) (-15 -1960 ((-645 (-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567))))))))) $)) (-15 -1464 ((-1105) $)) (-15 -1848 ((-1272) $)) (-15 -1432 ($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-440))))))))) (T -1181)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-1190 (-1177) (-440))) (-5 *1 (-1181)))) (-3347 (*1 *1) (-5 *1 (-1181))) (-2756 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1177))) (-5 *1 (-1181)))) (-2756 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1181)))) (-1872 (*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-440)) (-5 *1 (-1181)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1181)))) (-3518 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567))))))))) (-5 *1 (-1181)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1181)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567)))))))))) (-5 *1 (-1181)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1181)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1181)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-440))))) (-5 *1 (-1181))))) -(-13 (-614 (-863)) (-10 -8 (-15 -4127 ((-1190 (-1177) (-440)) $)) (-15 -3347 ($)) (-15 -2756 ((-440) (-645 (-1177)) (-440) $)) (-15 -2756 ((-440) (-1177) (-440) $)) (-15 -1872 ((-440) (-1177) $)) (-15 -1410 ((-645 (-1177)) $)) (-15 -3518 ((-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567)))))))) (-437) $)) (-15 -2336 ((-645 (-1177)) $)) (-15 -1960 ((-645 (-645 (-3 (|:| -1988 (-1177)) (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567))))))))) $)) (-15 -1464 ((-1105) $)) (-15 -1848 ((-1272) $)) (-15 -1432 ($ (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-440)))))))) -((-2399 (((-112) $ $) NIL)) (-3747 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1159) "failed") $) 47)) (-2033 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1159) $) 48)) (-3542 (((-112) $) 53)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4117 (((-3 (-567) (-225) (-509) (-1159) $) $) 55)) (-1540 (((-645 $) $) 57)) (-3880 (((-1105) $) 24) (($ (-1105)) 25)) (-2471 (((-112) $) 56)) (-4127 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1159)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1159) $) 49)) (-1699 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1159))) 16)) (-3413 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-4104 (((-112) $ $) NIL)) (-2519 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1159) $) 45)) (-2929 (((-112) $ $) 7))) -(((-1182) (-13 (-1262) (-1101) (-1039 (-567)) (-1039 (-225)) (-1039 (-509)) (-1039 (-1159)) (-614 (-539)) (-10 -8 (-15 -3880 ((-1105) $)) (-15 -3880 ($ (-1105))) (-15 -4127 ((-567) $)) (-15 -2519 ((-567) $)) (-15 -4127 ((-225) $)) (-15 -2519 ((-225) $)) (-15 -4127 ((-509) $)) (-15 -2519 ((-509) $)) (-15 -4127 ((-1159) $)) (-15 -2519 ((-1159) $)) (-15 -3413 ($ (-509) (-645 $))) (-15 -3413 ($ $ (-645 $))) (-15 -3542 ((-112) $)) (-15 -4117 ((-3 (-567) (-225) (-509) (-1159) $) $)) (-15 -1540 ((-645 $) $)) (-15 -2471 ((-112) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-567)))) (-15 -1699 ((-112) $ (|[\|\|]| (-225)))) (-15 -1699 ((-112) $ (|[\|\|]| (-509)))) (-15 -1699 ((-112) $ (|[\|\|]| (-1159))))))) (T -1182)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1182)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-1182)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1182)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1182)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1182)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1182)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1182)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1182)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1182)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1182)))) (-3413 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1182))) (-5 *1 (-1182)))) (-3413 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1182)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1159) (-1182))) (-5 *1 (-1182)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1182)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1182)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1182)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1182)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)) (-5 *1 (-1182))))) -(-13 (-1262) (-1101) (-1039 (-567)) (-1039 (-225)) (-1039 (-509)) (-1039 (-1159)) (-614 (-539)) (-10 -8 (-15 -3880 ((-1105) $)) (-15 -3880 ($ (-1105))) (-15 -4127 ((-567) $)) (-15 -2519 ((-567) $)) (-15 -4127 ((-225) $)) (-15 -2519 ((-225) $)) (-15 -4127 ((-509) $)) (-15 -2519 ((-509) $)) (-15 -4127 ((-1159) $)) (-15 -2519 ((-1159) $)) (-15 -3413 ($ (-509) (-645 $))) (-15 -3413 ($ $ (-645 $))) (-15 -3542 ((-112) $)) (-15 -4117 ((-3 (-567) (-225) (-509) (-1159) $) $)) (-15 -1540 ((-645 $) $)) (-15 -2471 ((-112) $)) (-15 -1699 ((-112) $ (|[\|\|]| (-567)))) (-15 -1699 ((-112) $ (|[\|\|]| (-225)))) (-15 -1699 ((-112) $ (|[\|\|]| (-509)))) (-15 -1699 ((-112) $ (|[\|\|]| (-1159)))))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) 22)) (-2245 (($) 12 T CONST)) (-1378 (($) 26)) (-2010 (($ $ $) NIL) (($) 19 T CONST)) (-2998 (($ $ $) NIL) (($) 20 T CONST)) (-3425 (((-922) $) 24)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) 23)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1183 |#1|) (-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) (-922)) (T -1183)) -((-2245 (*1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922))))) -(-13 (-845) (-10 -8 (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2262 ((|#1| $) 45)) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2576 ((|#1| |#1| $) 47)) (-4338 ((|#1| $) 46)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3272 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1123 |#1|) (-140) (-1218)) (T -1123)) +((-2576 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -2576 (|t#1| |t#1| $)) (-15 -4338 (|t#1| $)) (-15 -2262 (|t#1| $)) (-15 -3272 ((-772) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-4293 ((|#3| $) 87)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-1593 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1877 ((|#3| $) 89)) (-2213 ((|#4| $) 43)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-923)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1877 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2213 (|#4| |#1|)) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4132 ((-863) |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-772) (-1051) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1124)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1877 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2213 (|#4| |#1|)) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-4293 ((|#2| $) 77)) (-1981 (((-112) $) 117)) (-3472 (((-3 $ "failed") $ $) 20)) (-1948 (((-112) $) 115)) (-3445 (((-112) $ (-772)) 107)) (-3536 (($ |#2|) 80)) (-2585 (($) 18 T CONST)) (-2233 (($ $) 134 (|has| |#2| (-308)))) (-1944 ((|#3| $ (-567)) 129)) (-3753 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-2038 (((-567) $) 91 (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) 87)) (-2630 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-772) $) 135 (|has| |#2| (-559)))) (-3680 ((|#2| $ (-567) (-567)) 127)) (-2777 (((-645 |#2|) $) 100 (|has| $ (-6 -4418)))) (-1433 (((-112) $) 35)) (-1940 (((-772) $) 136 (|has| |#2| (-559)))) (-1325 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-3633 (((-772) $) 123)) (-3643 (((-772) $) 124)) (-2077 (((-112) $ (-772)) 108)) (-2031 ((|#2| $) 72 (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) 119)) (-4043 (((-567) $) 121)) (-2279 (((-645 |#2|) $) 99 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 120)) (-2646 (((-567) $) 122)) (-2114 (($ (-645 (-645 |#2|))) 114)) (-3731 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1603 (((-645 (-645 |#2|)) $) 125)) (-2863 (((-112) $ (-772)) 109)) (-1419 (((-1160) $) 10)) (-1401 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 113)) (-3572 (((-112) $) 110)) (-3498 (($) 111)) (-1787 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-1593 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1178)) (-645 (-772))) 48 (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) 47 (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) 46 (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) 45 (|has| |#2| (-902 (-1178)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1877 ((|#2| $) 76)) (-3068 (($ (-645 |#2|)) 79)) (-3339 (((-112) $) 116)) (-2213 ((|#3| $) 78)) (-4083 ((|#2| $) 73 (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4418))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 112)) (-2237 ((|#4| $ (-567)) 130)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) 85)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 118)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1178)) (-645 (-772))) 52 (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) 51 (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) 50 (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) 49 (|has| |#2| (-902 (-1178)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2414 (((-772) $) 106 (|has| $ (-6 -4418))))) +(((-1125 |#1| |#2| |#3| |#4|) (-140) (-772) (-1051) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1125)) +((-3536 (*1 *1 *2) (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-1401 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1055 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -3536 ($ |t#2|)) (-15 -3068 ($ (-645 |t#2|))) (-15 -2213 (|t#3| $)) (-15 -4293 (|t#2| $)) (-15 -1877 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4420 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4083 (|t#2| $)) (-15 -2031 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1401 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4420 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-6 (-4420 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-6 (-4420 "*")))) ((-727) . T) ((-902 (-1178)) |has| |#2| (-902 (-1178))) ((-1055 |#1| |#1| |#2| |#3| |#4|) . T) ((-1040 #0#) |has| |#2| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#2| (-1040 (-567))) ((-1040 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1218) . T)) +((-4362 ((|#4| |#4|) 81)) (-3122 ((|#4| |#4|) 76)) (-4273 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|) 91)) (-2693 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3681 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3122 (|#4| |#4|)) (-15 -3681 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4362 (|#4| |#4|)) (-15 -2693 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4273 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1126)) +((-4273 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -3122 (|#4| |#4|)) (-15 -3681 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4362 (|#4| |#4|)) (-15 -2693 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4273 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 18)) (-2847 (((-645 |#2|) $) 178)) (-2675 (((-1174 $) $ |#2|) 63) (((-1174 |#1|) $) 52)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-4381 (($ $) 120 (|has| |#1| (-559)))) (-3949 (((-112) $) 122 (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL)) (-2038 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL)) (-2951 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3014 (($ $) 221)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 92)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 |#2|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) 20)) (-2695 (((-772) $) 30)) (-2836 (($ (-1174 |#1|) |#2|) 57) (($ (-1174 $) |#2|) 74)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) 41)) (-2824 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-2656 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-3273 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 130)) (-3046 (((-3 |#2| "failed") $) 181)) (-2976 (($ $) 220)) (-2989 ((|#1| $) 46)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 42)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 150 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-3788 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 164)) (-4136 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 89 T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1716 (($) 12 T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) 108)) (-3060 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3045 (($ $) 95) (($ $ $) 106)) (-3033 (($ $ $) 58)) (** (($ $ (-923)) 112) (($ $ (-772)) 111)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) +(((-1127 |#1| |#2|) (-951 |#1| (-534 |#2|) |#2|) (-1051) (-851)) (T -1127)) +NIL +(-951 |#1| (-534 |#2|) |#2|) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3146 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3717 (((-954 |#1|) $ (-772)) NIL) (((-954 |#1|) $ (-772) (-772)) NIL)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) NIL)) (-2824 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3583 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2410 (($ $ (-772)) 16)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1593 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) NIL)) (-1888 (((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|))) 87)) (-3175 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 18)) (-4132 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-4136 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 52 T CONST)) (-1728 (($) 62 T CONST)) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1128 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -4136 (|#3| $ (-772))) (-15 -4132 ($ |#2|)) (-15 -4132 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1888 ((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |#2| |#1|)) (-15 -3583 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1051) (-851) (-951 |#1| (-534 |#2|) |#2|)) (T -1128)) +((-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1158 *7))) (-4 *6 (-851)) (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) (-5 *2 (-1 (-1158 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-3583 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) (-4 *5 (-951 *4 (-534 *3) *3))))) +(-13 (-741 |#1| |#2|) (-10 -8 (-15 -4136 (|#3| $ (-772))) (-15 -4132 ($ |#2|)) (-15 -4132 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1888 ((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |#2| |#1|)) (-15 -3583 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-1129 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1129)) +NIL +(-13 (-1111 |t#1| |t#2| |t#3| |t#4|) (-785 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T)) +((-3018 (((-645 |#2|) |#1|) 15)) (-4335 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-3824 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-3141 ((|#2| |#1|) 56)) (-3204 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3697 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-1598 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-2818 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-1957 ((|#2| |#2| |#2| |#2|) 53)) (-3989 ((|#2| |#2| |#2|) 52)) (-3937 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1130 |#1| |#2|) (-10 -7 (-15 -3018 ((-645 |#2|) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3204 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3697 ((-645 |#2|) |#1|)) (-15 -3824 ((-645 |#2|) |#1|)) (-15 -1598 ((-645 |#2|) |#1|)) (-15 -4335 ((-645 |#2|) |#1|)) (-15 -3697 ((-645 |#2|) |#2| |#2|)) (-15 -3824 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -1598 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4335 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -1957 (|#2| |#2| |#2| |#2|)) (-15 -3937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2818 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1244 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1130)) +((-2818 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3937 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-1957 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3989 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-4335 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-1598 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-3824 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-3697 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-4335 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3697 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-1244 *5)))) (-3141 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -3018 ((-645 |#2|) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3204 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3697 ((-645 |#2|) |#1|)) (-15 -3824 ((-645 |#2|) |#1|)) (-15 -1598 ((-645 |#2|) |#1|)) (-15 -4335 ((-645 |#2|) |#1|)) (-15 -3697 ((-645 |#2|) |#2| |#2|)) (-15 -3824 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -1598 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4335 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -1957 (|#2| |#2| |#2| |#2|)) (-15 -3937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2818 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1580 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178)) 82)) (-1350 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 117) (((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178)) 54)) (-3086 (((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178)) 128) (((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178)) 127))) +(((-1131 |#1|) (-10 -7 (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -1350 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -1350 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178)))) (-13 (-308) (-147))) (T -1131)) +((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1131 *5)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5))))) +(-10 -7 (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -1350 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -1350 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178)))) +((-3480 (((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567)) 38)) (-3422 (((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|)))) 49))) +(((-1132 |#1|) (-10 -7 (-15 -3422 ((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))))) (-15 -3480 ((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567)))) (-559)) (T -1132)) +((-3480 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1174 (-317 *5)))) (-5 *3 (-1268 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))) (-3422 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1174 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1132 *3))))) +(-10 -7 (-15 -3422 ((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))))) (-15 -3480 ((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567)))) +((-3018 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24))) +(((-1133 |#1|) (-10 -7 (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178))) (-15 -3018 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178))))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (T -1133)) +((-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-317 *5)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-295 (-317 *5))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-295 (-317 *4))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-317 *4))))) +(-10 -7 (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178))) (-15 -3018 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178))))) +((-4072 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3500 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1134 |#1| |#2|) (-10 -7 (-15 -3500 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4072 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3500 (|#2| |#2|)) (-15 -4072 (|#2| |#2|))) |%noBranch|)) (-1218) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4418) (-6 -4419)))) (T -1134)) +((-4072 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419)))))) (-3500 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419))))))) +(-10 -7 (-15 -3500 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4072 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3500 (|#2| |#2|)) (-15 -4072 (|#2| |#2|))) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-1455 (((-1166 3 |#1|) $) 141)) (-1668 (((-112) $) 101)) (-3941 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-945 |#1|))) 103) (((-645 (-945 |#1|)) $) 102)) (-1857 (((-112) $) 72)) (-4371 (($ $ (-945 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-945 |#1|)) 77) (((-945 |#1|) $) 75)) (-3034 (((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-2842 (((-772) $) 53)) (-3663 (((-772) $) 52)) (-1353 (($ $ (-772) (-945 |#1|)) 67)) (-4131 (((-112) $) 111)) (-2164 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-945 |#1|)))) 116) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-945 |#1|))) $) 114)) (-4135 (($ (-645 $)) 56) (($ $ $) 57)) (-3557 (((-645 (-171)) $) 133)) (-3611 (((-645 (-945 |#1|)) $) 130)) (-3076 (((-645 (-645 (-171))) $) 132)) (-3586 (((-645 (-645 (-645 (-945 |#1|)))) $) NIL)) (-3603 (((-645 (-645 (-645 (-772)))) $) 131)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3357 (((-772) $ (-645 (-945 |#1|))) 65)) (-1874 (((-112) $) 84)) (-1533 (($ $ (-645 (-945 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-945 |#1|))) 87) (((-645 (-945 |#1|)) $) 85)) (-2306 (($) 48) (($ (-1166 3 |#1|)) 49)) (-4305 (($ $) 63)) (-2729 (((-645 $) $) 62)) (-2159 (($ (-645 $)) 59)) (-2274 (((-645 $) $) 61)) (-4132 (((-863) $) 146)) (-3295 (((-112) $) 94)) (-1979 (($ $ (-645 (-945 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-945 |#1|))) 97) (((-645 (-945 |#1|)) $) 95)) (-2177 (($ $) 140)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1135 |#1|) (-1136 |#1|) (-1051)) (T -1135)) +NIL +(-1136 |#1|) +((-2403 (((-112) $ $) 7)) (-1455 (((-1166 3 |#1|) $) 14)) (-1668 (((-112) $) 30)) (-3941 (($ $ (-645 (-945 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-945 |#1|))) 32) (((-645 (-945 |#1|)) $) 31)) (-1857 (((-112) $) 45)) (-4371 (($ $ (-945 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-945 |#1|)) 47) (((-945 |#1|) $) 46)) (-3034 (((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-2842 (((-772) $) 59)) (-3663 (((-772) $) 60)) (-1353 (($ $ (-772) (-945 |#1|)) 51)) (-4131 (((-112) $) 22)) (-2164 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-945 |#1|)))) 25) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-945 |#1|))) $) 23)) (-4135 (($ (-645 $)) 58) (($ $ $) 57)) (-3557 (((-645 (-171)) $) 17)) (-3611 (((-645 (-945 |#1|)) $) 21)) (-3076 (((-645 (-645 (-171))) $) 18)) (-3586 (((-645 (-645 (-645 (-945 |#1|)))) $) 19)) (-3603 (((-645 (-645 (-645 (-772)))) $) 20)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3357 (((-772) $ (-645 (-945 |#1|))) 52)) (-1874 (((-112) $) 40)) (-1533 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-945 |#1|))) 42) (((-645 (-945 |#1|)) $) 41)) (-2306 (($) 62) (($ (-1166 3 |#1|)) 61)) (-4305 (($ $) 53)) (-2729 (((-645 $) $) 54)) (-2159 (($ (-645 $)) 56)) (-2274 (((-645 $) $) 55)) (-4132 (((-863) $) 12)) (-3295 (((-112) $) 35)) (-1979 (($ $ (-645 (-945 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-945 |#1|))) 37) (((-645 (-945 |#1|)) $) 36)) (-2177 (($ $) 15)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-1136 |#1|) (-140) (-1051)) (T -1136)) +((-4132 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) (-2306 (*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-1166 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2159 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2274 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-4305 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-1353 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2164 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2164 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) (-4 *1 (-1136 *4)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-945 *3)))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-945 *3))))))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1166 3 *3))))) +(-13 (-1102) (-10 -8 (-15 -2306 ($)) (-15 -2306 ($ (-1166 3 |t#1|))) (-15 -3663 ((-772) $)) (-15 -2842 ((-772) $)) (-15 -4135 ($ (-645 $))) (-15 -4135 ($ $ $)) (-15 -2159 ($ (-645 $))) (-15 -2274 ((-645 $) $)) (-15 -2729 ((-645 $) $)) (-15 -4305 ($ $)) (-15 -3357 ((-772) $ (-645 (-945 |t#1|)))) (-15 -1353 ($ $ (-772) (-945 |t#1|))) (-15 -4371 ($ $ (-945 |t#1|))) (-15 -4371 ($ $ (-645 |t#1|))) (-15 -4371 ($ $ (-772))) (-15 -4371 ($ (-945 |t#1|))) (-15 -4371 ((-945 |t#1|) $)) (-15 -1857 ((-112) $)) (-15 -1533 ($ $ (-645 (-945 |t#1|)))) (-15 -1533 ($ $ (-645 (-645 |t#1|)))) (-15 -1533 ($ (-645 (-945 |t#1|)))) (-15 -1533 ((-645 (-945 |t#1|)) $)) (-15 -1874 ((-112) $)) (-15 -1979 ($ $ (-645 (-945 |t#1|)))) (-15 -1979 ($ $ (-645 (-645 |t#1|)))) (-15 -1979 ($ (-645 (-945 |t#1|)))) (-15 -1979 ((-645 (-945 |t#1|)) $)) (-15 -3295 ((-112) $)) (-15 -3941 ($ $ (-645 (-945 |t#1|)))) (-15 -3941 ($ $ (-645 (-645 |t#1|)))) (-15 -3941 ($ (-645 (-945 |t#1|)))) (-15 -3941 ((-645 (-945 |t#1|)) $)) (-15 -1668 ((-112) $)) (-15 -2164 ($ $ (-645 (-645 (-945 |t#1|))) (-645 (-171)) (-171))) (-15 -2164 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -2164 ($ $ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2164 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -2164 ($ (-645 (-645 (-945 |t#1|))))) (-15 -2164 ($ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2164 ((-645 (-645 (-945 |t#1|))) $)) (-15 -4131 ((-112) $)) (-15 -3611 ((-645 (-945 |t#1|)) $)) (-15 -3603 ((-645 (-645 (-645 (-772)))) $)) (-15 -3586 ((-645 (-645 (-645 (-945 |t#1|)))) $)) (-15 -3076 ((-645 (-645 (-171))) $)) (-15 -3557 ((-645 (-171)) $)) (-15 -3034 ((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -2177 ($ $)) (-15 -1455 ((-1166 3 |t#1|) $)) (-15 -4132 ((-863) $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 174) (($ (-1183)) NIL) (((-1183) $) 7)) (-1702 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1278))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1117))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-682))) 51) (((-112) $ (|[\|\|]| (-520))) 55) (((-112) $ (|[\|\|]| (-1068))) 59) (((-112) $ (|[\|\|]| (-1279))) 63) (((-112) $ (|[\|\|]| (-528))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-672))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1038))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-972))) 91) (((-112) $ (|[\|\|]| (-1075))) 95) (((-112) $ (|[\|\|]| (-1092))) 99) (((-112) $ (|[\|\|]| (-1098))) 103) (((-112) $ (|[\|\|]| (-627))) 107) (((-112) $ (|[\|\|]| (-1168))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-481))) 123) (((-112) $ (|[\|\|]| (-594))) 127) (((-112) $ (|[\|\|]| (-509))) 131) (((-112) $ (|[\|\|]| (-1160))) 135) (((-112) $ (|[\|\|]| (-567))) 139)) (-1745 (((-112) $ $) NIL)) (-2523 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1278) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1117) $) 44) (((-96) $) 48) (((-682) $) 52) (((-520) $) 56) (((-1068) $) 60) (((-1279) $) 64) (((-528) $) 68) (((-154) $) 72) (((-672) $) 76) (((-312) $) 80) (((-1038) $) 84) (((-180) $) 88) (((-972) $) 92) (((-1075) $) 96) (((-1092) $) 100) (((-1098) $) 104) (((-627) $) 108) (((-1168) $) 112) (((-156) $) 116) (((-137) $) 120) (((-481) $) 124) (((-594) $) 128) (((-509) $) 132) (((-1160) $) 136) (((-567) $) 140)) (-2936 (((-112) $ $) NIL))) +(((-1137) (-1139)) (T -1137)) +NIL +(-1139) +((-1842 (((-645 (-1183)) (-1160)) 9))) +(((-1138) (-10 -7 (-15 -1842 ((-645 (-1183)) (-1160))))) (T -1138)) +((-1842 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-1138))))) +(-10 -7 (-15 -1842 ((-645 (-1183)) (-1160)))) +((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1702 (((-112) $ (|[\|\|]| (-527))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-677))) 77) (((-112) $ (|[\|\|]| (-1278))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1117))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-682))) 65) (((-112) $ (|[\|\|]| (-520))) 63) (((-112) $ (|[\|\|]| (-1068))) 61) (((-112) $ (|[\|\|]| (-1279))) 59) (((-112) $ (|[\|\|]| (-528))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1038))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-972))) 45) (((-112) $ (|[\|\|]| (-1075))) 43) (((-112) $ (|[\|\|]| (-1092))) 41) (((-112) $ (|[\|\|]| (-1098))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1168))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1160))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-1745 (((-112) $ $) 9)) (-2523 (((-527) $) 80) (((-218) $) 78) (((-677) $) 76) (((-1278) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1117) $) 68) (((-96) $) 66) (((-682) $) 64) (((-520) $) 62) (((-1068) $) 60) (((-1279) $) 58) (((-528) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1038) $) 48) (((-180) $) 46) (((-972) $) 44) (((-1075) $) 42) (((-1092) $) 40) (((-1098) $) 38) (((-627) $) 36) (((-1168) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1160) $) 22) (((-567) $) 20)) (-2936 (((-112) $ $) 6))) +(((-1139) (-140)) (T -1139)) +((-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1278)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1168)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1160)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567))))) +(-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-527)))) (-15 -2523 ((-527) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-218)))) (-15 -2523 ((-218) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-677)))) (-15 -2523 ((-677) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1278)))) (-15 -2523 ((-1278) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-138)))) (-15 -2523 ((-138) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-133)))) (-15 -2523 ((-133) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1117)))) (-15 -2523 ((-1117) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-96)))) (-15 -2523 ((-96) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-682)))) (-15 -2523 ((-682) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-520)))) (-15 -2523 ((-520) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1068)))) (-15 -2523 ((-1068) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1279)))) (-15 -2523 ((-1279) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-528)))) (-15 -2523 ((-528) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-154)))) (-15 -2523 ((-154) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-672)))) (-15 -2523 ((-672) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-312)))) (-15 -2523 ((-312) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1038)))) (-15 -2523 ((-1038) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-180)))) (-15 -2523 ((-180) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-972)))) (-15 -2523 ((-972) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1075)))) (-15 -2523 ((-1075) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1092)))) (-15 -2523 ((-1092) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1098)))) (-15 -2523 ((-1098) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-627)))) (-15 -2523 ((-627) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2523 ((-1168) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-156)))) (-15 -2523 ((-156) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-137)))) (-15 -2523 ((-137) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-481)))) (-15 -2523 ((-481) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-594)))) (-15 -2523 ((-594) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -2523 ((-567) $)))) +(((-93) . T) ((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T) ((-1085) . T) ((-1263) . T)) +((-3540 (((-1273) (-645 (-863))) 23) (((-1273) (-863)) 22)) (-3161 (((-1273) (-645 (-863))) 21) (((-1273) (-863)) 20)) (-1453 (((-1273) (-645 (-863))) 19) (((-1273) (-863)) 11) (((-1273) (-1160) (-863)) 17))) +(((-1140) (-10 -7 (-15 -1453 ((-1273) (-1160) (-863))) (-15 -1453 ((-1273) (-863))) (-15 -3161 ((-1273) (-863))) (-15 -3540 ((-1273) (-863))) (-15 -1453 ((-1273) (-645 (-863)))) (-15 -3161 ((-1273) (-645 (-863)))) (-15 -3540 ((-1273) (-645 (-863)))))) (T -1140)) +((-3540 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140))))) +(-10 -7 (-15 -1453 ((-1273) (-1160) (-863))) (-15 -1453 ((-1273) (-863))) (-15 -3161 ((-1273) (-863))) (-15 -3540 ((-1273) (-863))) (-15 -1453 ((-1273) (-645 (-863)))) (-15 -3161 ((-1273) (-645 (-863)))) (-15 -3540 ((-1273) (-645 (-863))))) +((-2387 (($ $ $) 10)) (-4275 (($ $) 9)) (-3031 (($ $ $) 13)) (-2030 (($ $ $) 15)) (-3913 (($ $ $) 12)) (-2944 (($ $ $) 14)) (-3382 (($ $) 17)) (-4023 (($ $) 16)) (-2219 (($ $) 6)) (-1890 (($ $ $) 11) (($ $) 7)) (-3944 (($ $ $) 8))) +(((-1141) (-140)) (T -1141)) +((-3382 (*1 *1 *1) (-4 *1 (-1141))) (-4023 (*1 *1 *1) (-4 *1 (-1141))) (-2030 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2944 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3031 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3913 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1890 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2387 (*1 *1 *1 *1) (-4 *1 (-1141))) (-4275 (*1 *1 *1) (-4 *1 (-1141))) (-3944 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1890 (*1 *1 *1) (-4 *1 (-1141))) (-2219 (*1 *1 *1) (-4 *1 (-1141)))) +(-13 (-10 -8 (-15 -2219 ($ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -4275 ($ $)) (-15 -2387 ($ $ $)) (-15 -1890 ($ $ $)) (-15 -3913 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2030 ($ $ $)) (-15 -4023 ($ $)) (-15 -3382 ($ $)))) +((-2403 (((-112) $ $) 44)) (-3802 ((|#1| $) 17)) (-1808 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2913 (((-112) $) 19)) (-2838 (($ $ |#1|) 30)) (-4042 (($ $ (-112)) 32)) (-3620 (($ $) 33)) (-2647 (($ $ |#2|) 31)) (-1419 (((-1160) $) NIL)) (-2139 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3430 (((-1122) $) NIL)) (-3572 (((-112) $) 16)) (-3498 (($) 13)) (-4305 (($ $) 29)) (-4147 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-2055 ((|#2| $) 18)) (-4132 (((-863) $) 53)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 42))) +(((-1142 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -3802 (|#1| $)) (-15 -2055 (|#2| $)) (-15 -2913 ((-112) $)) (-15 -4147 ($ |#1| |#2| (-112))) (-15 -4147 ($ |#1| |#2|)) (-15 -4147 ($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) (-15 -4147 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))))) (-15 -4147 ((-645 $) |#1| (-645 |#2|))) (-15 -4305 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -2647 ($ $ |#2|)) (-15 -4042 ($ $ (-112))) (-15 -3620 ($ $)) (-15 -2139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1808 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1142)) +((-3498 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) (-4 *3 (-13 (-1102) (-34))))) (-2055 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2566 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *4)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2566 *5)))) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) (-4 *3 (-13 (-1102) (-34))))) (-4305 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2838 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2647 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) (-4 *2 (-13 (-1102) (-34))))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2139 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))) (-1808 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))))) +(-13 (-1102) (-10 -8 (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -3802 (|#1| $)) (-15 -2055 (|#2| $)) (-15 -2913 ((-112) $)) (-15 -4147 ($ |#1| |#2| (-112))) (-15 -4147 ($ |#1| |#2|)) (-15 -4147 ($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) (-15 -4147 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))))) (-15 -4147 ((-645 $) |#1| (-645 |#2|))) (-15 -4305 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -2647 ($ $ |#2|)) (-15 -4042 ($ $ (-112))) (-15 -3620 ($ $)) (-15 -2139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1808 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2403 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3802 (((-1142 |#1| |#2|) $) 27)) (-2014 (($ $) 91)) (-3968 (((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2235 (($ $ $ (-645 (-1142 |#1| |#2|))) 108) (($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3445 (((-112) $ (-772)) NIL)) (-2138 (((-1142 |#1| |#2|) $ (-1142 |#1| |#2|)) 46 (|has| $ (-6 -4419)))) (-4284 (((-1142 |#1| |#2|) $ "value" (-1142 |#1| |#2|)) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 44 (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-1304 (((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $) 95)) (-2539 (($ (-1142 |#1| |#2|) $) 42)) (-3238 (($ (-1142 |#1| |#2|) $) 34)) (-2777 (((-645 (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 54)) (-2768 (((-112) (-1142 |#1| |#2|) $) 97)) (-3512 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 (-1142 |#1| |#2|)) $) 58 (|has| $ (-6 -4418)))) (-4337 (((-112) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-1142 |#1| |#2|) (-1102))))) (-3731 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 50 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 49)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 (-1142 |#1| |#2|)) $) 56)) (-2769 (((-112) $) 45)) (-1419 (((-1160) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3430 (((-1122) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3929 (((-3 $ "failed") $) 89)) (-3025 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-1142 |#1| |#2|)))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-295 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-1142 |#1| |#2|) (-1142 |#1| |#2|)) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-645 (-1142 |#1| |#2|)) (-645 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102))))) (-3092 (((-112) $ $) 53)) (-3572 (((-112) $) 24)) (-3498 (($) 26)) (-1787 (((-1142 |#1| |#2|) $ "value") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418))) (((-772) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-1142 |#1| |#2|) (-1102))))) (-4305 (($ $) 52)) (-4147 (($ (-1142 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1142 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-4186 (((-645 |#2|) $) 96)) (-4132 (((-863) $) 87 (|has| (-1142 |#1| |#2|) (-614 (-863))))) (-1531 (((-645 $) $) 31)) (-3606 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1745 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1853 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 70 (|has| (-1142 |#1| |#2|) (-1102)))) (-2414 (((-772) $) 64 (|has| $ (-6 -4418))))) +(((-1143 |#1| |#2|) (-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3929 ((-3 $ "failed") $)) (-15 -2014 ($ $)) (-15 -4147 ($ (-1142 |#1| |#2|))) (-15 -4147 ($ |#1| |#2| (-645 $))) (-15 -4147 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4147 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4186 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $)) (-15 -2768 ((-112) (-1142 |#1| |#2|) $)) (-15 -3968 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3238 ($ (-1142 |#1| |#2|) $)) (-15 -2539 ($ (-1142 |#1| |#2|) $)) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1143)) +((-3929 (*1 *1 *1) (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) (-4147 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2768 (*1 *2 *3 *1) (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))) (-3968 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2235 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2235 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *1 (-1143 *4 *5))))) +(-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3929 ((-3 $ "failed") $)) (-15 -2014 ($ $)) (-15 -4147 ($ (-1142 |#1| |#2|))) (-15 -4147 ($ |#1| |#2| (-645 $))) (-15 -4147 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4147 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4186 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $)) (-15 -2768 ((-112) (-1142 |#1| |#2|) $)) (-15 -3968 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3238 ($ (-1142 |#1| |#2|) $)) (-15 -2539 ($ (-1142 |#1| |#2|) $)) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3094 (($ $) NIL)) (-4293 ((|#2| $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3461 (($ (-690 |#2|)) 56)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3536 (($ |#2|) 14)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 69 (|has| |#2| (-308)))) (-1944 (((-240 |#1| |#2|) $ (-567)) 42)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 83)) (-1954 (((-772) $) 71 (|has| |#2| (-559)))) (-3680 ((|#2| $ (-567) (-567)) NIL)) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL)) (-1940 (((-772) $) 73 (|has| |#2| (-559)))) (-1325 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ |#2|) 25)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#2| $) 67 (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#2|))) 37)) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1603 (((-645 (-645 |#2|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1401 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1877 ((|#2| $) NIL)) (-3068 (($ (-645 |#2|)) 50)) (-3339 (((-112) $) NIL)) (-2213 (((-240 |#1| |#2|) $) NIL)) (-4083 ((|#2| $) 65 (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-2237 (((-240 |#1| |#2|) $ (-567)) 44)) (-4132 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-4221 (((-772)) 23 T CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-1716 (($) 16 T CONST)) (-1728 (($) 21 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1144 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2846 ($ |#2|)) (-15 -3094 ($ $)) (-15 -3461 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4420 "*"))) (-6 -4407) |%noBranch|) (IF (|has| |#2| (-6 (-4420 "*"))) (IF (|has| |#2| (-6 -4415)) (-6 -4415) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1051)) (T -1144)) +((-2846 (*1 *1 *2) (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) (-3094 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) (-14 *3 (-772))))) +(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2846 ($ |#2|)) (-15 -3094 ($ $)) (-15 -3461 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4420 "*"))) (-6 -4407) |%noBranch|) (IF (|has| |#2| (-6 (-4420 "*"))) (IF (|has| |#2| (-6 -4415)) (-6 -4415) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) +((-3714 (($ $) 19)) (-1757 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1958 (((-112) $ $) 24)) (-3677 (($ $) 17)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (($ $ $) 31)) (-4132 (($ (-144)) 29) (((-863) $) NIL))) +(((-1145 |#1|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| (-141))) (-15 -1757 (|#1| |#1| (-144))) (-15 -4132 (|#1| (-144))) (-15 -1958 ((-112) |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1787 ((-144) |#1| (-567))) (-15 -1787 ((-144) |#1| (-567) (-144)))) (-1146)) (T -1145)) +NIL +(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| (-141))) (-15 -1757 (|#1| |#1| (-144))) (-15 -4132 (|#1| (-144))) (-15 -1958 ((-112) |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1787 ((-144) |#1| (-567))) (-15 -1787 ((-144) |#1| (-567) (-144)))) +((-2403 (((-112) $ $) 19 (|has| (-144) (-1102)))) (-4172 (($ $) 121)) (-3714 (($ $) 122)) (-1757 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 119)) (-1918 (((-112) $ $ (-567)) 118)) (-4323 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-3279 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-3364 (($ $ (-1235 (-567)) $) 115)) (-2444 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) 52)) (-1958 (((-112) $ $) 120)) (-2569 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2777 (((-645 (-144)) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3731 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3240 (($ $) 123)) (-3677 (($ $) 124)) (-2863 (((-112) $ (-772)) 10)) (-3289 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1419 (((-1160) $) 22 (|has| (-144) (-1102)))) (-2845 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| (-144) (-1102)))) (-2409 (((-144) $) 43 (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3986 (($ $ (-144)) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1235 (-567))) 64) (($ $ $) 103)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4418))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) 71)) (-2269 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| (-144) (-1102)))) (-1853 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2971 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2936 (((-112) $ $) 20 (|has| (-144) (-1102)))) (-2984 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2958 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1146) (-140)) (T -1146)) +((-3677 (*1 *1 *1) (-4 *1 (-1146))) (-3240 (*1 *1 *1) (-4 *1 (-1146))) (-3714 (*1 *1 *1) (-4 *1 (-1146))) (-4172 (*1 *1 *1) (-4 *1 (-1146))) (-1958 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1918 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))) (-4197 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772)))) (-2580 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3364 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1235 (-567))))) (-2569 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-1757 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-1757 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3279 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3279 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1787 (*1 *1 *1 *1) (-4 *1 (-1146)))) +(-13 (-19 (-144)) (-10 -8 (-15 -3677 ($ $)) (-15 -3240 ($ $)) (-15 -3714 ($ $)) (-15 -4172 ($ $)) (-15 -1958 ((-112) $ $)) (-15 -1938 ((-112) $ $)) (-15 -1918 ((-112) $ $ (-567))) (-15 -4197 ((-772) $ $ (-144))) (-15 -2580 ((-112) $ $ (-144))) (-15 -3364 ($ $ (-1235 (-567)) $)) (-15 -2569 ((-567) $ $ (-567))) (-15 -2569 ((-567) (-141) $ (-567))) (-15 -4132 ($ (-144))) (-15 -4323 ((-645 $) $ (-144))) (-15 -4323 ((-645 $) $ (-141))) (-15 -1757 ($ $ (-144))) (-15 -1757 ($ $ (-141))) (-15 -3289 ($ $ (-144))) (-15 -3289 ($ $ (-141))) (-15 -3279 ($ $ (-144))) (-15 -3279 ($ $ (-141))) (-15 -1787 ($ $ $)))) +(((-34) . T) ((-102) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-614 (-863)) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1102) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-1218) . T)) +((-2595 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772)) 113)) (-3958 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 61)) (-3262 (((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)) 98)) (-3252 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3574 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-2532 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-3893 (((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 90)) (-1836 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 60)) (-4230 (((-772) (-645 |#4|) (-645 |#5|)) 21))) +(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -1147)) +((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) (-5 *1 (-1147 *4 *5 *6 *7 *8)))) (-2595 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))) (-2532 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2532 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-1836 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) +((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 97)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 75)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) 78)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-3783 (((-112) |#4| $) NIL)) (-1829 (((-112) |#4| $) NIL)) (-2127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1653 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 117)) (-3257 (((-3 |#4| "failed") $) 42)) (-1756 (((-645 $) |#4| $) 102)) (-4057 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2370 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-2545 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-3101 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 59)) (-2410 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-4021 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2012 (((-112) |#3| $) 74)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1148 |#1| |#2| |#3| |#4|) (-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1148)) +((-3101 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-2545 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-1653 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) +(-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2262 ((|#1| $) 37)) (-2829 (($ (-645 |#1|)) 45)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2576 ((|#1| |#1| $) 40)) (-4338 ((|#1| $) 35)) (-2777 (((-645 |#1|) $) 18 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 22)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 38)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 36)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 32)) (-3498 (($) 43)) (-3272 (((-772) $) 30)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 27)) (-4132 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 17 (|has| |#1| (-1102)))) (-2414 (((-772) $) 31 (|has| $ (-6 -4418))))) +(((-1149 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2829 ($ (-645 |#1|))))) (-1218)) (T -1149)) +((-2829 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1149 *3))))) +(-13 (-1123 |#1|) (-10 -8 (-15 -2829 ($ (-645 |#1|))))) +((-4284 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1235 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-1399 (((-112) $) 12)) (-3731 (($ (-1 |#2| |#2|) $) 50)) (-2409 ((|#2| $) NIL) (($ $ (-772)) 20)) (-3986 (($ $ |#2|) 51)) (-3323 (((-112) $) 11)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1235 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-2484 (($ $ $) 58) (($ $ |#2|) NIL)) (-2269 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL))) +(((-1150 |#1| |#2|) (-10 -8 (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| "last")) (-15 -1787 (|#1| |#1| "rest")) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|))) (-1151 |#2|) (-1218)) (T -1150)) +NIL +(-10 -8 (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| "last")) (-15 -1787 (|#1| |#1| "rest")) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4418)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4418))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-3323 (((-112) $) 85)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1151 |#1|) (-140) (-1218)) (T -1151)) +((-3323 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) +(-13 (-1256 |t#1|) (-652 |t#1|) (-10 -8 (-15 -3323 ((-112) $)) (-15 -1399 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T) ((-1256 |#1|) . T)) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1152 |#1| |#2| |#3|) (-1194 |#1| |#2|) (-1102) (-1102) |#2|) (T -1152)) +NIL +(-1194 |#1| |#2|) +((-2403 (((-112) $ $) 7)) (-3972 (((-3 $ "failed") $) 14)) (-1419 (((-1160) $) 10)) (-2672 (($) 15 T CONST)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6))) +(((-1153) (-140)) (T -1153)) +((-2672 (*1 *1) (-4 *1 (-1153))) (-3972 (*1 *1 *1) (|partial| -4 *1 (-1153)))) +(-13 (-1102) (-10 -8 (-15 -2672 ($) -3286) (-15 -3972 ((-3 $ "failed") $)))) +(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) +((-3509 (((-1158 |#1|) (-1158 |#1|)) 17)) (-3513 (((-1158 |#1|) (-1158 |#1|)) 13)) (-3833 (((-1158 |#1|) (-1158 |#1|) (-567) (-567)) 20)) (-4277 (((-1158 |#1|) (-1158 |#1|)) 15))) +(((-1154 |#1|) (-10 -7 (-15 -3513 ((-1158 |#1|) (-1158 |#1|))) (-15 -4277 ((-1158 |#1|) (-1158 |#1|))) (-15 -3509 ((-1158 |#1|) (-1158 |#1|))) (-15 -3833 ((-1158 |#1|) (-1158 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1154)) +((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1154 *4)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3)))) (-4277 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3))))) +(-10 -7 (-15 -3513 ((-1158 |#1|) (-1158 |#1|))) (-15 -4277 ((-1158 |#1|) (-1158 |#1|))) (-15 -3509 ((-1158 |#1|) (-1158 |#1|))) (-15 -3833 ((-1158 |#1|) (-1158 |#1|) (-567) (-567)))) +((-2269 (((-1158 |#1|) (-1158 (-1158 |#1|))) 15))) +(((-1155 |#1|) (-10 -7 (-15 -2269 ((-1158 |#1|) (-1158 (-1158 |#1|))))) (-1218)) (T -1155)) +((-2269 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1155 *4)) (-4 *4 (-1218))))) +(-10 -7 (-15 -2269 ((-1158 |#1|) (-1158 (-1158 |#1|))))) +((-2788 (((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 25)) (-2477 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 26)) (-3829 (((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|)) 16))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -2788 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -2477 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)))) (-1218) (-1218)) (T -1156)) +((-2477 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-1156 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1218)) (-4 *3 (-1218)) (-5 *2 (-1158 *3)) (-5 *1 (-1156 *6 *3)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1156 *5 *6))))) +(-10 -7 (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -2788 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -2477 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)))) +((-3829 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)) 21))) +(((-1157 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)))) (-1218) (-1218) (-1218)) (T -1157)) +((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-1157 *6 *7 *8))))) +(-10 -7 (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) 67)) (-1783 (((-1273) $ (-567) (-567)) 99 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 129 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-3836 (((-863) $) 56 (|has| |#1| (-1102)))) (-2796 (((-112)) 55 (|has| |#1| (-1102)))) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 116 (|has| $ (-6 -4419))) (($ $ (-567) $) 142)) (-2315 ((|#1| $ |#1|) 126 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 121 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4419))) (($ $ "rest" $) 125 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 113 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 80)) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2584 (($ $) 14)) (-2421 (($ $) 42) (($ $ (-772)) 111)) (-2591 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1102)))) (-2050 (($ (-645 |#1|)) 131)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) 79)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2393 (((-1273) (-567) $) 141 (|has| |#1| (-1102)))) (-3532 (((-772) $) 138)) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-3381 (($ $) 114)) (-1406 (((-112) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) 96)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3291 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2249 ((|#1| $) 10)) (-2409 ((|#1| $) 41) (($ $ (-772)) 65)) (-3002 (((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3326 (($ (-1 (-112) |#1|) $) 146)) (-3338 (($ (-1 (-112) |#1|) $) 147)) (-3986 (($ $ |#1|) 90 (|has| $ (-6 -4419)))) (-2410 (($ $ (-567)) 45)) (-3323 (((-112) $) 94)) (-2418 (((-112) $) 12)) (-4320 (((-112) $) 137)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 30)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 20)) (-3498 (($) 60)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) 64)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-2880 (($ (-1 $)) 63)) (-3900 (((-112) $) 91)) (-1644 (($ $) 92)) (-3519 (($ $) 117 (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 59)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 73)) (-3465 (($ |#1| $) 115)) (-2484 (($ $ $) 119 (|has| $ (-6 -4419))) (($ $ |#1|) 120 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-2192 (($ $) 66)) (-4132 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 133 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1158 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4419) (-15 -2050 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2591 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3002 ((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2880 ($ (-1 $))) (-15 -3465 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2393 ((-1273) (-567) $)) (-15 -3836 ((-863) $)) (-15 -2796 ((-112)))) |%noBranch|) (-15 -4209 ($ $ (-567) $)) (-15 -3291 ($ (-1 |#1|))) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)))) (-1218)) (T -1158)) +((-2050 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-2591 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112)) (-5 *1 (-1158 *4)))) (-3002 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772)))) (-5 *1 (-1158 *4)) (-4 *4 (-1218)) (-5 *3 (-772)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))) (-3465 (*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1218)))) (-2393 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1158 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)))) (-2796 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)))) (-4209 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))) (-3291 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))) +(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4419) (-15 -2050 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2591 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3002 ((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2880 ($ (-1 $))) (-15 -3465 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2393 ((-1273) (-567) $)) (-15 -3836 ((-863) $)) (-15 -2796 ((-112)))) |%noBranch|) (-15 -4209 ($ $ (-567) $)) (-15 -3291 ($ (-1 |#1|))) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)))) +((-2403 (((-112) $ $) 19)) (-4172 (($ $) 121)) (-3714 (($ $) 122)) (-1757 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 119)) (-1918 (((-112) $ $ (-567)) 118)) (-3657 (($ (-567)) 128)) (-4323 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-3279 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-3364 (($ $ (-1235 (-567)) $) 115)) (-2444 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) 52)) (-1958 (((-112) $ $) 120)) (-2569 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2777 (((-645 (-144)) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3731 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3240 (($ $) 123)) (-3677 (($ $) 124)) (-2863 (((-112) $ (-772)) 10)) (-3289 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1419 (((-1160) $) 22)) (-2845 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21)) (-2409 (((-144) $) 43 (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3986 (($ $ (-144)) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1235 (-567))) 64) (($ $ $) 103)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4418))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) 71)) (-2269 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (($ (-144)) 112) (((-863) $) 18)) (-1745 (((-112) $ $) 23)) (-1853 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 132) (((-1160) $ (-112)) 131) (((-1273) (-823) $) 130) (((-1273) (-823) $ (-112)) 129)) (-2997 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2971 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2936 (((-112) $ $) 20)) (-2984 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2958 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1159) (-140)) (T -1159)) +((-3657 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1159))))) +(-13 (-1146) (-1102) (-829) (-10 -8 (-15 -3657 ($ (-567))))) +(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1102) . T) ((-1146) . T) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-4172 (($ $) NIL)) (-3714 (($ $) NIL)) (-1757 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) NIL)) (-1918 (((-112) $ $ (-567)) NIL)) (-3657 (($ (-567)) 8)) (-4323 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-144) (-851))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-3279 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-3364 (($ $ (-1235 (-567)) $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-3238 (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) NIL)) (-1958 (((-112) $ $) NIL)) (-2569 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1102))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-2777 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) NIL)) (-4197 (((-772) $ $ (-144)) NIL)) (-3731 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3240 (($ $) NIL)) (-3677 (($ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3289 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-144) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3986 (($ $ (-144)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (($ $ $) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) NIL)) (-2269 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (($ (-144)) NIL) (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 19) (((-1160) $ (-112)) 21) (((-1273) (-823) $) 22) (((-1273) (-823) $ (-112)) 23)) (-2997 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1160) (-1159)) (T -1160)) +NIL +(-1159) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-1160) |#1|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#1| "failed") (-1160) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#1| "failed") (-1160) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-1160) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-1160)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-1391 (((-645 (-1160)) $) NIL)) (-4251 (((-112) (-1160) $) NIL)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2409 ((|#1| $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-1160)) NIL) ((|#1| $ (-1160) |#1|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1161 |#1|) (-13 (-1194 (-1160) |#1|) (-10 -7 (-6 -4418))) (-1102)) (T -1161)) +NIL +(-13 (-1194 (-1160) |#1|) (-10 -7 (-6 -4418))) +((-2900 (((-1158 |#1|) (-1158 |#1|)) 85)) (-2109 (((-3 (-1158 |#1|) "failed") (-1158 |#1|)) 42)) (-3861 (((-1158 |#1|) (-410 (-567)) (-1158 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-2673 (((-1158 |#1|) |#1| (-1158 |#1|)) 142 (|has| |#1| (-365)))) (-1486 (((-1158 |#1|) (-1158 |#1|)) 100)) (-2910 (((-1158 (-567)) (-567)) 64)) (-3290 (((-1158 |#1|) (-1158 (-1158 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-3352 (((-1158 |#1|) (-567) (-567) (-1158 |#1|)) 105)) (-2290 (((-1158 |#1|) |#1| (-567)) 54)) (-1509 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 67)) (-1977 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 139 (|has| |#1| (-365)))) (-3814 (((-1158 |#1|) |#1| (-1 (-1158 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-2024 (((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|))) 140 (|has| |#1| (-365)))) (-3535 (((-1158 |#1|) (-1158 |#1|)) 99)) (-1517 (((-1158 |#1|) (-1158 |#1|)) 83)) (-1505 (((-1158 |#1|) (-567) (-567) (-1158 |#1|)) 106)) (-2416 (((-1158 |#1|) |#1| (-1158 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-1952 (((-1158 (-567)) (-567)) 63)) (-2669 (((-1158 |#1|) |#1|) 66)) (-1343 (((-1158 |#1|) (-1158 |#1|) (-567) (-567)) 102)) (-2149 (((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|)) 73)) (-2391 (((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|)) 40)) (-3994 (((-1158 |#1|) (-1158 |#1|)) 101)) (-2631 (((-1158 |#1|) (-1158 |#1|) |#1|) 78)) (-3531 (((-1158 |#1|) (-1158 |#1|)) 69)) (-2476 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 79)) (-4132 (((-1158 |#1|) |#1|) 74)) (-4181 (((-1158 |#1|) (-1158 (-1158 |#1|))) 90)) (-3060 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41)) (-3045 (((-1158 |#1|) (-1158 |#1|)) 21) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 23)) (-3033 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 17)) (* (((-1158 |#1|) (-1158 |#1|) |#1|) 29) (((-1158 |#1|) |#1| (-1158 |#1|)) 26) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 27))) +(((-1162 |#1|) (-10 -7 (-15 -3033 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2391 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -3060 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2109 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -2290 ((-1158 |#1|) |#1| (-567))) (-15 -1952 ((-1158 (-567)) (-567))) (-15 -2910 ((-1158 (-567)) (-567))) (-15 -2669 ((-1158 |#1|) |#1|)) (-15 -1509 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3531 ((-1158 |#1|) (-1158 |#1|))) (-15 -2149 ((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|))) (-15 -4132 ((-1158 |#1|) |#1|)) (-15 -2631 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2476 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1517 ((-1158 |#1|) (-1158 |#1|))) (-15 -2900 ((-1158 |#1|) (-1158 |#1|))) (-15 -4181 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3535 ((-1158 |#1|) (-1158 |#1|))) (-15 -1486 ((-1158 |#1|) (-1158 |#1|))) (-15 -3994 ((-1158 |#1|) (-1158 |#1|))) (-15 -1343 ((-1158 |#1|) (-1158 |#1|) (-567) (-567))) (-15 -3352 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (-15 -1505 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3814 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3290 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3861 ((-1158 |#1|) (-410 (-567)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1977 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2024 ((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|)))) (-15 -2673 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|)) (-1051)) (T -1162)) +((-2673 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)))) (-1977 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3861 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) (-5 *3 (-410 (-567))) (-5 *1 (-1162 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-2416 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1505 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3352 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-1343 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-1051)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2476 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2149 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3531 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1509 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2910 (*1 *2 *3) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2109 (*1 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2391 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(-10 -7 (-15 -3033 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2391 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -3060 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2109 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -2290 ((-1158 |#1|) |#1| (-567))) (-15 -1952 ((-1158 (-567)) (-567))) (-15 -2910 ((-1158 (-567)) (-567))) (-15 -2669 ((-1158 |#1|) |#1|)) (-15 -1509 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3531 ((-1158 |#1|) (-1158 |#1|))) (-15 -2149 ((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|))) (-15 -4132 ((-1158 |#1|) |#1|)) (-15 -2631 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2476 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1517 ((-1158 |#1|) (-1158 |#1|))) (-15 -2900 ((-1158 |#1|) (-1158 |#1|))) (-15 -4181 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3535 ((-1158 |#1|) (-1158 |#1|))) (-15 -1486 ((-1158 |#1|) (-1158 |#1|))) (-15 -3994 ((-1158 |#1|) (-1158 |#1|))) (-15 -1343 ((-1158 |#1|) (-1158 |#1|) (-567) (-567))) (-15 -3352 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (-15 -1505 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3814 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3290 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3861 ((-1158 |#1|) (-410 (-567)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1977 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2024 ((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|)))) (-15 -2673 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|)) +((-3146 (((-1158 |#1|) (-1158 |#1|)) 60)) (-3012 (((-1158 |#1|) (-1158 |#1|)) 42)) (-3128 (((-1158 |#1|) (-1158 |#1|)) 56)) (-2987 (((-1158 |#1|) (-1158 |#1|)) 38)) (-3166 (((-1158 |#1|) (-1158 |#1|)) 63)) (-3035 (((-1158 |#1|) (-1158 |#1|)) 45)) (-3063 (((-1158 |#1|) (-1158 |#1|)) 34)) (-3946 (((-1158 |#1|) (-1158 |#1|)) 29)) (-3175 (((-1158 |#1|) (-1158 |#1|)) 64)) (-3049 (((-1158 |#1|) (-1158 |#1|)) 46)) (-3156 (((-1158 |#1|) (-1158 |#1|)) 61)) (-3023 (((-1158 |#1|) (-1158 |#1|)) 43)) (-3137 (((-1158 |#1|) (-1158 |#1|)) 58)) (-2999 (((-1158 |#1|) (-1158 |#1|)) 40)) (-3200 (((-1158 |#1|) (-1158 |#1|)) 68)) (-3084 (((-1158 |#1|) (-1158 |#1|)) 50)) (-3183 (((-1158 |#1|) (-1158 |#1|)) 66)) (-3062 (((-1158 |#1|) (-1158 |#1|)) 48)) (-3221 (((-1158 |#1|) (-1158 |#1|)) 71)) (-3106 (((-1158 |#1|) (-1158 |#1|)) 53)) (-3785 (((-1158 |#1|) (-1158 |#1|)) 72)) (-3118 (((-1158 |#1|) (-1158 |#1|)) 54)) (-3211 (((-1158 |#1|) (-1158 |#1|)) 70)) (-3095 (((-1158 |#1|) (-1158 |#1|)) 52)) (-3193 (((-1158 |#1|) (-1158 |#1|)) 69)) (-3074 (((-1158 |#1|) (-1158 |#1|)) 51)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 36))) +(((-1163 |#1|) (-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-410 (-567)))) (T -1163)) +((-3785 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3))))) +(-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) +((-3146 (((-1158 |#1|) (-1158 |#1|)) 108)) (-3012 (((-1158 |#1|) (-1158 |#1|)) 65)) (-3319 (((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|)) 104)) (-3128 (((-1158 |#1|) (-1158 |#1|)) 105)) (-3647 (((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|)) 54)) (-2987 (((-1158 |#1|) (-1158 |#1|)) 55)) (-3166 (((-1158 |#1|) (-1158 |#1|)) 110)) (-3035 (((-1158 |#1|) (-1158 |#1|)) 72)) (-3063 (((-1158 |#1|) (-1158 |#1|)) 40)) (-3946 (((-1158 |#1|) (-1158 |#1|)) 37)) (-3175 (((-1158 |#1|) (-1158 |#1|)) 111)) (-3049 (((-1158 |#1|) (-1158 |#1|)) 73)) (-3156 (((-1158 |#1|) (-1158 |#1|)) 109)) (-3023 (((-1158 |#1|) (-1158 |#1|)) 68)) (-3137 (((-1158 |#1|) (-1158 |#1|)) 106)) (-2999 (((-1158 |#1|) (-1158 |#1|)) 56)) (-3200 (((-1158 |#1|) (-1158 |#1|)) 119)) (-3084 (((-1158 |#1|) (-1158 |#1|)) 94)) (-3183 (((-1158 |#1|) (-1158 |#1|)) 113)) (-3062 (((-1158 |#1|) (-1158 |#1|)) 90)) (-3221 (((-1158 |#1|) (-1158 |#1|)) 123)) (-3106 (((-1158 |#1|) (-1158 |#1|)) 98)) (-3785 (((-1158 |#1|) (-1158 |#1|)) 125)) (-3118 (((-1158 |#1|) (-1158 |#1|)) 100)) (-3211 (((-1158 |#1|) (-1158 |#1|)) 121)) (-3095 (((-1158 |#1|) (-1158 |#1|)) 96)) (-3193 (((-1158 |#1|) (-1158 |#1|)) 115)) (-3074 (((-1158 |#1|) (-1158 |#1|)) 92)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41))) +(((-1164 |#1|) (-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3647 ((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3319 ((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-410 (-567)))) (T -1164)) +((-3785 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3128 (-1158 *4)) (|:| -3137 (-1158 *4)))) (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -2987 (-1158 *4)) (|:| -2999 (-1158 *4)))) (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3))))) +(-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3647 ((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3319 ((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) +((-2309 (((-960 |#2|) |#2| |#2|) 51)) (-3501 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) +(((-1165 |#1| |#2|) (-10 -7 (-15 -2309 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3501 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1244 |#1|)) (T -1165)) +((-3501 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1165 *3 *2)) (-4 *2 (-1244 *3)))) (-2309 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1165 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -2309 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3501 (|#2| |#2| |#1|)) |%noBranch|)) +((-2403 (((-112) $ $) NIL)) (-3757 (($ $ (-645 (-772))) 81)) (-1455 (($) 33)) (-4329 (($ $) 51)) (-2743 (((-645 $) $) 60)) (-4310 (((-112) $) 19)) (-3072 (((-645 (-945 |#2|)) $) 88)) (-4346 (($ $) 82)) (-3715 (((-772) $) 47)) (-2846 (($) 32)) (-3271 (($ $ (-645 (-772)) (-945 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-945 |#2|)) 77)) (-4135 (($ $ $) 57) (($ (-645 $)) 59)) (-2684 (((-772) $) 89)) (-2769 (((-112) $) 15)) (-1419 (((-1160) $) NIL)) (-3758 (((-112) $) 22)) (-3430 (((-1122) $) NIL)) (-2561 (((-171) $) 87)) (-1868 (((-945 |#2|) $) 83)) (-2474 (((-772) $) 84)) (-2555 (((-112) $) 86)) (-2160 (($ $ (-645 (-772)) (-171)) 80)) (-4154 (($ $) 52)) (-4132 (((-863) $) 100)) (-1776 (($ $ (-645 (-772)) (-112)) 79)) (-1531 (((-645 $) $) 11)) (-3820 (($ $ (-772)) 46)) (-4340 (($ $) 43)) (-1745 (((-112) $ $) NIL)) (-3237 (($ $ $ (-945 |#2|) (-772)) 70)) (-1357 (($ $ (-945 |#2|)) 69)) (-2062 (($ $ (-645 (-772)) (-945 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-945 |#2|)) 73)) (-2936 (((-112) $ $) 94))) +(((-1166 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2769 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -2846 ($)) (-15 -1455 ($)) (-15 -4340 ($ $)) (-15 -3820 ($ $ (-772))) (-15 -1531 ((-645 $) $)) (-15 -3715 ((-772) $)) (-15 -4329 ($ $)) (-15 -4154 ($ $)) (-15 -4135 ($ $ $)) (-15 -4135 ($ (-645 $))) (-15 -2743 ((-645 $) $)) (-15 -2062 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -1357 ($ $ (-945 |#2|))) (-15 -3237 ($ $ $ (-945 |#2|) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2062 ($ $ (-645 (-772)) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-772))) (-15 -2062 ((-772) $ (-945 |#2|))) (-15 -3271 ($ $ (-772) (-945 |#2|))) (-15 -1776 ($ $ (-645 (-772)) (-112))) (-15 -2160 ($ $ (-645 (-772)) (-171))) (-15 -3757 ($ $ (-645 (-772)))) (-15 -1868 ((-945 |#2|) $)) (-15 -2474 ((-772) $)) (-15 -2555 ((-112) $)) (-15 -2561 ((-171) $)) (-15 -2684 ((-772) $)) (-15 -4346 ($ $)) (-15 -3072 ((-645 (-945 |#2|)) $)))) (-923) (-1051)) (T -1166)) +((-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2846 (*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-1455 (*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4340 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4329 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4135 (*1 *1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-1357 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)))) (-3237 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2062 (*1 *2 *1 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-1776 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-945 *4)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051))))) +(-13 (-1102) (-10 -8 (-15 -2769 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -2846 ($)) (-15 -1455 ($)) (-15 -4340 ($ $)) (-15 -3820 ($ $ (-772))) (-15 -1531 ((-645 $) $)) (-15 -3715 ((-772) $)) (-15 -4329 ($ $)) (-15 -4154 ($ $)) (-15 -4135 ($ $ $)) (-15 -4135 ($ (-645 $))) (-15 -2743 ((-645 $) $)) (-15 -2062 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -1357 ($ $ (-945 |#2|))) (-15 -3237 ($ $ $ (-945 |#2|) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2062 ($ $ (-645 (-772)) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-772))) (-15 -2062 ((-772) $ (-945 |#2|))) (-15 -3271 ($ $ (-772) (-945 |#2|))) (-15 -1776 ($ $ (-645 (-772)) (-112))) (-15 -2160 ($ $ (-645 (-772)) (-171))) (-15 -3757 ($ $ (-645 (-772)))) (-15 -1868 ((-945 |#2|) $)) (-15 -2474 ((-772) $)) (-15 -2555 ((-112) $)) (-15 -2561 ((-171) $)) (-15 -2684 ((-772) $)) (-15 -4346 ($ $)) (-15 -3072 ((-645 (-945 |#2|)) $)))) +((-2403 (((-112) $ $) NIL)) (-4104 ((|#2| $) 11)) (-4089 ((|#1| $) 10)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4147 (($ |#1| |#2|) 9)) (-4132 (((-863) $) 16)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1167 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -4147 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4104 (|#2| $)))) (-1102) (-1102)) (T -1167)) +((-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-1167 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4089 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *2 *3)) (-4 *3 (-1102)))) (-4104 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *3 *2)) (-4 *3 (-1102))))) +(-13 (-1102) (-10 -8 (-15 -4147 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4104 (|#2| $)))) +((-2403 (((-112) $ $) NIL)) (-3342 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1168) (-13 (-1085) (-10 -8 (-15 -3342 ((-1137) $))))) (T -1168)) +((-3342 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1168))))) +(-13 (-1085) (-10 -8 (-15 -3342 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1950 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-2821 (((-1176 |#1| |#2| |#3|) $) 42)) (-2401 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 32)) (-2896 (((-1176 |#1| |#2| |#3|) $) 33)) (-3146 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1178) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2038 (((-1176 |#1| |#2| |#3|) $) 140) (((-1178) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3812 (($ $) 37) (($ (-567) $) 38)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-1176 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-1176 |#1| |#2| |#3|))) (|:| |vec| (-1268 (-1176 |#1| |#2| |#3|)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 54)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 28)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 (((-1176 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 19) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) (-1176 |#1| |#2| |#3|)) 36)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2780 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 158)) (-2391 (((-3 $ "failed") $ $) 55 (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1176 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1176 |#1| |#2| |#3|)) (-645 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1114))) (($ $ (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-287 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1264 |#2|)) 57) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 (((-1176 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3077 (((-567) $) 43)) (-3175 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-539) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1176 |#1| |#2| |#3|)) 30) (($ (-1264 |#2|)) 25) (($ (-1178)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4136 ((|#1| $ (-567)) 77)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1423 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3183 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1716 (($) 21 T CONST)) (-1728 (($) 16 T CONST)) (-2637 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2958 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1176 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1176 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1169 |#1| |#2| |#3|) (-13 (-1230 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1169)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1230 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-3579 ((|#2| |#2| (-1094 |#2|)) 26) ((|#2| |#2| (-1178)) 28))) +(((-1170 |#1| |#2|) (-10 -7 (-15 -3579 (|#2| |#2| (-1178))) (-15 -3579 (|#2| |#2| (-1094 |#2|)))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1203))) (T -1170)) +((-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1170 *4 *2)))) (-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203)))))) +(-10 -7 (-15 -3579 (|#2| |#2| (-1178))) (-15 -3579 (|#2| |#2| (-1094 |#2|)))) +((-3579 (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))) 31) (((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|))) 44) (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178)) 33) (((-410 (-954 |#1|)) (-954 |#1|) (-1178)) 36))) +(((-1171 |#1|) (-10 -7 (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1178))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) (-13 (-559) (-1040 (-567)))) (T -1171)) +((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1171 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1171 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-410 (-954 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-954 *5))))) +(-10 -7 (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1178))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) +((-3829 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 13))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -3829 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) (-1051) (-1051)) (T -1172)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6))))) +(-10 -7 (-15 -3829 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) +((-2908 (((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 51)) (-2706 (((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 52))) +(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -2908 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) (-794) (-851) (-455) (-951 |#3| |#1| |#2|)) (T -1173)) +((-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7)))))) +(-10 -7 (-15 -2706 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -2908 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) +((-2403 (((-112) $ $) 171)) (-2460 (((-112) $) 43)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) 82) (((-1174 |#1|) $) 71)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) 164 (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) 158 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 95 (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 115 (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1516 (($ $ (-772)) 61)) (-3993 (($ $ (-772)) 63)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 80)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) 131)) (-1946 (($ $ $) NIL (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) 69)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-2570 (((-863) $ (-863)) 148)) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) 48)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) 73) (($ (-1174 $) (-1084)) 89)) (-3807 (($ $ (-772)) 51)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 87) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 153)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) 76)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 60)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 50)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 103 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-3110 (($ $ (-772) |#1| $) 123)) (-2435 (((-421 (-1174 $)) (-1174 $)) 101 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 100 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 108 (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) 54)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 172 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) 78) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1084)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 17 T CONST)) (-1728 (($) 19 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) 120)) (-3060 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 90)) (** (($ $ (-923)) 14) (($ $ (-772)) 12)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1174 |#1|) (-13 (-1244 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))) (-15 -3110 ($ $ (-772) |#1| $)))) (-1051)) (T -1174)) +((-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1174 *3)) (-4 *3 (-1051)))) (-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1174 *3)) (-4 *3 (-1051))))) +(-13 (-1244 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))) (-15 -3110 ($ $ (-772) |#1| $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 36)) (-2038 (((-1169 |#1| |#2| |#3|) $) NIL) (((-1176 |#1| |#2| |#3|) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3058 (((-410 (-567)) $) 59)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) (-1169 |#1| |#2| |#3|)) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 20) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 (((-1169 |#1| |#2| |#3|) $) 41)) (-4144 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) NIL)) (-2907 (((-1169 |#1| |#2| |#3|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 38)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1169 |#1| |#2| |#3|)) 30) (($ (-1176 |#1| |#2| |#3|)) 31) (($ (-1264 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 22 T CONST)) (-1728 (($) 16 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 24)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1175 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1169 |#1| |#2| |#3|)) (-1040 (-1176 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1175)) +((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1251 |#1| (-1169 |#1| |#2| |#3|)) (-1040 (-1176 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 131)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 121)) (-1779 (((-1241 |#2| |#1|) $ (-772)) 69)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-3146 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1158 |#1|)) 115)) (-3166 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 25)) (-3842 (($ $) 28)) (-3717 (((-954 |#1|) $ (-772)) 81) (((-954 |#1|) $ (-772) (-772)) 83)) (-2762 (((-112) $) 126)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) 128) (((-772) $ (-772)) 130)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 13) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-2410 (($ $ (-772)) 15)) (-2391 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-3946 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1264 |#2|)) 31)) (-3077 (((-772) $) NIL)) (-3175 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1241 |#2| |#1|)) 55) (($ (-1264 |#2|)) 36)) (-3032 (((-1158 |#1|) $) 103)) (-4136 ((|#1| $ (-772)) 123)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 58)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 17 T CONST)) (-1728 (($) 20 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 200)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1176 |#1| |#2| |#3|) (-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1176)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-4132 (((-863) $) 33) (($ (-1178)) 35)) (-2800 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2790 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2450 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2438 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2428 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2415 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2098 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) +(((-1177) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -2450 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2428 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2438 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2098 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ $))))) (T -1177)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1177)))) (-2450 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2428 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2438 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2415 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2800 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2098 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2790 (*1 *1 *1) (-5 *1 (-1177)))) +(-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -2450 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2428 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2438 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2098 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ $)))) +((-2403 (((-112) $ $) NIL)) (-3469 (($ $ (-645 (-863))) 64)) (-4024 (($ $ (-645 (-863))) 62)) (-3657 (((-1160) $) 103)) (-1711 (((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-2408 (((-112) $) 23)) (-2273 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-2585 (($) 166 T CONST)) (-1410 (((-1273)) 138)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 71) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 78)) (-2846 (($) 124) (($ $) 133)) (-1996 (($ $) 102)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-2284 (((-645 $) $) 139)) (-1419 (((-1160) $) 116)) (-3430 (((-1122) $) NIL)) (-1787 (($ $ (-645 (-863))) 63)) (-3893 (((-539) $) 48) (((-1178) $) 49) (((-894 (-567)) $) 82) (((-894 (-381)) $) 80)) (-4132 (((-863) $) 55) (($ (-1160)) 50)) (-1745 (((-112) $ $) NIL)) (-1519 (($ $ (-645 (-863))) 65)) (-2904 (((-1160) $) 34) (((-1160) $ (-112)) 35) (((-1273) (-823) $) 36) (((-1273) (-823) $ (-112)) 37)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 51)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 52))) +(((-1178) (-13 (-851) (-615 (-539)) (-829) (-615 (-1178)) (-617 (-1160)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2846 ($)) (-15 -2846 ($ $)) (-15 -1410 ((-1273))) (-15 -1996 ($ $)) (-15 -2408 ((-112) $)) (-15 -1711 ((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2273 ($ $ (-645 (-645 (-863))))) (-15 -2273 ($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -4024 ($ $ (-645 (-863)))) (-15 -3469 ($ $ (-645 (-863)))) (-15 -1519 ($ $ (-645 (-863)))) (-15 -1787 ($ $ (-645 (-863)))) (-15 -3657 ((-1160) $)) (-15 -2284 ((-645 $) $)) (-15 -2585 ($) -3286)))) (T -1178)) +((-2846 (*1 *1) (-5 *1 (-1178))) (-2846 (*1 *1 *1) (-5 *1 (-1178))) (-1410 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1178)))) (-1996 (*1 *1 *1) (-5 *1 (-1178))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1178)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1178)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1178)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1178)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1178)))) (-2585 (*1 *1) (-5 *1 (-1178)))) +(-13 (-851) (-615 (-539)) (-829) (-615 (-1178)) (-617 (-1160)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2846 ($)) (-15 -2846 ($ $)) (-15 -1410 ((-1273))) (-15 -1996 ($ $)) (-15 -2408 ((-112) $)) (-15 -1711 ((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2273 ($ $ (-645 (-645 (-863))))) (-15 -2273 ($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -4024 ($ $ (-645 (-863)))) (-15 -3469 ($ $ (-645 (-863)))) (-15 -1519 ($ $ (-645 (-863)))) (-15 -1787 ($ $ (-645 (-863)))) (-15 -3657 ((-1160) $)) (-15 -2284 ((-645 $) $)) (-15 -2585 ($) -3286))) +((-4150 (((-1268 |#1|) |#1| (-923)) 18) (((-1268 |#1|) (-645 |#1|)) 25))) +(((-1179 |#1|) (-10 -7 (-15 -4150 ((-1268 |#1|) (-645 |#1|))) (-15 -4150 ((-1268 |#1|) |#1| (-923)))) (-1051)) (T -1179)) +((-4150 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1268 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1051)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4)) (-5 *1 (-1179 *4))))) +(-10 -7 (-15 -4150 ((-1268 |#1|) (-645 |#1|))) (-15 -4150 ((-1268 |#1|) |#1| (-923)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2320 (($ $ |#1| (-973) $) NIL)) (-1433 (((-112) $) 17)) (-2695 (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-973)) NIL)) (-2656 (((-973) $) NIL)) (-3273 (($ (-1 (-973) (-973)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3110 (($ $ (-973) |#1| $) NIL (-12 (|has| (-973) (-131)) (|has| |#1| (-559))))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3077 (((-973) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-973)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 11 T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 21)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1180 |#1|) (-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3110 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051)) (T -1180)) +((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1180 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) +(-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3110 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) +((-2573 (((-1182) (-1178) $) 25)) (-3781 (($) 29)) (-1545 (((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $) 22)) (-1690 (((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $) 41) (((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) 42) (((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) 43)) (-2150 (((-1273) (-1178)) 58)) (-3763 (((-1273) (-1178) $) 55) (((-1273) (-1178)) 56) (((-1273)) 57)) (-4383 (((-1273) (-1178)) 37)) (-1870 (((-1178)) 36)) (-3498 (($) 34)) (-2759 (((-440) (-1178) (-440) (-1178) $) 45) (((-440) (-645 (-1178)) (-440) (-1178) $) 49) (((-440) (-1178) (-440)) 46) (((-440) (-1178) (-440) (-1178)) 50)) (-3135 (((-1178)) 35)) (-4132 (((-863) $) 28)) (-4127 (((-1273)) 30) (((-1273) (-1178)) 33)) (-2955 (((-645 (-1178)) (-1178) $) 24)) (-1681 (((-1273) (-1178) (-645 (-1178)) $) 38) (((-1273) (-1178) (-645 (-1178))) 39) (((-1273) (-645 (-1178))) 40))) +(((-1181) (-13 (-614 (-863)) (-10 -8 (-15 -3781 ($)) (-15 -4127 ((-1273))) (-15 -4127 ((-1273) (-1178))) (-15 -2759 ((-440) (-1178) (-440) (-1178) $)) (-15 -2759 ((-440) (-645 (-1178)) (-440) (-1178) $)) (-15 -2759 ((-440) (-1178) (-440))) (-15 -2759 ((-440) (-1178) (-440) (-1178))) (-15 -4383 ((-1273) (-1178))) (-15 -3135 ((-1178))) (-15 -1870 ((-1178))) (-15 -1681 ((-1273) (-1178) (-645 (-1178)) $)) (-15 -1681 ((-1273) (-1178) (-645 (-1178)))) (-15 -1681 ((-1273) (-645 (-1178)))) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -1690 ((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -3763 ((-1273) (-1178) $)) (-15 -3763 ((-1273) (-1178))) (-15 -3763 ((-1273))) (-15 -2150 ((-1273) (-1178))) (-15 -3498 ($)) (-15 -1545 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $)) (-15 -2955 ((-645 (-1178)) (-1178) $)) (-15 -2573 ((-1182) (-1178) $))))) (T -1181)) +((-3781 (*1 *1) (-5 *1 (-1181))) (-4127 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *4 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3135 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))) (-1870 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1178)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3498 (*1 *1) (-5 *1 (-1181))) (-1545 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-1181)))) (-2955 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1181)) (-5 *3 (-1178)))) (-2573 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1182)) (-5 *1 (-1181))))) +(-13 (-614 (-863)) (-10 -8 (-15 -3781 ($)) (-15 -4127 ((-1273))) (-15 -4127 ((-1273) (-1178))) (-15 -2759 ((-440) (-1178) (-440) (-1178) $)) (-15 -2759 ((-440) (-645 (-1178)) (-440) (-1178) $)) (-15 -2759 ((-440) (-1178) (-440))) (-15 -2759 ((-440) (-1178) (-440) (-1178))) (-15 -4383 ((-1273) (-1178))) (-15 -3135 ((-1178))) (-15 -1870 ((-1178))) (-15 -1681 ((-1273) (-1178) (-645 (-1178)) $)) (-15 -1681 ((-1273) (-1178) (-645 (-1178)))) (-15 -1681 ((-1273) (-645 (-1178)))) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -1690 ((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -3763 ((-1273) (-1178) $)) (-15 -3763 ((-1273) (-1178))) (-15 -3763 ((-1273))) (-15 -2150 ((-1273) (-1178))) (-15 -3498 ($)) (-15 -1545 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $)) (-15 -2955 ((-645 (-1178)) (-1178) $)) (-15 -2573 ((-1182) (-1178) $)))) +((-2481 (((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $) 66)) (-1869 (((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $) 47)) (-1403 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))) 17)) (-2150 (((-1273) $) 74)) (-4163 (((-645 (-1178)) $) 22)) (-1798 (((-1106) $) 60)) (-3051 (((-440) (-1178) $) 27)) (-3021 (((-645 (-1178)) $) 30)) (-3498 (($) 19)) (-2759 (((-440) (-645 (-1178)) (-440) $) 25) (((-440) (-1178) (-440) $) 24)) (-4132 (((-863) $) 9) (((-1191 (-1178) (-440)) $) 13))) +(((-1182) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ((-1191 (-1178) (-440)) $)) (-15 -3498 ($)) (-15 -2759 ((-440) (-645 (-1178)) (-440) $)) (-15 -2759 ((-440) (-1178) (-440) $)) (-15 -3051 ((-440) (-1178) $)) (-15 -4163 ((-645 (-1178)) $)) (-15 -1869 ((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3021 ((-645 (-1178)) $)) (-15 -2481 ((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $)) (-15 -1798 ((-1106) $)) (-15 -2150 ((-1273) $)) (-15 -1403 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))))))) (T -1182)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-1191 (-1178) (-440))) (-5 *1 (-1182)))) (-3498 (*1 *1) (-5 *1 (-1182))) (-2759 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *1 (-1182)))) (-2759 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1182)))) (-3051 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-440)) (-5 *1 (-1182)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))) (-1869 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) (-5 *1 (-1182)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))))) (-5 *1 (-1182)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1182)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1182)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))) (-5 *1 (-1182))))) +(-13 (-614 (-863)) (-10 -8 (-15 -4132 ((-1191 (-1178) (-440)) $)) (-15 -3498 ($)) (-15 -2759 ((-440) (-645 (-1178)) (-440) $)) (-15 -2759 ((-440) (-1178) (-440) $)) (-15 -3051 ((-440) (-1178) $)) (-15 -4163 ((-645 (-1178)) $)) (-15 -1869 ((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3021 ((-645 (-1178)) $)) (-15 -2481 ((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $)) (-15 -1798 ((-1106) $)) (-15 -2150 ((-1273) $)) (-15 -1403 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440)))))))) +((-2403 (((-112) $ $) NIL)) (-3753 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1160) "failed") $) 47)) (-2038 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1160) $) 48)) (-3385 (((-112) $) 53)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3428 (((-3 (-567) (-225) (-509) (-1160) $) $) 55)) (-2916 (((-645 $) $) 57)) (-3893 (((-1106) $) 24) (($ (-1106)) 25)) (-3413 (((-112) $) 56)) (-4132 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1160)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1160) $) 49)) (-1702 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1160))) 16)) (-2426 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-1745 (((-112) $ $) NIL)) (-2523 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1160) $) 45)) (-2936 (((-112) $ $) 7))) +(((-1183) (-13 (-1263) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1160)) (-614 (-539)) (-10 -8 (-15 -3893 ((-1106) $)) (-15 -3893 ($ (-1106))) (-15 -4132 ((-567) $)) (-15 -2523 ((-567) $)) (-15 -4132 ((-225) $)) (-15 -2523 ((-225) $)) (-15 -4132 ((-509) $)) (-15 -2523 ((-509) $)) (-15 -4132 ((-1160) $)) (-15 -2523 ((-1160) $)) (-15 -2426 ($ (-509) (-645 $))) (-15 -2426 ($ $ (-645 $))) (-15 -3385 ((-112) $)) (-15 -3428 ((-3 (-567) (-225) (-509) (-1160) $) $)) (-15 -2916 ((-645 $) $)) (-15 -3413 ((-112) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -1702 ((-112) $ (|[\|\|]| (-225)))) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -1702 ((-112) $ (|[\|\|]| (-1160))))))) (T -1183)) +((-3893 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) (-2426 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1183))) (-5 *1 (-1183)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1160) (-1183))) (-5 *1 (-1183)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-1183))))) +(-13 (-1263) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1160)) (-614 (-539)) (-10 -8 (-15 -3893 ((-1106) $)) (-15 -3893 ($ (-1106))) (-15 -4132 ((-567) $)) (-15 -2523 ((-567) $)) (-15 -4132 ((-225) $)) (-15 -2523 ((-225) $)) (-15 -4132 ((-509) $)) (-15 -2523 ((-509) $)) (-15 -4132 ((-1160) $)) (-15 -2523 ((-1160) $)) (-15 -2426 ($ (-509) (-645 $))) (-15 -2426 ($ $ (-645 $))) (-15 -3385 ((-112) $)) (-15 -3428 ((-3 (-567) (-225) (-509) (-1160) $) $)) (-15 -2916 ((-645 $) $)) (-15 -3413 ((-112) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -1702 ((-112) $ (|[\|\|]| (-225)))) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 22)) (-2585 (($) 12 T CONST)) (-1348 (($) 26)) (-1354 (($ $ $) NIL) (($) 19 T CONST)) (-2981 (($ $ $) NIL) (($) 20 T CONST)) (-4249 (((-923) $) 24)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 23)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1184 |#1|) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) (-923)) (T -1184)) +((-2585 (*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-923))))) +(-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) 19 T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) 12 T CONST)) (-2998 (($ $ $) NIL) (($) 18 T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1725 (($ $ $) 21)) (-1713 (($ $ $) 20)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1184 |#1|) (-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) (-922)) (T -1184)) -((-1713 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922)))) (-1725 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922)))) (-2245 (*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922))))) -(-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) 19 T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) 12 T CONST)) (-2981 (($ $ $) NIL) (($) 18 T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) 21)) (-1717 (($ $ $) 20)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1185 |#1|) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) (-923)) (T -1185)) +((-1717 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) (-1729 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) (-2585 (*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))) +(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 9)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 7))) -(((-1185) (-1101)) (T -1185)) -NIL -(-1101) -((-3636 (((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177))) 67)) (-1754 (((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|)))) 78) (((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|))) 74) (((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177)) 79) (((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177)) 73) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177))) 107) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1177))) 104))) -(((-1186 |#1|) (-10 -7 (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))))) (-15 -3636 ((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177))))) (-559)) (T -1186)) -((-3636 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-953 *5)))) (-5 *1 (-1186 *5)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) (-5 *1 (-1186 *4)) (-5 *3 (-295 (-410 (-953 *4)))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) (-5 *1 (-1186 *4)) (-5 *3 (-410 (-953 *4))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1186 *5)) (-5 *3 (-295 (-410 (-953 *5)))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-1177)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1186 *5)) (-5 *3 (-410 (-953 *5))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1186 *4)) (-5 *3 (-645 (-295 (-410 (-953 *4))))))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1186 *4)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1177))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1186 *5)) (-5 *3 (-645 (-295 (-410 (-953 *5))))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1186 *5))))) -(-10 -7 (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1177)))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))))) (-15 -1754 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1177))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1177))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)))) (-15 -1754 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))))) (-15 -3636 ((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1177))))) -((-1555 (((-1159)) 7)) (-1900 (((-1159)) 11 T CONST)) (-3034 (((-1272) (-1159)) 13)) (-4298 (((-1159)) 8 T CONST)) (-1592 (((-130)) 10 T CONST))) -(((-1187) (-13 (-1217) (-10 -7 (-15 -1555 ((-1159))) (-15 -4298 ((-1159)) -3280) (-15 -1592 ((-130)) -3280) (-15 -1900 ((-1159)) -3280) (-15 -3034 ((-1272) (-1159)))))) (T -1187)) -((-1555 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187)))) (-4298 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187)))) (-1592 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1187)))) (-1900 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1187))))) -(-13 (-1217) (-10 -7 (-15 -1555 ((-1159))) (-15 -4298 ((-1159)) -3280) (-15 -1592 ((-130)) -3280) (-15 -1900 ((-1159)) -3280) (-15 -3034 ((-1272) (-1159))))) -((-1483 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-2957 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-4163 (((-1189 (-645 |#1|)) (-645 |#1|)) 49)) (-4120 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-2693 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-2314 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-3391 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-2634 (((-645 |#1|) (-645 |#1|)) 46)) (-1993 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-4005 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-1819 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-3443 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-1395 (((-645 (-645 |#1|)) (-1189 (-645 |#1|))) 60))) -(((-1188 |#1|) (-10 -7 (-15 -1819 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -4005 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1993 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1483 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3443 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -1395 ((-645 (-645 |#1|)) (-1189 (-645 |#1|)))) (-15 -2957 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -4163 ((-1189 (-645 |#1|)) (-645 |#1|))) (-15 -3391 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -4120 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -2634 ((-645 |#1|) (-645 |#1|))) (-15 -2314 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2693 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1188)) -((-2693 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1188 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-2314 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1188 *6)) (-5 *4 (-645 *5)))) (-2634 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1188 *3)))) (-4120 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1188 *4)) (-5 *3 (-645 *4)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1188 *3)))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1189 (-645 *4))) (-5 *1 (-1188 *4)) (-5 *3 (-645 *4)))) (-2957 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1188 *4)) (-5 *3 (-645 (-645 *4))))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-1189 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1188 *4)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1188 *4)) (-4 *4 (-851)))) (-1483 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1188 *4)))) (-1993 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1188 *4)))) (-4005 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1188 *5)))) (-1819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1188 *6)) (-5 *5 (-645 *4))))) -(-10 -7 (-15 -1819 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -4005 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1993 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1483 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3443 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -1395 ((-645 (-645 |#1|)) (-1189 (-645 |#1|)))) (-15 -2957 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -4163 ((-1189 (-645 |#1|)) (-645 |#1|))) (-15 -3391 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -4120 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -2634 ((-645 |#1|) (-645 |#1|))) (-15 -2314 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2693 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) -((-1683 (($ (-645 (-645 |#1|))) 10)) (-1633 (((-645 (-645 |#1|)) $) 11)) (-4127 (((-863) $) 38))) -(((-1189 |#1|) (-10 -8 (-15 -1683 ($ (-645 (-645 |#1|)))) (-15 -1633 ((-645 (-645 |#1|)) $)) (-15 -4127 ((-863) $))) (-1101)) (T -1189)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1189 *3)) (-4 *3 (-1101)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1189 *3)) (-4 *3 (-1101)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-1189 *3))))) -(-10 -8 (-15 -1683 ($ (-645 (-645 |#1|)))) (-15 -1633 ((-645 (-645 |#1|)) $)) (-15 -4127 ((-863) $))) -((-2399 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2831 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2848 (((-1272) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#2| $ |#1| |#2|) NIL)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) NIL)) (-2245 (($) NIL T CONST)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) NIL)) (-3993 ((|#1| $) NIL (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-645 |#2|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-1958 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-1422 (((-645 |#1|) $) NIL)) (-1528 (((-112) |#1| $) NIL)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-2732 (((-645 |#1|) $) NIL)) (-2479 (((-112) |#1| $) NIL)) (-3430 (((-1121) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2405 ((|#2| $) NIL (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL)) (-4271 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3253 (($) NIL) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-4127 (((-863) $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-4104 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) NIL)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) NIL (-2797 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| |#2| (-1101))))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1190 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) (-1101) (-1101)) (T -1190)) -NIL -(-13 (-1193 |#1| |#2|) (-10 -7 (-6 -4417))) -((-3436 ((|#1| (-645 |#1|)) 49)) (-4252 ((|#1| |#1| (-567)) 24)) (-3134 (((-1173 |#1|) |#1| (-922)) 20))) -(((-1191 |#1|) (-10 -7 (-15 -3436 (|#1| (-645 |#1|))) (-15 -3134 ((-1173 |#1|) |#1| (-922))) (-15 -4252 (|#1| |#1| (-567)))) (-365)) (T -1191)) -((-4252 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1191 *2)) (-4 *2 (-365)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1173 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-365)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1191 *2)) (-4 *2 (-365))))) -(-10 -7 (-15 -3436 (|#1| (-645 |#1|))) (-15 -3134 ((-1173 |#1|) |#1| (-922))) (-15 -4252 (|#1| |#1| (-567)))) -((-2831 (($) 10) (($ (-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)))) 14)) (-2774 (($ (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3397 (((-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-3751 (($ (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3822 (($ (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1881 (((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) 60)) (-1330 (($ (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) 16)) (-2732 (((-645 |#2|) $) 19)) (-2479 (((-112) |#2| $) 65)) (-3424 (((-3 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) "failed") (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) 64)) (-3060 (((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) 69)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3564 (((-645 |#3|) $) 43)) (-1783 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) NIL) (((-772) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-4127 (((-863) $) 27)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2929 (((-112) $ $) 51))) -(((-1192 |#1| |#2| |#3|) (-10 -8 (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -3822 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2831 (|#1| (-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))))) (-15 -2831 (|#1|)) (-15 -3822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -3397 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1783 (|#3| |#1| |#2| |#3|)) (-15 -1783 (|#3| |#1| |#2|)) (-15 -3564 ((-645 |#3|) |#1|)) (-15 -2479 ((-112) |#2| |#1|)) (-15 -2732 ((-645 |#2|) |#1|)) (-15 -2774 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2774 (|#1| (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -2774 (|#1| (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3424 ((-3 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) "failed") (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -1881 ((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -1330 (|#1| (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3060 ((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3397 ((-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3256 ((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -2461 ((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3751 (|#1| (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3822 (|#1| (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|))) (-1193 |#2| |#3|) (-1101) (-1101)) (T -1192)) -NIL -(-10 -8 (-15 -2929 ((-112) |#1| |#1|)) (-15 -4127 ((-863) |#1|)) (-15 -3822 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2831 (|#1| (-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))))) (-15 -2831 (|#1|)) (-15 -3822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3256 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -3397 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1783 (|#3| |#1| |#2| |#3|)) (-15 -1783 (|#3| |#1| |#2|)) (-15 -3564 ((-645 |#3|) |#1|)) (-15 -2479 ((-112) |#2| |#1|)) (-15 -2732 ((-645 |#2|) |#1|)) (-15 -2774 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2774 (|#1| (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -2774 (|#1| (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3424 ((-3 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) "failed") (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -1881 ((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -1330 (|#1| (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3060 ((-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) |#1|)) (-15 -3397 ((-645 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3256 ((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -2461 ((-112) (-1 (-112) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3751 (|#1| (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|)) (-15 -3822 (|#1| (-1 (-2 (|:| -1791 |#2|) (|:| -4232 |#3|)) (-2 (|:| -1791 |#2|) (|:| -4232 |#3|))) |#1|))) -((-2399 (((-112) $ $) 19 (-2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2831 (($) 73) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 72)) (-2848 (((-1272) $ |#1| |#1|) 100 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#2| $ |#1| |#2|) 74)) (-3502 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 46 (|has| $ (-6 -4417)))) (-3338 (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 56 (|has| $ (-6 -4417)))) (-4013 (((-3 |#2| "failed") |#1| $) 62)) (-2245 (($) 7 T CONST)) (-2440 (($ $) 59 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417))))) (-2774 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63)) (-3230 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 55 (|has| $ (-6 -4417)))) (-2499 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 57 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 53 (|has| $ (-6 -4417)))) (-3759 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4418)))) (-3702 ((|#2| $ |#1|) 89)) (-3397 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 31 (|has| $ (-6 -4417))) (((-645 |#2|) $) 80 (|has| $ (-6 -4417)))) (-1904 (((-112) $ (-772)) 9)) (-3993 ((|#1| $) 97 (|has| |#1| (-851)))) (-2513 (((-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 30 (|has| $ (-6 -4417))) (((-645 |#2|) $) 81 (|has| $ (-6 -4417)))) (-3136 (((-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417))))) (-1958 ((|#1| $) 96 (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 35 (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4418)))) (-3822 (($ (-1 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1596 (((-112) $ (-772)) 10)) (-3739 (((-1159) $) 22 (-2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-1422 (((-645 |#1|) $) 64)) (-1528 (((-112) |#1| $) 65)) (-1881 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 40)) (-1330 (($ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 41)) (-2732 (((-645 |#1|) $) 94)) (-2479 (((-112) |#1| $) 93)) (-3430 (((-1121) $) 21 (-2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2405 ((|#2| $) 98 (|has| |#1| (-851)))) (-3424 (((-3 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) "failed") (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 52)) (-4271 (($ $ |#2|) 99 (|has| $ (-6 -4418)))) (-3060 (((-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 42)) (-3256 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 33 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))))) 27 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-295 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 26 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) 25 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 24 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1101))))) (-3564 (((-645 |#2|) $) 92)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3253 (($) 50) (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-772) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| $ (-6 -4417)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4417)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 60 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))))) (-4142 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 51)) (-4127 (((-863) $) 18 (-2797 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863)))))) (-4104 (((-112) $ $) 23 (-2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-3911 (($ (-645 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) 43)) (-2461 (((-112) (-1 (-112) (-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) $) 34 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (-2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1193 |#1| |#2|) (-140) (-1101) (-1101)) (T -1193)) -((-4281 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) (-2831 (*1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1791 *3) (|:| -4232 *4)))) (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *1 (-1193 *3 *4)))) (-3822 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101))))) -(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -4281 (|t#2| $ |t#1| |t#2|)) (-15 -2831 ($)) (-15 -2831 ($ (-645 (-2 (|:| -1791 |t#1|) (|:| -4232 |t#2|))))) (-15 -3822 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1791 |#1|) (|:| -4232 |#2|))) . T) ((-102) -2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-614 (-863)) -2797 (|has| |#2| (-1101)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-310 (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)))) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1101))) ((-611 |#1| |#2|) . T) ((-1101) -2797 (|has| |#2| (-1101)) (|has| (-2 (|:| -1791 |#1|) (|:| -4232 |#2|)) (-1101))) ((-1217) . T)) -((-2394 (((-112)) 29)) (-4164 (((-1272) (-1159)) 31)) (-1962 (((-112)) 41)) (-1356 (((-1272)) 39)) (-2184 (((-1272) (-1159) (-1159)) 30)) (-4056 (((-112)) 42)) (-1330 (((-1272) |#1| |#2|) 53)) (-3152 (((-1272)) 27)) (-3825 (((-3 |#2| "failed") |#1|) 51)) (-2624 (((-1272)) 40))) -(((-1194 |#1| |#2|) (-10 -7 (-15 -3152 ((-1272))) (-15 -2184 ((-1272) (-1159) (-1159))) (-15 -4164 ((-1272) (-1159))) (-15 -1356 ((-1272))) (-15 -2624 ((-1272))) (-15 -2394 ((-112))) (-15 -1962 ((-112))) (-15 -4056 ((-112))) (-15 -3825 ((-3 |#2| "failed") |#1|)) (-15 -1330 ((-1272) |#1| |#2|))) (-1101) (-1101)) (T -1194)) -((-1330 (*1 *2 *3 *4) (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-3825 (*1 *2 *3) (|partial| -12 (-4 *2 (-1101)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-1101)))) (-4056 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-1962 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-2394 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-2624 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-1356 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1194 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)))) (-2184 (*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1194 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)))) (-3152 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101))))) -(-10 -7 (-15 -3152 ((-1272))) (-15 -2184 ((-1272) (-1159) (-1159))) (-15 -4164 ((-1272) (-1159))) (-15 -1356 ((-1272))) (-15 -2624 ((-1272))) (-15 -2394 ((-112))) (-15 -1962 ((-112))) (-15 -4056 ((-112))) (-15 -3825 ((-3 |#2| "failed") |#1|)) (-15 -1330 ((-1272) |#1| |#2|))) -((-1989 (((-1159) (-1159)) 22)) (-1773 (((-52) (-1159)) 25))) -(((-1195) (-10 -7 (-15 -1773 ((-52) (-1159))) (-15 -1989 ((-1159) (-1159))))) (T -1195)) -((-1989 (*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1195)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-1195))))) -(-10 -7 (-15 -1773 ((-52) (-1159))) (-15 -1989 ((-1159) (-1159)))) -((-4127 (((-1197) |#1|) 11))) -(((-1196 |#1|) (-10 -7 (-15 -4127 ((-1197) |#1|))) (-1101)) (T -1196)) -((-4127 (*1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1196 *3)) (-4 *3 (-1101))))) -(-10 -7 (-15 -4127 ((-1197) |#1|))) -((-2399 (((-112) $ $) NIL)) (-1774 (((-645 (-1159)) $) 40)) (-1852 (((-645 (-1159)) $ (-645 (-1159))) 43)) (-1824 (((-645 (-1159)) $ (-645 (-1159))) 42)) (-2019 (((-645 (-1159)) $ (-645 (-1159))) 44)) (-3853 (((-645 (-1159)) $) 39)) (-2844 (($) 28)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1625 (((-645 (-1159)) $) 41)) (-4015 (((-1272) $ (-567)) 36) (((-1272) $) 37)) (-3880 (($ (-863) (-567)) 33) (($ (-863) (-567) (-863)) NIL)) (-4127 (((-863) $) 54) (($ (-863)) 32)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1197) (-13 (-1101) (-617 (-863)) (-10 -8 (-15 -3880 ($ (-863) (-567))) (-15 -3880 ($ (-863) (-567) (-863))) (-15 -4015 ((-1272) $ (-567))) (-15 -4015 ((-1272) $)) (-15 -1625 ((-645 (-1159)) $)) (-15 -1774 ((-645 (-1159)) $)) (-15 -2844 ($)) (-15 -3853 ((-645 (-1159)) $)) (-15 -2019 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1852 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1824 ((-645 (-1159)) $ (-645 (-1159))))))) (T -1197)) -((-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1197)))) (-3880 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1197)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1197)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1197)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197)))) (-2844 (*1 *1) (-5 *1 (-1197))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197)))) (-2019 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197)))) (-1852 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197)))) (-1824 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(-13 (-1101) (-617 (-863)) (-10 -8 (-15 -3880 ($ (-863) (-567))) (-15 -3880 ($ (-863) (-567) (-863))) (-15 -4015 ((-1272) $ (-567))) (-15 -4015 ((-1272) $)) (-15 -1625 ((-645 (-1159)) $)) (-15 -1774 ((-645 (-1159)) $)) (-15 -2844 ($)) (-15 -3853 ((-645 (-1159)) $)) (-15 -2019 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1852 ((-645 (-1159)) $ (-645 (-1159)))) (-15 -1824 ((-645 (-1159)) $ (-645 (-1159)))))) -((-2399 (((-112) $ $) NIL)) (-2536 (((-1159) $ (-1159)) 17) (((-1159) $) 16)) (-3673 (((-1159) $ (-1159)) 15)) (-2888 (($ $ (-1159)) NIL)) (-4153 (((-3 (-1159) "failed") $) 11)) (-3143 (((-1159) $) 8)) (-3974 (((-3 (-1159) "failed") $) 12)) (-2209 (((-1159) $) 9)) (-3815 (($ (-391)) NIL) (($ (-391) (-1159)) NIL)) (-1988 (((-391) $) NIL)) (-3739 (((-1159) $) NIL)) (-3857 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1685 (((-112) $) 21)) (-4127 (((-863) $) NIL)) (-2990 (($ $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1198) (-13 (-366 (-391) (-1159)) (-10 -8 (-15 -2536 ((-1159) $ (-1159))) (-15 -2536 ((-1159) $)) (-15 -3143 ((-1159) $)) (-15 -4153 ((-3 (-1159) "failed") $)) (-15 -3974 ((-3 (-1159) "failed") $)) (-15 -1685 ((-112) $))))) (T -1198)) -((-2536 (*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1198)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1198)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1198)))) (-4153 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159)) (-5 *1 (-1198)))) (-3974 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159)) (-5 *1 (-1198)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) -(-13 (-366 (-391) (-1159)) (-10 -8 (-15 -2536 ((-1159) $ (-1159))) (-15 -2536 ((-1159) $)) (-15 -3143 ((-1159) $)) (-15 -4153 ((-3 (-1159) "failed") $)) (-15 -3974 ((-3 (-1159) "failed") $)) (-15 -1685 ((-112) $)))) -((-3449 (((-3 (-567) "failed") |#1|) 19)) (-1655 (((-3 (-567) "failed") |#1|) 14)) (-1575 (((-567) (-1159)) 33))) -(((-1199 |#1|) (-10 -7 (-15 -3449 ((-3 (-567) "failed") |#1|)) (-15 -1655 ((-3 (-567) "failed") |#1|)) (-15 -1575 ((-567) (-1159)))) (-1050)) (T -1199)) -((-1575 (*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-567)) (-5 *1 (-1199 *4)) (-4 *4 (-1050)))) (-1655 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1199 *3)) (-4 *3 (-1050)))) (-3449 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1199 *3)) (-4 *3 (-1050))))) -(-10 -7 (-15 -3449 ((-3 (-567) "failed") |#1|)) (-15 -1655 ((-3 (-567) "failed") |#1|)) (-15 -1575 ((-567) (-1159)))) -((-2083 (((-1134 (-225))) 9))) -(((-1200) (-10 -7 (-15 -2083 ((-1134 (-225)))))) (T -1200)) -((-2083 (*1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1200))))) -(-10 -7 (-15 -2083 ((-1134 (-225))))) -((-1480 (($) 12)) (-3220 (($ $) 36)) (-3201 (($ $) 34)) (-3087 (($ $) 26)) (-3241 (($ $) 18)) (-3807 (($ $) 16)) (-3228 (($ $) 20)) (-3119 (($ $) 31)) (-3210 (($ $) 35)) (-3098 (($ $) 30))) -(((-1201 |#1|) (-10 -8 (-15 -1480 (|#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -3098 (|#1| |#1|))) (-1202)) (T -1201)) -NIL -(-10 -8 (-15 -1480 (|#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -3098 (|#1| |#1|))) -((-3165 (($ $) 26)) (-3039 (($ $) 11)) (-3148 (($ $) 27)) (-3015 (($ $) 10)) (-3184 (($ $) 28)) (-3065 (($ $) 9)) (-1480 (($) 16)) (-3053 (($ $) 19)) (-3927 (($ $) 18)) (-3192 (($ $) 29)) (-3076 (($ $) 8)) (-3174 (($ $) 30)) (-3052 (($ $) 7)) (-3157 (($ $) 31)) (-3026 (($ $) 6)) (-3220 (($ $) 20)) (-3109 (($ $) 32)) (-3201 (($ $) 21)) (-3087 (($ $) 33)) (-3241 (($ $) 22)) (-3128 (($ $) 34)) (-3807 (($ $) 23)) (-3137 (($ $) 35)) (-3228 (($ $) 24)) (-3119 (($ $) 36)) (-3210 (($ $) 25)) (-3098 (($ $) 37)) (** (($ $ $) 17))) -(((-1202) (-140)) (T -1202)) -((-1480 (*1 *1) (-4 *1 (-1202)))) -(-13 (-1205) (-95) (-496) (-35) (-285) (-10 -8 (-15 -1480 ($)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1205) . T)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3794 ((|#1| $) 19)) (-2390 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-2112 (((-112) $ (-772)) 72)) (-3785 ((|#1| $ |#1|) 14 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 13 (|has| $ (-6 -4418)))) (-2245 (($) NIL T CONST)) (-3397 (((-645 |#1|) $) 76 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 64)) (-4218 (((-112) $ $) 49 (|has| |#1| (-1101)))) (-1904 (((-112) $ (-772)) 62)) (-2513 (((-645 |#1|) $) 77 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3751 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 27)) (-1596 (((-112) $ (-772)) 60)) (-3781 (((-645 |#1|) $) 54)) (-2915 (((-112) $) 52)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3256 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 107)) (-3240 (((-112) $) 9)) (-3347 (($) 10)) (-1783 ((|#1| $ "value") NIL)) (-4126 (((-567) $ $) 48)) (-3820 (((-645 $) $) 89)) (-2668 (((-112) $ $) 110)) (-3737 (((-645 $) $) 105)) (-2227 (($ $) 106)) (-3340 (((-112) $) 84)) (-3439 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4417))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-4303 (($ $) 88)) (-4127 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 12)) (-2588 (((-112) $ $) 39 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 37 (|has| |#1| (-1101)))) (-2410 (((-772) $) 58 (|has| $ (-6 -4417))))) -(((-1203 |#1|) (-13 (-1011 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -2390 ($ |#1| (-645 $))) (-15 -2390 ($ (-645 |#1|))) (-15 -2390 ($ |#1|)) (-15 -3340 ((-112) $)) (-15 -2227 ($ $)) (-15 -3737 ((-645 $) $)) (-15 -2668 ((-112) $ $)) (-15 -3820 ((-645 $) $)))) (-1101)) (T -1203)) -((-3340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-1101)))) (-2390 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1203 *2))) (-5 *1 (-1203 *2)) (-4 *2 (-1101)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-1203 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-1101)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-1101)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-645 (-1203 *3))) (-5 *1 (-1203 *3)) (-4 *3 (-1101)))) (-2668 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-1101)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-645 (-1203 *3))) (-5 *1 (-1203 *3)) (-4 *3 (-1101))))) -(-13 (-1011 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -2390 ($ |#1| (-645 $))) (-15 -2390 ($ (-645 |#1|))) (-15 -2390 ($ |#1|)) (-15 -3340 ((-112) $)) (-15 -2227 ($ $)) (-15 -3737 ((-645 $) $)) (-15 -2668 ((-112) $ $)) (-15 -3820 ((-645 $) $)))) -((-3039 (($ $) 15)) (-3065 (($ $) 12)) (-3076 (($ $) 10)) (-3052 (($ $) 17))) -(((-1204 |#1|) (-10 -8 (-15 -3052 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3039 (|#1| |#1|))) (-1205)) (T -1204)) -NIL -(-10 -8 (-15 -3052 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3039 (|#1| |#1|))) -((-3039 (($ $) 11)) (-3015 (($ $) 10)) (-3065 (($ $) 9)) (-3076 (($ $) 8)) (-3052 (($ $) 7)) (-3026 (($ $) 6))) -(((-1205) (-140)) (T -1205)) -((-3039 (*1 *1 *1) (-4 *1 (-1205))) (-3015 (*1 *1 *1) (-4 *1 (-1205))) (-3065 (*1 *1 *1) (-4 *1 (-1205))) (-3076 (*1 *1 *1) (-4 *1 (-1205))) (-3052 (*1 *1 *1) (-4 *1 (-1205))) (-3026 (*1 *1 *1) (-4 *1 (-1205)))) -(-13 (-10 -8 (-15 -3026 ($ $)) (-15 -3052 ($ $)) (-15 -3076 ($ $)) (-15 -3065 ($ $)) (-15 -3015 ($ $)) (-15 -3039 ($ $)))) -((-1986 ((|#2| |#2|) 98)) (-1964 (((-112) |#2|) 29)) (-2724 ((|#2| |#2|) 33)) (-2736 ((|#2| |#2|) 35)) (-1557 ((|#2| |#2| (-1177)) 92) ((|#2| |#2|) 93)) (-2949 (((-169 |#2|) |#2|) 31)) (-1856 ((|#2| |#2| (-1177)) 94) ((|#2| |#2|) 95))) -(((-1206 |#1| |#2|) (-10 -7 (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1177))) (-15 -1856 (|#2| |#2|)) (-15 -1856 (|#2| |#2| (-1177))) (-15 -1986 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -1964 ((-112) |#2|)) (-15 -2949 ((-169 |#2|) |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1202) (-433 |#1|))) (T -1206)) -((-2949 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1206 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1206 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) (-2736 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3)))))) -(-10 -7 (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1177))) (-15 -1856 (|#2| |#2|)) (-15 -1856 (|#2| |#2| (-1177))) (-15 -1986 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -1964 ((-112) |#2|)) (-15 -2949 ((-169 |#2|) |#2|))) -((-2635 ((|#4| |#4| |#1|) 32)) (-3244 ((|#4| |#4| |#1|) 33))) -(((-1207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2635 (|#4| |#4| |#1|)) (-15 -3244 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1207)) -((-3244 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1207 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2635 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1207 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -2635 (|#4| |#4| |#1|)) (-15 -3244 (|#4| |#4| |#1|))) -((-3869 ((|#2| |#2|) 148)) (-3093 ((|#2| |#2|) 145)) (-3473 ((|#2| |#2|) 136)) (-1762 ((|#2| |#2|) 133)) (-2296 ((|#2| |#2|) 141)) (-4234 ((|#2| |#2|) 129)) (-2773 ((|#2| |#2|) 44)) (-4102 ((|#2| |#2|) 105)) (-3245 ((|#2| |#2|) 88)) (-2531 ((|#2| |#2|) 143)) (-3780 ((|#2| |#2|) 131)) (-2264 ((|#2| |#2|) 153)) (-1924 ((|#2| |#2|) 151)) (-3594 ((|#2| |#2|) 152)) (-3252 ((|#2| |#2|) 150)) (-3261 ((|#2| |#2|) 163)) (-3374 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-893 |#1|))) (|has| |#2| (-887 |#1|)) (|has| |#1| (-615 (-893 |#1|))) (|has| |#1| (-887 |#1|))))) (-4293 ((|#2| |#2|) 89)) (-4213 ((|#2| |#2|) 154)) (-3304 ((|#2| |#2|) 155)) (-3854 ((|#2| |#2|) 142)) (-3917 ((|#2| |#2|) 130)) (-1880 ((|#2| |#2|) 149)) (-2819 ((|#2| |#2|) 147)) (-2521 ((|#2| |#2|) 137)) (-1820 ((|#2| |#2|) 135)) (-3320 ((|#2| |#2|) 139)) (-4292 ((|#2| |#2|) 127))) -(((-1208 |#1| |#2|) (-10 -7 (-15 -3304 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -3261 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -4293 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -3320 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -1924 (|#2| |#2|)) (-15 -3594 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (IF (|has| |#1| (-887 |#1|)) (IF (|has| |#1| (-615 (-893 |#1|))) (IF (|has| |#2| (-615 (-893 |#1|))) (IF (|has| |#2| (-887 |#1|)) (-15 -3374 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1202))) (T -1208)) -((-3374 (*1 *2 *2) (-12 (-4 *3 (-615 (-893 *3))) (-4 *3 (-887 *3)) (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-615 (-893 *3))) (-4 *2 (-887 *3)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3594 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-1924 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-4234 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2531 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3320 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-4292 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-4293 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-433 *3) (-1202)))))) -(-10 -7 (-15 -3304 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -3261 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -4293 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -3320 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -1924 (|#2| |#2|)) (-15 -3594 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (IF (|has| |#1| (-887 |#1|)) (IF (|has| |#1| (-615 (-893 |#1|))) (IF (|has| |#2| (-615 (-893 |#1|))) (IF (|has| |#2| (-887 |#1|)) (-15 -3374 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2545 (((-112) |#5| $) 68) (((-112) $) 110)) (-4124 ((|#5| |#5| $) 83)) (-3338 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4159 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3747 (((-3 $ "failed") (-645 |#5|)) 135)) (-2417 (((-3 $ "failed") $) 120)) (-4042 ((|#5| |#5| $) 102)) (-2197 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3670 ((|#5| |#5| $) 106)) (-2499 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3163 (((-2 (|:| -3988 (-645 |#5|)) (|:| -3815 (-645 |#5|))) $) 63)) (-2847 (((-112) |#5| $) 66) (((-112) $) 111)) (-4146 ((|#4| $) 116)) (-3250 (((-3 |#5| "failed") $) 118)) (-2200 (((-645 |#5|) $) 55)) (-2815 (((-112) |#5| $) 75) (((-112) $) 115)) (-1626 ((|#5| |#5| $) 89)) (-1835 (((-112) $ $) 29)) (-2924 (((-112) |#5| $) 71) (((-112) $) 113)) (-1471 ((|#5| |#5| $) 86)) (-2405 (((-3 |#5| "failed") $) 117)) (-3981 (($ $ |#5|) 136)) (-1813 (((-772) $) 60)) (-4142 (($ (-645 |#5|)) 133)) (-2388 (($ $ |#4|) 131)) (-2155 (($ $ |#4|) 129)) (-2961 (($ $) 128)) (-4127 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-4191 (((-772) $) 140)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2862 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-1760 (((-645 |#4|) $) 123)) (-3113 (((-112) |#4| $) 126)) (-2929 (((-112) $ $) 20))) -(((-1209 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4191 ((-772) |#1|)) (-15 -3981 (|#1| |#1| |#5|)) (-15 -3338 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3113 ((-112) |#4| |#1|)) (-15 -1760 ((-645 |#4|) |#1|)) (-15 -2417 ((-3 |#1| "failed") |#1|)) (-15 -3250 ((-3 |#5| "failed") |#1|)) (-15 -2405 ((-3 |#5| "failed") |#1|)) (-15 -3670 (|#5| |#5| |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -4042 (|#5| |#5| |#1|)) (-15 -1626 (|#5| |#5| |#1|)) (-15 -1471 (|#5| |#5| |#1|)) (-15 -4124 (|#5| |#5| |#1|)) (-15 -4159 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2499 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2815 ((-112) |#1|)) (-15 -2924 ((-112) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2862 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -2815 ((-112) |#5| |#1|)) (-15 -2924 ((-112) |#5| |#1|)) (-15 -2545 ((-112) |#5| |#1|)) (-15 -2197 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2847 ((-112) |#1|)) (-15 -2847 ((-112) |#5| |#1|)) (-15 -3163 ((-2 (|:| -3988 (-645 |#5|)) (|:| -3815 (-645 |#5|))) |#1|)) (-15 -1813 ((-772) |#1|)) (-15 -2200 ((-645 |#5|) |#1|)) (-15 -4291 ((-3 (-2 (|:| |bas| |#1|) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4291 ((-3 (-2 (|:| |bas| |#1|) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1835 ((-112) |#1| |#1|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#4|)) (-15 -4146 (|#4| |#1|)) (-15 -3747 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4127 ((-645 |#5|) |#1|)) (-15 -4142 (|#1| (-645 |#5|))) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3338 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) (-1210 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1066 |#2| |#3| |#4|)) (T -1209)) -NIL -(-10 -8 (-15 -4191 ((-772) |#1|)) (-15 -3981 (|#1| |#1| |#5|)) (-15 -3338 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3113 ((-112) |#4| |#1|)) (-15 -1760 ((-645 |#4|) |#1|)) (-15 -2417 ((-3 |#1| "failed") |#1|)) (-15 -3250 ((-3 |#5| "failed") |#1|)) (-15 -2405 ((-3 |#5| "failed") |#1|)) (-15 -3670 (|#5| |#5| |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -4042 (|#5| |#5| |#1|)) (-15 -1626 (|#5| |#5| |#1|)) (-15 -1471 (|#5| |#5| |#1|)) (-15 -4124 (|#5| |#5| |#1|)) (-15 -4159 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2499 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2815 ((-112) |#1|)) (-15 -2924 ((-112) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2862 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -2815 ((-112) |#5| |#1|)) (-15 -2924 ((-112) |#5| |#1|)) (-15 -2545 ((-112) |#5| |#1|)) (-15 -2197 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2847 ((-112) |#1|)) (-15 -2847 ((-112) |#5| |#1|)) (-15 -3163 ((-2 (|:| -3988 (-645 |#5|)) (|:| -3815 (-645 |#5|))) |#1|)) (-15 -1813 ((-772) |#1|)) (-15 -2200 ((-645 |#5|) |#1|)) (-15 -4291 ((-3 (-2 (|:| |bas| |#1|) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4291 ((-3 (-2 (|:| |bas| |#1|) (|:| -2254 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1835 ((-112) |#1| |#1|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#4|)) (-15 -4146 (|#4| |#1|)) (-15 -3747 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4127 ((-645 |#5|) |#1|)) (-15 -4142 (|#1| (-645 |#5|))) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3338 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2499 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4127 ((-863) |#1|)) (-15 -2929 ((-112) |#1| |#1|))) -((-2399 (((-112) $ $) 7)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) 86)) (-3645 (((-645 $) (-645 |#4|)) 87)) (-2845 (((-645 |#3|) $) 34)) (-3295 (((-112) $) 27)) (-3008 (((-112) $) 18 (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) 102) (((-112) $) 98)) (-4124 ((|#4| |#4| $) 93)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) 28)) (-2112 (((-112) $ (-772)) 45)) (-3338 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-2245 (($) 46 T CONST)) (-3162 (((-112) $) 23 (|has| |#1| (-559)))) (-2762 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3232 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3544 (((-112) $) 26 (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4267 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) 37)) (-2033 (($ (-645 |#4|)) 36)) (-2417 (((-3 $ "failed") $) 83)) (-4042 ((|#4| |#4| $) 90)) (-2440 (($ $) 69 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#4| $) 68 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3670 ((|#4| |#4| $) 88)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) 106)) (-3397 (((-645 |#4|) $) 53 (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) 105) (((-112) $) 104)) (-4146 ((|#3| $) 35)) (-1904 (((-112) $ (-772)) 44)) (-2513 (((-645 |#4|) $) 54 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) 48)) (-3254 (((-645 |#3|) $) 33)) (-3377 (((-112) |#3| $) 32)) (-1596 (((-112) $ (-772)) 43)) (-3739 (((-1159) $) 10)) (-3250 (((-3 |#4| "failed") $) 84)) (-2200 (((-645 |#4|) $) 108)) (-2815 (((-112) |#4| $) 100) (((-112) $) 96)) (-1626 ((|#4| |#4| $) 91)) (-1835 (((-112) $ $) 111)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) 101) (((-112) $) 97)) (-1471 ((|#4| |#4| $) 92)) (-3430 (((-1121) $) 11)) (-2405 (((-3 |#4| "failed") $) 85)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3454 (((-3 $ "failed") $ |#4|) 79)) (-3981 (($ $ |#4|) 78)) (-3256 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) 39)) (-3240 (((-112) $) 42)) (-3347 (($) 41)) (-1813 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1101)) (|has| $ (-6 -4417)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-4303 (($ $) 40)) (-3880 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) 61)) (-2388 (($ $ |#3|) 29)) (-2155 (($ $ |#3|) 31)) (-2961 (($ $) 89)) (-3712 (($ $ |#3|) 30)) (-4127 (((-863) $) 12) (((-645 |#4|) $) 38)) (-4191 (((-772) $) 77 (|has| |#3| (-370)))) (-4104 (((-112) $ $) 9)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-2461 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) 82)) (-3113 (((-112) |#3| $) 81)) (-2929 (((-112) $ $) 6)) (-2410 (((-772) $) 47 (|has| $ (-6 -4417))))) -(((-1210 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1066 |t#1| |t#2| |t#3|)) (T -1210)) -((-1835 (*1 *2 *1 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-4291 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2254 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1210 *5 *6 *7 *8)))) (-4291 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2254 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1210 *6 *7 *8 *9)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *6)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-772)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-2 (|:| -3988 (-645 *6)) (|:| -3815 (-645 *6)))))) (-2847 (*1 *2 *3 *1) (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-2197 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1210 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112)))) (-2545 (*1 *2 *3 *1) (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2924 (*1 *2 *3 *1) (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2815 (*1 *2 *3 *1) (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1210 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) (-2499 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1210 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1066 *5 *6 *7)))) (-4159 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1210 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)))) (-4124 (*1 *2 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-1471 (*1 *2 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-1626 (*1 *2 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-4042 (*1 *2 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-2961 (*1 *1 *1) (-12 (-4 *1 (-1210 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1066 *2 *3 *4)))) (-3670 (*1 *2 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1210 *4 *5 *6 *7)))) (-2047 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -3988 *1) (|:| -3815 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1210 *4 *5 *6 *7)))) (-2405 (*1 *2 *1) (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-3250 (*1 *2 *1) (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-2417 (*1 *1 *1) (|partial| -12 (-4 *1 (-1210 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1066 *2 *3 *4)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5)))) (-3113 (*1 *2 *3 *1) (-12 (-4 *1 (-1210 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1066 *4 *5 *3)) (-5 *2 (-112)))) (-3338 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1210 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1066 *4 *5 *3)))) (-3454 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-3981 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772))))) -(-13 (-977 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1835 ((-112) $ $)) (-15 -4291 ((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4291 ((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2200 ((-645 |t#4|) $)) (-15 -1813 ((-772) $)) (-15 -3163 ((-2 (|:| -3988 (-645 |t#4|)) (|:| -3815 (-645 |t#4|))) $)) (-15 -2847 ((-112) |t#4| $)) (-15 -2847 ((-112) $)) (-15 -2197 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2545 ((-112) |t#4| $)) (-15 -2924 ((-112) |t#4| $)) (-15 -2815 ((-112) |t#4| $)) (-15 -2862 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -2545 ((-112) $)) (-15 -2924 ((-112) $)) (-15 -2815 ((-112) $)) (-15 -2499 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4159 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4124 (|t#4| |t#4| $)) (-15 -1471 (|t#4| |t#4| $)) (-15 -1626 (|t#4| |t#4| $)) (-15 -4042 (|t#4| |t#4| $)) (-15 -2961 ($ $)) (-15 -3670 (|t#4| |t#4| $)) (-15 -3645 ((-645 $) (-645 |t#4|))) (-15 -2047 ((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |t#4|)))) (-645 |t#4|))) (-15 -2405 ((-3 |t#4| "failed") $)) (-15 -3250 ((-3 |t#4| "failed") $)) (-15 -2417 ((-3 $ "failed") $)) (-15 -1760 ((-645 |t#3|) $)) (-15 -3113 ((-112) |t#3| $)) (-15 -3338 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3454 ((-3 $ "failed") $ |t#4|)) (-15 -3981 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -4191 ((-772) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1101) . T) ((-1217) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1177)) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3736 (((-953 |#1|) $ (-772)) 20) (((-953 |#1|) $ (-772) (-772)) NIL)) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $ (-1177)) NIL) (((-772) $ (-1177) (-772)) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2014 (((-112) $) NIL)) (-2821 (($ $ (-645 (-1177)) (-645 (-534 (-1177)))) NIL) (($ $ (-1177) (-534 (-1177))) NIL) (($ |#1| (-534 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-1576 (($ $ (-1177)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-1920 (($ (-1 $) (-1177) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3981 (($ $ (-772)) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ (-1177) $) NIL) (($ $ (-645 (-1177)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1621 (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-1813 (((-534 (-1177)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1177)) NIL) (($ (-953 |#1|)) NIL)) (-2253 ((|#1| $ (-534 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (((-953 |#1|) $ (-772)) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2636 (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1211 |#1|) (-13 (-741 |#1| (-1177)) (-10 -8 (-15 -2253 ((-953 |#1|) $ (-772))) (-15 -4127 ($ (-1177))) (-15 -4127 ($ (-953 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $ (-1177) |#1|)) (-15 -1920 ($ (-1 $) (-1177) |#1|))) |%noBranch|))) (-1050)) (T -1211)) -((-2253 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-953 *4)) (-5 *1 (-1211 *4)) (-4 *4 (-1050)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1211 *3)) (-4 *3 (-1050)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-5 *1 (-1211 *3)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *1 (-1211 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))) (-1920 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1211 *4))) (-5 *3 (-1177)) (-5 *1 (-1211 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050))))) -(-13 (-741 |#1| (-1177)) (-10 -8 (-15 -2253 ((-953 |#1|) $ (-772))) (-15 -4127 ($ (-1177))) (-15 -4127 ($ (-953 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $ (-1177) |#1|)) (-15 -1920 ($ (-1 $) (-1177) |#1|))) |%noBranch|))) -((-2550 (($ |#1| (-645 (-645 (-944 (-225)))) (-112)) 19)) (-3517 (((-112) $ (-112)) 18)) (-2274 (((-112) $) 17)) (-3138 (((-645 (-645 (-944 (-225)))) $) 13)) (-1696 ((|#1| $) 8)) (-3238 (((-112) $) 15))) -(((-1212 |#1|) (-10 -8 (-15 -1696 (|#1| $)) (-15 -3138 ((-645 (-645 (-944 (-225)))) $)) (-15 -3238 ((-112) $)) (-15 -2274 ((-112) $)) (-15 -3517 ((-112) $ (-112))) (-15 -2550 ($ |#1| (-645 (-645 (-944 (-225)))) (-112)))) (-975)) (T -1212)) -((-2550 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-112)) (-5 *1 (-1212 *2)) (-4 *2 (-975)))) (-3517 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-1212 *3)) (-4 *3 (-975)))) (-1696 (*1 *2 *1) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-975))))) -(-10 -8 (-15 -1696 (|#1| $)) (-15 -3138 ((-645 (-645 (-944 (-225)))) $)) (-15 -3238 ((-112) $)) (-15 -2274 ((-112) $)) (-15 -3517 ((-112) $ (-112))) (-15 -2550 ($ |#1| (-645 (-645 (-944 (-225)))) (-112)))) -((-3457 (((-944 (-225)) (-944 (-225))) 31)) (-1943 (((-944 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2517 (((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-3246 (((-225) (-944 (-225)) (-944 (-225))) 27)) (-2202 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 28)) (-2726 (((-645 (-645 (-225))) (-567)) 48)) (-3037 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 26)) (-3024 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 24)) (* (((-944 (-225)) (-225) (-944 (-225))) 22))) -(((-1213) (-10 -7 (-15 -1943 ((-944 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-944 (-225)) (-225) (-944 (-225)))) (-15 -3024 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3037 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3246 ((-225) (-944 (-225)) (-944 (-225)))) (-15 -2202 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3457 ((-944 (-225)) (-944 (-225)))) (-15 -2726 ((-645 (-645 (-225))) (-567))) (-15 -2517 ((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225))))))) (T -1213)) -((-2517 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-944 *4))) (-5 *1 (-1213)) (-5 *3 (-944 *4)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1213)))) (-3457 (*1 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) (-2202 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) (-3246 (*1 *2 *3 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-225)) (-5 *1 (-1213)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-944 (-225))) (-5 *3 (-225)) (-5 *1 (-1213)))) (-1943 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)) (-5 *3 (-225))))) -(-10 -7 (-15 -1943 ((-944 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-944 (-225)) (-225) (-944 (-225)))) (-15 -3024 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3037 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3246 ((-225) (-944 (-225)) (-944 (-225)))) (-15 -2202 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3457 ((-944 (-225)) (-944 (-225)))) (-15 -2726 ((-645 (-645 (-225))) (-567))) (-15 -2517 ((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225)))))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3338 ((|#1| $ (-772)) 18)) (-2334 (((-772) $) 13)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-4127 (((-959 |#1|) $) 12) (($ (-959 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2929 (((-112) $ $) 22 (|has| |#1| (-1101))))) -(((-1214 |#1|) (-13 (-493 (-959 |#1|)) (-10 -8 (-15 -3338 (|#1| $ (-772))) (-15 -2334 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) (-1217)) (T -1214)) -((-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1214 *2)) (-4 *2 (-1217)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1214 *3)) (-4 *3 (-1217))))) -(-13 (-493 (-959 |#1|)) (-10 -8 (-15 -3338 (|#1| $ (-772))) (-15 -2334 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|))) -((-4001 (((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)) (-567)) 94)) (-3690 (((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|))) 86)) (-2907 (((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|))) 70))) -(((-1215 |#1|) (-10 -7 (-15 -3690 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)))) (-15 -2907 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)))) (-15 -4001 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)) (-567)))) (-351)) (T -1215)) -((-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1173 (-1173 *5)))) (-5 *1 (-1215 *5)) (-5 *3 (-1173 (-1173 *5))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1173 (-1173 *4)))) (-5 *1 (-1215 *4)) (-5 *3 (-1173 (-1173 *4))))) (-3690 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1173 (-1173 *4)))) (-5 *1 (-1215 *4)) (-5 *3 (-1173 (-1173 *4)))))) -(-10 -7 (-15 -3690 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)))) (-15 -2907 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)))) (-15 -4001 ((-421 (-1173 (-1173 |#1|))) (-1173 (-1173 |#1|)) (-567)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 9) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1216) (-1084)) (T -1216)) -NIL -(-1084) -NIL -(((-1217) (-140)) (T -1217)) -NIL -(-13 (-10 -7 (-6 -3003))) -((-1806 (((-112)) 18)) (-2816 (((-1272) (-645 |#1|) (-645 |#1|)) 22) (((-1272) (-645 |#1|)) 23)) (-1904 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-1596 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-4216 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2244 (((-2 (|:| -1933 (-645 |#1|)) (|:| -3112 (-645 |#1|)))) 20))) -(((-1218 |#1|) (-10 -7 (-15 -2816 ((-1272) (-645 |#1|))) (-15 -2816 ((-1272) (-645 |#1|) (-645 |#1|))) (-15 -2244 ((-2 (|:| -1933 (-645 |#1|)) (|:| -3112 (-645 |#1|))))) (-15 -1596 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1596 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4216 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1806 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -4216 (|#1| (-645 |#1|))) (-15 -1904 ((-112) |#1| |#1|))) |%noBranch|)) (-1101)) (T -1218)) -((-1904 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-851)) (-4 *3 (-1101)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-851)) (-5 *1 (-1218 *2)))) (-1806 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-1101)))) (-4216 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1218 *2)) (-4 *2 (-1101)))) (-1596 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1101)) (-5 *2 (-112)) (-5 *1 (-1218 *3)))) (-1596 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-1101)))) (-2244 (*1 *2) (-12 (-5 *2 (-2 (|:| -1933 (-645 *3)) (|:| -3112 (-645 *3)))) (-5 *1 (-1218 *3)) (-4 *3 (-1101)))) (-2816 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-5 *2 (-1272)) (-5 *1 (-1218 *4)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-5 *2 (-1272)) (-5 *1 (-1218 *4))))) -(-10 -7 (-15 -2816 ((-1272) (-645 |#1|))) (-15 -2816 ((-1272) (-645 |#1|) (-645 |#1|))) (-15 -2244 ((-2 (|:| -1933 (-645 |#1|)) (|:| -3112 (-645 |#1|))))) (-15 -1596 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1596 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4216 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1806 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -4216 (|#1| (-645 |#1|))) (-15 -1904 ((-112) |#1| |#1|))) |%noBranch|)) -((-4050 (((-1272) (-645 (-1177)) (-645 (-1177))) 14) (((-1272) (-645 (-1177))) 12)) (-3897 (((-1272)) 16)) (-1733 (((-2 (|:| -3112 (-645 (-1177))) (|:| -1933 (-645 (-1177))))) 20))) -(((-1219) (-10 -7 (-15 -4050 ((-1272) (-645 (-1177)))) (-15 -4050 ((-1272) (-645 (-1177)) (-645 (-1177)))) (-15 -1733 ((-2 (|:| -3112 (-645 (-1177))) (|:| -1933 (-645 (-1177)))))) (-15 -3897 ((-1272))))) (T -1219)) -((-3897 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1219)))) (-1733 (*1 *2) (-12 (-5 *2 (-2 (|:| -3112 (-645 (-1177))) (|:| -1933 (-645 (-1177))))) (-5 *1 (-1219)))) (-4050 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1219)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1219))))) -(-10 -7 (-15 -4050 ((-1272) (-645 (-1177)))) (-15 -4050 ((-1272) (-645 (-1177)) (-645 (-1177)))) (-15 -1733 ((-2 (|:| -3112 (-645 (-1177))) (|:| -1933 (-645 (-1177)))))) (-15 -3897 ((-1272)))) -((-3081 (($ $) 17)) (-4341 (((-112) $) 28))) -(((-1220 |#1|) (-10 -8 (-15 -3081 (|#1| |#1|)) (-15 -4341 ((-112) |#1|))) (-1221)) (T -1220)) -NIL -(-10 -8 (-15 -3081 (|#1| |#1|)) (-15 -4341 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 57)) (-2833 (((-421 $) $) 58)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-4341 (((-112) $) 59)) (-2843 (((-112) $) 35)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2703 (((-421 $) $) 56)) (-2387 (((-3 $ "failed") $ $) 48)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-1221) (-140)) (T -1221)) -((-4341 (*1 *2 *1) (-12 (-4 *1 (-1221)) (-5 *2 (-112)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1221)))) (-3081 (*1 *1 *1) (-4 *1 (-1221))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1221))))) -(-13 (-455) (-10 -8 (-15 -4341 ((-112) $)) (-15 -2833 ((-421 $) $)) (-15 -3081 ($ $)) (-15 -2703 ((-421 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1725 (($ $ $) NIL)) (-1713 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1222) (-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280)))) (T -1222)) -((-1713 (*1 *1 *1 *1) (-5 *1 (-1222))) (-1725 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2245 (*1 *1) (-5 *1 (-1222)))) -(-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 7))) +(((-1186) (-1102)) (T -1186)) +NIL +(-1102) +((-1820 (((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 67)) (-3018 (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|)))) 78) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|))) 74) (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178)) 79) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178)) 73) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178))) 107) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 104))) +(((-1187 |#1|) (-10 -7 (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1820 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))))) (-559)) (T -1187)) +((-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1187 *5)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1187 *4)) (-5 *3 (-295 (-410 (-954 *4)))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1187 *4)) (-5 *3 (-410 (-954 *4))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) (-5 *3 (-295 (-410 (-954 *5)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) (-5 *3 (-410 (-954 *5))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5)) (-5 *3 (-645 (-295 (-410 (-954 *5))))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5))))) +(-10 -7 (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1820 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))))) +((-1891 (((-1160)) 7)) (-2810 (((-1160)) 11 T CONST)) (-3044 (((-1273) (-1160)) 13)) (-1837 (((-1160)) 8 T CONST)) (-3575 (((-130)) 10 T CONST))) +(((-1188) (-13 (-1218) (-10 -7 (-15 -1891 ((-1160))) (-15 -1837 ((-1160)) -3286) (-15 -3575 ((-130)) -3286) (-15 -2810 ((-1160)) -3286) (-15 -3044 ((-1273) (-1160)))))) (T -1188)) +((-1891 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-1837 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-3575 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1188)))) (-2810 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1188))))) +(-13 (-1218) (-10 -7 (-15 -1891 ((-1160))) (-15 -1837 ((-1160)) -3286) (-15 -3575 ((-130)) -3286) (-15 -2810 ((-1160)) -3286) (-15 -3044 ((-1273) (-1160))))) +((-3764 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-2899 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-1743 (((-1190 (-645 |#1|)) (-645 |#1|)) 49)) (-3565 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-2698 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-3761 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-3828 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-1401 (((-645 |#1|) (-645 |#1|)) 46)) (-1472 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-2106 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-2351 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-2396 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-3733 (((-645 (-645 |#1|)) (-1190 (-645 |#1|))) 60))) +(((-1189 |#1|) (-10 -7 (-15 -2351 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2106 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1472 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3764 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2396 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3733 ((-645 (-645 |#1|)) (-1190 (-645 |#1|)))) (-15 -2899 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -1743 ((-1190 (-645 |#1|)) (-645 |#1|))) (-15 -3828 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3565 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1401 ((-645 |#1|) (-645 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2698 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1189)) +((-2698 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-3761 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1189 *6)) (-5 *4 (-645 *5)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1189 *3)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)) (-5 *3 (-645 *4)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1189 *3)))) (-1743 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1190 (-645 *4))) (-5 *1 (-1189 *4)) (-5 *3 (-645 *4)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 *4))))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-1190 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-851)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1189 *4)))) (-1472 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1189 *4)))) (-2106 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1189 *5)))) (-2351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1189 *6)) (-5 *5 (-645 *4))))) +(-10 -7 (-15 -2351 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2106 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1472 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3764 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2396 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3733 ((-645 (-645 |#1|)) (-1190 (-645 |#1|)))) (-15 -2899 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -1743 ((-1190 (-645 |#1|)) (-645 |#1|))) (-15 -3828 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3565 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1401 ((-645 |#1|) (-645 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2698 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) +((-2281 (($ (-645 (-645 |#1|))) 10)) (-1603 (((-645 (-645 |#1|)) $) 11)) (-4132 (((-863) $) 38))) +(((-1190 |#1|) (-10 -8 (-15 -2281 ($ (-645 (-645 |#1|)))) (-15 -1603 ((-645 (-645 |#1|)) $)) (-15 -4132 ((-863) $))) (-1102)) (T -1190)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1190 *3))))) +(-10 -8 (-15 -2281 ($ (-645 (-645 |#1|)))) (-15 -1603 ((-645 (-645 |#1|)) $)) (-15 -4132 ((-863) $))) +((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1191 |#1| |#2|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102)) (T -1191)) +NIL +(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) +((-3098 ((|#1| (-645 |#1|)) 49)) (-2750 ((|#1| |#1| (-567)) 24)) (-4120 (((-1174 |#1|) |#1| (-923)) 20))) +(((-1192 |#1|) (-10 -7 (-15 -3098 (|#1| (-645 |#1|))) (-15 -4120 ((-1174 |#1|) |#1| (-923))) (-15 -2750 (|#1| |#1| (-567)))) (-365)) (T -1192)) +((-2750 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1192 *2)) (-4 *2 (-365)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1174 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-365)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1192 *2)) (-4 *2 (-365))))) +(-10 -7 (-15 -3098 (|#1| (-645 |#1|))) (-15 -4120 ((-1174 |#1|) |#1| (-923))) (-15 -2750 (|#1| |#1| (-567)))) +((-2835 (($) 10) (($ (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)))) 14)) (-2539 (($ (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-3731 (($ (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3829 (($ (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1566 (((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 60)) (-2531 (($ (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 16)) (-1789 (((-645 |#2|) $) 19)) (-2996 (((-112) |#2| $) 65)) (-4128 (((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 64)) (-1793 (((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 69)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2339 (((-645 |#3|) $) 43)) (-1787 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-4132 (((-863) $) 27)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2936 (((-112) $ $) 51))) +(((-1193 |#1| |#2| |#3|) (-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2835 (|#1| (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))))) (-15 -2835 (|#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -2996 ((-112) |#2| |#1|)) (-15 -1789 ((-645 |#2|) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2539 (|#1| (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -2539 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -4128 ((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1566 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2531 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -1793 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2777 ((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3025 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1853 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3731 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3829 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|))) (-1194 |#2| |#3|) (-1102) (-1102)) (T -1193)) +NIL +(-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2835 (|#1| (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))))) (-15 -2835 (|#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -2996 ((-112) |#2| |#1|)) (-15 -1789 ((-645 |#2|) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2539 (|#1| (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -2539 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -4128 ((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1566 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2531 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -1793 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2777 ((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3025 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1853 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3731 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3829 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|))) +((-2403 (((-112) $ $) 19 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2835 (($) 73) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 72)) (-1783 (((-1273) $ |#1| |#1|) 100 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#2| $ |#1| |#2|) 74)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 89)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418))) (((-645 |#2|) $) 80 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 97 (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418))) (((-645 |#2|) $) 81 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 96 (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41)) (-1789 (((-645 |#1|) $) 94)) (-2996 (((-112) |#1| $) 93)) (-3430 (((-1122) $) 21 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2409 ((|#2| $) 98 (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52)) (-3986 (($ $ |#2|) 99 (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 92)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51)) (-4132 (((-863) $) 18 (-2800 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))))) (-1745 (((-112) $ $) 23 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1194 |#1| |#2|) (-140) (-1102) (-1102)) (T -1194)) +((-4284 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2835 (*1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 *3) (|:| -4237 *4)))) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1194 *3 *4)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) +(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -4284 (|t#2| $ |t#1| |t#2|)) (-15 -2835 ($)) (-15 -2835 ($ (-645 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))))) (-15 -3829 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-1102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-1218) . T)) +((-1570 (((-112)) 29)) (-1849 (((-1273) (-1160)) 31)) (-1469 (((-112)) 41)) (-2483 (((-1273)) 39)) (-2010 (((-1273) (-1160) (-1160)) 30)) (-2161 (((-112)) 42)) (-2531 (((-1273) |#1| |#2|) 53)) (-2035 (((-1273)) 27)) (-3006 (((-3 |#2| "failed") |#1|) 51)) (-3158 (((-1273)) 40))) +(((-1195 |#1| |#2|) (-10 -7 (-15 -2035 ((-1273))) (-15 -2010 ((-1273) (-1160) (-1160))) (-15 -1849 ((-1273) (-1160))) (-15 -2483 ((-1273))) (-15 -3158 ((-1273))) (-15 -1570 ((-112))) (-15 -1469 ((-112))) (-15 -2161 ((-112))) (-15 -3006 ((-3 |#2| "failed") |#1|)) (-15 -2531 ((-1273) |#1| |#2|))) (-1102) (-1102)) (T -1195)) +((-2531 (*1 *2 *3 *4) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3006 (*1 *2 *3) (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1102)))) (-2161 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1469 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1570 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3158 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2483 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-2035 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) +(-10 -7 (-15 -2035 ((-1273))) (-15 -2010 ((-1273) (-1160) (-1160))) (-15 -1849 ((-1273) (-1160))) (-15 -2483 ((-1273))) (-15 -3158 ((-1273))) (-15 -1570 ((-112))) (-15 -1469 ((-112))) (-15 -2161 ((-112))) (-15 -3006 ((-3 |#2| "failed") |#1|)) (-15 -2531 ((-1273) |#1| |#2|))) +((-2352 (((-1160) (-1160)) 22)) (-4331 (((-52) (-1160)) 25))) +(((-1196) (-10 -7 (-15 -4331 ((-52) (-1160))) (-15 -2352 ((-1160) (-1160))))) (T -1196)) +((-2352 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1196)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-1196))))) +(-10 -7 (-15 -4331 ((-52) (-1160))) (-15 -2352 ((-1160) (-1160)))) +((-4132 (((-1198) |#1|) 11))) +(((-1197 |#1|) (-10 -7 (-15 -4132 ((-1198) |#1|))) (-1102)) (T -1197)) +((-4132 (*1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1197 *3)) (-4 *3 (-1102))))) +(-10 -7 (-15 -4132 ((-1198) |#1|))) +((-2403 (((-112) $ $) NIL)) (-4214 (((-645 (-1160)) $) 40)) (-2543 (((-645 (-1160)) $ (-645 (-1160))) 43)) (-1631 (((-645 (-1160)) $ (-645 (-1160))) 42)) (-2121 (((-645 (-1160)) $ (-645 (-1160))) 44)) (-1499 (((-645 (-1160)) $) 39)) (-2846 (($) 28)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3028 (((-645 (-1160)) $) 41)) (-4022 (((-1273) $ (-567)) 36) (((-1273) $) 37)) (-3893 (($ (-863) (-567)) 33) (($ (-863) (-567) (-863)) NIL)) (-4132 (((-863) $) 54) (($ (-863)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1198) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -3893 ($ (-863) (-567) (-863))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -4214 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2543 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))) (T -1198)) +((-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) (-3893 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1198)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1198)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2846 (*1 *1) (-5 *1 (-1198))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2121 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2543 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-1631 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) +(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -3893 ($ (-863) (-567) (-863))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -4214 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2543 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160)))))) +((-2403 (((-112) $ $) NIL)) (-2711 (((-1160) $ (-1160)) 17) (((-1160) $) 16)) (-4032 (((-1160) $ (-1160)) 15)) (-2828 (($ $ (-1160)) NIL)) (-4151 (((-3 (-1160) "failed") $) 11)) (-3587 (((-1160) $) 8)) (-2901 (((-3 (-1160) "failed") $) 12)) (-2636 (((-1160) $) 9)) (-3823 (($ (-391)) NIL) (($ (-391) (-1160)) NIL)) (-1996 (((-391) $) NIL)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2461 (((-112) $) 21)) (-4132 (((-863) $) NIL)) (-1675 (($ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1199) (-13 (-366 (-391) (-1160)) (-10 -8 (-15 -2711 ((-1160) $ (-1160))) (-15 -2711 ((-1160) $)) (-15 -3587 ((-1160) $)) (-15 -4151 ((-3 (-1160) "failed") $)) (-15 -2901 ((-3 (-1160) "failed") $)) (-15 -2461 ((-112) $))))) (T -1199)) +((-2711 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-4151 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2901 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199))))) +(-13 (-366 (-391) (-1160)) (-10 -8 (-15 -2711 ((-1160) $ (-1160))) (-15 -2711 ((-1160) $)) (-15 -3587 ((-1160) $)) (-15 -4151 ((-3 (-1160) "failed") $)) (-15 -2901 ((-3 (-1160) "failed") $)) (-15 -2461 ((-112) $)))) +((-1750 (((-3 (-567) "failed") |#1|) 19)) (-2301 (((-3 (-567) "failed") |#1|) 14)) (-2302 (((-567) (-1160)) 33))) +(((-1200 |#1|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") |#1|)) (-15 -2301 ((-3 (-567) "failed") |#1|)) (-15 -2302 ((-567) (-1160)))) (-1051)) (T -1200)) +((-2302 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-1200 *4)) (-4 *4 (-1051)))) (-2301 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051)))) (-1750 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051))))) +(-10 -7 (-15 -1750 ((-3 (-567) "failed") |#1|)) (-15 -2301 ((-3 (-567) "failed") |#1|)) (-15 -2302 ((-567) (-1160)))) +((-4379 (((-1135 (-225))) 9))) +(((-1201) (-10 -7 (-15 -4379 ((-1135 (-225)))))) (T -1201)) +((-4379 (*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1201))))) +(-10 -7 (-15 -4379 ((-1135 (-225))))) +((-1482 (($) 12)) (-3200 (($ $) 36)) (-3183 (($ $) 34)) (-3062 (($ $) 26)) (-3221 (($ $) 18)) (-3785 (($ $) 16)) (-3211 (($ $) 20)) (-3095 (($ $) 31)) (-3193 (($ $) 35)) (-3074 (($ $) 30))) +(((-1202 |#1|) (-10 -8 (-15 -1482 (|#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3074 (|#1| |#1|))) (-1203)) (T -1202)) +NIL +(-10 -8 (-15 -1482 (|#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3074 (|#1| |#1|))) +((-3146 (($ $) 26)) (-3012 (($ $) 11)) (-3128 (($ $) 27)) (-2987 (($ $) 10)) (-3166 (($ $) 28)) (-3035 (($ $) 9)) (-1482 (($) 16)) (-3063 (($ $) 19)) (-3946 (($ $) 18)) (-3175 (($ $) 29)) (-3049 (($ $) 8)) (-3156 (($ $) 30)) (-3023 (($ $) 7)) (-3137 (($ $) 31)) (-2999 (($ $) 6)) (-3200 (($ $) 20)) (-3084 (($ $) 32)) (-3183 (($ $) 21)) (-3062 (($ $) 33)) (-3221 (($ $) 22)) (-3106 (($ $) 34)) (-3785 (($ $) 23)) (-3118 (($ $) 35)) (-3211 (($ $) 24)) (-3095 (($ $) 36)) (-3193 (($ $) 25)) (-3074 (($ $) 37)) (** (($ $ $) 17))) +(((-1203) (-140)) (T -1203)) +((-1482 (*1 *1) (-4 *1 (-1203)))) +(-13 (-1206) (-95) (-496) (-35) (-285) (-10 -8 (-15 -1482 ($)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1206) . T)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 19)) (-2394 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-3445 (((-112) $ (-772)) 72)) (-2138 ((|#1| $ |#1|) 14 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 13 (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2777 (((-645 |#1|) $) 76 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 64)) (-3512 (((-112) $ $) 49 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 62)) (-2279 (((-645 |#1|) $) 77 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 27)) (-2863 (((-112) $ (-772)) 60)) (-3773 (((-645 |#1|) $) 54)) (-2769 (((-112) $) 52)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 107)) (-3572 (((-112) $) 9)) (-3498 (($) 10)) (-1787 ((|#1| $ "value") NIL)) (-2658 (((-567) $ $) 48)) (-3767 (((-645 $) $) 89)) (-2565 (((-112) $ $) 110)) (-4326 (((-645 $) $) 105)) (-3329 (($ $) 106)) (-3900 (((-112) $) 84)) (-3439 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4418))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 88)) (-4132 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 12)) (-3606 (((-112) $ $) 39 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 37 (|has| |#1| (-1102)))) (-2414 (((-772) $) 58 (|has| $ (-6 -4418))))) +(((-1204 |#1|) (-13 (-1012 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -2394 ($ |#1| (-645 $))) (-15 -2394 ($ (-645 |#1|))) (-15 -2394 ($ |#1|)) (-15 -3900 ((-112) $)) (-15 -3329 ($ $)) (-15 -4326 ((-645 $) $)) (-15 -2565 ((-112) $ $)) (-15 -3767 ((-645 $) $)))) (-1102)) (T -1204)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1204 *2))) (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1204 *3)))) (-2394 (*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-2565 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102))))) +(-13 (-1012 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -2394 ($ |#1| (-645 $))) (-15 -2394 ($ (-645 |#1|))) (-15 -2394 ($ |#1|)) (-15 -3900 ((-112) $)) (-15 -3329 ($ $)) (-15 -4326 ((-645 $) $)) (-15 -2565 ((-112) $ $)) (-15 -3767 ((-645 $) $)))) +((-3012 (($ $) 15)) (-3035 (($ $) 12)) (-3049 (($ $) 10)) (-3023 (($ $) 17))) +(((-1205 |#1|) (-10 -8 (-15 -3023 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3012 (|#1| |#1|))) (-1206)) (T -1205)) +NIL +(-10 -8 (-15 -3023 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3012 (|#1| |#1|))) +((-3012 (($ $) 11)) (-2987 (($ $) 10)) (-3035 (($ $) 9)) (-3049 (($ $) 8)) (-3023 (($ $) 7)) (-2999 (($ $) 6))) +(((-1206) (-140)) (T -1206)) +((-3012 (*1 *1 *1) (-4 *1 (-1206))) (-2987 (*1 *1 *1) (-4 *1 (-1206))) (-3035 (*1 *1 *1) (-4 *1 (-1206))) (-3049 (*1 *1 *1) (-4 *1 (-1206))) (-3023 (*1 *1 *1) (-4 *1 (-1206))) (-2999 (*1 *1 *1) (-4 *1 (-1206)))) +(-13 (-10 -8 (-15 -2999 ($ $)) (-15 -3023 ($ $)) (-15 -3049 ($ $)) (-15 -3035 ($ $)) (-15 -2987 ($ $)) (-15 -3012 ($ $)))) +((-2165 ((|#2| |#2|) 98)) (-1684 (((-112) |#2|) 29)) (-2727 ((|#2| |#2|) 33)) (-2739 ((|#2| |#2|) 35)) (-4049 ((|#2| |#2| (-1178)) 92) ((|#2| |#2|) 93)) (-1327 (((-169 |#2|) |#2|) 31)) (-2912 ((|#2| |#2| (-1178)) 94) ((|#2| |#2|) 95))) +(((-1207 |#1| |#2|) (-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2165 (|#2| |#2|)) (-15 -2727 (|#2| |#2|)) (-15 -2739 (|#2| |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -1327 ((-169 |#2|) |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -1207)) +((-1327 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2739 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2727 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2912 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))) +(-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2165 (|#2| |#2|)) (-15 -2727 (|#2| |#2|)) (-15 -2739 (|#2| |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -1327 ((-169 |#2|) |#2|))) +((-1504 ((|#4| |#4| |#1|) 32)) (-3186 ((|#4| |#4| |#1|) 33))) +(((-1208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1504 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1208)) +((-3186 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1504 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -1504 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|))) +((-3365 ((|#2| |#2|) 148)) (-1817 ((|#2| |#2|) 145)) (-2253 ((|#2| |#2|) 136)) (-2574 ((|#2| |#2|) 133)) (-3109 ((|#2| |#2|) 141)) (-2578 ((|#2| |#2|) 129)) (-2441 ((|#2| |#2|) 44)) (-1564 ((|#2| |#2|) 105)) (-3269 ((|#2| |#2|) 88)) (-3451 ((|#2| |#2|) 143)) (-2972 ((|#2| |#2|) 131)) (-2866 ((|#2| |#2|) 153)) (-2765 ((|#2| |#2|) 151)) (-2079 ((|#2| |#2|) 152)) (-2644 ((|#2| |#2|) 150)) (-2116 ((|#2| |#2|) 163)) (-3712 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-894 |#1|))) (|has| |#2| (-888 |#1|)) (|has| |#1| (-615 (-894 |#1|))) (|has| |#1| (-888 |#1|))))) (-2466 ((|#2| |#2|) 89)) (-4241 ((|#2| |#2|) 154)) (-3317 ((|#2| |#2|) 155)) (-1595 ((|#2| |#2|) 142)) (-2865 ((|#2| |#2|) 130)) (-1470 ((|#2| |#2|) 149)) (-4047 ((|#2| |#2|) 147)) (-1831 ((|#2| |#2|) 137)) (-2462 ((|#2| |#2|) 135)) (-2581 ((|#2| |#2|) 139)) (-2345 ((|#2| |#2|) 127))) +(((-1209 |#1| |#2|) (-10 -7 (-15 -3317 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3712 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1203))) (T -1209)) +((-3712 (*1 *2 *2) (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2578 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2972 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2116 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3269 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203)))))) +(-10 -7 (-15 -3317 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3712 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1326 (((-112) |#5| $) 68) (((-112) $) 110)) (-3722 ((|#5| |#5| $) 83)) (-3350 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1441 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3753 (((-3 $ "failed") (-645 |#5|)) 135)) (-2421 (((-3 $ "failed") $) 120)) (-1999 ((|#5| |#5| $) 102)) (-3786 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3730 ((|#5| |#5| $) 106)) (-2477 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1585 (((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) $) 63)) (-1664 (((-112) |#5| $) 66) (((-112) $) 111)) (-1679 ((|#4| $) 116)) (-3257 (((-3 |#5| "failed") $) 118)) (-4051 (((-645 |#5|) $) 55)) (-1791 (((-112) |#5| $) 75) (((-112) $) 115)) (-3159 ((|#5| |#5| $) 89)) (-3392 (((-112) $ $) 29)) (-2554 (((-112) |#5| $) 71) (((-112) $) 113)) (-4164 ((|#5| |#5| $) 86)) (-2409 (((-3 |#5| "failed") $) 117)) (-2410 (($ $ |#5|) 136)) (-3077 (((-772) $) 60)) (-4147 (($ (-645 |#5|)) 133)) (-2397 (($ $ |#4|) 131)) (-2120 (($ $ |#4|) 129)) (-4129 (($ $) 128)) (-4132 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-2073 (((-772) $) 140)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2668 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-2385 (((-645 |#4|) $) 123)) (-2012 (((-112) |#4| $) 126)) (-2936 (((-112) $ $) 20))) +(((-1210 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2073 ((-772) |#1|)) (-15 -2410 (|#1| |#1| |#5|)) (-15 -3350 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2012 ((-112) |#4| |#1|)) (-15 -2385 ((-645 |#4|) |#1|)) (-15 -2421 ((-3 |#1| "failed") |#1|)) (-15 -3257 ((-3 |#5| "failed") |#1|)) (-15 -2409 ((-3 |#5| "failed") |#1|)) (-15 -3730 (|#5| |#5| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -1999 (|#5| |#5| |#1|)) (-15 -3159 (|#5| |#5| |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3722 (|#5| |#5| |#1|)) (-15 -1441 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2477 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1791 ((-112) |#1|)) (-15 -2554 ((-112) |#1|)) (-15 -1326 ((-112) |#1|)) (-15 -2668 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1791 ((-112) |#5| |#1|)) (-15 -2554 ((-112) |#5| |#1|)) (-15 -1326 ((-112) |#5| |#1|)) (-15 -3786 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1664 ((-112) |#1|)) (-15 -1664 ((-112) |#5| |#1|)) (-15 -1585 ((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) |#1|)) (-15 -3077 ((-772) |#1|)) (-15 -4051 ((-645 |#5|) |#1|)) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3392 ((-112) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -1679 (|#4| |#1|)) (-15 -3753 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4132 ((-645 |#5|) |#1|)) (-15 -4147 (|#1| (-645 |#5|))) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3350 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-1211 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1210)) +NIL +(-10 -8 (-15 -2073 ((-772) |#1|)) (-15 -2410 (|#1| |#1| |#5|)) (-15 -3350 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2012 ((-112) |#4| |#1|)) (-15 -2385 ((-645 |#4|) |#1|)) (-15 -2421 ((-3 |#1| "failed") |#1|)) (-15 -3257 ((-3 |#5| "failed") |#1|)) (-15 -2409 ((-3 |#5| "failed") |#1|)) (-15 -3730 (|#5| |#5| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -1999 (|#5| |#5| |#1|)) (-15 -3159 (|#5| |#5| |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3722 (|#5| |#5| |#1|)) (-15 -1441 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2477 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1791 ((-112) |#1|)) (-15 -2554 ((-112) |#1|)) (-15 -1326 ((-112) |#1|)) (-15 -2668 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1791 ((-112) |#5| |#1|)) (-15 -2554 ((-112) |#5| |#1|)) (-15 -1326 ((-112) |#5| |#1|)) (-15 -3786 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1664 ((-112) |#1|)) (-15 -1664 ((-112) |#5| |#1|)) (-15 -1585 ((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) |#1|)) (-15 -3077 ((-772) |#1|)) (-15 -4051 ((-645 |#5|) |#1|)) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3392 ((-112) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -1679 (|#4| |#1|)) (-15 -3753 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4132 ((-645 |#5|) |#1|)) (-15 -4147 (|#1| (-645 |#5|))) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3350 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) +((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3257 (((-3 |#4| "failed") $) 84)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418))))) +(((-1211 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1211)) +((-3392 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2220 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1211 *5 *6 *7 *8)))) (-2220 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1211 *6 *7 *8 *9)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-2 (|:| -3995 (-645 *6)) (|:| -3823 (-645 *6)))))) (-1664 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3786 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1211 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))) (-1326 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2554 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1791 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1211 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2477 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1211 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) (-1441 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1211 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))) (-3722 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-4164 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3159 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1999 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-3730 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1211 *4 *5 *6 *7)))) (-3487 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -3995 *1) (|:| -3823 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1211 *4 *5 *6 *7)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3257 (*1 *2 *1) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2421 (*1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2012 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-3350 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1211 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) (-4077 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772))))) +(-13 (-978 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -3392 ((-112) $ $)) (-15 -2220 ((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2220 ((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4051 ((-645 |t#4|) $)) (-15 -3077 ((-772) $)) (-15 -1585 ((-2 (|:| -3995 (-645 |t#4|)) (|:| -3823 (-645 |t#4|))) $)) (-15 -1664 ((-112) |t#4| $)) (-15 -1664 ((-112) $)) (-15 -3786 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1326 ((-112) |t#4| $)) (-15 -2554 ((-112) |t#4| $)) (-15 -1791 ((-112) |t#4| $)) (-15 -2668 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -1326 ((-112) $)) (-15 -2554 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -2477 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1441 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3722 (|t#4| |t#4| $)) (-15 -4164 (|t#4| |t#4| $)) (-15 -3159 (|t#4| |t#4| $)) (-15 -1999 (|t#4| |t#4| $)) (-15 -4129 ($ $)) (-15 -3730 (|t#4| |t#4| $)) (-15 -3244 ((-645 $) (-645 |t#4|))) (-15 -3487 ((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |t#4|)))) (-645 |t#4|))) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -3257 ((-3 |t#4| "failed") $)) (-15 -2421 ((-3 $ "failed") $)) (-15 -2385 ((-645 |t#3|) $)) (-15 -2012 ((-112) |t#3| $)) (-15 -3350 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4077 ((-3 $ "failed") $ |t#4|)) (-15 -2410 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -2073 ((-772) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1218) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3717 (((-954 |#1|) $ (-772)) 20) (((-954 |#1|) $ (-772) (-772)) NIL)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $ (-1178) (-772)) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) NIL)) (-2824 (($ $ (-645 (-1178)) (-645 (-534 (-1178)))) NIL) (($ $ (-1178) (-534 (-1178))) NIL) (($ |#1| (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $ (-1178)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3583 (($ (-1 $) (-1178) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2410 (($ $ (-772)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ (-1178) $) NIL) (($ $ (-645 (-1178)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1593 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3077 (((-534 (-1178)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1178)) NIL) (($ (-954 |#1|)) NIL)) (-4136 ((|#1| $ (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (((-954 |#1|) $ (-772)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1212 |#1|) (-13 (-741 |#1| (-1178)) (-10 -8 (-15 -4136 ((-954 |#1|) $ (-772))) (-15 -4132 ($ (-1178))) (-15 -4132 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ (-1178) |#1|)) (-15 -3583 ($ (-1 $) (-1178) |#1|))) |%noBranch|))) (-1051)) (T -1212)) +((-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1051)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-1051)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1212 *3)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-3583 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1178)) (-5 *1 (-1212 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) +(-13 (-741 |#1| (-1178)) (-10 -8 (-15 -4136 ((-954 |#1|) $ (-772))) (-15 -4132 ($ (-1178))) (-15 -4132 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ (-1178) |#1|)) (-15 -3583 ($ (-1 $) (-1178) |#1|))) |%noBranch|))) +((-1692 (($ |#1| (-645 (-645 (-945 (-225)))) (-112)) 19)) (-1773 (((-112) $ (-112)) 18)) (-2640 (((-112) $) 17)) (-3218 (((-645 (-645 (-945 (-225)))) $) 13)) (-4053 ((|#1| $) 8)) (-3416 (((-112) $) 15))) +(((-1213 |#1|) (-10 -8 (-15 -4053 (|#1| $)) (-15 -3218 ((-645 (-645 (-945 (-225)))) $)) (-15 -3416 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -1773 ((-112) $ (-112))) (-15 -1692 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) (-976)) (T -1213)) +((-1692 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) (-5 *1 (-1213 *2)) (-4 *2 (-976)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-4053 (*1 *2 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-976))))) +(-10 -8 (-15 -4053 (|#1| $)) (-15 -3218 ((-645 (-645 (-945 (-225)))) $)) (-15 -3416 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -1773 ((-112) $ (-112))) (-15 -1692 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) +((-4387 (((-945 (-225)) (-945 (-225))) 31)) (-4371 (((-945 (-225)) (-225) (-225) (-225) (-225)) 10)) (-1492 (((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-3366 (((-225) (-945 (-225)) (-945 (-225))) 27)) (-4295 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 28)) (-4391 (((-645 (-645 (-225))) (-567)) 48)) (-3045 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 26)) (-3033 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 24)) (* (((-945 (-225)) (-225) (-945 (-225))) 22))) +(((-1214) (-10 -7 (-15 -4371 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3033 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3366 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -4295 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -4387 ((-945 (-225)) (-945 (-225)))) (-15 -4391 ((-645 (-645 (-225))) (-567))) (-15 -1492 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))) (T -1214)) +((-1492 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-945 *4))) (-5 *1 (-1214)) (-5 *3 (-945 *4)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1214)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-4295 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-3366 (*1 *2 *3 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1214)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1214)))) (-4371 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)) (-5 *3 (-225))))) +(-10 -7 (-15 -4371 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3033 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3366 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -4295 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -4387 ((-945 (-225)) (-945 (-225)))) (-15 -4391 ((-645 (-645 (-225))) (-567))) (-15 -1492 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3350 ((|#1| $ (-772)) 18)) (-1699 (((-772) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4132 (((-960 |#1|) $) 12) (($ (-960 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 22 (|has| |#1| (-1102))))) +(((-1215 |#1|) (-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3350 (|#1| $ (-772))) (-15 -1699 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1215)) +((-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1215 *2)) (-4 *2 (-1218)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1215 *3)) (-4 *3 (-1218))))) +(-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3350 (|#1| $ (-772))) (-15 -1699 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) +((-2840 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567)) 94)) (-2145 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 86)) (-4299 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 70))) +(((-1216 |#1|) (-10 -7 (-15 -2145 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4299 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -2840 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567)))) (-351)) (T -1216)) +((-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1174 (-1174 *5)))) (-5 *1 (-1216 *5)) (-5 *3 (-1174 (-1174 *5))))) (-4299 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4)))))) +(-10 -7 (-15 -2145 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4299 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -2840 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 9) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1217) (-1085)) (T -1217)) +NIL +(-1085) +NIL +(((-1218) (-140)) (T -1218)) +NIL +(-13 (-10 -7 (-6 -3011))) +((-3563 (((-112)) 18)) (-1884 (((-1273) (-645 |#1|) (-645 |#1|)) 22) (((-1273) (-645 |#1|)) 23)) (-2077 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-2863 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-3333 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2464 (((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|)))) 20))) +(((-1219 |#1|) (-10 -7 (-15 -1884 ((-1273) (-645 |#1|))) (-15 -1884 ((-1273) (-645 |#1|) (-645 |#1|))) (-15 -2464 ((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|))))) (-15 -2863 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2863 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3333 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3563 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -3333 (|#1| (-645 |#1|))) (-15 -2077 ((-112) |#1| |#1|))) |%noBranch|)) (-1102)) (T -1219)) +((-2077 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-851)) (-4 *3 (-1102)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) (-5 *1 (-1219 *2)))) (-3563 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1219 *2)) (-4 *2 (-1102)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-1219 *3)))) (-2863 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-2464 (*1 *2) (-12 (-5 *2 (-2 (|:| -2504 (-645 *3)) (|:| -3131 (-645 *3)))) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-1884 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) (-5 *1 (-1219 *4)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) (-5 *1 (-1219 *4))))) +(-10 -7 (-15 -1884 ((-1273) (-645 |#1|))) (-15 -1884 ((-1273) (-645 |#1|) (-645 |#1|))) (-15 -2464 ((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|))))) (-15 -2863 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2863 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3333 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3563 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -3333 (|#1| (-645 |#1|))) (-15 -2077 ((-112) |#1| |#1|))) |%noBranch|)) +((-3460 (((-1273) (-645 (-1178)) (-645 (-1178))) 14) (((-1273) (-645 (-1178))) 12)) (-1611 (((-1273)) 16)) (-1708 (((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178))))) 20))) +(((-1220) (-10 -7 (-15 -3460 ((-1273) (-645 (-1178)))) (-15 -3460 ((-1273) (-645 (-1178)) (-645 (-1178)))) (-15 -1708 ((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178)))))) (-15 -1611 ((-1273))))) (T -1220)) +((-1611 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1220)))) (-1708 (*1 *2) (-12 (-5 *2 (-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178))))) (-5 *1 (-1220)))) (-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220))))) +(-10 -7 (-15 -3460 ((-1273) (-645 (-1178)))) (-15 -3460 ((-1273) (-645 (-1178)) (-645 (-1178)))) (-15 -1708 ((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178)))))) (-15 -1611 ((-1273)))) +((-3248 (($ $) 17)) (-3184 (((-112) $) 28))) +(((-1221 |#1|) (-10 -8 (-15 -3248 (|#1| |#1|)) (-15 -3184 ((-112) |#1|))) (-1222)) (T -1221)) +NIL +(-10 -8 (-15 -3248 (|#1| |#1|)) (-15 -3184 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3184 (((-112) $) 59)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 56)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-1222) (-140)) (T -1222)) +((-3184 (*1 *2 *1) (-12 (-4 *1 (-1222)) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222)))) (-3248 (*1 *1 *1) (-4 *1 (-1222))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222))))) +(-13 (-455) (-10 -8 (-15 -3184 ((-112) $)) (-15 -2908 ((-421 $) $)) (-15 -3248 ($ $)) (-15 -2706 ((-421 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1223) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1223)) +((-1717 (*1 *1 *1 *1) (-5 *1 (-1223))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1223))) (-2585 (*1 *1) (-5 *1 (-1223)))) +(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1725 (($ $ $) NIL)) (-1713 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1223) (-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280)))) (T -1223)) -((-1713 (*1 *1 *1 *1) (-5 *1 (-1223))) (-1725 (*1 *1 *1 *1) (-5 *1 (-1223))) (-2245 (*1 *1) (-5 *1 (-1223)))) -(-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1224) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1224)) +((-1717 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1224))) (-2585 (*1 *1) (-5 *1 (-1224)))) +(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1725 (($ $ $) NIL)) (-1713 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1224) (-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280)))) (T -1224)) -((-1713 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1725 (*1 *1 *1 *1) (-5 *1 (-1224))) (-2245 (*1 *1) (-5 *1 (-1224)))) -(-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1225) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1225)) +((-1717 (*1 *1 *1 *1) (-5 *1 (-1225))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1225))) (-2585 (*1 *1) (-5 *1 (-1225)))) +(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2399 (((-112) $ $) NIL)) (-2371 (((-772)) NIL)) (-2245 (($) NIL T CONST)) (-1378 (($) NIL)) (-2010 (($ $ $) NIL) (($) NIL T CONST)) (-2998 (($ $ $) NIL) (($) NIL T CONST)) (-3425 (((-922) $) NIL)) (-3739 (((-1159) $) NIL)) (-3763 (($ (-922)) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) NIL)) (-1725 (($ $ $) NIL)) (-1713 (($ $ $) NIL)) (-4104 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) -(((-1225) (-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280)))) (T -1225)) -((-1713 (*1 *1 *1 *1) (-5 *1 (-1225))) (-1725 (*1 *1 *1 *1) (-5 *1 (-1225))) (-2245 (*1 *1) (-5 *1 (-1225)))) -(-13 (-845) (-10 -8 (-15 -1713 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2245 ($) -3280))) +((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL))) +(((-1226) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1226)) +((-1717 (*1 *1 *1 *1) (-5 *1 (-1226))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1226))) (-2585 (*1 *1) (-5 *1 (-1226)))) +(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-3822 (((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)) 23))) -(((-1226 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3822 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)))) (-1050) (-1050) (-1177) (-1177) |#1| |#2|) (T -1226)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-14 *7 (-1177)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1177))))) -(-10 -7 (-15 -3822 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-3165 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 174 (|has| |#1| (-365)))) (-2833 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2714 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3148 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3184 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-2344 (($ $ $) 169 (|has| |#1| (-365)))) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-2571 (((-410 (-953 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2355 (($ $ $) 168 (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-4341 (((-112) $) 176 (|has| |#1| (-365)))) (-4184 (((-112) $) 85)) (-1480 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-567) $) 112) (((-567) $ (-567)) 111)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) 113)) (-4344 (($ (-1 |#1| (-567)) $) 184)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2014 (((-112) $) 74)) (-2821 (($ |#1| (-567)) 73) (($ $ (-1083) (-567)) 88) (($ $ (-645 (-1083)) (-645 (-567))) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-3053 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-2735 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 177 (|has| |#1| (-365)))) (-1576 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 180 (-2797 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1202)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 162 (|has| |#1| (-365)))) (-2771 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2703 (((-421 $) $) 173 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 170 (|has| |#1| (-365)))) (-3981 (($ $ (-567)) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3927 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-4197 (((-772) $) 166 (|has| |#1| (-365)))) (-1783 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 167 (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1177) (-772)) 100 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177))) 99 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1177)) 98 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-1813 (((-567) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2253 ((|#1| $ (-567)) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1177) (-772)) 104 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177))) 103 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1177)) 102 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1227 |#1|) (-140) (-1050)) (T -1227)) -((-1970 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1050)) (-4 *1 (-1227 *3)))) (-4344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1227 *3)) (-4 *3 (-1050)))) (-2571 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1227 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) (-5 *2 (-410 (-953 *4))))) (-2571 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1227 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) (-5 *2 (-410 (-953 *4))))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-1576 (*1 *1 *1 *2) (-2797 (-12 (-5 *2 (-1177)) (-4 *1 (-1227 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1177)) (-4 *1 (-1227 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1245 |t#1| (-567)) (-10 -8 (-15 -1970 ($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -4344 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -2571 ((-410 (-953 |t#1|)) $ (-567))) (-15 -2571 ((-410 (-953 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $)) (IF (|has| |t#1| (-15 -1576 (|t#1| |t#1| (-1177)))) (IF (|has| |t#1| (-15 -2845 ((-645 (-1177)) |t#1|))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1202)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1202))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1113)) ((-291) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))) ((-974 |#1| #0# (-1083)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567)))) ((-1221) |has| |#1| (-365)) ((-1245 |#1| #0#) . T)) -((-2840 (((-112) $) 12)) (-3747 (((-3 |#3| "failed") $) 17) (((-3 (-1177) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-2033 ((|#3| $) 14) (((-1177) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL))) -(((-1228 |#1| |#2| |#3|) (-10 -8 (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2840 ((-112) |#1|))) (-1229 |#2| |#3|) (-1050) (-1258 |#2|)) (T -1228)) -NIL -(-10 -8 (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -3747 ((-3 (-1177) "failed") |#1|)) (-15 -2033 ((-1177) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2840 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2660 ((|#2| $) 242 (-1664 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-1368 ((|#2| $) 278)) (-3789 (((-3 |#2| "failed") $) 274)) (-2892 ((|#2| $) 275)) (-3165 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-1431 (((-421 (-1173 $)) (-1173 $)) 251 (-1664 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3081 (($ $) 174 (|has| |#1| (-365)))) (-2833 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2714 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 248 (-1664 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2373 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3148 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-3449 (((-567) $) 260 (-1664 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3184 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-1177) "failed") $) 253 (-1664 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365))))) (-2033 ((|#2| $) 282) (((-567) $) 270 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1664 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-1177) $) 252 (-1664 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365))))) (-3671 (($ $) 277) (($ (-567) $) 276)) (-2344 (($ $ $) 169 (|has| |#1| (-365)))) (-3006 (($ $) 72)) (-1868 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 230 (-1664 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1664 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-3153 (((-3 $ "failed") $) 37)) (-2571 (((-410 (-953 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-1378 (($) 244 (-1664 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2355 (($ $ $) 168 (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-4341 (((-112) $) 176 (|has| |#1| (-365)))) (-4357 (((-112) $) 258 (-1664 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-4184 (((-112) $) 85)) (-1480 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 236 (-1664 (|has| |#2| (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 235 (-1664 (|has| |#2| (-887 (-567))) (|has| |#1| (-365))))) (-2937 (((-567) $) 112) (((-567) $ (-567)) 111)) (-2843 (((-112) $) 35)) (-1747 (($ $) 240 (|has| |#1| (-365)))) (-1441 ((|#2| $) 238 (|has| |#1| (-365)))) (-1709 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3641 (((-3 $ "failed") $) 272 (-1664 (|has| |#2| (-1152)) (|has| |#1| (-365))))) (-2102 (((-112) $) 259 (-1664 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3275 (($ $ (-922)) 113)) (-4344 (($ (-1 |#1| (-567)) $) 184)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2014 (((-112) $) 74)) (-2821 (($ |#1| (-567)) 73) (($ $ (-1083) (-567)) 88) (($ $ (-645 (-1083)) (-645 (-567))) 87)) (-2010 (($ $ $) 262 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2998 (($ $ $) 263 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3822 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3053 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-2735 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2903 (($ (-567) |#2|) 279)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 177 (|has| |#1| (-365)))) (-1576 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 180 (-2797 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1202)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2701 (($) 273 (-1664 (|has| |#2| (-1152)) (|has| |#1| (-365))) CONST)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 162 (|has| |#1| (-365)))) (-2771 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2721 (($ $) 243 (-1664 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1842 ((|#2| $) 246 (-1664 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3475 (((-421 (-1173 $)) (-1173 $)) 249 (-1664 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3871 (((-421 (-1173 $)) (-1173 $)) 250 (-1664 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2703 (((-421 $) $) 173 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 170 (|has| |#1| (-365)))) (-3981 (($ $ (-567)) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3927 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1177) |#2|) 223 (-1664 (|has| |#2| (-517 (-1177) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 |#2|)) 222 (-1664 (|has| |#2| (-517 (-1177) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1664 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1664 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1664 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1664 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4197 (((-772) $) 166 (|has| |#1| (-365)))) (-1783 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1113))) (($ $ |#2|) 217 (-1664 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 167 (|has| |#1| (-365)))) (-1621 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2797 (-1664 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2797 (-1664 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) 101 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1177) (-772)) 100 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1177))) 99 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1177)) 98 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-3168 (($ $) 241 (|has| |#1| (-365)))) (-1455 ((|#2| $) 239 (|has| |#1| (-365)))) (-1813 (((-567) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-3880 (((-225) $) 257 (-1664 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-381) $) 256 (-1664 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-539) $) 255 (-1664 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-893 (-381)) $) 234 (-1664 (|has| |#2| (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) 233 (-1664 (|has| |#2| (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 247 (-1664 (-1664 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#1| (-365))))) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1177)) 254 (-1664 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2253 ((|#1| $ (-567)) 71)) (-1467 (((-3 $ "failed") $) 60 (-2797 (-1664 (-2797 (|has| |#2| (-145)) (-1664 (|has| $ (-145)) (|has| |#2| (-910)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-1687 ((|#2| $) 245 (-1664 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-4137 (($ $) 261 (-1664 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2797 (-1664 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2797 (-1664 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) 105 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1177) (-772)) 104 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1177))) 103 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1177)) 102 (-2797 (-1664 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-2988 (((-112) $ $) 265 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2964 (((-112) $ $) 266 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2929 (((-112) $ $) 6)) (-2977 (((-112) $ $) 264 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2952 (((-112) $ $) 267 (-1664 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1229 |#1| |#2|) (-140) (-1050) (-1258 |t#1|)) (T -1229)) -((-1813 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1258 *3)) (-5 *2 (-567)))) (-2903 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1050)) (-4 *1 (-1229 *4 *3)) (-4 *3 (-1258 *4)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1258 *3)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1229 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1258 *2)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1229 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1258 *3)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1258 *3)))) (-3789 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1258 *3))))) -(-13 (-1227 |t#1|) (-1039 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2903 ($ (-567) |t#2|)) (-15 -1813 ((-567) $)) (-15 -1368 (|t#2| $)) (-15 -3671 ($ $)) (-15 -3671 ($ (-567) $)) (-15 -2892 (|t#2| $)) (-15 -3789 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-993 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1177)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1177)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1113)) ((-291) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1177) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1177) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-901 (-1177)) -2797 (-12 (|has| |#1| (-365)) (|has| |#2| (-901 (-1177)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))) ((-887 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-567)))) ((-885 |#2|) |has| |#1| (-365)) ((-910) -12 (|has| |#1| (-365)) (|has| |#2| (-910))) ((-974 |#1| #0# (-1083)) . T) ((-921) |has| |#1| (-365)) ((-993 |#2|) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1023) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-1039 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) ((-1039 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) ((-1039 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1177)))) ((-1039 |#2|) . T) ((-1052 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-365)) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 |#2|) |has| |#1| (-365)) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) -12 (|has| |#1| (-365)) (|has| |#2| (-1152))) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567)))) ((-1217) |has| |#1| (-365)) ((-1221) |has| |#1| (-365)) ((-1227 |#1|) . T) ((-1245 |#1| #0#) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 81)) (-2660 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 100)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-1368 ((|#2| $) 11)) (-3789 (((-3 |#2| "failed") $) 35)) (-2892 ((|#2| $) 36)) (-3165 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-3449 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-3184 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-1177) "failed") $) NIL (-12 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365))))) (-2033 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-1177) $) NIL (-12 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365))))) (-3671 (($ $) 65) (($ (-567) $) 28)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-1868 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-3153 (((-3 $ "failed") $) 88)) (-2571 (((-410 (-953 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-1378 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4357 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-4184 (((-112) $) 74)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#2| (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#2| (-887 (-567))) (|has| |#1| (-365))))) (-2937 (((-567) $) 105) (((-567) $ (-567)) 107)) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL (|has| |#1| (-365)))) (-1441 ((|#2| $) 165 (|has| |#1| (-365)))) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1152)) (|has| |#1| (-365))))) (-2102 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3275 (($ $ (-922)) 148)) (-4344 (($ (-1 |#1| (-567)) $) 144)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-567)) 20) (($ $ (-1083) (-567)) NIL) (($ $ (-645 (-1083)) (-645 (-567))) NIL)) (-2010 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2998 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3822 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2903 (($ (-567) |#2|) 10)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 159 (|has| |#1| (-365)))) (-1576 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 233 (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202)))))) (-2701 (($) NIL (-12 (|has| |#2| (-1152)) (|has| |#1| (-365))) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2721 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1842 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-567)) 138)) (-2387 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1177) |#2|) NIL (-12 (|has| |#2| (-517 (-1177) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1177) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1113))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2797 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2797 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) 153 (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-3168 (($ $) NIL (|has| |#1| (-365)))) (-1455 ((|#2| $) 166 (|has| |#1| (-365)))) (-1813 (((-567) $) 12)) (-3192 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3880 (((-225) $) NIL (-12 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| |#2| (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| |#2| (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910)) (|has| |#1| (-365))))) (-1546 (($ $) 136)) (-4127 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1177)) NIL (-12 (|has| |#2| (-1039 (-1177))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-567)) 85)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1772 (((-772)) 155 T CONST)) (-2793 ((|#1| $) 102)) (-1687 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-4137 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1710 (($) 13 T CONST)) (-1722 (($) 18 T CONST)) (-2636 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2797 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2797 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#2| (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-2988 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2964 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2929 (((-112) $ $) 72)) (-2977 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2952 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3037 (($ $) 227) (($ $ $) 78)) (-3024 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1230 |#1| |#2|) (-1229 |#1| |#2|) (-1050) (-1258 |#1|)) (T -1230)) -NIL -(-1229 |#1| |#2|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2660 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 10)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1312 (($ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2318 (((-112) $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1873 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-4268 (((-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1368 (((-1259 |#1| |#2| |#3|) $) NIL)) (-3789 (((-3 (-1259 |#1| |#2| |#3|) "failed") $) NIL)) (-2892 (((-1259 |#1| |#2| |#3|) $) NIL)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3449 (((-567) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1970 (($ (-1157 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-1259 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1177) "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-2033 (((-1259 |#1| |#2| |#3|) $) NIL) (((-1177) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-3671 (($ $) NIL) (($ (-567) $) NIL)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-1259 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-1259 |#1| |#2| |#3|))) (|:| |vec| (-1267 (-1259 |#1| |#2| |#3|)))) (-690 $) (-1267 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-3153 (((-3 $ "failed") $) NIL)) (-2571 (((-410 (-953 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-1378 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4357 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-887 (-567))) (|has| |#1| (-365))))) (-2937 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-2843 (((-112) $) NIL)) (-1747 (($ $) NIL (|has| |#1| (-365)))) (-1441 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1152)) (|has| |#1| (-365))))) (-2102 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3275 (($ $ (-922)) NIL)) (-4344 (($ (-1 |#1| (-567)) $) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-567)) 18) (($ $ (-1083) (-567)) NIL) (($ $ (-645 (-1083)) (-645 (-567))) NIL)) (-2010 (($ $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2998 (($ $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2903 (($ (-567) (-1259 |#1| |#2| |#3|)) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1152)) (|has| |#1| (-365))) CONST)) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2721 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1842 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-567)) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1177) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1177) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1177)) (-645 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1177) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1259 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1259 |#1| |#2| |#3|)) (-645 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1113))) (($ $ (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1263 |#2|)) 26) (($ $ (-772)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-3168 (($ $) NIL (|has| |#1| (-365)))) (-1455 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-1813 (((-567) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3880 (((-539) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1259 |#1| |#2| |#3|)) NIL) (($ (-1263 |#2|)) 24) (($ (-1177)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-1177))) (|has| |#1| (-365)))) (($ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2253 ((|#1| $ (-567)) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 11)) (-1687 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4137 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1710 (($) 20 T CONST)) (-1722 (($) 15 T CONST)) (-2636 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177) (-772)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-645 (-1177))) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177)))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-901 (-1177))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1177))))))) (-2988 (((-112) $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2964 (((-112) $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2929 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2952 (((-112) $ $) NIL (-2797 (-12 (|has| (-1259 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 22)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1231 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1231)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1229 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-3355 (((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112)) 13)) (-2443 (((-421 |#1|) |#1|) 26)) (-2703 (((-421 |#1|) |#1|) 24))) -(((-1232 |#1|) (-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1|)) (-15 -3355 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112)))) (-1243 (-567))) (T -1232)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567))))) (-2443 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567))))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567)))))) -(-10 -7 (-15 -2703 ((-421 |#1|) |#1|)) (-15 -2443 ((-421 |#1|) |#1|)) (-15 -3355 ((-2 (|:| |contp| (-567)) (|:| -2166 (-645 (-2 (|:| |irr| |#1|) (|:| -1594 (-567)))))) |#1| (-112)))) -((-3822 (((-1157 |#2|) (-1 |#2| |#1|) (-1234 |#1|)) 23 (|has| |#1| (-849))) (((-1234 |#2|) (-1 |#2| |#1|) (-1234 |#1|)) 17))) -(((-1233 |#1| |#2|) (-10 -7 (-15 -3822 ((-1234 |#2|) (-1 |#2| |#1|) (-1234 |#1|))) (IF (|has| |#1| (-849)) (-15 -3822 ((-1157 |#2|) (-1 |#2| |#1|) (-1234 |#1|))) |%noBranch|)) (-1217) (-1217)) (T -1233)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5)) (-4 *5 (-849)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1157 *6)) (-5 *1 (-1233 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1234 *6)) (-5 *1 (-1233 *5 *6))))) -(-10 -7 (-15 -3822 ((-1234 |#2|) (-1 |#2| |#1|) (-1234 |#1|))) (IF (|has| |#1| (-849)) (-15 -3822 ((-1157 |#2|) (-1 |#2| |#1|) (-1234 |#1|))) |%noBranch|)) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-3092 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3822 (((-1157 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-1933 ((|#1| $) 15)) (-1403 ((|#1| $) 12)) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-1425 (((-567) $) 19)) (-3112 ((|#1| $) 18)) (-1435 ((|#1| $) 13)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-3396 (((-112) $) 17)) (-3304 (((-1157 |#1|) $) 41 (|has| |#1| (-849))) (((-1157 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-3880 (($ |#1|) 26)) (-4127 (($ (-1095 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2174 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2713 (($ $ (-567)) 14)) (-2929 (((-112) $ $) 30 (|has| |#1| (-1101))))) -(((-1234 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -2174 ($ |#1|)) (-15 -3092 ($ |#1|)) (-15 -4127 ($ (-1095 |#1|))) (-15 -3396 ((-112) $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1096 |#1| (-1157 |#1|))) |%noBranch|))) (-1217)) (T -1234)) -((-2174 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1217)))) (-3092 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1217)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-1217)) (-5 *1 (-1234 *3)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1217))))) -(-13 (-1094 |#1|) (-10 -8 (-15 -2174 ($ |#1|)) (-15 -3092 ($ |#1|)) (-15 -4127 ($ (-1095 |#1|))) (-15 -3396 ((-112) $)) (IF (|has| |#1| (-1101)) (-6 (-1101)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1096 |#1| (-1157 |#1|))) |%noBranch|))) -((-3822 (((-1240 |#3| |#4|) (-1 |#4| |#2|) (-1240 |#1| |#2|)) 15))) -(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 ((-1240 |#3| |#4|) (-1 |#4| |#2|) (-1240 |#1| |#2|)))) (-1177) (-1050) (-1177) (-1050)) (T -1235)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1240 *5 *6)) (-14 *5 (-1177)) (-4 *6 (-1050)) (-4 *8 (-1050)) (-5 *2 (-1240 *7 *8)) (-5 *1 (-1235 *5 *6 *7 *8)) (-14 *7 (-1177))))) -(-10 -7 (-15 -3822 ((-1240 |#3| |#4|) (-1 |#4| |#2|) (-1240 |#1| |#2|)))) -((-1572 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1704 ((|#1| |#3|) 13)) (-1972 ((|#3| |#3|) 19))) -(((-1236 |#1| |#2| |#3|) (-10 -7 (-15 -1704 (|#1| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-993 |#1|) (-1243 |#2|)) (T -1236)) -((-1572 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1236 *4 *5 *3)) (-4 *3 (-1243 *5)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-1236 *3 *4 *2)) (-4 *2 (-1243 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-1236 *2 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -1704 (|#1| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1572 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3085 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-3787 (((-3 |#2| "failed") |#2| (-772)) 38)) (-1693 (((-3 (-2 (|:| -2944 |#2|) (|:| -2956 |#2|)) "failed") |#2|) 52)) (-2368 (((-645 |#2|) |#2|) 54)) (-2406 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1237 |#1| |#2|) (-10 -7 (-15 -3787 ((-3 |#2| "failed") |#2| (-772))) (-15 -3085 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -2406 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1693 ((-3 (-2 (|:| -2944 |#2|) (|:| -2956 |#2|)) "failed") |#2|)) (-15 -2368 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1243 |#1|)) (T -1237)) -((-2368 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-1243 *4)))) (-1693 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -2944 *3) (|:| -2956 *3))) (-5 *1 (-1237 *4 *3)) (-4 *3 (-1243 *4)))) (-2406 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-1243 *3)))) (-3085 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-1243 *4)))) (-3787 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-1243 *4))))) -(-10 -7 (-15 -3787 ((-3 |#2| "failed") |#2| (-772))) (-15 -3085 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -2406 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1693 ((-3 (-2 (|:| -2944 |#2|) (|:| -2956 |#2|)) "failed") |#2|)) (-15 -2368 ((-645 |#2|) |#2|))) -((-3625 (((-3 (-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) "failed") |#2| |#2|) 30))) -(((-1238 |#1| |#2|) (-10 -7 (-15 -3625 ((-3 (-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) "failed") |#2| |#2|))) (-559) (-1243 |#1|)) (T -1238)) -((-3625 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-1238 *4 *3)) (-4 *3 (-1243 *4))))) -(-10 -7 (-15 -3625 ((-3 (-2 (|:| -1598 |#2|) (|:| -1608 |#2|)) "failed") |#2| |#2|))) -((-1601 ((|#2| |#2| |#2|) 22)) (-1995 ((|#2| |#2| |#2|) 36)) (-1992 ((|#2| |#2| |#2| (-772) (-772)) 44))) -(((-1239 |#1| |#2|) (-10 -7 (-15 -1601 (|#2| |#2| |#2|)) (-15 -1995 (|#2| |#2| |#2|)) (-15 -1992 (|#2| |#2| |#2| (-772) (-772)))) (-1050) (-1243 |#1|)) (T -1239)) -((-1992 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-1239 *4 *2)) (-4 *2 (-1243 *4)))) (-1995 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1243 *3)))) (-1601 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1243 *3))))) -(-10 -7 (-15 -1601 (|#2| |#2| |#2|)) (-15 -1995 (|#2| |#2| |#2|)) (-15 -1992 (|#2| |#2| |#2| (-772) (-772)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3455 (((-1267 |#2|) $ (-772)) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-2476 (($ (-1173 |#2|)) NIL)) (-2670 (((-1173 $) $ (-1083)) NIL) (((-1173 |#2|) $) NIL)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1312 (($ $) NIL (|has| |#2| (-559)))) (-2318 (((-112) $) NIL (|has| |#2| (-559)))) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1083))) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-3412 (($ $ $) NIL (|has| |#2| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3081 (($ $) NIL (|has| |#2| (-455)))) (-2833 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2373 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1404 (($ $ (-772)) NIL)) (-3229 (($ $ (-772)) NIL)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-1083) "failed") $) NIL)) (-2033 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-1083) $) NIL)) (-3621 (($ $ $ (-1083)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2344 (($ $ $) NIL (|has| |#2| (-365)))) (-3006 (($ $) NIL)) (-1868 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#2|)) (|:| |vec| (-1267 |#2|))) (-690 $) (-1267 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2355 (($ $ $) NIL (|has| |#2| (-365)))) (-1580 (($ $ $) NIL)) (-1307 (($ $ $) NIL (|has| |#2| (-559)))) (-1950 (((-2 (|:| -3686 |#2|) (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-4334 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1083)) NIL (|has| |#2| (-455)))) (-2992 (((-645 $) $) NIL)) (-4341 (((-112) $) NIL (|has| |#2| (-910)))) (-2543 (($ $ |#2| (-772) $) NIL)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1083) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1083) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-2937 (((-772) $ $) NIL (|has| |#2| (-559)))) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#2| (-1152)))) (-2832 (($ (-1173 |#2|) (-1083)) NIL) (($ (-1173 $) (-1083)) NIL)) (-3275 (($ $ (-772)) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2821 (($ |#2| (-772)) 18) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1083)) NIL) (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL)) (-2752 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3345 (($ (-1 (-772) (-772)) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-1317 (((-1173 |#2|) $) NIL)) (-1902 (((-3 (-1083) "failed") $) NIL)) (-2969 (($ $) NIL)) (-2980 ((|#2| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3739 (((-1159) $) NIL)) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) NIL)) (-2662 (((-3 (-645 $) "failed") $) NIL)) (-2432 (((-3 (-645 $) "failed") $) NIL)) (-4026 (((-3 (-2 (|:| |var| (-1083)) (|:| -4250 (-772))) "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2701 (($) NIL (|has| |#2| (-1152)) CONST)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 ((|#2| $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#2| (-455)))) (-2771 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-4196 (($ $ (-772) |#2| $) NIL)) (-3475 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) NIL (|has| |#2| (-910)))) (-2703 (((-421 $) $) NIL (|has| |#2| (-910)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#2| (-365)))) (-2387 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1083) |#2|) NIL) (($ $ (-645 (-1083)) (-645 |#2|)) NIL) (($ $ (-1083) $) NIL) (($ $ (-645 (-1083)) (-645 $)) NIL)) (-4197 (((-772) $) NIL (|has| |#2| (-365)))) (-1783 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-1859 (((-3 $ "failed") $ (-772)) NIL)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#2| (-365)))) (-1999 (($ $ (-1083)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1621 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1813 (((-772) $) NIL) (((-772) $ (-1083)) NIL) (((-645 (-772)) $ (-645 (-1083))) NIL)) (-3880 (((-893 (-381)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1083) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4385 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1083)) NIL (|has| |#2| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-2868 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-4127 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1083)) NIL) (($ (-1263 |#1|)) 20) (($ (-410 (-567))) NIL (-2797 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-772)) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-1467 (((-3 $ "failed") $) NIL (-2797 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1710 (($) NIL T CONST)) (-1722 (($) 14 T CONST)) (-2636 (($ $ (-1083)) NIL) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1177)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1177) (-772)) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) NIL (|has| |#2| (-901 (-1177)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1240 |#1| |#2|) (-13 (-1243 |#2|) (-617 (-1263 |#1|)) (-10 -8 (-15 -4196 ($ $ (-772) |#2| $)))) (-1177) (-1050)) (T -1240)) -((-4196 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1240 *4 *3)) (-14 *4 (-1177)) (-4 *3 (-1050))))) -(-13 (-1243 |#2|) (-617 (-1263 |#1|)) (-10 -8 (-15 -4196 ($ $ (-772) |#2| $)))) -((-3822 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|))) (-1050) (-1243 |#1|) (-1050) (-1243 |#3|)) (T -1241)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-1243 *6)) (-5 *1 (-1241 *5 *4 *6 *2)) (-4 *4 (-1243 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#3| |#1|) |#2|))) -((-3455 (((-1267 |#2|) $ (-772)) 129)) (-2845 (((-645 (-1083)) $) 16)) (-2476 (($ (-1173 |#2|)) 80)) (-2350 (((-772) $) NIL) (((-772) $ (-645 (-1083))) 21)) (-1431 (((-421 (-1173 $)) (-1173 $)) 204)) (-3081 (($ $) 194)) (-2833 (((-421 $) $) 192)) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 95)) (-1404 (($ $ (-772)) 84)) (-3229 (($ $ (-772)) 86)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3747 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL)) (-2033 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1083) $) NIL)) (-1307 (($ $ $) 170)) (-1950 (((-2 (|:| -3686 |#2|) (|:| -1598 $) (|:| -1608 $)) $ $) 172)) (-2937 (((-772) $ $) 189)) (-3641 (((-3 $ "failed") $) 138)) (-2821 (($ |#2| (-772)) NIL) (($ $ (-1083) (-772)) 59) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-2752 (((-772) $) NIL) (((-772) $ (-1083)) 54) (((-645 (-772)) $ (-645 (-1083))) 55)) (-1317 (((-1173 |#2|) $) 72)) (-1902 (((-3 (-1083) "failed") $) 52)) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) 83)) (-1576 (($ $) 219)) (-2701 (($) 134)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 201)) (-3475 (((-421 (-1173 $)) (-1173 $)) 101)) (-3871 (((-421 (-1173 $)) (-1173 $)) 99)) (-2703 (((-421 $) $) 120)) (-2631 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1083) |#2|) 39) (($ $ (-645 (-1083)) (-645 |#2|)) 36) (($ $ (-1083) $) 32) (($ $ (-645 (-1083)) (-645 $)) 30)) (-4197 (((-772) $) 207)) (-1783 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 212)) (-1621 (($ $ (-1083)) 157) (($ $ (-645 (-1083))) NIL) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1177)) NIL) (($ $ (-645 (-1177))) NIL) (($ $ (-1177) (-772)) NIL) (($ $ (-645 (-1177)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-1813 (((-772) $) NIL) (((-772) $ (-1083)) 17) (((-645 (-772)) $ (-645 (-1083))) 23)) (-4385 ((|#2| $) NIL) (($ $ (-1083)) 140)) (-2868 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1083)) 64) (($ (-410 (-567))) NIL) (($ $) NIL))) -(((-1242 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1783 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -4197 ((-772) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1783 (|#2| (-410 |#1|) |#2|)) (-15 -2887 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1950 ((-2 (|:| -3686 |#2|) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1307 (|#1| |#1| |#1|)) (-15 -2868 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2937 ((-772) |#1| |#1|)) (-15 -1783 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3229 (|#1| |#1| (-772))) (-15 -1404 (|#1| |#1| (-772))) (-15 -1983 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| (-772))) (-15 -2476 (|#1| (-1173 |#2|))) (-15 -1317 ((-1173 |#2|) |#1|)) (-15 -3455 ((-1267 |#2|) |#1| (-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#2| |#1| |#2|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -1431 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -4385 (|#1| |#1| (-1083))) (-15 -2845 ((-645 (-1083)) |#1|)) (-15 -2350 ((-772) |#1| (-645 (-1083)))) (-15 -2350 ((-772) |#1|)) (-15 -2821 (|#1| |#1| (-645 (-1083)) (-645 (-772)))) (-15 -2821 (|#1| |#1| (-1083) (-772))) (-15 -2752 ((-645 (-772)) |#1| (-645 (-1083)))) (-15 -2752 ((-772) |#1| (-1083))) (-15 -1902 ((-3 (-1083) "failed") |#1|)) (-15 -1813 ((-645 (-772)) |#1| (-645 (-1083)))) (-15 -1813 ((-772) |#1| (-1083))) (-15 -4127 (|#1| (-1083))) (-15 -3747 ((-3 (-1083) "failed") |#1|)) (-15 -2033 ((-1083) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1083)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1083) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1083)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1083) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -1813 ((-772) |#1|)) (-15 -2821 (|#1| |#2| (-772))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -2752 ((-772) |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -1621 (|#1| |#1| (-645 (-1083)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1083) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1083)))) (-15 -1621 (|#1| |#1| (-1083))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) (-1243 |#2|) (-1050)) (T -1242)) -NIL -(-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -2052 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2833 ((-421 |#1|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -2701 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1783 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -4197 ((-772) |#1|)) (-15 -2573 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1783 (|#2| (-410 |#1|) |#2|)) (-15 -2887 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1950 ((-2 (|:| -3686 |#2|) (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| |#1|)) (-15 -1307 (|#1| |#1| |#1|)) (-15 -2868 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2937 ((-772) |#1| |#1|)) (-15 -1783 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3229 (|#1| |#1| (-772))) (-15 -1404 (|#1| |#1| (-772))) (-15 -1983 ((-2 (|:| -1598 |#1|) (|:| -1608 |#1|)) |#1| (-772))) (-15 -2476 (|#1| (-1173 |#2|))) (-15 -1317 ((-1173 |#2|) |#1|)) (-15 -3455 ((-1267 |#2|) |#1| (-772))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1621 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1177) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1177)))) (-15 -1621 (|#1| |#1| (-1177))) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#2| |#1| |#2|)) (-15 -2703 ((-421 |#1|) |#1|)) (-15 -1431 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3871 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -3475 ((-421 (-1173 |#1|)) (-1173 |#1|))) (-15 -1885 ((-3 (-645 (-1173 |#1|)) "failed") (-645 (-1173 |#1|)) (-1173 |#1|))) (-15 -4385 (|#1| |#1| (-1083))) (-15 -2845 ((-645 (-1083)) |#1|)) (-15 -2350 ((-772) |#1| (-645 (-1083)))) (-15 -2350 ((-772) |#1|)) (-15 -2821 (|#1| |#1| (-645 (-1083)) (-645 (-772)))) (-15 -2821 (|#1| |#1| (-1083) (-772))) (-15 -2752 ((-645 (-772)) |#1| (-645 (-1083)))) (-15 -2752 ((-772) |#1| (-1083))) (-15 -1902 ((-3 (-1083) "failed") |#1|)) (-15 -1813 ((-645 (-772)) |#1| (-645 (-1083)))) (-15 -1813 ((-772) |#1| (-1083))) (-15 -4127 (|#1| (-1083))) (-15 -3747 ((-3 (-1083) "failed") |#1|)) (-15 -2033 ((-1083) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1083)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1083) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1083)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1083) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -1813 ((-772) |#1|)) (-15 -2821 (|#1| |#2| (-772))) (-15 -3747 ((-3 (-567) "failed") |#1|)) (-15 -2033 ((-567) |#1|)) (-15 -3747 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2033 ((-410 (-567)) |#1|)) (-15 -2033 (|#2| |#1|)) (-15 -3747 ((-3 |#2| "failed") |#1|)) (-15 -4127 (|#1| |#2|)) (-15 -2752 ((-772) |#1|)) (-15 -4385 (|#2| |#1|)) (-15 -1621 (|#1| |#1| (-645 (-1083)) (-645 (-772)))) (-15 -1621 (|#1| |#1| (-1083) (-772))) (-15 -1621 (|#1| |#1| (-645 (-1083)))) (-15 -1621 (|#1| |#1| (-1083))) (-15 -4127 (|#1| (-567))) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3455 (((-1267 |#1|) $ (-772)) 240)) (-2845 (((-645 (-1083)) $) 112)) (-2476 (($ (-1173 |#1|)) 238)) (-2670 (((-1173 $) $ (-1083)) 127) (((-1173 |#1|) $) 126)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1312 (($ $) 90 (|has| |#1| (-559)))) (-2318 (((-112) $) 92 (|has| |#1| (-559)))) (-2350 (((-772) $) 114) (((-772) $ (-645 (-1083))) 113)) (-3460 (((-3 $ "failed") $ $) 20)) (-3412 (($ $ $) 225 (|has| |#1| (-559)))) (-1431 (((-421 (-1173 $)) (-1173 $)) 102 (|has| |#1| (-910)))) (-3081 (($ $) 100 (|has| |#1| (-455)))) (-2833 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1885 (((-3 (-645 (-1173 $)) "failed") (-645 (-1173 $)) (-1173 $)) 105 (|has| |#1| (-910)))) (-2373 (((-112) $ $) 210 (|has| |#1| (-365)))) (-1404 (($ $ (-772)) 233)) (-3229 (($ $ (-772)) 232)) (-2887 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 (-1083) "failed") $) 138)) (-2033 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) (((-1083) $) 139)) (-3621 (($ $ $ (-1083)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2344 (($ $ $) 214 (|has| |#1| (-365)))) (-3006 (($ $) 156)) (-1868 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 (-567))) (|:| |vec| (-1267 (-567)))) (-690 $) (-1267 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4138 (-690 |#1|)) (|:| |vec| (-1267 |#1|))) (-690 $) (-1267 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 213 (|has| |#1| (-365)))) (-1580 (($ $ $) 231)) (-1307 (($ $ $) 222 (|has| |#1| (-559)))) (-1950 (((-2 (|:| -3686 |#1|) (|:| -1598 $) (|:| -1608 $)) $ $) 221 (|has| |#1| (-559)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-4334 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1083)) 107 (|has| |#1| (-455)))) (-2992 (((-645 $) $) 111)) (-4341 (((-112) $) 98 (|has| |#1| (-910)))) (-2543 (($ $ |#1| (-772) $) 174)) (-3489 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| (-1083) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| (-1083) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-2937 (((-772) $ $) 226 (|has| |#1| (-559)))) (-2843 (((-112) $) 35)) (-4183 (((-772) $) 171)) (-3641 (((-3 $ "failed") $) 206 (|has| |#1| (-1152)))) (-2832 (($ (-1173 |#1|) (-1083)) 119) (($ (-1173 $) (-1083)) 118)) (-3275 (($ $ (-772)) 237)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-2604 (((-645 $) $) 128)) (-2014 (((-112) $) 154)) (-2821 (($ |#1| (-772)) 155) (($ $ (-1083) (-772)) 121) (($ $ (-645 (-1083)) (-645 (-772))) 120)) (-2777 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $ (-1083)) 122) (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 235)) (-2752 (((-772) $) 172) (((-772) $ (-1083)) 124) (((-645 (-772)) $ (-645 (-1083))) 123)) (-3345 (($ (-1 (-772) (-772)) $) 173)) (-3822 (($ (-1 |#1| |#1|) $) 153)) (-1317 (((-1173 |#1|) $) 239)) (-1902 (((-3 (-1083) "failed") $) 125)) (-2969 (($ $) 151)) (-2980 ((|#1| $) 150)) (-2735 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3739 (((-1159) $) 10)) (-1983 (((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772)) 234)) (-2662 (((-3 (-645 $) "failed") $) 116)) (-2432 (((-3 (-645 $) "failed") $) 117)) (-4026 (((-3 (-2 (|:| |var| (-1083)) (|:| -4250 (-772))) "failed") $) 115)) (-1576 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2701 (($) 205 (|has| |#1| (-1152)) CONST)) (-3430 (((-1121) $) 11)) (-2943 (((-112) $) 168)) (-2955 ((|#1| $) 169)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 97 (|has| |#1| (-455)))) (-2771 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3475 (((-421 (-1173 $)) (-1173 $)) 104 (|has| |#1| (-910)))) (-3871 (((-421 (-1173 $)) (-1173 $)) 103 (|has| |#1| (-910)))) (-2703 (((-421 $) $) 101 (|has| |#1| (-910)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 215 (|has| |#1| (-365)))) (-2387 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1083) |#1|) 143) (($ $ (-645 (-1083)) (-645 |#1|)) 142) (($ $ (-1083) $) 141) (($ $ (-645 (-1083)) (-645 $)) 140)) (-4197 (((-772) $) 211 (|has| |#1| (-365)))) (-1783 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-1859 (((-3 $ "failed") $ (-772)) 236)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 212 (|has| |#1| (-365)))) (-1999 (($ $ (-1083)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-1621 (($ $ (-1083)) 46) (($ $ (-645 (-1083))) 45) (($ $ (-1083) (-772)) 44) (($ $ (-645 (-1083)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1177)) 252 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 251 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 250 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 249 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-1813 (((-772) $) 152) (((-772) $ (-1083)) 132) (((-645 (-772)) $ (-645 (-1083))) 131)) (-3880 (((-893 (-381)) $) 84 (-12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| (-1083) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4385 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1083)) 108 (|has| |#1| (-455)))) (-1735 (((-3 (-1267 $) "failed") (-690 $)) 106 (-1664 (|has| $ (-145)) (|has| |#1| (-910))))) (-2868 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1083)) 137) (($ (-410 (-567))) 80 (-2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3468 (((-645 |#1|) $) 170)) (-2253 ((|#1| $ (-772)) 157) (($ $ (-1083) (-772)) 130) (($ $ (-645 (-1083)) (-645 (-772))) 129)) (-1467 (((-3 $ "failed") $) 81 (-2797 (-1664 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-1772 (((-772)) 32 T CONST)) (-2079 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-1083)) 42) (($ $ (-645 (-1083))) 41) (($ $ (-1083) (-772)) 40) (($ $ (-645 (-1083)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1177)) 248 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177))) 247 (|has| |#1| (-901 (-1177)))) (($ $ (-1177) (-772)) 246 (|has| |#1| (-901 (-1177)))) (($ $ (-645 (-1177)) (-645 (-772))) 245 (|has| |#1| (-901 (-1177)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1243 |#1|) (-140) (-1050)) (T -1243)) -((-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1243 *4)) (-4 *4 (-1050)) (-5 *2 (-1267 *4)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-5 *2 (-1173 *3)))) (-2476 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1050)) (-4 *1 (-1243 *3)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) (-1859 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) (-2777 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1243 *3)))) (-1983 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1243 *4)))) (-1404 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) (-1580 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)))) (-1621 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))) (-3621 (*1 *2 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-4 *3 (-559)))) (-2937 (*1 *2 *1 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3412 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-2868 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-2868 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-4 *3 (-559)))) (-1307 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-1950 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3686 *3) (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1243 *3)))) (-2887 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1243 *3)))) (-1783 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567))))))) -(-13 (-950 |t#1| (-772) (-1083)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -3455 ((-1267 |t#1|) $ (-772))) (-15 -1317 ((-1173 |t#1|) $)) (-15 -2476 ($ (-1173 |t#1|))) (-15 -3275 ($ $ (-772))) (-15 -1859 ((-3 $ "failed") $ (-772))) (-15 -2777 ((-2 (|:| -1598 $) (|:| -1608 $)) $ $)) (-15 -1983 ((-2 (|:| -1598 $) (|:| -1608 $)) $ (-772))) (-15 -1404 ($ $ (-772))) (-15 -3229 ($ $ (-772))) (-15 -1580 ($ $ $)) (-15 -1621 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1152)) (-6 (-1152)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1999 (|t#1| $)) (-15 -3621 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1783 ((-410 $) (-410 $) (-410 $))) (-15 -2937 ((-772) $ $)) (-15 -3412 ($ $ $)) (-15 -2868 ((-3 $ "failed") $ $)) (-15 -2868 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -1307 ($ $ $)) (-15 -1950 ((-2 (|:| -3686 |t#1|) (|:| -1598 $) (|:| -1608 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -2887 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4413) (-15 -1783 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -1576 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2797 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1083)) . T) ((-617 |#1|) . T) ((-617 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1083) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| (-1083) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| (-1083) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2797 (|has| |#1| (-910)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-901 #2#) . T) ((-901 (-1177)) |has| |#1| (-901 (-1177))) ((-887 (-381)) -12 (|has| (-1083) (-887 (-381))) (|has| |#1| (-887 (-381)))) ((-887 (-567)) -12 (|has| (-1083) (-887 (-567))) (|has| |#1| (-887 (-567)))) ((-950 |#1| #0# #2#) . T) ((-910) |has| |#1| (-910)) ((-921) |has| |#1| (-365)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1152) |has| |#1| (-1152)) ((-1221) |has| |#1| (-910))) -((-2845 (((-645 (-1083)) $) 34)) (-3006 (($ $) 31)) (-2821 (($ |#2| |#3|) NIL) (($ $ (-1083) |#3|) 28) (($ $ (-645 (-1083)) (-645 |#3|)) 27)) (-2969 (($ $) 14)) (-2980 ((|#2| $) 12)) (-1813 ((|#3| $) 10))) -(((-1244 |#1| |#2| |#3|) (-10 -8 (-15 -2845 ((-645 (-1083)) |#1|)) (-15 -2821 (|#1| |#1| (-645 (-1083)) (-645 |#3|))) (-15 -2821 (|#1| |#1| (-1083) |#3|)) (-15 -3006 (|#1| |#1|)) (-15 -2821 (|#1| |#2| |#3|)) (-15 -1813 (|#3| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2980 (|#2| |#1|))) (-1245 |#2| |#3|) (-1050) (-793)) (T -1244)) -NIL -(-10 -8 (-15 -2845 ((-645 (-1083)) |#1|)) (-15 -2821 (|#1| |#1| (-645 (-1083)) (-645 |#3|))) (-15 -2821 (|#1| |#1| (-1083) |#3|)) (-15 -3006 (|#1| |#1|)) (-15 -2821 (|#1| |#2| |#3|)) (-15 -1813 (|#3| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2980 (|#2| |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4268 (((-1157 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-4184 (((-112) $) 85)) (-2937 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2843 (((-112) $) 35)) (-3275 (($ $ (-922)) 113)) (-2014 (((-112) $) 74)) (-2821 (($ |#1| |#2|) 73) (($ $ (-1083) |#2|) 88) (($ $ (-645 (-1083)) (-645 |#2|)) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-3981 (($ $ |#2|) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1783 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1113)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1177) (-772)) 100 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1177))) 99 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1177)) 98 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1813 ((|#2| $) 76)) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2253 ((|#1| $ |#2|) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3040 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1177) (-772)) 104 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1177))) 103 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1177)) 102 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1245 |#1| |#2|) (-140) (-1050) (-793)) (T -1245)) -((-4268 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1783 (*1 *2 *1 *3) (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-1177)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-2937 (*1 *2 *1 *2) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-1873 (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-1873 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-3040 (*1 *2 *1 *3) (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4127 (*2 (-1177)))) (-4 *2 (-1050)))) (-3981 (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) -(-13 (-974 |t#1| |t#2| (-1083)) (-10 -8 (-15 -4268 ((-1157 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1783 (|t#1| $ |t#2|)) (-15 -3638 ((-1177) $)) (-15 -2793 (|t#1| $)) (-15 -3275 ($ $ (-922))) (-15 -2937 (|t#2| $)) (-15 -2937 (|t#2| $ |t#2|)) (-15 -1873 ($ $ |t#2|)) (-15 -1873 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4127 (|t#1| (-1177)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3040 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3981 ($ $ |t#2|)) (IF (|has| |t#2| (-1113)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-901 (-1177))) (-6 (-901 (-1177))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2631 ((-1157 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1113)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-901 (-1177)))) ((-974 |#1| |#2| (-1083)) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-3081 ((|#2| |#2|) 12)) (-2833 (((-421 |#2|) |#2|) 14)) (-1987 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30))) -(((-1246 |#1| |#2|) (-10 -7 (-15 -2833 ((-421 |#2|) |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -1987 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1243 |#1|) (-559) (-10 -8 (-15 -2771 ($ $ $))))) (T -1246)) -((-1987 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1243 *3) (-559) (-10 -8 (-15 -2771 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1246 *3 *4)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1246 *3 *2)) (-4 *2 (-13 (-1243 *3) (-559) (-10 -8 (-15 -2771 ($ $ $))))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1246 *4 *3)) (-4 *3 (-13 (-1243 *4) (-559) (-10 -8 (-15 -2771 ($ $ $)))))))) -(-10 -7 (-15 -2833 ((-421 |#2|) |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -1987 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) -((-3822 (((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)) 24))) -(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3822 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) (-1050) (-1050) (-1177) (-1177) |#1| |#2|) (T -1247)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-14 *7 (-1177)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1177))))) -(-10 -7 (-15 -3822 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3165 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 174 (|has| |#1| (-365)))) (-2833 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2714 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3148 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3184 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-2344 (($ $ $) 169 (|has| |#1| (-365)))) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 168 (|has| |#1| (-365)))) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-4341 (((-112) $) 176 (|has| |#1| (-365)))) (-4184 (((-112) $) 85)) (-1480 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) 113) (($ $ (-410 (-567))) 182)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2014 (((-112) $) 74)) (-2821 (($ |#1| (-410 (-567))) 73) (($ $ (-1083) (-410 (-567))) 88) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-3053 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-2735 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3739 (((-1159) $) 10)) (-2933 (($ $) 177 (|has| |#1| (-365)))) (-1576 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 180 (-2797 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1202)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 162 (|has| |#1| (-365)))) (-2771 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2703 (((-421 $) $) 173 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 170 (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3927 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) 166 (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 167 (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177) (-772)) 100 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1177))) 99 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177)) 98 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-1813 (((-410 (-567)) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177) (-772)) 104 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1177))) 103 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177)) 102 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1248 |#1|) (-140) (-1050)) (T -1248)) -((-1970 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1050)) (-4 *1 (-1248 *4)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1248 *3)) (-4 *3 (-1050)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-1576 (*1 *1 *1 *2) (-2797 (-12 (-5 *2 (-1177)) (-4 *1 (-1248 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1177)) (-4 *1 (-1248 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1245 |t#1| (-410 (-567))) (-10 -8 (-15 -1970 ($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -3275 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $)) (IF (|has| |t#1| (-15 -1576 (|t#1| |t#1| (-1177)))) (IF (|has| |t#1| (-15 -2845 ((-645 (-1177)) |t#1|))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1202)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1202))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1113)) ((-291) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177)))) ((-974 |#1| #0# (-1083)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567)))) ((-1221) |has| |#1| (-365)) ((-1245 |#1| #0#) . T)) -((-2840 (((-112) $) 12)) (-3747 (((-3 |#3| "failed") $) 17)) (-2033 ((|#3| $) 14))) -(((-1249 |#1| |#2| |#3|) (-10 -8 (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2840 ((-112) |#1|))) (-1250 |#2| |#3|) (-1050) (-1227 |#2|)) (T -1249)) -NIL -(-10 -8 (-15 -3747 ((-3 |#3| "failed") |#1|)) (-15 -2033 (|#3| |#1|)) (-15 -2840 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3165 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 174 (|has| |#1| (-365)))) (-2833 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2714 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3148 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3184 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#2| "failed") $) 194)) (-2033 ((|#2| $) 195)) (-2344 (($ $ $) 169 (|has| |#1| (-365)))) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-3013 (((-410 (-567)) $) 191)) (-2355 (($ $ $) 168 (|has| |#1| (-365)))) (-2913 (($ (-410 (-567)) |#2|) 192)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-4341 (((-112) $) 176 (|has| |#1| (-365)))) (-4184 (((-112) $) 85)) (-1480 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) 113) (($ $ (-410 (-567))) 182)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2014 (((-112) $) 74)) (-2821 (($ |#1| (-410 (-567))) 73) (($ $ (-1083) (-410 (-567))) 88) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-3053 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-2735 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1397 ((|#2| $) 190)) (-2285 (((-3 |#2| "failed") $) 188)) (-2903 ((|#2| $) 189)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 177 (|has| |#1| (-365)))) (-1576 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 180 (-2797 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1202)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 162 (|has| |#1| (-365)))) (-2771 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2703 (((-421 $) $) 173 (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 170 (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3927 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) 166 (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 167 (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177) (-772)) 100 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1177))) 99 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177)) 98 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-1813 (((-410 (-567)) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177) (-772)) 104 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1177))) 103 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1177)) 102 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1250 |#1| |#2|) (-140) (-1050) (-1227 |t#1|)) (T -1250)) -((-1813 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1227 *3)) (-5 *2 (-410 (-567))))) (-2913 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1050)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1227 *4)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1227 *3)) (-5 *2 (-410 (-567))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1227 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1227 *3)))) (-2285 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1227 *3))))) -(-13 (-1248 |t#1|) (-1039 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2913 ($ (-410 (-567)) |t#2|)) (-15 -3013 ((-410 (-567)) $)) (-15 -1397 (|t#2| $)) (-15 -1813 ((-410 (-567)) $)) (-15 -2903 (|t#2| $)) (-15 -2285 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1113)) ((-291) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177)))) ((-974 |#1| #0# (-1083)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1039 |#2|) . T) ((-1052 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2797 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567)))) ((-1221) |has| |#1| (-365)) ((-1245 |#1| #0#) . T) ((-1248 |#1|) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 104)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-3165 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-3184 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL)) (-2033 ((|#2| $) NIL)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) 85)) (-3013 (((-410 (-567)) $) 13)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2913 (($ (-410 (-567)) |#2|) 11)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4184 (((-112) $) 74)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) 130) (($ $ (-410 (-567))) 128)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-410 (-567))) 33) (($ $ (-1083) (-410 (-567))) NIL) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) 125)) (-3053 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1397 ((|#2| $) 12)) (-2285 (((-3 |#2| "failed") $) 44)) (-2903 ((|#2| $) 45)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) 101 (|has| |#1| (-365)))) (-1576 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 151 (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202)))))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) 122)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-1813 (((-410 (-567)) $) 16)) (-3192 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 120)) (-4127 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) 107)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) 127 T CONST)) (-2793 ((|#1| $) 106)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 21 T CONST)) (-1722 (($) 17 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) 72)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3037 (($ $) 142) (($ $ $) 78)) (-3024 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1251 |#1| |#2|) (-1250 |#1| |#2|) (-1050) (-1227 |#1|)) (T -1251)) -NIL -(-1250 |#1| |#2|) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 11)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) NIL (|has| |#1| (-559)))) (-1873 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-4268 (((-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-365)))) (-2833 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2373 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-772) (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-1231 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1259 |#1| |#2| |#3|) "failed") $) 22)) (-2033 (((-1231 |#1| |#2| |#3|) $) NIL) (((-1259 |#1| |#2| |#3|) $) NIL)) (-2344 (($ $ $) NIL (|has| |#1| (-365)))) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3013 (((-410 (-567)) $) 69)) (-2355 (($ $ $) NIL (|has| |#1| (-365)))) (-2913 (($ (-410 (-567)) (-1231 |#1| |#2| |#3|)) NIL)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4341 (((-112) $) NIL (|has| |#1| (-365)))) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-2843 (((-112) $) NIL)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-410 (-567))) 30) (($ $ (-1083) (-410 (-567))) NIL) (($ $ (-645 (-1083)) (-645 (-410 (-567)))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-2735 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1397 (((-1231 |#1| |#2| |#3|) $) 72)) (-2285 (((-3 (-1231 |#1| |#2| |#3|) "failed") $) NIL)) (-2903 (((-1231 |#1| |#2| |#3|) $) NIL)) (-3739 (((-1159) $) NIL)) (-2933 (($ $) NIL (|has| |#1| (-365)))) (-1576 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) NIL (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) NIL (|has| |#1| (-365)))) (-2771 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2703 (((-421 $) $) NIL (|has| |#1| (-365)))) (-1414 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) NIL (|has| |#1| (-365)))) (-3981 (($ $ (-410 (-567))) NIL)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3407 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4197 (((-772) $) NIL (|has| |#1| (-365)))) (-1783 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1113)))) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) NIL (|has| |#1| (-365)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1263 |#2|)) 38)) (-1813 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) NIL)) (-4127 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1231 |#1| |#2| |#3|)) 16) (($ (-1259 |#1| |#2| |#3|)) 17) (($ (-1263 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2253 ((|#1| $ (-410 (-567))) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 12)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 32 T CONST)) (-1722 (($) 26 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 34)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1252 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1231 |#1| |#2| |#3|)) (-1039 (-1259 |#1| |#2| |#3|)) (-617 (-1263 |#2|)) (-10 -8 (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1252)) -((-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1231 |#1| |#2| |#3|)) (-1039 (-1259 |#1| |#2| |#3|)) (-617 (-1263 |#2|)) (-10 -8 (-15 -1621 ($ $ (-1263 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 37)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-1312 (($ $) NIL)) (-2318 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 (-567) "failed") $) NIL (|has| (-1252 |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1252 |#2| |#3| |#4|) (-1039 (-410 (-567))))) (((-3 (-1252 |#2| |#3| |#4|) "failed") $) 22)) (-2033 (((-567) $) NIL (|has| (-1252 |#2| |#3| |#4|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-1252 |#2| |#3| |#4|) (-1039 (-410 (-567))))) (((-1252 |#2| |#3| |#4|) $) NIL)) (-3006 (($ $) 41)) (-3153 (((-3 $ "failed") $) 27)) (-4334 (($ $) NIL (|has| (-1252 |#2| |#3| |#4|) (-455)))) (-2543 (($ $ (-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) 11)) (-2014 (((-112) $) NIL)) (-2821 (($ (-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2752 (((-320 |#2| |#3| |#4|) $) NIL)) (-3345 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3822 (($ (-1 (-1252 |#2| |#3| |#4|) (-1252 |#2| |#3| |#4|)) $) NIL)) (-3566 (((-3 (-844 |#2|) "failed") $) 90)) (-2969 (($ $) NIL)) (-2980 (((-1252 |#2| |#3| |#4|) $) 20)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2943 (((-112) $) NIL)) (-2955 (((-1252 |#2| |#3| |#4|) $) NIL)) (-2387 (((-3 $ "failed") $ (-1252 |#2| |#3| |#4|)) NIL (|has| (-1252 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-3665 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1252 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1159))) "failed") $) 74)) (-1813 (((-320 |#2| |#3| |#4|) $) 17)) (-4385 (((-1252 |#2| |#3| |#4|) $) NIL (|has| (-1252 |#2| |#3| |#4|) (-455)))) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1252 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2797 (|has| (-1252 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1252 |#2| |#3| |#4|) (-1039 (-410 (-567))))))) (-3468 (((-645 (-1252 |#2| |#3| |#4|)) $) NIL)) (-2253 (((-1252 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-1467 (((-3 $ "failed") $) NIL (|has| (-1252 |#2| |#3| |#4|) (-145)))) (-1772 (((-772)) NIL T CONST)) (-2079 (($ $ $ (-772)) NIL (|has| (-1252 |#2| |#3| |#4|) (-172)))) (-4104 (((-112) $ $) NIL)) (-4380 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ (-1252 |#2| |#3| |#4|)) NIL (|has| (-1252 |#2| |#3| |#4|) (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1252 |#2| |#3| |#4|)) NIL) (($ (-1252 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1252 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1252 |#2| |#3| |#4|) (-38 (-410 (-567))))))) -(((-1253 |#1| |#2| |#3| |#4|) (-13 (-327 (-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -3566 ((-3 (-844 |#2|) "failed") $)) (-15 -3665 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1252 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1159))) "failed") $)))) (-13 (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1202) (-433 |#1|)) (-1177) |#2|) (T -1253)) -((-3566 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1253 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) (-14 *6 *4))) (-3665 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1252 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1159)))) (-5 *1 (-1253 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) (-14 *6 *4)))) -(-13 (-327 (-1252 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -3566 ((-3 (-844 |#2|) "failed") $)) (-15 -3665 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1252 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1159))) "failed") $)))) -((-3794 ((|#2| $) 34)) (-3991 ((|#2| $) 18)) (-4280 (($ $) 52)) (-1602 (($ $ (-567)) 85)) (-2112 (((-112) $ (-772)) 46)) (-3785 ((|#2| $ |#2|) 82)) (-2125 ((|#2| $ |#2|) 78)) (-4281 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3850 (($ $ (-645 $)) 81)) (-3977 ((|#2| $) 17)) (-2417 (($ $) NIL) (($ $ (-772)) 59)) (-4343 (((-645 $) $) 31)) (-4218 (((-112) $ $) 69)) (-1904 (((-112) $ (-772)) 45)) (-1596 (((-112) $ (-772)) 43)) (-2915 (((-112) $) 33)) (-3250 ((|#2| $) 25) (($ $ (-772)) 64)) (-1783 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3340 (((-112) $) 23)) (-1765 (($ $) 55)) (-4367 (($ $) 86)) (-4387 (((-772) $) 58)) (-4263 (($ $) 57)) (-2260 (($ $ $) 77) (($ |#2| $) NIL)) (-3602 (((-645 $) $) 32)) (-2929 (((-112) $ $) 67)) (-2410 (((-772) $) 51))) -(((-1254 |#1| |#2|) (-10 -8 (-15 -1602 (|#1| |#1| (-567))) (-15 -4281 (|#2| |#1| "last" |#2|)) (-15 -2125 (|#2| |#1| |#2|)) (-15 -4281 (|#1| |#1| "rest" |#1|)) (-15 -4281 (|#2| |#1| "first" |#2|)) (-15 -4367 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -4387 ((-772) |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -3991 (|#2| |#1|)) (-15 -3977 (|#2| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3250 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "last")) (-15 -3250 (|#2| |#1|)) (-15 -2417 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| "rest")) (-15 -2417 (|#1| |#1|)) (-15 -1783 (|#2| |#1| "first")) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -3785 (|#2| |#1| |#2|)) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -3850 (|#1| |#1| (-645 |#1|))) (-15 -4218 ((-112) |#1| |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3794 (|#2| |#1|)) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772)))) (-1255 |#2|) (-1217)) (T -1254)) -NIL -(-10 -8 (-15 -1602 (|#1| |#1| (-567))) (-15 -4281 (|#2| |#1| "last" |#2|)) (-15 -2125 (|#2| |#1| |#2|)) (-15 -4281 (|#1| |#1| "rest" |#1|)) (-15 -4281 (|#2| |#1| "first" |#2|)) (-15 -4367 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -4387 ((-772) |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -3991 (|#2| |#1|)) (-15 -3977 (|#2| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -3250 (|#1| |#1| (-772))) (-15 -1783 (|#2| |#1| "last")) (-15 -3250 (|#2| |#1|)) (-15 -2417 (|#1| |#1| (-772))) (-15 -1783 (|#1| |#1| "rest")) (-15 -2417 (|#1| |#1|)) (-15 -1783 (|#2| |#1| "first")) (-15 -2260 (|#1| |#2| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -3785 (|#2| |#1| |#2|)) (-15 -4281 (|#2| |#1| "value" |#2|)) (-15 -3850 (|#1| |#1| (-645 |#1|))) (-15 -4218 ((-112) |#1| |#1|)) (-15 -3340 ((-112) |#1|)) (-15 -1783 (|#2| |#1| "value")) (-15 -3794 (|#2| |#1|)) (-15 -2915 ((-112) |#1|)) (-15 -4343 ((-645 |#1|) |#1|)) (-15 -3602 ((-645 |#1|) |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -2410 ((-772) |#1|)) (-15 -2112 ((-112) |#1| (-772))) (-15 -1904 ((-112) |#1| (-772))) (-15 -1596 ((-112) |#1| (-772)))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-3794 ((|#1| $) 49)) (-3991 ((|#1| $) 66)) (-4280 (($ $) 68)) (-1602 (($ $ (-567)) 53 (|has| $ (-6 -4418)))) (-2112 (((-112) $ (-772)) 8)) (-3785 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1831 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2125 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-3753 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-4281 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418)))) (-3850 (($ $ (-645 $)) 42 (|has| $ (-6 -4418)))) (-3977 ((|#1| $) 67)) (-2245 (($) 7 T CONST)) (-2417 (($ $) 74) (($ $ (-772)) 72)) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4343 (((-645 $) $) 51)) (-4218 (((-112) $ $) 43 (|has| |#1| (-1101)))) (-1904 (((-112) $ (-772)) 9)) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36)) (-1596 (((-112) $ (-772)) 10)) (-3781 (((-645 |#1|) $) 46)) (-2915 (((-112) $) 50)) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-3250 ((|#1| $) 71) (($ $ (-772)) 69)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 77) (($ $ (-772)) 75)) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4126 (((-567) $ $) 45)) (-3340 (((-112) $) 47)) (-1765 (($ $) 63)) (-4367 (($ $) 60 (|has| $ (-6 -4418)))) (-4387 (((-772) $) 64)) (-4263 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-4303 (($ $) 13)) (-3444 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-2260 (($ $ $) 79) (($ |#1| $) 78)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3602 (((-645 $) $) 52)) (-2588 (((-112) $ $) 44 (|has| |#1| (-1101)))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1255 |#1|) (-140) (-1217)) (T -1255)) -((-2260 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-2260 (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) (-2417 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) (-4280 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4263 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) (-1765 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3444 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3444 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4367 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-3753 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4281 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-1831 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4281 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) (-2125 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-4281 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4418)) (-4 *1 (-1255 *3)) (-4 *3 (-1217))))) -(-13 (-1011 |t#1|) (-10 -8 (-15 -2260 ($ $ $)) (-15 -2260 ($ |t#1| $)) (-15 -2405 (|t#1| $)) (-15 -1783 (|t#1| $ "first")) (-15 -2405 ($ $ (-772))) (-15 -2417 ($ $)) (-15 -1783 ($ $ "rest")) (-15 -2417 ($ $ (-772))) (-15 -3250 (|t#1| $)) (-15 -1783 (|t#1| $ "last")) (-15 -3250 ($ $ (-772))) (-15 -4280 ($ $)) (-15 -3977 (|t#1| $)) (-15 -3991 (|t#1| $)) (-15 -4263 ($ $)) (-15 -4387 ((-772) $)) (-15 -1765 ($ $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3444 ($ $ $)) (-15 -3444 ($ $ |t#1|)) (-15 -4367 ($ $)) (-15 -3753 (|t#1| $ |t#1|)) (-15 -4281 (|t#1| $ "first" |t#1|)) (-15 -1831 ($ $ $)) (-15 -4281 ($ $ "rest" $)) (-15 -2125 (|t#1| $ |t#1|)) (-15 -4281 (|t#1| $ "last" |t#1|)) (-15 -1602 ($ $ (-567)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1101)) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-1011 |#1|) . T) ((-1101) |has| |#1| (-1101)) ((-1217) . T)) -((-3822 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 (|#4| (-1 |#2| |#1|) |#3|))) (-1050) (-1050) (-1258 |#1|) (-1258 |#2|)) (T -1256)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-1258 *6)) (-5 *1 (-1256 *5 *6 *4 *2)) (-4 *4 (-1258 *5))))) -(-10 -7 (-15 -3822 (|#4| (-1 |#2| |#1|) |#3|))) -((-2840 (((-112) $) 17)) (-3165 (($ $) 106)) (-3039 (($ $) 82)) (-3148 (($ $) 102)) (-3015 (($ $) 78)) (-3184 (($ $) 110)) (-3065 (($ $) 86)) (-3053 (($ $) 76)) (-3927 (($ $) 74)) (-3192 (($ $) 112)) (-3076 (($ $) 88)) (-3174 (($ $) 108)) (-3052 (($ $) 84)) (-3157 (($ $) 104)) (-3026 (($ $) 80)) (-4127 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3220 (($ $) 118)) (-3109 (($ $) 94)) (-3201 (($ $) 114)) (-3087 (($ $) 90)) (-3241 (($ $) 122)) (-3128 (($ $) 98)) (-3807 (($ $) 124)) (-3137 (($ $) 100)) (-3228 (($ $) 120)) (-3119 (($ $) 96)) (-3210 (($ $) 116)) (-3098 (($ $) 92)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72))) -(((-1257 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3039 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3109 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -2840 ((-112) |#1|)) (-15 -4127 ((-863) |#1|))) (-1258 |#2|) (-1050)) (T -1257)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3039 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3109 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#2|)) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| (-410 (-567)))) (-15 -4127 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -2840 ((-112) |#1|)) (-15 -4127 ((-863) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2845 (((-645 (-1083)) $) 86)) (-3638 (((-1177) $) 115)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1312 (($ $) 64 (|has| |#1| (-559)))) (-2318 (((-112) $) 66 (|has| |#1| (-559)))) (-1873 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-4268 (((-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-3165 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) 20)) (-2714 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1157 |#1|)) 165)) (-3184 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) 18 T CONST)) (-3006 (($ $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-2034 (($ $) 164)) (-3736 (((-953 |#1|) $ (-772)) 162) (((-953 |#1|) $ (-772) (-772)) 161)) (-4184 (((-112) $) 85)) (-1480 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $) 112) (((-772) $ (-772)) 111)) (-2843 (((-112) $) 35)) (-1709 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3275 (($ $ (-922)) 113)) (-4344 (($ (-1 |#1| (-567)) $) 163)) (-2014 (((-112) $) 74)) (-2821 (($ |#1| (-772)) 73) (($ $ (-1083) (-772)) 88) (($ $ (-645 (-1083)) (-645 (-772))) 87)) (-3822 (($ (-1 |#1| |#1|) $) 75)) (-3053 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 77)) (-2980 ((|#1| $) 78)) (-3739 (((-1159) $) 10)) (-1576 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 158 (-2797 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1202)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1121) $) 11)) (-3981 (($ $ (-772)) 107)) (-2387 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3927 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1783 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1113)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1177) (-772)) 100 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1177))) 99 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1177)) 98 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-1813 (((-772) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 84)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3468 (((-1157 |#1|) $) 166)) (-2253 ((|#1| $ (-772)) 71)) (-1467 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1772 (((-772)) 32 T CONST)) (-2793 ((|#1| $) 114)) (-4104 (((-112) $ $) 9)) (-3220 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1177) (-772)) 104 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1177))) 103 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1177)) 102 (-12 (|has| |#1| (-901 (-1177))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1258 |#1|) (-140) (-1050)) (T -1258)) -((-1970 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1050)) (-4 *1 (-1258 *3)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1050)) (-5 *2 (-1157 *3)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-4 *1 (-1258 *3)))) (-2034 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050)))) (-4344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1258 *3)) (-4 *3 (-1050)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1258 *4)) (-4 *4 (-1050)) (-5 *2 (-953 *4)))) (-3736 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1258 *4)) (-4 *4 (-1050)) (-5 *2 (-953 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-1576 (*1 *1 *1 *2) (-2797 (-12 (-5 *2 (-1177)) (-4 *1 (-1258 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1177)) (-4 *1 (-1258 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1245 |t#1| (-772)) (-10 -8 (-15 -1970 ($ (-1157 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -3468 ((-1157 |t#1|) $)) (-15 -1970 ($ (-1157 |t#1|))) (-15 -2034 ($ $)) (-15 -4344 ($ (-1 |t#1| (-567)) $)) (-15 -3736 ((-953 |t#1|) $ (-772))) (-15 -3736 ((-953 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -1576 ($ $)) (IF (|has| |t#1| (-15 -1576 (|t#1| |t#1| (-1177)))) (IF (|has| |t#1| (-15 -2845 ((-645 (-1177)) |t#1|))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1202)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -1576 ($ $ (-1177))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1202))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1113)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 (-1177)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177)))) ((-974 |#1| #0# (-1083)) . T) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2797 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1202) |has| |#1| (-38 (-410 (-567)))) ((-1205) |has| |#1| (-38 (-410 (-567)))) ((-1245 |#1| #0#) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-2845 (((-645 (-1083)) $) NIL)) (-3638 (((-1177) $) 93)) (-4040 (((-1240 |#2| |#1|) $ (-772)) 74)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1312 (($ $) NIL (|has| |#1| (-559)))) (-2318 (((-112) $) 145 (|has| |#1| (-559)))) (-1873 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-4268 (((-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-3165 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3460 (((-3 $ "failed") $ $) NIL)) (-2714 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3015 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1970 (($ (-1157 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1157 |#1|)) NIL)) (-3184 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2245 (($) NIL T CONST)) (-2699 (($ $) 137)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-2034 (($ $) 143)) (-3736 (((-953 |#1|) $ (-772)) 64) (((-953 |#1|) $ (-772) (-772)) 66)) (-4184 (((-112) $) NIL)) (-1480 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2937 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-2843 (((-112) $) NIL)) (-4144 (($ $) 120)) (-1709 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3646 (($ (-567) (-567) $) 139)) (-3275 (($ $ (-922)) 142)) (-4344 (($ (-1 |#1| (-567)) $) 114)) (-2014 (((-112) $) NIL)) (-2821 (($ |#1| (-772)) 16) (($ $ (-1083) (-772)) NIL) (($ $ (-645 (-1083)) (-645 (-772))) NIL)) (-3822 (($ (-1 |#1| |#1|) $) 101)) (-3053 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-4390 (($ $) 118)) (-2070 (($ $) 116)) (-2776 (($ (-567) (-567) $) 141)) (-1576 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1177)) 159 (-2797 (-12 (|has| |#1| (-15 -1576 (|#1| |#1| (-1177)))) (|has| |#1| (-15 -2845 ((-645 (-1177)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1202))))) (($ $ (-1263 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1121) $) NIL)) (-2685 (($ $ (-567) (-567)) 124)) (-3981 (($ $ (-772)) 126)) (-2387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3927 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1429 (($ $) 122)) (-2631 (((-1157 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1783 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1113)))) (-1621 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1263 |#2|)) 106)) (-1813 (((-772) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3174 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1546 (($ $) 128)) (-4127 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1240 |#2| |#1|)) 84) (($ (-1263 |#2|)) 22)) (-3468 (((-1157 |#1|) $) NIL)) (-2253 ((|#1| $ (-772)) 97)) (-1467 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1772 (((-772)) NIL T CONST)) (-2793 ((|#1| $) 94)) (-4104 (((-112) $ $) NIL)) (-3220 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3109 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4380 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3087 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3241 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3040 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4127 (|#1| (-1177))))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3119 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1710 (($) 18 T CONST)) (-1722 (($) 13 T CONST)) (-2636 (($ $ (-645 (-1177)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-645 (-1177))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-1177)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1177))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2929 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) 110)) (-3024 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1259 |#1| |#2| |#3|) (-13 (-1258 |#1|) (-10 -8 (-15 -4127 ($ (-1240 |#2| |#1|))) (-15 -4040 ((-1240 |#2| |#1|) $ (-772))) (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (-15 -2070 ($ $)) (-15 -4390 ($ $)) (-15 -4144 ($ $)) (-15 -1429 ($ $)) (-15 -2685 ($ $ (-567) (-567))) (-15 -2699 ($ $)) (-15 -3646 ($ (-567) (-567) $)) (-15 -2776 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) (-1050) (-1177) |#1|) (T -1259)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-1240 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3) (-5 *1 (-1259 *3 *4 *5)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1240 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) (-4 *4 (-1050)) (-14 *5 (-1177)) (-14 *6 *4))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) (-14 *4 *2))) (-4390 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) (-14 *4 *2))) (-4144 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) (-14 *4 *2))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) (-14 *4 *2))) (-2685 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3))) (-2699 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) (-14 *4 *2))) (-3646 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3))) (-2776 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1177)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(-13 (-1258 |#1|) (-10 -8 (-15 -4127 ($ (-1240 |#2| |#1|))) (-15 -4040 ((-1240 |#2| |#1|) $ (-772))) (-15 -4127 ($ (-1263 |#2|))) (-15 -1621 ($ $ (-1263 |#2|))) (-15 -2070 ($ $)) (-15 -4390 ($ $)) (-15 -4144 ($ $)) (-15 -1429 ($ $)) (-15 -2685 ($ $ (-567) (-567))) (-15 -2699 ($ $)) (-15 -3646 ($ (-567) (-567) $)) (-15 -2776 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -1576 ($ $ (-1263 |#2|))) |%noBranch|))) -((-1342 (((-1 (-1157 |#1|) (-645 (-1157 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-2611 (((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2751 (((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|)) 13)) (-3344 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3472 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1780 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-3826 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-4364 ((|#2| |#2| |#2|) 43))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -2751 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -2611 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1342 ((-1 (-1157 |#1|) (-645 (-1157 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -4364 (|#2| |#2| |#2|)) (-15 -3472 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3344 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1780 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3826 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1258 |#1|)) (T -1260)) -((-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1258 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1260 *5 *6)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1258 *5)) (-5 *1 (-1260 *5 *2)))) (-3344 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1258 *4)) (-5 *1 (-1260 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1258 *4)) (-5 *1 (-1260 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-4364 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1258 *3)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1258 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1157 *4) (-645 (-1157 *4)))) (-5 *1 (-1260 *4 *5)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1258 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1260 *4 *5)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1258 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1260 *4 *5))))) -(-10 -7 (-15 -2751 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -2611 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1342 ((-1 (-1157 |#1|) (-645 (-1157 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -4364 (|#2| |#2| |#2|)) (-15 -3472 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3344 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1780 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3826 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) -((-4032 ((|#2| |#4| (-772)) 34)) (-3932 ((|#4| |#2|) 29)) (-2207 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-3124 (((-1 |#4| (-645 |#4|)) |#3|) 46))) -(((-1261 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3932 (|#4| |#2|)) (-15 -4032 (|#2| |#4| (-772))) (-15 -3124 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -2207 (|#4| (-410 |#2|))) |%noBranch|)) (-1050) (-1243 |#1|) (-657 |#2|) (-1258 |#1|)) (T -1261)) -((-2207 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-559)) (-4 *4 (-1050)) (-4 *2 (-1258 *4)) (-5 *1 (-1261 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-3124 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-1243 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1261 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1258 *4)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-4 *2 (-1243 *5)) (-5 *1 (-1261 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1258 *5)))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *3 (-1243 *4)) (-4 *2 (-1258 *4)) (-5 *1 (-1261 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) -(-10 -7 (-15 -3932 (|#4| |#2|)) (-15 -4032 (|#2| |#4| (-772))) (-15 -3124 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -2207 (|#4| (-410 |#2|))) |%noBranch|)) -NIL -(((-1262) (-140)) (T -1262)) -NIL -(-13 (-10 -7 (-6 -3003))) -((-2399 (((-112) $ $) NIL)) (-3638 (((-1177)) 12)) (-3739 (((-1159) $) 18)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 11) (((-1177) $) 8)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) 15))) -(((-1263 |#1|) (-13 (-1101) (-614 (-1177)) (-10 -8 (-15 -4127 ((-1177) $)) (-15 -3638 ((-1177))))) (-1177)) (T -1263)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1263 *3)) (-14 *3 *2))) (-3638 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1263 *3)) (-14 *3 *2)))) -(-13 (-1101) (-614 (-1177)) (-10 -8 (-15 -4127 ((-1177) $)) (-15 -3638 ((-1177))))) -((-1314 (($ (-772)) 19)) (-1542 (((-690 |#2|) $ $) 41)) (-3485 ((|#2| $) 51)) (-2334 ((|#2| $) 50)) (-3246 ((|#2| $ $) 36)) (-2202 (($ $ $) 47)) (-3037 (($ $) 23) (($ $ $) 29)) (-3024 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1264 |#1| |#2|) (-10 -8 (-15 -3485 (|#2| |#1|)) (-15 -2334 (|#2| |#1|)) (-15 -2202 (|#1| |#1| |#1|)) (-15 -1542 ((-690 |#2|) |#1| |#1|)) (-15 -3246 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -1314 (|#1| (-772))) (-15 -3024 (|#1| |#1| |#1|))) (-1265 |#2|) (-1217)) (T -1264)) -NIL -(-10 -8 (-15 -3485 (|#2| |#1|)) (-15 -2334 (|#2| |#1|)) (-15 -2202 (|#1| |#1| |#1|)) (-15 -1542 ((-690 |#2|) |#1| |#1|)) (-15 -3246 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -1314 (|#1| (-772))) (-15 -3024 (|#1| |#1| |#1|))) -((-2399 (((-112) $ $) 19 (|has| |#1| (-1101)))) (-1314 (($ (-772)) 113 (|has| |#1| (-23)))) (-2848 (((-1272) $ (-567) (-567)) 41 (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4418))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) 8)) (-4281 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) 59 (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-2245 (($) 7 T CONST)) (-3224 (($ $) 91 (|has| $ (-6 -4418)))) (-3583 (($ $) 101)) (-2440 (($ $) 79 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-3230 (($ |#1| $) 78 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) 52)) (-2567 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1542 (((-690 |#1|) $ $) 106 (|has| |#1| (-1050)))) (-2844 (($ (-772) |#1|) 70)) (-1904 (((-112) $ (-772)) 9)) (-3993 (((-567) $) 44 (|has| (-567) (-851)))) (-2010 (($ $ $) 88 (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) 30 (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-1958 (((-567) $) 45 (|has| (-567) (-851)))) (-2998 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3485 ((|#1| $) 103 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-1596 (((-112) $ (-772)) 10)) (-2334 ((|#1| $) 104 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-3739 (((-1159) $) 22 (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-2732 (((-645 (-567)) $) 47)) (-2479 (((-112) (-567) $) 48)) (-3430 (((-1121) $) 21 (|has| |#1| (-1101)))) (-2405 ((|#1| $) 43 (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4271 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) 14)) (-2991 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) 49)) (-3240 (((-112) $) 11)) (-3347 (($) 12)) (-1783 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1234 (-567))) 64)) (-3246 ((|#1| $ $) 107 (|has| |#1| (-1050)))) (-1558 (($ $ (-567)) 63) (($ $ (-1234 (-567))) 62)) (-2202 (($ $ $) 105 (|has| |#1| (-1050)))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1101)) (|has| $ (-6 -4417))))) (-2811 (($ $ $ (-567)) 92 (|has| $ (-6 -4418)))) (-4303 (($ $) 13)) (-3880 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 71)) (-2260 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4127 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) 23 (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2964 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2929 (((-112) $ $) 20 (|has| |#1| (-1101)))) (-2977 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3037 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3024 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2410 (((-772) $) 6 (|has| $ (-6 -4417))))) -(((-1265 |#1|) (-140) (-1217)) (T -1265)) -((-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-25)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1265 *3)) (-4 *3 (-23)) (-4 *3 (-1217)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-21)))) (-3037 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1265 *3)) (-4 *3 (-1217)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) (-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1050)))) (-1542 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1217)) (-4 *3 (-1050)) (-5 *2 (-690 *3)))) (-2202 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1050)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1003)) (-4 *2 (-1050)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1003)) (-4 *2 (-1050))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3024 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1314 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3037 ($ $)) (-15 -3037 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1050)) (PROGN (-15 -3246 (|t#1| $ $)) (-15 -1542 ((-690 |t#1|) $ $)) (-15 -2202 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-1050)) (PROGN (-15 -2334 (|t#1| $)) (-15 -3485 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-614 (-863)) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1101) -2797 (|has| |#1| (-1101)) (|has| |#1| (-851))) ((-1217) . T)) -((-2565 (((-1267 |#2|) (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|) 13)) (-2499 ((|#2| (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|) 15)) (-3822 (((-3 (-1267 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1267 |#1|)) 30) (((-1267 |#2|) (-1 |#2| |#1|) (-1267 |#1|)) 18))) -(((-1266 |#1| |#2|) (-10 -7 (-15 -2565 ((-1267 |#2|) (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|)) (-15 -3822 ((-1267 |#2|) (-1 |#2| |#1|) (-1267 |#1|))) (-15 -3822 ((-3 (-1267 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1267 |#1|)))) (-1217) (-1217)) (T -1266)) -((-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1267 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1267 *6)) (-5 *1 (-1266 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1267 *6)) (-5 *1 (-1266 *5 *6)))) (-2499 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1267 *5)) (-4 *5 (-1217)) (-4 *2 (-1217)) (-5 *1 (-1266 *5 *2)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1267 *6)) (-4 *6 (-1217)) (-4 *5 (-1217)) (-5 *2 (-1267 *5)) (-5 *1 (-1266 *6 *5))))) -(-10 -7 (-15 -2565 ((-1267 |#2|) (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|)) (-15 -2499 (|#2| (-1 |#2| |#1| |#2|) (-1267 |#1|) |#2|)) (-15 -3822 ((-1267 |#2|) (-1 |#2| |#1|) (-1267 |#1|))) (-15 -3822 ((-3 (-1267 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1267 |#1|)))) -((-2399 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-1314 (($ (-772)) NIL (|has| |#1| (-23)))) (-1609 (($ (-645 |#1|)) 11)) (-2848 (((-1272) $ (-567) (-567)) NIL (|has| $ (-6 -4418)))) (-2871 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3161 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-851))))) (-1332 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-2112 (((-112) $ (-772)) NIL)) (-4281 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1234 (-567)) |#1|) NIL (|has| $ (-6 -4418)))) (-3338 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2245 (($) NIL T CONST)) (-3224 (($ $) NIL (|has| $ (-6 -4418)))) (-3583 (($ $) NIL)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3230 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2499 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3759 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4418)))) (-3702 ((|#1| $ (-567)) NIL)) (-2567 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1101))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1101)))) (-3397 (((-645 |#1|) $) 15 (|has| $ (-6 -4417)))) (-1542 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-2844 (($ (-772) |#1|) NIL)) (-1904 (((-112) $ (-772)) NIL)) (-3993 (((-567) $) NIL (|has| (-567) (-851)))) (-2010 (($ $ $) NIL (|has| |#1| (-851)))) (-3523 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2513 (((-645 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3136 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-1958 (((-567) $) NIL (|has| (-567) (-851)))) (-2998 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3485 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-1596 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3739 (((-1159) $) NIL (|has| |#1| (-1101)))) (-2842 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2732 (((-645 (-567)) $) NIL)) (-2479 (((-112) (-567) $) NIL)) (-3430 (((-1121) $) NIL (|has| |#1| (-1101)))) (-2405 ((|#1| $) NIL (|has| (-567) (-851)))) (-3424 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4271 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3256 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1101))))) (-2480 (((-112) $ $) NIL)) (-2991 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-3564 (((-645 |#1|) $) NIL)) (-3240 (((-112) $) NIL)) (-3347 (($) NIL)) (-1783 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-3246 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-1558 (($ $ (-567)) NIL) (($ $ (-1234 (-567))) NIL)) (-2202 (($ $ $) NIL (|has| |#1| (-1050)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1101))))) (-2811 (($ $ $ (-567)) NIL (|has| $ (-6 -4418)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-4142 (($ (-645 |#1|)) 10)) (-2260 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4127 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4104 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2461 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2929 (((-112) $ $) NIL (|has| |#1| (-1101)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3024 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1267 |#1|) (-13 (-1265 |#1|) (-10 -8 (-15 -1609 ($ (-645 |#1|))))) (-1217)) (T -1267)) -((-1609 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1267 *3))))) -(-13 (-1265 |#1|) (-10 -8 (-15 -1609 ($ (-645 |#1|))))) -((-2399 (((-112) $ $) NIL)) (-1337 (((-1159) $ (-1159)) 110) (((-1159) $ (-1159) (-1159)) 108) (((-1159) $ (-1159) (-645 (-1159))) 107)) (-1384 (($) 70)) (-3674 (((-1272) $ (-471) (-922)) 55)) (-1737 (((-1272) $ (-922) (-1159)) 92) (((-1272) $ (-922) (-875)) 93)) (-2559 (((-1272) $ (-922) (-381) (-381)) 58)) (-3115 (((-1272) $ (-1159)) 87)) (-4265 (((-1272) $ (-922) (-1159)) 97)) (-3719 (((-1272) $ (-922) (-381) (-381)) 59)) (-3896 (((-1272) $ (-922) (-922)) 56)) (-1313 (((-1272) $) 88)) (-4151 (((-1272) $ (-922) (-1159)) 96)) (-2586 (((-1272) $ (-471) (-922)) 41)) (-3310 (((-1272) $ (-922) (-1159)) 95)) (-3618 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-3312 (((-1272) $ (-772) (-772)) 53)) (-4316 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-3739 (((-1159) $) NIL)) (-1791 (((-567) $) 48)) (-3430 (((-1121) $) NIL)) (-2292 (((-1267 (-3 (-471) "undefined")) $) 47)) (-2272 (((-1267 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3310 (-567)) (|:| -2189 (-567)) (|:| |spline| (-567)) (|:| -3348 (-567)) (|:| |axesColor| (-875)) (|:| -1737 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-1600 (((-1272) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-3453 (((-645 (-944 (-225))) $) NIL)) (-4165 (((-471) $ (-922)) 43)) (-3366 (((-1272) $ (-772) (-772) (-922) (-922)) 51)) (-3010 (((-1272) $ (-1159)) 98)) (-2189 (((-1272) $ (-922) (-1159)) 94)) (-4127 (((-863) $) 105)) (-3988 (((-1272) $) 99)) (-4104 (((-112) $ $) NIL)) (-3348 (((-1272) $ (-922) (-1159)) 90) (((-1272) $ (-922) (-875)) 91)) (-2929 (((-112) $ $) NIL))) -(((-1268) (-13 (-1101) (-10 -8 (-15 -3453 ((-645 (-944 (-225))) $)) (-15 -1384 ($)) (-15 -4316 ($ $)) (-15 -3618 ((-645 (-264)) $)) (-15 -3618 ($ $ (-645 (-264)))) (-15 -4316 ($ (-471) (-645 (-264)))) (-15 -1600 ((-1272) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2272 ((-1267 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3310 (-567)) (|:| -2189 (-567)) (|:| |spline| (-567)) (|:| -3348 (-567)) (|:| |axesColor| (-875)) (|:| -1737 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2292 ((-1267 (-3 (-471) "undefined")) $)) (-15 -3115 ((-1272) $ (-1159))) (-15 -2586 ((-1272) $ (-471) (-922))) (-15 -4165 ((-471) $ (-922))) (-15 -3348 ((-1272) $ (-922) (-1159))) (-15 -3348 ((-1272) $ (-922) (-875))) (-15 -1737 ((-1272) $ (-922) (-1159))) (-15 -1737 ((-1272) $ (-922) (-875))) (-15 -3310 ((-1272) $ (-922) (-1159))) (-15 -4151 ((-1272) $ (-922) (-1159))) (-15 -2189 ((-1272) $ (-922) (-1159))) (-15 -3010 ((-1272) $ (-1159))) (-15 -3988 ((-1272) $)) (-15 -3366 ((-1272) $ (-772) (-772) (-922) (-922))) (-15 -3719 ((-1272) $ (-922) (-381) (-381))) (-15 -2559 ((-1272) $ (-922) (-381) (-381))) (-15 -4265 ((-1272) $ (-922) (-1159))) (-15 -3312 ((-1272) $ (-772) (-772))) (-15 -3674 ((-1272) $ (-471) (-922))) (-15 -3896 ((-1272) $ (-922) (-922))) (-15 -1337 ((-1159) $ (-1159))) (-15 -1337 ((-1159) $ (-1159) (-1159))) (-15 -1337 ((-1159) $ (-1159) (-645 (-1159)))) (-15 -1313 ((-1272) $)) (-15 -1791 ((-567) $)) (-15 -4127 ((-863) $))))) (T -1268)) -((-4127 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1268)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-645 (-944 (-225)))) (-5 *1 (-1268)))) (-1384 (*1 *1) (-5 *1 (-1268))) (-4316 (*1 *1 *1) (-5 *1 (-1268))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) (-4316 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1268)))) (-1600 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-1267 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3310 (-567)) (|:| -2189 (-567)) (|:| |spline| (-567)) (|:| -3348 (-567)) (|:| |axesColor| (-875)) (|:| -1737 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1268)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1267 (-3 (-471) "undefined"))) (-5 *1 (-1268)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-2586 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-4165 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1268)))) (-3348 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3348 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-1737 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-1737 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3310 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-4151 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-2189 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3010 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3366 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3719 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-2559 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-4265 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3674 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-3896 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1268)))) (-1337 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1268)))) (-1337 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-1268)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1268)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1268))))) -(-13 (-1101) (-10 -8 (-15 -3453 ((-645 (-944 (-225))) $)) (-15 -1384 ($)) (-15 -4316 ($ $)) (-15 -3618 ((-645 (-264)) $)) (-15 -3618 ($ $ (-645 (-264)))) (-15 -4316 ($ (-471) (-645 (-264)))) (-15 -1600 ((-1272) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2272 ((-1267 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3310 (-567)) (|:| -2189 (-567)) (|:| |spline| (-567)) (|:| -3348 (-567)) (|:| |axesColor| (-875)) (|:| -1737 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2292 ((-1267 (-3 (-471) "undefined")) $)) (-15 -3115 ((-1272) $ (-1159))) (-15 -2586 ((-1272) $ (-471) (-922))) (-15 -4165 ((-471) $ (-922))) (-15 -3348 ((-1272) $ (-922) (-1159))) (-15 -3348 ((-1272) $ (-922) (-875))) (-15 -1737 ((-1272) $ (-922) (-1159))) (-15 -1737 ((-1272) $ (-922) (-875))) (-15 -3310 ((-1272) $ (-922) (-1159))) (-15 -4151 ((-1272) $ (-922) (-1159))) (-15 -2189 ((-1272) $ (-922) (-1159))) (-15 -3010 ((-1272) $ (-1159))) (-15 -3988 ((-1272) $)) (-15 -3366 ((-1272) $ (-772) (-772) (-922) (-922))) (-15 -3719 ((-1272) $ (-922) (-381) (-381))) (-15 -2559 ((-1272) $ (-922) (-381) (-381))) (-15 -4265 ((-1272) $ (-922) (-1159))) (-15 -3312 ((-1272) $ (-772) (-772))) (-15 -3674 ((-1272) $ (-471) (-922))) (-15 -3896 ((-1272) $ (-922) (-922))) (-15 -1337 ((-1159) $ (-1159))) (-15 -1337 ((-1159) $ (-1159) (-1159))) (-15 -1337 ((-1159) $ (-1159) (-645 (-1159)))) (-15 -1313 ((-1272) $)) (-15 -1791 ((-567) $)) (-15 -4127 ((-863) $)))) -((-2399 (((-112) $ $) NIL)) (-2025 (((-1272) $ (-381)) 172) (((-1272) $ (-381) (-381) (-381)) 173)) (-1337 (((-1159) $ (-1159)) 182) (((-1159) $ (-1159) (-1159)) 180) (((-1159) $ (-1159) (-645 (-1159))) 179)) (-1322 (($) 67)) (-1959 (((-1272) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1272) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1272) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1272) $ (-381) (-381)) 148) (((-1272) $ (-381) (-381) (-381)) 155)) (-2137 (((-381)) 125) (((-381) (-381)) 126)) (-2656 (((-381)) 120) (((-381) (-381)) 122)) (-3555 (((-381)) 123) (((-381) (-381)) 124)) (-1934 (((-381)) 129) (((-381) (-381)) 130)) (-3937 (((-381)) 127) (((-381) (-381)) 128)) (-2559 (((-1272) $ (-381) (-381)) 174)) (-3115 (((-1272) $ (-1159)) 156)) (-1477 (((-1134 (-225)) $) 68) (($ $ (-1134 (-225))) 69)) (-2525 (((-1272) $ (-1159)) 190)) (-3836 (((-1272) $ (-1159)) 191)) (-2027 (((-1272) $ (-381) (-381)) 154) (((-1272) $ (-567) (-567)) 171)) (-3896 (((-1272) $ (-922) (-922)) 163)) (-1313 (((-1272) $) 140)) (-2953 (((-1272) $ (-1159)) 189)) (-1450 (((-1272) $ (-1159)) 137)) (-3618 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-3312 (((-1272) $ (-772) (-772)) 162)) (-1476 (((-1272) $ (-772) (-944 (-225))) 196)) (-1430 (($ $) 73) (($ (-1134 (-225)) (-1159)) 74) (($ (-1134 (-225)) (-645 (-264))) 75)) (-3999 (((-1272) $ (-381) (-381) (-381)) 134)) (-3739 (((-1159) $) NIL)) (-1791 (((-567) $) 131)) (-3343 (((-1272) $ (-381)) 177)) (-2715 (((-1272) $ (-381)) 194)) (-3430 (((-1121) $) NIL)) (-2397 (((-1272) $ (-381)) 193)) (-1428 (((-1272) $ (-1159)) 139)) (-3366 (((-1272) $ (-772) (-772) (-922) (-922)) 161)) (-1705 (((-1272) $ (-1159)) 136)) (-3010 (((-1272) $ (-1159)) 138)) (-4294 (((-1272) $ (-157) (-157)) 160)) (-4127 (((-863) $) 169)) (-3988 (((-1272) $) 141)) (-2400 (((-1272) $ (-1159)) 192)) (-4104 (((-112) $ $) NIL)) (-3348 (((-1272) $ (-1159)) 135)) (-2929 (((-112) $ $) NIL))) -(((-1269) (-13 (-1101) (-10 -8 (-15 -2656 ((-381))) (-15 -2656 ((-381) (-381))) (-15 -3555 ((-381))) (-15 -3555 ((-381) (-381))) (-15 -2137 ((-381))) (-15 -2137 ((-381) (-381))) (-15 -3937 ((-381))) (-15 -3937 ((-381) (-381))) (-15 -1934 ((-381))) (-15 -1934 ((-381) (-381))) (-15 -1322 ($)) (-15 -1430 ($ $)) (-15 -1430 ($ (-1134 (-225)) (-1159))) (-15 -1430 ($ (-1134 (-225)) (-645 (-264)))) (-15 -1477 ((-1134 (-225)) $)) (-15 -1477 ($ $ (-1134 (-225)))) (-15 -1476 ((-1272) $ (-772) (-944 (-225)))) (-15 -3618 ((-645 (-264)) $)) (-15 -3618 ($ $ (-645 (-264)))) (-15 -3312 ((-1272) $ (-772) (-772))) (-15 -3896 ((-1272) $ (-922) (-922))) (-15 -3115 ((-1272) $ (-1159))) (-15 -3366 ((-1272) $ (-772) (-772) (-922) (-922))) (-15 -1959 ((-1272) $ (-381) (-381) (-381) (-381) (-381))) (-15 -1959 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1959 ((-1272) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1959 ((-1272) $ (-567) (-567) (-381) (-381) (-381))) (-15 -1959 ((-1272) $ (-381) (-381))) (-15 -1959 ((-1272) $ (-381) (-381) (-381))) (-15 -3010 ((-1272) $ (-1159))) (-15 -3348 ((-1272) $ (-1159))) (-15 -1705 ((-1272) $ (-1159))) (-15 -1450 ((-1272) $ (-1159))) (-15 -1428 ((-1272) $ (-1159))) (-15 -2027 ((-1272) $ (-381) (-381))) (-15 -2027 ((-1272) $ (-567) (-567))) (-15 -2025 ((-1272) $ (-381))) (-15 -2025 ((-1272) $ (-381) (-381) (-381))) (-15 -2559 ((-1272) $ (-381) (-381))) (-15 -2953 ((-1272) $ (-1159))) (-15 -2397 ((-1272) $ (-381))) (-15 -2715 ((-1272) $ (-381))) (-15 -2525 ((-1272) $ (-1159))) (-15 -3836 ((-1272) $ (-1159))) (-15 -2400 ((-1272) $ (-1159))) (-15 -3999 ((-1272) $ (-381) (-381) (-381))) (-15 -3343 ((-1272) $ (-381))) (-15 -1313 ((-1272) $)) (-15 -4294 ((-1272) $ (-157) (-157))) (-15 -1337 ((-1159) $ (-1159))) (-15 -1337 ((-1159) $ (-1159) (-1159))) (-15 -1337 ((-1159) $ (-1159) (-645 (-1159)))) (-15 -3988 ((-1272) $)) (-15 -1791 ((-567) $))))) (T -1269)) -((-2656 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-3555 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-2137 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-3937 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-1934 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) (-1322 (*1 *1) (-5 *1 (-1269))) (-1430 (*1 *1 *1) (-5 *1 (-1269))) (-1430 (*1 *1 *2 *3) (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-1159)) (-5 *1 (-1269)))) (-1430 (*1 *1 *2 *3) (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1269)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1269)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1269)))) (-1476 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-944 (-225))) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-3312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3896 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3366 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1959 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1269)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1959 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1959 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3010 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1450 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2025 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2397 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2715 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2525 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3836 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3999 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-3343 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1269)))) (-4294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1269)))) (-1337 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1269)))) (-1337 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-1269)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1269)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269))))) -(-13 (-1101) (-10 -8 (-15 -2656 ((-381))) (-15 -2656 ((-381) (-381))) (-15 -3555 ((-381))) (-15 -3555 ((-381) (-381))) (-15 -2137 ((-381))) (-15 -2137 ((-381) (-381))) (-15 -3937 ((-381))) (-15 -3937 ((-381) (-381))) (-15 -1934 ((-381))) (-15 -1934 ((-381) (-381))) (-15 -1322 ($)) (-15 -1430 ($ $)) (-15 -1430 ($ (-1134 (-225)) (-1159))) (-15 -1430 ($ (-1134 (-225)) (-645 (-264)))) (-15 -1477 ((-1134 (-225)) $)) (-15 -1477 ($ $ (-1134 (-225)))) (-15 -1476 ((-1272) $ (-772) (-944 (-225)))) (-15 -3618 ((-645 (-264)) $)) (-15 -3618 ($ $ (-645 (-264)))) (-15 -3312 ((-1272) $ (-772) (-772))) (-15 -3896 ((-1272) $ (-922) (-922))) (-15 -3115 ((-1272) $ (-1159))) (-15 -3366 ((-1272) $ (-772) (-772) (-922) (-922))) (-15 -1959 ((-1272) $ (-381) (-381) (-381) (-381) (-381))) (-15 -1959 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1959 ((-1272) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1959 ((-1272) $ (-567) (-567) (-381) (-381) (-381))) (-15 -1959 ((-1272) $ (-381) (-381))) (-15 -1959 ((-1272) $ (-381) (-381) (-381))) (-15 -3010 ((-1272) $ (-1159))) (-15 -3348 ((-1272) $ (-1159))) (-15 -1705 ((-1272) $ (-1159))) (-15 -1450 ((-1272) $ (-1159))) (-15 -1428 ((-1272) $ (-1159))) (-15 -2027 ((-1272) $ (-381) (-381))) (-15 -2027 ((-1272) $ (-567) (-567))) (-15 -2025 ((-1272) $ (-381))) (-15 -2025 ((-1272) $ (-381) (-381) (-381))) (-15 -2559 ((-1272) $ (-381) (-381))) (-15 -2953 ((-1272) $ (-1159))) (-15 -2397 ((-1272) $ (-381))) (-15 -2715 ((-1272) $ (-381))) (-15 -2525 ((-1272) $ (-1159))) (-15 -3836 ((-1272) $ (-1159))) (-15 -2400 ((-1272) $ (-1159))) (-15 -3999 ((-1272) $ (-381) (-381) (-381))) (-15 -3343 ((-1272) $ (-381))) (-15 -1313 ((-1272) $)) (-15 -4294 ((-1272) $ (-157) (-157))) (-15 -1337 ((-1159) $ (-1159))) (-15 -1337 ((-1159) $ (-1159) (-1159))) (-15 -1337 ((-1159) $ (-1159) (-645 (-1159)))) (-15 -3988 ((-1272) $)) (-15 -1791 ((-567) $)))) -((-4314 (((-645 (-1159)) (-645 (-1159))) 104) (((-645 (-1159))) 96)) (-2647 (((-645 (-1159))) 94)) (-3474 (((-645 (-922)) (-645 (-922))) 69) (((-645 (-922))) 64)) (-4377 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-1925 (((-1272)) 71)) (-1382 (((-922) (-922)) 87) (((-922)) 86)) (-1584 (((-922) (-922)) 85) (((-922)) 84)) (-4077 (((-875) (-875)) 81) (((-875)) 80)) (-2716 (((-225)) 91) (((-225) (-381)) 93)) (-2557 (((-922)) 88) (((-922) (-922)) 89)) (-1349 (((-922) (-922)) 83) (((-922)) 82)) (-1341 (((-875) (-875)) 75) (((-875)) 73)) (-3333 (((-875) (-875)) 77) (((-875)) 76)) (-2705 (((-875) (-875)) 79) (((-875)) 78))) -(((-1270) (-10 -7 (-15 -1341 ((-875))) (-15 -1341 ((-875) (-875))) (-15 -3333 ((-875))) (-15 -3333 ((-875) (-875))) (-15 -2705 ((-875))) (-15 -2705 ((-875) (-875))) (-15 -4077 ((-875))) (-15 -4077 ((-875) (-875))) (-15 -1349 ((-922))) (-15 -1349 ((-922) (-922))) (-15 -4377 ((-645 (-772)))) (-15 -4377 ((-645 (-772)) (-645 (-772)))) (-15 -3474 ((-645 (-922)))) (-15 -3474 ((-645 (-922)) (-645 (-922)))) (-15 -1925 ((-1272))) (-15 -4314 ((-645 (-1159)))) (-15 -4314 ((-645 (-1159)) (-645 (-1159)))) (-15 -2647 ((-645 (-1159)))) (-15 -1584 ((-922))) (-15 -1382 ((-922))) (-15 -1584 ((-922) (-922))) (-15 -1382 ((-922) (-922))) (-15 -2557 ((-922) (-922))) (-15 -2557 ((-922))) (-15 -2716 ((-225) (-381))) (-15 -2716 ((-225))))) (T -1270)) -((-2716 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1270)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1270)))) (-2557 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-2557 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-1382 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-1584 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-2647 (*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270)))) (-4314 (*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270)))) (-1925 (*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1270)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1270)))) (-3474 (*1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1270)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1270)))) (-4377 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1270)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-1349 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) (-4077 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-4077 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-2705 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-3333 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) (-1341 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270))))) -(-10 -7 (-15 -1341 ((-875))) (-15 -1341 ((-875) (-875))) (-15 -3333 ((-875))) (-15 -3333 ((-875) (-875))) (-15 -2705 ((-875))) (-15 -2705 ((-875) (-875))) (-15 -4077 ((-875))) (-15 -4077 ((-875) (-875))) (-15 -1349 ((-922))) (-15 -1349 ((-922) (-922))) (-15 -4377 ((-645 (-772)))) (-15 -4377 ((-645 (-772)) (-645 (-772)))) (-15 -3474 ((-645 (-922)))) (-15 -3474 ((-645 (-922)) (-645 (-922)))) (-15 -1925 ((-1272))) (-15 -4314 ((-645 (-1159)))) (-15 -4314 ((-645 (-1159)) (-645 (-1159)))) (-15 -2647 ((-645 (-1159)))) (-15 -1584 ((-922))) (-15 -1382 ((-922))) (-15 -1584 ((-922) (-922))) (-15 -1382 ((-922) (-922))) (-15 -2557 ((-922) (-922))) (-15 -2557 ((-922))) (-15 -2716 ((-225) (-381))) (-15 -2716 ((-225)))) -((-2141 (((-471) (-645 (-645 (-944 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-944 (-225))))) 21) (((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264))) 20)) (-2080 (((-1268) (-645 (-645 (-944 (-225)))) (-645 (-264))) 33) (((-1268) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264))) 32)) (-4127 (((-1268) (-471)) 48))) -(((-1271) (-10 -7 (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))))) (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -2080 ((-1268) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2080 ((-1268) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -4127 ((-1268) (-471))))) (T -1271)) -((-4127 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1268)) (-5 *1 (-1271)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-1271)))) (-2080 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-1271)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-2141 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1271))))) -(-10 -7 (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))))) (-15 -2141 ((-471) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -2080 ((-1268) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2080 ((-1268) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -4127 ((-1268) (-471)))) -((-4319 (($) 6)) (-4127 (((-863) $) 9))) -(((-1272) (-13 (-614 (-863)) (-10 -8 (-15 -4319 ($))))) (T -1272)) -((-4319 (*1 *1) (-5 *1 (-1272)))) -(-13 (-614 (-863)) (-10 -8 (-15 -4319 ($)))) -((-3050 (($ $ |#2|) 10))) -(((-1273 |#1| |#2|) (-10 -8 (-15 -3050 (|#1| |#1| |#2|))) (-1274 |#2|) (-365)) (T -1273)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#2|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1635 (((-134)) 33)) (-4127 (((-863) $) 12)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-2929 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 34)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1274 |#1|) (-140) (-365)) (T -1274)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-365)))) (-1635 (*1 *2) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(-13 (-718 |t#1|) (-10 -8 (-15 -3050 ($ $ |t#1|)) (-15 -1635 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1101) . T)) -((-1451 (((-645 (-1211 |#1|)) (-1177) (-1211 |#1|)) 83)) (-4228 (((-1157 (-1157 (-953 |#1|))) (-1177) (-1157 (-953 |#1|))) 63)) (-2659 (((-1 (-1157 (-1211 |#1|)) (-1157 (-1211 |#1|))) (-772) (-1211 |#1|) (-1157 (-1211 |#1|))) 74)) (-4129 (((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772)) 65)) (-4189 (((-1 (-1173 (-953 |#1|)) (-953 |#1|)) (-1177)) 32)) (-2246 (((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772)) 64))) -(((-1275 |#1|) (-10 -7 (-15 -4129 ((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772))) (-15 -2246 ((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772))) (-15 -4228 ((-1157 (-1157 (-953 |#1|))) (-1177) (-1157 (-953 |#1|)))) (-15 -4189 ((-1 (-1173 (-953 |#1|)) (-953 |#1|)) (-1177))) (-15 -1451 ((-645 (-1211 |#1|)) (-1177) (-1211 |#1|))) (-15 -2659 ((-1 (-1157 (-1211 |#1|)) (-1157 (-1211 |#1|))) (-772) (-1211 |#1|) (-1157 (-1211 |#1|))))) (-365)) (T -1275)) -((-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1211 *6)) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1275 *6)) (-5 *5 (-1157 *4)))) (-1451 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-4 *5 (-365)) (-5 *2 (-645 (-1211 *5))) (-5 *1 (-1275 *5)) (-5 *4 (-1211 *5)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1 (-1173 (-953 *4)) (-953 *4))) (-5 *1 (-1275 *4)) (-4 *4 (-365)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-953 *5)))) (-5 *1 (-1275 *5)) (-5 *4 (-1157 (-953 *5))))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1157 (-953 *4)) (-1157 (-953 *4)))) (-5 *1 (-1275 *4)) (-4 *4 (-365)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1157 (-953 *4)) (-1157 (-953 *4)))) (-5 *1 (-1275 *4)) (-4 *4 (-365))))) -(-10 -7 (-15 -4129 ((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772))) (-15 -2246 ((-1 (-1157 (-953 |#1|)) (-1157 (-953 |#1|))) (-772))) (-15 -4228 ((-1157 (-1157 (-953 |#1|))) (-1177) (-1157 (-953 |#1|)))) (-15 -4189 ((-1 (-1173 (-953 |#1|)) (-953 |#1|)) (-1177))) (-15 -1451 ((-645 (-1211 |#1|)) (-1177) (-1211 |#1|))) (-15 -2659 ((-1 (-1157 (-1211 |#1|)) (-1157 (-1211 |#1|))) (-772) (-1211 |#1|) (-1157 (-1211 |#1|))))) -((-2910 (((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-1593 (((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81))) -(((-1276 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1243 |#1|) (-1243 |#2|) (-412 |#2| |#3|)) (T -1276)) -((-2910 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 *3)) (-5 *2 (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1276 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-1593 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 *4)) (-5 *2 (-2 (|:| -1975 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1276 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) -(-10 -7 (-15 -1593 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2910 ((-2 (|:| -1975 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) -((-2399 (((-112) $ $) NIL)) (-4332 (((-1136) $) 11)) (-2769 (((-1136) $) 9)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 17) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1277) (-13 (-1084) (-10 -8 (-15 -2769 ((-1136) $)) (-15 -4332 ((-1136) $))))) (T -1277)) -((-2769 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1277)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1277))))) -(-13 (-1084) (-10 -8 (-15 -2769 ((-1136) $)) (-15 -4332 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-2050 (((-1136) $) 9)) (-4127 (((-863) $) 15) (($ (-1182)) NIL) (((-1182) $) NIL)) (-4104 (((-112) $ $) NIL)) (-2929 (((-112) $ $) NIL))) -(((-1278) (-13 (-1084) (-10 -8 (-15 -2050 ((-1136) $))))) (T -1278)) -((-2050 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1278))))) -(-13 (-1084) (-10 -8 (-15 -2050 ((-1136) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 58)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) NIL)) (-2843 (((-112) $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-4127 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-1772 (((-772)) NIL T CONST)) (-3738 (((-1272) (-772)) 16)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 37 T CONST)) (-1722 (($) 84 T CONST)) (-2929 (((-112) $ $) 87)) (-3050 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3037 (($ $) 89) (($ $ $) NIL)) (-3024 (($ $ $) 63)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1279 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1050) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3738 ((-1272) (-772))))) (-1050) (-851) (-794) (-950 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1279)) -((-3050 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1279 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1272)) (-5 *1 (-1279 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3)))) -(-13 (-1050) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3738 ((-1272) (-772))))) -((-2399 (((-112) $ $) NIL)) (-2047 (((-645 (-2 (|:| -3988 $) (|:| -3815 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3645 (((-645 $) (-645 |#4|)) 96)) (-2845 (((-645 |#3|) $) NIL)) (-3295 (((-112) $) NIL)) (-3008 (((-112) $) NIL (|has| |#1| (-559)))) (-2545 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4124 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -1842 $) (|:| |upper| $)) $ |#3|) NIL)) (-2112 (((-112) $ (-772)) NIL)) (-3338 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2245 (($) NIL T CONST)) (-3162 (((-112) $) NIL (|has| |#1| (-559)))) (-2762 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3232 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3544 (((-112) $) NIL (|has| |#1| (-559)))) (-4159 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4267 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-3828 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3747 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2033 (($ (-645 |#4|)) NIL)) (-2417 (((-3 $ "failed") $) 78)) (-4042 ((|#4| |#4| $) 83)) (-2440 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-3230 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1608 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2197 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3670 ((|#4| |#4| $) NIL)) (-2499 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3163 (((-2 (|:| -3988 (-645 |#4|)) (|:| -3815 (-645 |#4|))) $) NIL)) (-3397 (((-645 |#4|) $) NIL (|has| $ (-6 -4417)))) (-2847 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4146 ((|#3| $) 84)) (-1904 (((-112) $ (-772)) NIL)) (-2513 (((-645 |#4|) $) 32 (|has| $ (-6 -4417)))) (-3136 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101))))) (-1957 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-3751 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-3822 (($ (-1 |#4| |#4|) $) NIL)) (-3254 (((-645 |#3|) $) NIL)) (-3377 (((-112) |#3| $) NIL)) (-1596 (((-112) $ (-772)) NIL)) (-3739 (((-1159) $) NIL)) (-3250 (((-3 |#4| "failed") $) NIL)) (-2200 (((-645 |#4|) $) 54)) (-2815 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1626 ((|#4| |#4| $) 82)) (-1835 (((-112) $ $) 93)) (-3121 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2924 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1471 ((|#4| |#4| $) NIL)) (-3430 (((-1121) $) NIL)) (-2405 (((-3 |#4| "failed") $) 77)) (-3424 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3454 (((-3 $ "failed") $ |#4|) NIL)) (-3981 (($ $ |#4|) NIL)) (-3256 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1101))))) (-2480 (((-112) $ $) NIL)) (-3240 (((-112) $) 75)) (-3347 (($) 46)) (-1813 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1101)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4303 (($ $) NIL)) (-3880 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4142 (($ (-645 |#4|)) NIL)) (-2388 (($ $ |#3|) NIL)) (-2155 (($ $ |#3|) NIL)) (-2961 (($ $) NIL)) (-3712 (($ $ |#3|) NIL)) (-4127 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-4191 (((-772) $) NIL (|has| |#3| (-370)))) (-4258 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-1680 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-4104 (((-112) $ $) NIL)) (-4291 (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2254 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2862 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-2461 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1760 (((-645 |#3|) $) NIL)) (-3113 (((-112) |#3| $) NIL)) (-2929 (((-112) $ $) NIL)) (-2410 (((-772) $) NIL (|has| $ (-6 -4417))))) -(((-1280 |#1| |#2| |#3| |#4|) (-13 (-1210 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1957 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1957 ((-3 $ "failed") (-645 |#4|))) (-15 -4258 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4258 ((-3 $ "failed") (-645 |#4|))) (-15 -1680 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1680 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1066 |#1| |#2| |#3|)) (T -1280)) -((-1957 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1280 *5 *6 *7 *8)))) (-1957 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1280 *3 *4 *5 *6)))) (-4258 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1280 *5 *6 *7 *8)))) (-4258 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1280 *3 *4 *5 *6)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1280 *6 *7 *8 *9))) (-5 *1 (-1280 *6 *7 *8 *9)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1280 *4 *5 *6 *7))) (-5 *1 (-1280 *4 *5 *6 *7))))) -(-13 (-1210 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1957 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1957 ((-3 $ "failed") (-645 |#4|))) (-15 -4258 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4258 ((-3 $ "failed") (-645 |#4|))) (-15 -1680 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1680 ((-645 $) (-645 |#4|))))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3460 (((-3 $ "failed") $ $) 20)) (-2245 (($) 18 T CONST)) (-3153 (((-3 $ "failed") $) 37)) (-2843 (((-112) $) 35)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1281 |#1|) (-140) (-1050)) (T -1281)) -NIL -(-13 (-1050) (-111 |t#1| |t#1|) (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T)) -((-2399 (((-112) $ $) 67)) (-2840 (((-112) $) NIL)) (-3259 (((-645 |#1|) $) 52)) (-3376 (($ $ (-772)) 46)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2733 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2245 (($) NIL T CONST)) (-3323 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-3747 (((-3 (-820 |#1|) "failed") $) NIL)) (-2033 (((-820 |#1|) $) NIL)) (-3006 (($ $) 39)) (-3153 (((-3 $ "failed") $) NIL)) (-3873 (((-112) $) NIL)) (-1408 (($ $) NIL)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ (-820 |#1|) |#2|) 38)) (-3818 (($ $) 40)) (-2374 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-1717 (((-820 |#1|) $) NIL)) (-2765 (((-820 |#1|) $) 41)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-3626 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-2165 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2969 (((-820 |#1|) $) 35)) (-2980 ((|#2| $) 37)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-1813 (((-772) $) 43)) (-3976 (((-112) $) 47)) (-3280 ((|#2| $) NIL)) (-4127 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-820 |#1|)) NIL)) (-3686 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 13 T CONST)) (-1722 (($) 19 T CONST)) (-1568 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2929 (((-112) $ $) 44)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1282 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1288 |#1| |#2|)) (-851) (-1050)) (T -1282)) -NIL -(-13 (-384 |#2| (-820 |#1|)) (-1288 |#1| |#2|)) -((-3053 ((|#3| |#3| (-772)) 30)) (-3927 ((|#3| |#3| (-772)) 36)) (-1588 ((|#3| |#3| |#3| (-772)) 37))) -(((-1283 |#1| |#2| |#3|) (-10 -7 (-15 -3927 (|#3| |#3| (-772))) (-15 -3053 (|#3| |#3| (-772))) (-15 -1588 (|#3| |#3| |#3| (-772)))) (-13 (-1050) (-718 (-410 (-567)))) (-851) (-1288 |#2| |#1|)) (T -1283)) -((-1588 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4))))) -(-10 -7 (-15 -3927 (|#3| |#3| (-772))) (-15 -3053 (|#3| |#3| (-772))) (-15 -1588 (|#3| |#3| |#3| (-772)))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3259 (((-645 |#1|) $) 47)) (-3460 (((-3 $ "failed") $ $) 20)) (-2733 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2245 (($) 18 T CONST)) (-3323 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3747 (((-3 (-820 |#1|) "failed") $) 71)) (-2033 (((-820 |#1|) $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-3873 (((-112) $) 52)) (-1408 (($ $) 51)) (-2843 (((-112) $) 35)) (-2014 (((-112) $) 57)) (-2282 (($ (-820 |#1|) |#2|) 58)) (-3818 (($ $) 56)) (-2374 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1717 (((-820 |#1|) $) 68)) (-3822 (($ (-1 |#2| |#2|) $) 48)) (-3626 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-3976 (((-112) $) 54)) (-3280 ((|#2| $) 53)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3686 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1284 |#1| |#2|) (-140) (-851) (-1050)) (T -1284)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-820 *3)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1284 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1050)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (-3626 (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-3626 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-3323 (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-3323 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-3323 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-2282 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1284 *4 *3)) (-4 *3 (-1050)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-4127 (*1 *1 *2) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-1408 (*1 *1 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-2733 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)) (-4 *3 (-172)))) (-2733 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-4 *4 (-172)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-645 *3))))) -(-13 (-1050) (-1281 |t#2|) (-1039 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1717 ((-820 |t#1|) $)) (-15 -2374 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3686 (|t#2| $ (-820 |t#1|))) (-15 -3686 (|t#2| $ $)) (-15 -3626 ($ $ |t#1|)) (-15 -3626 ($ $ (-820 |t#1|))) (-15 -3626 ($ $ $)) (-15 -3323 ($ $ |t#1|)) (-15 -3323 ($ $ (-820 |t#1|))) (-15 -3323 ($ $ $)) (-15 -2282 ($ (-820 |t#1|) |t#2|)) (-15 -2014 ((-112) $)) (-15 -3818 ($ $)) (-15 -4127 ($ |t#1|)) (-15 -3976 ((-112) $)) (-15 -3280 (|t#2| $)) (-15 -3873 ((-112) $)) (-15 -1408 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2733 ($ $ $)) (-15 -2733 ($ $ (-772)))) |%noBranch|) (-15 -3822 ($ (-1 |t#2| |t#2|) $)) (-15 -3259 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4410)) (-6 -4410) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1039 #0#) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1281 |#2|) . T)) -((-1552 (((-112) $) 15)) (-3113 (((-112) $) 14)) (-2529 (($ $) 19) (($ $ (-772)) 21))) -(((-1285 |#1| |#2|) (-10 -8 (-15 -2529 (|#1| |#1| (-772))) (-15 -2529 (|#1| |#1|)) (-15 -1552 ((-112) |#1|)) (-15 -3113 ((-112) |#1|))) (-1286 |#2|) (-365)) (T -1285)) -NIL -(-10 -8 (-15 -2529 (|#1| |#1| (-772))) (-15 -2529 (|#1| |#1|)) (-15 -1552 ((-112) |#1|)) (-15 -3113 ((-112) |#1|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-2474 (((-2 (|:| -2720 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-1312 (($ $) 46)) (-2318 (((-112) $) 44)) (-1552 (((-112) $) 104)) (-2463 (((-772)) 100)) (-3460 (((-3 $ "failed") $ $) 20)) (-3081 (($ $) 81)) (-2833 (((-421 $) $) 80)) (-2373 (((-112) $ $) 65)) (-2245 (($) 18 T CONST)) (-3747 (((-3 |#1| "failed") $) 111)) (-2033 ((|#1| $) 112)) (-2344 (($ $ $) 61)) (-3153 (((-3 $ "failed") $) 37)) (-2355 (($ $ $) 62)) (-2239 (((-2 (|:| -3686 (-645 $)) (|:| -1394 $)) (-645 $)) 57)) (-4112 (($ $ (-772)) 97 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4341 (((-112) $) 79)) (-2937 (((-834 (-922)) $) 94 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2843 (((-112) $) 35)) (-1691 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2735 (($ $ $) 52) (($ (-645 $)) 51)) (-3739 (((-1159) $) 10)) (-2933 (($ $) 78)) (-1816 (((-112) $) 103)) (-3430 (((-1121) $) 11)) (-2052 (((-1173 $) (-1173 $) (-1173 $)) 50)) (-2771 (($ $ $) 54) (($ (-645 $)) 53)) (-2703 (((-421 $) $) 82)) (-1768 (((-834 (-922))) 101)) (-1414 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1394 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2387 (((-3 $ "failed") $ $) 48)) (-3407 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4197 (((-772) $) 64)) (-2573 (((-2 (|:| -1598 $) (|:| -1608 $)) $ $) 63)) (-3942 (((-3 (-772) "failed") $ $) 95 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1635 (((-134)) 109)) (-1813 (((-834 (-922)) $) 102)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1467 (((-3 $ "failed") $) 93 (-2797 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-4380 (((-112) $ $) 45)) (-3113 (((-112) $) 105)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2529 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2929 (((-112) $ $) 6)) (-3050 (($ $ $) 73) (($ $ |#1|) 108)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1286 |#1|) (-140) (-365)) (T -1286)) -((-3113 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-1768 (*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-2463 (*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) -(-13 (-365) (-1039 |t#1|) (-1274 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -3113 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -1816 ((-112) $)) (-15 -1813 ((-834 (-922)) $)) (-15 -1768 ((-834 (-922)))) (-15 -2463 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -2529 ($ $)) (-15 -2529 ($ $ (-772)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2797 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2797 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1221) . T) ((-1274 |#1|) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3259 (((-645 |#1|) $) 99)) (-3376 (($ $ (-772)) 103)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2733 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-2245 (($) NIL T CONST)) (-3323 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3747 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-894 |#1|) "failed") $) NIL)) (-2033 (((-820 |#1|) $) NIL) (((-894 |#1|) $) NIL)) (-3006 (($ $) 102)) (-3153 (((-3 $ "failed") $) NIL)) (-3873 (((-112) $) 91)) (-1408 (($ $) 94)) (-3963 (($ $ $ (-772)) 104)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ (-820 |#1|) |#2|) NIL) (($ (-894 |#1|) |#2|) 29)) (-3818 (($ $) 121)) (-2374 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1717 (((-820 |#1|) $) NIL)) (-2765 (((-820 |#1|) $) NIL)) (-3822 (($ (-1 |#2| |#2|) $) NIL)) (-3626 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3053 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-2165 (((-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2969 (((-894 |#1|) $) 84)) (-2980 ((|#2| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3927 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-1813 (((-772) $) 100)) (-3976 (((-112) $) 85)) (-3280 ((|#2| $) 89)) (-4127 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-894 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1282 |#1| |#2|) $) 77) (((-1291 |#1| |#2|) $) 82)) (-3468 (((-645 |#2|) $) NIL)) (-2253 ((|#2| $ (-894 |#1|)) NIL)) (-3686 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 21 T CONST)) (-1722 (($) 28 T CONST)) (-1568 (((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2408 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-2929 (((-112) $ $) 78)) (-3037 (($ $) 113) (($ $ $) 112)) (-3024 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-894 |#1|)) NIL))) -(((-1287 |#1| |#2|) (-13 (-1288 |#1| |#2|) (-384 |#2| (-894 |#1|)) (-10 -8 (-15 -4127 ($ (-665 |#1| |#2|))) (-15 -4127 ((-1282 |#1| |#2|) $)) (-15 -4127 ((-1291 |#1| |#2|) $)) (-15 -2408 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3963 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3927 ($ $ (-772))) (-15 -3053 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1287)) -((-4127 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1287 *3 *4)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2408 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3963 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(-13 (-1288 |#1| |#2|) (-384 |#2| (-894 |#1|)) (-10 -8 (-15 -4127 ($ (-665 |#1| |#2|))) (-15 -4127 ((-1282 |#1| |#2|) $)) (-15 -4127 ((-1291 |#1| |#2|) $)) (-15 -2408 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3963 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3927 ($ $ (-772))) (-15 -3053 ($ $ (-772)))) |%noBranch|))) -((-2399 (((-112) $ $) 7)) (-2840 (((-112) $) 17)) (-3259 (((-645 |#1|) $) 47)) (-3376 (($ $ (-772)) 80)) (-3460 (((-3 $ "failed") $ $) 20)) (-2733 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2245 (($) 18 T CONST)) (-3323 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3747 (((-3 (-820 |#1|) "failed") $) 71)) (-2033 (((-820 |#1|) $) 72)) (-3153 (((-3 $ "failed") $) 37)) (-3873 (((-112) $) 52)) (-1408 (($ $) 51)) (-2843 (((-112) $) 35)) (-2014 (((-112) $) 57)) (-2282 (($ (-820 |#1|) |#2|) 58)) (-3818 (($ $) 56)) (-2374 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1717 (((-820 |#1|) $) 68)) (-2765 (((-820 |#1|) $) 82)) (-3822 (($ (-1 |#2| |#2|) $) 48)) (-3626 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-3739 (((-1159) $) 10)) (-3430 (((-1121) $) 11)) (-1813 (((-772) $) 81)) (-3976 (((-112) $) 54)) (-3280 ((|#2| $) 53)) (-4127 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3686 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-1772 (((-772)) 32 T CONST)) (-4104 (((-112) $ $) 9)) (-1710 (($) 19 T CONST)) (-1722 (($) 34 T CONST)) (-2929 (((-112) $ $) 6)) (-3037 (($ $) 23) (($ $ $) 22)) (-3024 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1288 |#1| |#2|) (-140) (-851) (-1050)) (T -1288)) -((-2765 (*1 *2 *1) (-12 (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-820 *3)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-772)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))))) -(-13 (-1284 |t#1| |t#2|) (-10 -8 (-15 -2765 ((-820 |t#1|) $)) (-15 -1813 ((-772) $)) (-15 -3376 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1039 #0#) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1059) . T) ((-1113) . T) ((-1101) . T) ((-1281 |#2|) . T) ((-1284 |#1| |#2|) . T)) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3259 (((-645 (-1177)) $) NIL)) (-1829 (($ (-1282 (-1177) |#1|)) NIL)) (-3376 (($ $ (-772)) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2733 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-2245 (($) NIL T CONST)) (-3323 (($ $ (-1177)) NIL) (($ $ (-820 (-1177))) NIL) (($ $ $) NIL)) (-3747 (((-3 (-820 (-1177)) "failed") $) NIL)) (-2033 (((-820 (-1177)) $) NIL)) (-3153 (((-3 $ "failed") $) NIL)) (-3873 (((-112) $) NIL)) (-1408 (($ $) NIL)) (-2843 (((-112) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ (-820 (-1177)) |#1|) NIL)) (-3818 (($ $) NIL)) (-2374 (((-2 (|:| |k| (-820 (-1177))) (|:| |c| |#1|)) $) NIL)) (-1717 (((-820 (-1177)) $) NIL)) (-2765 (((-820 (-1177)) $) NIL)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-3626 (($ $ (-1177)) NIL) (($ $ (-820 (-1177))) NIL) (($ $ $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3304 (((-1282 (-1177) |#1|) $) NIL)) (-1813 (((-772) $) NIL)) (-3976 (((-112) $) NIL)) (-3280 ((|#1| $) NIL)) (-4127 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1177))) NIL) (($ (-1177)) NIL)) (-3686 ((|#1| $ (-820 (-1177))) NIL) ((|#1| $ $) NIL)) (-1772 (((-772)) NIL T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) NIL T CONST)) (-3983 (((-645 (-2 (|:| |k| (-1177)) (|:| |c| $))) $) NIL)) (-1722 (($) NIL T CONST)) (-2929 (((-112) $ $) NIL)) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1177) $) NIL))) -(((-1289 |#1|) (-13 (-1288 (-1177) |#1|) (-10 -8 (-15 -3304 ((-1282 (-1177) |#1|) $)) (-15 -1829 ($ (-1282 (-1177) |#1|))) (-15 -3983 ((-645 (-2 (|:| |k| (-1177)) (|:| |c| $))) $)))) (-1050)) (T -1289)) -((-3304 (*1 *2 *1) (-12 (-5 *2 (-1282 (-1177) *3)) (-5 *1 (-1289 *3)) (-4 *3 (-1050)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-1282 (-1177) *3)) (-4 *3 (-1050)) (-5 *1 (-1289 *3)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1177)) (|:| |c| (-1289 *3))))) (-5 *1 (-1289 *3)) (-4 *3 (-1050))))) -(-13 (-1288 (-1177) |#1|) (-10 -8 (-15 -3304 ((-1282 (-1177) |#1|) $)) (-15 -1829 ($ (-1282 (-1177) |#1|))) (-15 -3983 ((-645 (-2 (|:| |k| (-1177)) (|:| |c| $))) $)))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) NIL)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2245 (($) NIL T CONST)) (-3747 (((-3 |#2| "failed") $) NIL)) (-2033 ((|#2| $) NIL)) (-3006 (($ $) NIL)) (-3153 (((-3 $ "failed") $) 42)) (-3873 (((-112) $) 35)) (-1408 (($ $) 37)) (-2843 (((-112) $) NIL)) (-4183 (((-772) $) NIL)) (-2604 (((-645 $) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ |#2| |#1|) NIL)) (-1717 ((|#2| $) 24)) (-2765 ((|#2| $) 22)) (-3822 (($ (-1 |#1| |#1|) $) NIL)) (-2165 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2969 ((|#2| $) NIL)) (-2980 ((|#1| $) NIL)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3976 (((-112) $) 32)) (-3280 ((|#1| $) 33)) (-4127 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-2253 ((|#1| $ |#2|) NIL)) (-3686 ((|#1| $ |#2|) 28)) (-1772 (((-772)) 14 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 29 T CONST)) (-1722 (($) 11 T CONST)) (-1568 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2929 (((-112) $ $) 30)) (-3050 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3037 (($ $) NIL) (($ $ $) NIL)) (-3024 (($ $ $) 50)) (** (($ $ (-922)) NIL) (($ $ (-772)) 52)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2410 (((-772) $) 16))) -(((-1290 |#1| |#2|) (-13 (-1050) (-1281 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2410 ((-772) $)) (-15 -2765 (|#2| $)) (-15 -1717 (|#2| $)) (-15 -3006 ($ $)) (-15 -3686 (|#1| $ |#2|)) (-15 -3976 ((-112) $)) (-15 -3280 (|#1| $)) (-15 -3873 ((-112) $)) (-15 -1408 ($ $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3050 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1050) (-847)) (T -1290)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-3006 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-847)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-2765 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1290 *3 *2)) (-4 *3 (-1050)))) (-1717 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1290 *3 *2)) (-4 *3 (-1050)))) (-3686 (*1 *2 *1 *3) (-12 (-4 *2 (-1050)) (-5 *1 (-1290 *2 *3)) (-4 *3 (-847)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-3280 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-1290 *2 *3)) (-4 *3 (-847)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-1408 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-847))))) -(-13 (-1050) (-1281 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2410 ((-772) $)) (-15 -2765 (|#2| $)) (-15 -1717 (|#2| $)) (-15 -3006 ($ $)) (-15 -3686 (|#1| $ |#2|)) (-15 -3976 ((-112) $)) (-15 -3280 (|#1| $)) (-15 -3873 ((-112) $)) (-15 -1408 ($ $)) (-15 -3822 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3050 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) -((-2399 (((-112) $ $) 27)) (-2840 (((-112) $) NIL)) (-3259 (((-645 |#1|) $) 132)) (-1829 (($ (-1282 |#1| |#2|)) 50)) (-3376 (($ $ (-772)) 38)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2733 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-2245 (($) NIL T CONST)) (-3323 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-3747 (((-3 (-820 |#1|) "failed") $) NIL)) (-2033 (((-820 |#1|) $) NIL)) (-3153 (((-3 $ "failed") $) 122)) (-3873 (((-112) $) 117)) (-1408 (($ $) 118)) (-2843 (((-112) $) NIL)) (-2014 (((-112) $) NIL)) (-2282 (($ (-820 |#1|) |#2|) 20)) (-3818 (($ $) NIL)) (-2374 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1717 (((-820 |#1|) $) 123)) (-2765 (((-820 |#1|) $) 126)) (-3822 (($ (-1 |#2| |#2|) $) 131)) (-3626 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-3739 (((-1159) $) NIL)) (-3430 (((-1121) $) NIL)) (-3304 (((-1282 |#1| |#2|) $) 94)) (-1813 (((-772) $) 129)) (-3976 (((-112) $) 81)) (-3280 ((|#2| $) 32)) (-4127 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-3686 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-1772 (((-772)) 120 T CONST)) (-4104 (((-112) $ $) NIL)) (-1710 (($) 15 T CONST)) (-3983 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1722 (($) 33 T CONST)) (-2929 (((-112) $ $) 14)) (-3037 (($ $) 98) (($ $ $) 101)) (-3024 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55)) (* (($ (-922) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1291 |#1| |#2|) (-13 (-1288 |#1| |#2|) (-10 -8 (-15 -3304 ((-1282 |#1| |#2|) $)) (-15 -1829 ($ (-1282 |#1| |#2|))) (-15 -3983 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1050)) (T -1291)) -((-3304 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-1282 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *1 (-1291 *3 *4)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1291 *3 *4))))) (-5 *1 (-1291 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))))) -(-13 (-1288 |#1| |#2|) (-10 -8 (-15 -3304 ((-1282 |#1| |#2|) $)) (-15 -1829 ($ (-1282 |#1| |#2|))) (-15 -3983 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1894 (((-645 (-1157 |#1|)) (-1 (-645 (-1157 |#1|)) (-645 (-1157 |#1|))) (-567)) 20) (((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|))) 13))) -(((-1292 |#1|) (-10 -7 (-15 -1894 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -1894 ((-645 (-1157 |#1|)) (-1 (-645 (-1157 |#1|)) (-645 (-1157 |#1|))) (-567)))) (-1217)) (T -1292)) -((-1894 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1157 *5)) (-645 (-1157 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1157 *5))) (-5 *1 (-1292 *5)) (-4 *5 (-1217)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1292 *4)) (-4 *4 (-1217))))) -(-10 -7 (-15 -1894 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -1894 ((-645 (-1157 |#1|)) (-1 (-645 (-1157 |#1|)) (-645 (-1157 |#1|))) (-567)))) -((-3249 (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|))) 174) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112)) 173) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-1047 |#1| |#2|)) 156)) (-2563 (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|))) 85) (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112)) 84) (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112)) 83)) (-2833 (((-645 (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|)) 73)) (-4135 (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|))) 140) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112)) 139) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|)) 132)) (-1405 (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|))) 145) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112)) 144) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|)) 142)) (-3880 (((-645 (-781 |#1| (-865 |#3|))) (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1173 (-1025 (-410 |#1|))) (-1173 |#1|)) 102) (((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-953 (-1025 (-410 |#1|))) (-953 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33))) -(((-1293 |#1| |#2| |#3|) (-10 -7 (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112))) (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112))) (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-1047 |#1| |#2|))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -2833 ((-645 (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|))) (-15 -3880 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3880 ((-953 (-1025 (-410 |#1|))) (-953 |#1|))) (-15 -3880 ((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3880 ((-1173 (-1025 (-410 |#1|))) (-1173 |#1|))) (-15 -3880 ((-645 (-781 |#1| (-865 |#3|))) (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1023)) (-645 (-1177)) (-645 (-1177))) (T -1293)) -((-3880 (*1 *2 *3) (-12 (-5 *3 (-1147 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-1173 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1177))) (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-1147 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-1405 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-4135 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-4135 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) (-3249 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) (-5 *1 (-1293 *4 *5 *6)) (-5 *3 (-645 (-953 *4))) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-3249 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-3249 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-3249 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *4 *5))) (-5 *1 (-1293 *4 *5 *6)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) (-2563 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1293 *5 *6 *7)) (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177)))))) -(-10 -7 (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112))) (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112))) (-15 -2563 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-1047 |#1| |#2|))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -3249 ((-645 (-2 (|:| -3859 (-1173 |#1|)) (|:| -2446 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -4135 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -1405 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -2833 ((-645 (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|))) (-15 -3880 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3880 ((-953 (-1025 (-410 |#1|))) (-953 |#1|))) (-15 -3880 ((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3880 ((-1173 (-1025 (-410 |#1|))) (-1173 |#1|))) (-15 -3880 ((-645 (-781 |#1| (-865 |#3|))) (-1147 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) -((-3082 (((-3 (-1267 (-410 (-567))) "failed") (-1267 |#1|) |#1|) 21)) (-2877 (((-112) (-1267 |#1|)) 12)) (-2672 (((-3 (-1267 (-567)) "failed") (-1267 |#1|)) 16))) -(((-1294 |#1|) (-10 -7 (-15 -2877 ((-112) (-1267 |#1|))) (-15 -2672 ((-3 (-1267 (-567)) "failed") (-1267 |#1|))) (-15 -3082 ((-3 (-1267 (-410 (-567))) "failed") (-1267 |#1|) |#1|))) (-640 (-567))) (T -1294)) -((-3082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1267 (-410 (-567)))) (-5 *1 (-1294 *4)))) (-2672 (*1 *2 *3) (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1267 (-567))) (-5 *1 (-1294 *4)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1294 *4))))) -(-10 -7 (-15 -2877 ((-112) (-1267 |#1|))) (-15 -2672 ((-3 (-1267 (-567)) "failed") (-1267 |#1|))) (-15 -3082 ((-3 (-1267 (-410 (-567))) "failed") (-1267 |#1|) |#1|))) -((-2399 (((-112) $ $) NIL)) (-2840 (((-112) $) 11)) (-3460 (((-3 $ "failed") $ $) NIL)) (-2371 (((-772)) 8)) (-2245 (($) NIL T CONST)) (-3153 (((-3 $ "failed") $) 58)) (-1378 (($) 49)) (-2843 (((-112) $) 57)) (-3641 (((-3 $ "failed") $) 40)) (-3425 (((-922) $) 15)) (-3739 (((-1159) $) NIL)) (-2701 (($) 32 T CONST)) (-3763 (($ (-922)) 50)) (-3430 (((-1121) $) NIL)) (-3880 (((-567) $) 13)) (-4127 (((-863) $) 27) (($ (-567)) 24)) (-1772 (((-772)) 9 T CONST)) (-4104 (((-112) $ $) 60)) (-1710 (($) 29 T CONST)) (-1722 (($) 31 T CONST)) (-2929 (((-112) $ $) 38)) (-3037 (($ $) 52) (($ $ $) 47)) (-3024 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) 54)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43))) -(((-1295 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1152)) (-922)) (T -1295)) -NIL -(-13 (-172) (-370) (-615 (-567)) (-1152)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3221257 3221262 3221267 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3221242 3221247 3221252 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3221227 3221232 3221237 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3221212 3221217 3221222 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1295 3220355 3221087 3221164 "ZMOD" 3221169 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1294 3219465 3219629 3219838 "ZLINDEP" 3220187 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1293 3208765 3210533 3212505 "ZDSOLVE" 3217595 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1292 3208011 3208152 3208341 "YSTREAM" 3208611 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1291 3205785 3207312 3207516 "XRPOLY" 3207854 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1290 3202338 3203656 3204231 "XPR" 3205257 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1289 3200059 3201669 3201873 "XPOLY" 3202169 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1288 3197712 3199080 3199135 "XPOLYC" 3199423 NIL XPOLYC (NIL T T) -9 NIL 3199536 NIL) (-1287 3194087 3196229 3196617 "XPBWPOLY" 3197370 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1286 3189782 3192077 3192119 "XF" 3192740 NIL XF (NIL T) -9 NIL 3193140 NIL) (-1285 3189403 3189491 3189660 "XF-" 3189665 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1284 3184599 3185888 3185943 "XFALG" 3188115 NIL XFALG (NIL T T) -9 NIL 3188904 NIL) (-1283 3183732 3183836 3184041 "XEXPPKG" 3184491 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1282 3181841 3183582 3183678 "XDPOLY" 3183683 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1281 3180648 3181248 3181291 "XALG" 3181296 NIL XALG (NIL T) -9 NIL 3181407 NIL) (-1280 3174090 3178625 3179119 "WUTSET" 3180240 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1279 3172346 3173142 3173465 "WP" 3173901 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1278 3171948 3172168 3172238 "WHILEAST" 3172298 T WHILEAST (NIL) -8 NIL NIL NIL) (-1277 3171420 3171665 3171759 "WHEREAST" 3171876 T WHEREAST (NIL) -8 NIL NIL NIL) (-1276 3170306 3170504 3170799 "WFFINTBS" 3171217 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1275 3168210 3168637 3169099 "WEIER" 3169878 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1274 3167256 3167706 3167748 "VSPACE" 3167884 NIL VSPACE (NIL T) -9 NIL 3167958 NIL) (-1273 3167094 3167121 3167212 "VSPACE-" 3167217 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1272 3166903 3166945 3167013 "VOID" 3167048 T VOID (NIL) -8 NIL NIL NIL) (-1271 3165039 3165398 3165804 "VIEW" 3166519 T VIEW (NIL) -7 NIL NIL NIL) (-1270 3161463 3162102 3162839 "VIEWDEF" 3164324 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1269 3150767 3153011 3155184 "VIEW3D" 3159312 T VIEW3D (NIL) -8 NIL NIL NIL) (-1268 3143018 3144678 3146257 "VIEW2D" 3149210 T VIEW2D (NIL) -8 NIL NIL NIL) (-1267 3138370 3142788 3142880 "VECTOR" 3142961 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1266 3136947 3137206 3137524 "VECTOR2" 3138100 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1265 3130421 3134728 3134771 "VECTCAT" 3135766 NIL VECTCAT (NIL T) -9 NIL 3136353 NIL) (-1264 3129435 3129689 3130079 "VECTCAT-" 3130084 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1263 3128889 3129086 3129206 "VARIABLE" 3129350 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1262 3128822 3128827 3128857 "UTYPE" 3128862 T UTYPE (NIL) -9 NIL NIL NIL) (-1261 3127652 3127806 3128068 "UTSODETL" 3128648 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1260 3125092 3125552 3126076 "UTSODE" 3127193 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1259 3116929 3122718 3123207 "UTS" 3124661 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1258 3107803 3113170 3113213 "UTSCAT" 3114325 NIL UTSCAT (NIL T) -9 NIL 3115083 NIL) (-1257 3105150 3105873 3106862 "UTSCAT-" 3106867 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1256 3104777 3104820 3104953 "UTS2" 3105101 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1255 3099003 3101615 3101658 "URAGG" 3103728 NIL URAGG (NIL T) -9 NIL 3104451 NIL) (-1254 3095942 3096805 3097928 "URAGG-" 3097933 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1253 3091651 3094577 3095042 "UPXSSING" 3095606 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1252 3083717 3090898 3091171 "UPXS" 3091436 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1251 3076790 3083621 3083693 "UPXSCONS" 3083698 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1250 3066535 3073328 3073390 "UPXSCCA" 3073964 NIL UPXSCCA (NIL T T) -9 NIL 3074197 NIL) (-1249 3066173 3066258 3066432 "UPXSCCA-" 3066437 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1248 3055770 3062336 3062379 "UPXSCAT" 3063027 NIL UPXSCAT (NIL T) -9 NIL 3063636 NIL) (-1247 3055200 3055279 3055458 "UPXS2" 3055685 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 3053854 3054107 3054458 "UPSQFREE" 3054943 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1245 3047275 3050332 3050387 "UPSCAT" 3051548 NIL UPSCAT (NIL T T) -9 NIL 3052322 NIL) (-1244 3046479 3046686 3047013 "UPSCAT-" 3047018 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1243 3032134 3039902 3039945 "UPOLYC" 3042046 NIL UPOLYC (NIL T) -9 NIL 3043267 NIL) (-1242 3023462 3025888 3029035 "UPOLYC-" 3029040 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1241 3023089 3023132 3023265 "UPOLYC2" 3023413 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1240 3014900 3022772 3022901 "UP" 3023008 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1239 3014239 3014346 3014510 "UPMP" 3014789 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1238 3013792 3013873 3014012 "UPDIVP" 3014152 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1237 3012360 3012609 3012925 "UPDECOMP" 3013541 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1236 3011595 3011707 3011892 "UPCDEN" 3012244 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1235 3011114 3011183 3011332 "UP2" 3011520 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1234 3009581 3010318 3010595 "UNISEG" 3010872 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1233 3008796 3008923 3009128 "UNISEG2" 3009424 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1232 3007856 3008036 3008262 "UNIFACT" 3008612 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1231 2991788 3007033 3007284 "ULS" 3007663 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1230 2979786 2991692 2991764 "ULSCONS" 2991769 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1229 2961805 2973790 2973852 "ULSCCAT" 2974490 NIL ULSCCAT (NIL T T) -9 NIL 2974778 NIL) (-1228 2960855 2961100 2961488 "ULSCCAT-" 2961493 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1227 2950229 2956709 2956752 "ULSCAT" 2957615 NIL ULSCAT (NIL T) -9 NIL 2958346 NIL) (-1226 2949659 2949738 2949917 "ULS2" 2950144 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1225 2948786 2949296 2949403 "UINT8" 2949514 T UINT8 (NIL) -8 NIL NIL 2949599) (-1224 2947912 2948422 2948529 "UINT64" 2948640 T UINT64 (NIL) -8 NIL NIL 2948725) (-1223 2947038 2947548 2947655 "UINT32" 2947766 T UINT32 (NIL) -8 NIL NIL 2947851) (-1222 2946164 2946674 2946781 "UINT16" 2946892 T UINT16 (NIL) -8 NIL NIL 2946977) (-1221 2944467 2945424 2945454 "UFD" 2945666 T UFD (NIL) -9 NIL 2945780 NIL) (-1220 2944261 2944307 2944402 "UFD-" 2944407 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1219 2943343 2943526 2943742 "UDVO" 2944067 T UDVO (NIL) -7 NIL NIL NIL) (-1218 2941159 2941568 2942039 "UDPO" 2942907 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1217 2941092 2941097 2941127 "TYPE" 2941132 T TYPE (NIL) -9 NIL NIL NIL) (-1216 2940852 2941047 2941078 "TYPEAST" 2941083 T TYPEAST (NIL) -8 NIL NIL NIL) (-1215 2939823 2940025 2940265 "TWOFACT" 2940646 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1214 2938846 2939232 2939467 "TUPLE" 2939623 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1213 2936537 2937056 2937595 "TUBETOOL" 2938329 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1212 2935386 2935591 2935832 "TUBE" 2936330 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1211 2930115 2934358 2934641 "TS" 2935138 NIL TS (NIL T) -8 NIL NIL NIL) (-1210 2918755 2922874 2922971 "TSETCAT" 2928240 NIL TSETCAT (NIL T T T T) -9 NIL 2929771 NIL) (-1209 2913487 2915087 2916978 "TSETCAT-" 2916983 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1208 2908126 2908973 2909902 "TRMANIP" 2912623 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1207 2907567 2907630 2907793 "TRIMAT" 2908058 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1206 2905433 2905670 2906027 "TRIGMNIP" 2907316 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1205 2904953 2905066 2905096 "TRIGCAT" 2905309 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1204 2904622 2904701 2904842 "TRIGCAT-" 2904847 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1203 2901467 2903480 2903761 "TREE" 2904376 NIL TREE (NIL T) -8 NIL NIL NIL) (-1202 2900741 2901269 2901299 "TRANFUN" 2901334 T TRANFUN (NIL) -9 NIL 2901400 NIL) (-1201 2900020 2900211 2900491 "TRANFUN-" 2900496 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1200 2899824 2899856 2899917 "TOPSP" 2899981 T TOPSP (NIL) -7 NIL NIL NIL) (-1199 2899172 2899287 2899441 "TOOLSIGN" 2899705 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1198 2897806 2898349 2898588 "TEXTFILE" 2898955 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1197 2895718 2896259 2896688 "TEX" 2897399 T TEX (NIL) -8 NIL NIL NIL) (-1196 2895499 2895530 2895602 "TEX1" 2895681 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1195 2895147 2895210 2895300 "TEMUTL" 2895431 T TEMUTL (NIL) -7 NIL NIL NIL) (-1194 2893301 2893581 2893906 "TBCMPPK" 2894870 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1193 2885078 2891461 2891517 "TBAGG" 2891917 NIL TBAGG (NIL T T) -9 NIL 2892128 NIL) (-1192 2880148 2881636 2883390 "TBAGG-" 2883395 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1191 2879532 2879639 2879784 "TANEXP" 2880037 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1190 2872922 2879389 2879482 "TABLE" 2879487 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1189 2872334 2872433 2872571 "TABLEAU" 2872819 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1188 2866942 2868162 2869410 "TABLBUMP" 2871120 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1187 2866164 2866311 2866492 "SYSTEM" 2866783 T SYSTEM (NIL) -8 NIL NIL NIL) (-1186 2862623 2863322 2864105 "SYSSOLP" 2865415 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1185 2862421 2862578 2862609 "SYSPTR" 2862614 T SYSPTR (NIL) -8 NIL NIL NIL) (-1184 2861465 2861970 2862089 "SYSNNI" 2862275 NIL SYSNNI (NIL NIL) -8 NIL NIL 2862360) (-1183 2860772 2861231 2861310 "SYSINT" 2861370 NIL SYSINT (NIL NIL) -8 NIL NIL 2861415) (-1182 2857104 2858050 2858760 "SYNTAX" 2860084 T SYNTAX (NIL) -8 NIL NIL NIL) (-1181 2854262 2854864 2855496 "SYMTAB" 2856494 T SYMTAB (NIL) -8 NIL NIL NIL) (-1180 2849511 2850413 2851396 "SYMS" 2853301 T SYMS (NIL) -8 NIL NIL NIL) (-1179 2846746 2848969 2849199 "SYMPOLY" 2849316 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1178 2846263 2846338 2846461 "SYMFUNC" 2846658 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1177 2842282 2843575 2844388 "SYMBOL" 2845472 T SYMBOL (NIL) -8 NIL NIL NIL) (-1176 2835821 2837510 2839230 "SWITCH" 2840584 T SWITCH (NIL) -8 NIL NIL NIL) (-1175 2829055 2834642 2834945 "SUTS" 2835576 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1174 2821121 2828302 2828575 "SUPXS" 2828840 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1173 2812880 2820739 2820865 "SUP" 2821030 NIL SUP (NIL T) -8 NIL NIL NIL) (-1172 2812039 2812166 2812383 "SUPFRACF" 2812748 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1171 2811660 2811719 2811832 "SUP2" 2811974 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1170 2810108 2810382 2810738 "SUMRF" 2811359 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1169 2809443 2809509 2809701 "SUMFS" 2810029 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1168 2793410 2808620 2808871 "SULS" 2809250 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2793012 2793232 2793302 "SUCHTAST" 2793362 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1166 2792307 2792537 2792677 "SUCH" 2792920 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1165 2786173 2787213 2788172 "SUBSPACE" 2791395 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1164 2785603 2785693 2785857 "SUBRESP" 2786061 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1163 2778968 2780268 2781579 "STTF" 2784339 NIL STTF (NIL T) -7 NIL NIL NIL) (-1162 2773141 2774261 2775408 "STTFNC" 2777868 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1161 2764451 2766323 2768117 "STTAYLOR" 2771382 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1160 2757581 2764315 2764398 "STRTBL" 2764403 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1159 2752945 2757536 2757567 "STRING" 2757572 T STRING (NIL) -8 NIL NIL NIL) (-1158 2747806 2752318 2752348 "STRICAT" 2752407 T STRICAT (NIL) -9 NIL 2752469 NIL) (-1157 2740559 2745425 2746036 "STREAM" 2747230 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1156 2740069 2740146 2740290 "STREAM3" 2740476 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1155 2739051 2739234 2739469 "STREAM2" 2739882 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1154 2738739 2738791 2738884 "STREAM1" 2738993 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1153 2737755 2737936 2738167 "STINPROD" 2738555 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1152 2737307 2737517 2737547 "STEP" 2737627 T STEP (NIL) -9 NIL 2737705 NIL) (-1151 2730739 2737206 2737283 "STBL" 2737288 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1150 2725865 2729960 2730003 "STAGG" 2730156 NIL STAGG (NIL T) -9 NIL 2730245 NIL) (-1149 2723567 2724169 2725041 "STAGG-" 2725046 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1148 2721714 2723337 2723429 "STACK" 2723510 NIL STACK (NIL T) -8 NIL NIL NIL) (-1147 2714409 2719855 2720311 "SREGSET" 2721344 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1146 2706834 2708203 2709716 "SRDCMPK" 2713015 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1145 2699751 2704274 2704304 "SRAGG" 2705607 T SRAGG (NIL) -9 NIL 2706215 NIL) (-1144 2698768 2699023 2699402 "SRAGG-" 2699407 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1143 2693228 2697715 2698136 "SQMATRIX" 2698394 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1142 2686913 2689946 2690673 "SPLTREE" 2692573 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1141 2682876 2683569 2684215 "SPLNODE" 2686339 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1140 2681923 2682156 2682186 "SPFCAT" 2682630 T SPFCAT (NIL) -9 NIL NIL NIL) (-1139 2680660 2680870 2681134 "SPECOUT" 2681681 T SPECOUT (NIL) -7 NIL NIL NIL) (-1138 2672286 2674056 2674086 "SPADXPT" 2678478 T SPADXPT (NIL) -9 NIL 2680512 NIL) (-1137 2672047 2672087 2672156 "SPADPRSR" 2672239 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1136 2670202 2672002 2672033 "SPADAST" 2672038 T SPADAST (NIL) -8 NIL NIL NIL) (-1135 2662147 2663920 2663963 "SPACEC" 2668336 NIL SPACEC (NIL T) -9 NIL 2670152 NIL) (-1134 2660277 2662079 2662128 "SPACE3" 2662133 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1133 2659029 2659200 2659491 "SORTPAK" 2660082 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1132 2657121 2657424 2657836 "SOLVETRA" 2658693 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1131 2656171 2656393 2656654 "SOLVESER" 2656894 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1130 2651475 2652363 2653358 "SOLVERAD" 2655223 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1129 2647290 2647899 2648628 "SOLVEFOR" 2650842 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1128 2641560 2646639 2646736 "SNTSCAT" 2646741 NIL SNTSCAT (NIL T T T T) -9 NIL 2646811 NIL) (-1127 2635666 2639883 2640274 "SMTS" 2641250 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1126 2630350 2635554 2635631 "SMP" 2635636 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1125 2628509 2628810 2629208 "SMITH" 2630047 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1124 2621222 2625418 2625521 "SMATCAT" 2626872 NIL SMATCAT (NIL NIL T T T) -9 NIL 2627422 NIL) (-1123 2618162 2618985 2620163 "SMATCAT-" 2620168 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1122 2615828 2617398 2617441 "SKAGG" 2617702 NIL SKAGG (NIL T) -9 NIL 2617837 NIL) (-1121 2612139 2615244 2615439 "SINT" 2615626 T SINT (NIL) -8 NIL NIL 2615799) (-1120 2611911 2611949 2612015 "SIMPAN" 2612095 T SIMPAN (NIL) -7 NIL NIL NIL) (-1119 2611190 2611446 2611586 "SIG" 2611793 T SIG (NIL) -8 NIL NIL NIL) (-1118 2610028 2610249 2610524 "SIGNRF" 2610949 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1117 2608861 2609012 2609296 "SIGNEF" 2609857 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1116 2608167 2608444 2608568 "SIGAST" 2608759 T SIGAST (NIL) -8 NIL NIL NIL) (-1115 2605856 2606311 2606817 "SHP" 2607708 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1114 2599708 2605757 2605833 "SHDP" 2605838 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1113 2599281 2599473 2599503 "SGROUP" 2599596 T SGROUP (NIL) -9 NIL 2599658 NIL) (-1112 2599139 2599165 2599238 "SGROUP-" 2599243 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1111 2595974 2596672 2597395 "SGCF" 2598438 T SGCF (NIL) -7 NIL NIL NIL) (-1110 2590342 2595421 2595518 "SFRTCAT" 2595523 NIL SFRTCAT (NIL T T T T) -9 NIL 2595562 NIL) (-1109 2583763 2584781 2585917 "SFRGCD" 2589325 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1108 2576889 2577962 2579148 "SFQCMPK" 2582696 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1107 2576509 2576598 2576709 "SFORT" 2576830 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1106 2575627 2576349 2576470 "SEXOF" 2576475 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1105 2574734 2575508 2575576 "SEX" 2575581 T SEX (NIL) -8 NIL NIL NIL) (-1104 2570247 2570962 2571057 "SEXCAT" 2573994 NIL SEXCAT (NIL T T T T T) -9 NIL 2574572 NIL) (-1103 2567400 2570181 2570229 "SET" 2570234 NIL SET (NIL T) -8 NIL NIL NIL) (-1102 2565624 2566113 2566418 "SETMN" 2567141 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1101 2565120 2565272 2565302 "SETCAT" 2565478 T SETCAT (NIL) -9 NIL 2565588 NIL) (-1100 2564812 2564890 2565020 "SETCAT-" 2565025 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1099 2561173 2563273 2563316 "SETAGG" 2564186 NIL SETAGG (NIL T) -9 NIL 2564526 NIL) (-1098 2560631 2560747 2560984 "SETAGG-" 2560989 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1097 2560074 2560327 2560428 "SEQAST" 2560552 T SEQAST (NIL) -8 NIL NIL NIL) (-1096 2559273 2559567 2559628 "SEGXCAT" 2559914 NIL SEGXCAT (NIL T T) -9 NIL 2560034 NIL) (-1095 2558279 2558939 2559121 "SEG" 2559126 NIL SEG (NIL T) -8 NIL NIL NIL) (-1094 2557258 2557472 2557515 "SEGCAT" 2558037 NIL SEGCAT (NIL T) -9 NIL 2558258 NIL) (-1093 2556190 2556621 2556829 "SEGBIND" 2557085 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1092 2555811 2555870 2555983 "SEGBIND2" 2556125 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1091 2555384 2555612 2555689 "SEGAST" 2555756 T SEGAST (NIL) -8 NIL NIL NIL) (-1090 2554603 2554729 2554933 "SEG2" 2555228 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1089 2554013 2554538 2554585 "SDVAR" 2554590 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1088 2546540 2553783 2553913 "SDPOL" 2553918 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1087 2545133 2545399 2545718 "SCPKG" 2546255 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1086 2544297 2544469 2544661 "SCOPE" 2544963 T SCOPE (NIL) -8 NIL NIL NIL) (-1085 2543517 2543651 2543830 "SCACHE" 2544152 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1084 2543163 2543349 2543379 "SASTCAT" 2543384 T SASTCAT (NIL) -9 NIL 2543397 NIL) (-1083 2542650 2542998 2543074 "SAOS" 2543109 T SAOS (NIL) -8 NIL NIL NIL) (-1082 2542215 2542250 2542423 "SAERFFC" 2542609 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1081 2536154 2542112 2542192 "SAE" 2542197 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1080 2535747 2535782 2535941 "SAEFACT" 2536113 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1079 2534068 2534382 2534783 "RURPK" 2535413 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1078 2532705 2533011 2533316 "RULESET" 2533902 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1077 2529928 2530458 2530916 "RULE" 2532386 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1076 2529540 2529722 2529805 "RULECOLD" 2529880 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1075 2529330 2529358 2529429 "RTVALUE" 2529491 T RTVALUE (NIL) -8 NIL NIL NIL) (-1074 2528801 2529047 2529141 "RSTRCAST" 2529258 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1073 2523649 2524444 2525364 "RSETGCD" 2528000 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1072 2512879 2517958 2518055 "RSETCAT" 2522174 NIL RSETCAT (NIL T T T T) -9 NIL 2523271 NIL) (-1071 2510806 2511345 2512169 "RSETCAT-" 2512174 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1070 2503191 2504568 2506088 "RSDCMPK" 2509405 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1069 2501170 2501637 2501711 "RRCC" 2502797 NIL RRCC (NIL T T) -9 NIL 2503141 NIL) (-1068 2500521 2500695 2500974 "RRCC-" 2500979 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1067 2499964 2500217 2500318 "RPTAST" 2500442 T RPTAST (NIL) -8 NIL NIL NIL) (-1066 2473815 2483172 2483239 "RPOLCAT" 2493903 NIL RPOLCAT (NIL T T T) -9 NIL 2497062 NIL) (-1065 2465313 2467653 2470775 "RPOLCAT-" 2470780 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1064 2456244 2463524 2464006 "ROUTINE" 2464853 T ROUTINE (NIL) -8 NIL NIL NIL) (-1063 2453042 2455870 2456010 "ROMAN" 2456126 T ROMAN (NIL) -8 NIL NIL NIL) (-1062 2451286 2451902 2452162 "ROIRC" 2452847 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1061 2447518 2449802 2449832 "RNS" 2450136 T RNS (NIL) -9 NIL 2450410 NIL) (-1060 2446027 2446410 2446944 "RNS-" 2447019 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1059 2445430 2445838 2445868 "RNG" 2445873 T RNG (NIL) -9 NIL 2445894 NIL) (-1058 2444433 2444795 2444997 "RNGBIND" 2445281 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1057 2443832 2444220 2444263 "RMODULE" 2444268 NIL RMODULE (NIL T) -9 NIL 2444295 NIL) (-1056 2442668 2442762 2443098 "RMCAT2" 2443733 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1055 2439518 2442014 2442311 "RMATRIX" 2442430 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1054 2432345 2434605 2434720 "RMATCAT" 2438079 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2439061 NIL) (-1053 2431720 2431867 2432174 "RMATCAT-" 2432179 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1052 2431121 2431342 2431385 "RLINSET" 2431579 NIL RLINSET (NIL T) -9 NIL 2431670 NIL) (-1051 2430688 2430763 2430891 "RINTERP" 2431040 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1050 2429746 2430300 2430330 "RING" 2430386 T RING (NIL) -9 NIL 2430478 NIL) (-1049 2429538 2429582 2429679 "RING-" 2429684 NIL RING- (NIL T) -8 NIL NIL NIL) (-1048 2428379 2428616 2428874 "RIDIST" 2429302 T RIDIST (NIL) -7 NIL NIL NIL) (-1047 2419668 2427847 2428053 "RGCHAIN" 2428227 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1046 2419018 2419424 2419465 "RGBCSPC" 2419523 NIL RGBCSPC (NIL T) -9 NIL 2419575 NIL) (-1045 2418176 2418557 2418598 "RGBCMDL" 2418830 NIL RGBCMDL (NIL T) -9 NIL 2418944 NIL) (-1044 2415170 2415784 2416454 "RF" 2417540 NIL RF (NIL T) -7 NIL NIL NIL) (-1043 2414816 2414879 2414982 "RFFACTOR" 2415101 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1042 2414541 2414576 2414673 "RFFACT" 2414775 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1041 2412658 2413022 2413404 "RFDIST" 2414181 T RFDIST (NIL) -7 NIL NIL NIL) (-1040 2412111 2412203 2412366 "RETSOL" 2412560 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1039 2411747 2411827 2411870 "RETRACT" 2412003 NIL RETRACT (NIL T) -9 NIL 2412090 NIL) (-1038 2411596 2411621 2411708 "RETRACT-" 2411713 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1037 2411198 2411418 2411488 "RETAST" 2411548 T RETAST (NIL) -8 NIL NIL NIL) (-1036 2403936 2410851 2410978 "RESULT" 2411093 T RESULT (NIL) -8 NIL NIL NIL) (-1035 2402527 2403205 2403404 "RESRING" 2403839 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1034 2402163 2402212 2402310 "RESLATC" 2402464 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1033 2401868 2401903 2402010 "REPSQ" 2402122 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1032 2399290 2399870 2400472 "REP" 2401288 T REP (NIL) -7 NIL NIL NIL) (-1031 2398987 2399022 2399133 "REPDB" 2399249 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1030 2392887 2394276 2395499 "REP2" 2397799 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1029 2389264 2389945 2390753 "REP1" 2392114 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1028 2381960 2387405 2387861 "REGSET" 2388894 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1027 2380725 2381108 2381358 "REF" 2381745 NIL REF (NIL T) -8 NIL NIL NIL) (-1026 2380102 2380205 2380372 "REDORDER" 2380609 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1025 2376070 2379315 2379542 "RECLOS" 2379930 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1024 2375122 2375303 2375518 "REALSOLV" 2375877 T REALSOLV (NIL) -7 NIL NIL NIL) (-1023 2374968 2375009 2375039 "REAL" 2375044 T REAL (NIL) -9 NIL 2375079 NIL) (-1022 2371451 2372253 2373137 "REAL0Q" 2374133 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1021 2367052 2368040 2369101 "REAL0" 2370432 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1020 2366523 2366769 2366863 "RDUCEAST" 2366980 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1019 2365928 2366000 2366207 "RDIV" 2366445 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1018 2364996 2365170 2365383 "RDIST" 2365750 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1017 2363593 2363880 2364252 "RDETRS" 2364704 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1016 2361405 2361859 2362397 "RDETR" 2363135 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1015 2360030 2360308 2360705 "RDEEFS" 2361121 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1014 2358539 2358845 2359270 "RDEEF" 2359718 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1013 2352600 2355520 2355550 "RCFIELD" 2356845 T RCFIELD (NIL) -9 NIL 2357576 NIL) (-1012 2350664 2351168 2351864 "RCFIELD-" 2351939 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1011 2346933 2348765 2348808 "RCAGG" 2349892 NIL RCAGG (NIL T) -9 NIL 2350357 NIL) (-1010 2346561 2346655 2346818 "RCAGG-" 2346823 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1009 2345896 2346008 2346173 "RATRET" 2346445 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1008 2345449 2345516 2345637 "RATFACT" 2345824 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1007 2344757 2344877 2345029 "RANDSRC" 2345319 T RANDSRC (NIL) -7 NIL NIL NIL) (-1006 2344491 2344535 2344608 "RADUTIL" 2344706 T RADUTIL (NIL) -7 NIL NIL NIL) (-1005 2337607 2343324 2343634 "RADIX" 2344215 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1004 2329226 2337449 2337579 "RADFF" 2337584 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1003 2328873 2328948 2328978 "RADCAT" 2329138 T RADCAT (NIL) -9 NIL NIL NIL) (-1002 2328655 2328703 2328803 "RADCAT-" 2328808 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1001 2326755 2328427 2328518 "QUEUE" 2328599 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1000 2323294 2326690 2326737 "QUAT" 2326742 NIL QUAT (NIL T) -8 NIL NIL NIL) (-999 2322932 2322975 2323102 "QUATCT2" 2323245 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-998 2316394 2319739 2319779 "QUATCAT" 2320559 NIL QUATCAT (NIL T) -9 NIL 2321325 NIL) (-997 2312538 2313575 2314962 "QUATCAT-" 2315056 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-996 2310011 2311622 2311663 "QUAGG" 2312038 NIL QUAGG (NIL T) -9 NIL 2312213 NIL) (-995 2309616 2309836 2309904 "QQUTAST" 2309963 T QQUTAST (NIL) -8 NIL NIL NIL) (-994 2308514 2309014 2309186 "QFORM" 2309488 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-993 2299519 2304758 2304798 "QFCAT" 2305456 NIL QFCAT (NIL T) -9 NIL 2306457 NIL) (-992 2295091 2296292 2297883 "QFCAT-" 2297977 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-991 2294729 2294772 2294899 "QFCAT2" 2295042 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-990 2294189 2294299 2294429 "QEQUAT" 2294619 T QEQUAT (NIL) -8 NIL NIL NIL) (-989 2287335 2288408 2289592 "QCMPACK" 2293122 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-988 2284884 2285332 2285760 "QALGSET" 2286990 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-987 2284129 2284303 2284535 "QALGSET2" 2284704 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-986 2282819 2283043 2283360 "PWFFINTB" 2283902 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-985 2281001 2281169 2281523 "PUSHVAR" 2282633 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-984 2276919 2277973 2278014 "PTRANFN" 2279898 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-983 2275321 2275612 2275934 "PTPACK" 2276630 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-982 2274953 2275010 2275119 "PTFUNC2" 2275258 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-981 2269430 2273825 2273866 "PTCAT" 2274162 NIL PTCAT (NIL T) -9 NIL 2274315 NIL) (-980 2269088 2269123 2269247 "PSQFR" 2269389 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-979 2267683 2267981 2268315 "PSEUDLIN" 2268786 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-978 2254446 2256817 2259141 "PSETPK" 2265443 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-977 2247464 2250204 2250300 "PSETCAT" 2253321 NIL PSETCAT (NIL T T T T) -9 NIL 2254135 NIL) (-976 2245300 2245934 2246755 "PSETCAT-" 2246760 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-975 2244649 2244814 2244842 "PSCURVE" 2245110 T PSCURVE (NIL) -9 NIL 2245277 NIL) (-974 2240647 2242163 2242228 "PSCAT" 2243072 NIL PSCAT (NIL T T T) -9 NIL 2243312 NIL) (-973 2239710 2239926 2240326 "PSCAT-" 2240331 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-972 2238415 2239075 2239280 "PRTITION" 2239525 T PRTITION (NIL) -8 NIL NIL NIL) (-971 2237890 2238136 2238228 "PRTDAST" 2238343 T PRTDAST (NIL) -8 NIL NIL NIL) (-970 2226979 2229194 2231382 "PRS" 2235752 NIL PRS (NIL T T) -7 NIL NIL NIL) (-969 2224790 2226329 2226369 "PRQAGG" 2226552 NIL PRQAGG (NIL T) -9 NIL 2226654 NIL) (-968 2223994 2224299 2224327 "PROPLOG" 2224574 T PROPLOG (NIL) -9 NIL 2224740 NIL) (-967 2222424 2222945 2223202 "PROPFRML" 2223770 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-966 2221893 2222000 2222128 "PROPERTY" 2222316 T PROPERTY (NIL) -8 NIL NIL NIL) (-965 2215951 2220059 2220879 "PRODUCT" 2221119 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-964 2213229 2215409 2215643 "PR" 2215762 NIL PR (NIL T T) -8 NIL NIL NIL) (-963 2213025 2213057 2213116 "PRINT" 2213190 T PRINT (NIL) -7 NIL NIL NIL) (-962 2212365 2212482 2212634 "PRIMES" 2212905 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-961 2210430 2210831 2211297 "PRIMELT" 2211944 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-960 2210159 2210208 2210236 "PRIMCAT" 2210360 T PRIMCAT (NIL) -9 NIL NIL NIL) (-959 2206274 2210097 2210142 "PRIMARR" 2210147 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-958 2205281 2205459 2205687 "PRIMARR2" 2206092 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-957 2204924 2204980 2205091 "PREASSOC" 2205219 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-956 2204399 2204532 2204560 "PPCURVE" 2204765 T PPCURVE (NIL) -9 NIL 2204901 NIL) (-955 2203994 2204194 2204277 "PORTNUM" 2204336 T PORTNUM (NIL) -8 NIL NIL NIL) (-954 2201353 2201752 2202344 "POLYROOT" 2203575 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-953 2195535 2200957 2201117 "POLY" 2201226 NIL POLY (NIL T) -8 NIL NIL NIL) (-952 2194918 2194976 2195210 "POLYLIFT" 2195471 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-951 2191193 2191642 2192271 "POLYCATQ" 2194463 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-950 2177905 2183033 2183098 "POLYCAT" 2186612 NIL POLYCAT (NIL T T T) -9 NIL 2188490 NIL) (-949 2171354 2173216 2175600 "POLYCAT-" 2175605 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-948 2170941 2171009 2171129 "POLY2UP" 2171280 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-947 2170573 2170630 2170739 "POLY2" 2170878 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-946 2169258 2169497 2169773 "POLUTIL" 2170347 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-945 2167613 2167890 2168221 "POLTOPOL" 2168980 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-944 2163078 2167549 2167595 "POINT" 2167600 NIL POINT (NIL T) -8 NIL NIL NIL) (-943 2161265 2161622 2161997 "PNTHEORY" 2162723 T PNTHEORY (NIL) -7 NIL NIL NIL) (-942 2159723 2160020 2160419 "PMTOOLS" 2160963 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-941 2159316 2159394 2159511 "PMSYM" 2159639 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-940 2158826 2158895 2159069 "PMQFCAT" 2159241 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-939 2158181 2158291 2158447 "PMPRED" 2158703 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-938 2157574 2157660 2157822 "PMPREDFS" 2158082 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-937 2156238 2156446 2156824 "PMPLCAT" 2157336 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-936 2155770 2155849 2156001 "PMLSAGG" 2156153 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-935 2155243 2155319 2155501 "PMKERNEL" 2155688 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-934 2154860 2154935 2155048 "PMINS" 2155162 NIL PMINS (NIL T) -7 NIL NIL NIL) (-933 2154302 2154371 2154580 "PMFS" 2154785 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-932 2153530 2153648 2153853 "PMDOWN" 2154179 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-931 2152697 2152855 2153036 "PMASS" 2153369 T PMASS (NIL) -7 NIL NIL NIL) (-930 2151970 2152080 2152243 "PMASSFS" 2152584 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-929 2151625 2151693 2151787 "PLOTTOOL" 2151896 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-928 2146232 2147436 2148584 "PLOT" 2150497 T PLOT (NIL) -8 NIL NIL NIL) (-927 2142036 2143080 2144001 "PLOT3D" 2145331 T PLOT3D (NIL) -8 NIL NIL NIL) (-926 2140948 2141125 2141360 "PLOT1" 2141840 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-925 2116337 2121014 2125865 "PLEQN" 2136214 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-924 2115655 2115777 2115957 "PINTERP" 2116202 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-923 2115348 2115395 2115498 "PINTERPA" 2115602 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-922 2114569 2115117 2115204 "PI" 2115244 T PI (NIL) -8 NIL NIL 2115311) (-921 2112866 2113841 2113869 "PID" 2114051 T PID (NIL) -9 NIL 2114185 NIL) (-920 2112617 2112654 2112729 "PICOERCE" 2112823 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-919 2111937 2112076 2112252 "PGROEB" 2112473 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-918 2107524 2108338 2109243 "PGE" 2111052 T PGE (NIL) -7 NIL NIL NIL) (-917 2105647 2105894 2106260 "PGCD" 2107241 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-916 2104985 2105088 2105249 "PFRPAC" 2105531 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-915 2101625 2103533 2103886 "PFR" 2104664 NIL PFR (NIL T) -8 NIL NIL NIL) (-914 2100014 2100258 2100583 "PFOTOOLS" 2101372 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-913 2098547 2098786 2099137 "PFOQ" 2099771 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-912 2097048 2097260 2097616 "PFO" 2098331 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-911 2093601 2096937 2097006 "PF" 2097011 NIL PF (NIL NIL) -8 NIL NIL NIL) (-910 2090935 2092206 2092234 "PFECAT" 2092819 T PFECAT (NIL) -9 NIL 2093203 NIL) (-909 2090380 2090534 2090748 "PFECAT-" 2090753 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-908 2088983 2089235 2089536 "PFBRU" 2090129 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-907 2086849 2087201 2087633 "PFBR" 2088634 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-906 2082731 2084225 2084901 "PERM" 2086206 NIL PERM (NIL T) -8 NIL NIL NIL) (-905 2077965 2078938 2079808 "PERMGRP" 2081894 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-904 2076071 2077028 2077069 "PERMCAT" 2077515 NIL PERMCAT (NIL T) -9 NIL 2077820 NIL) (-903 2075724 2075765 2075889 "PERMAN" 2076024 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-902 2073212 2075389 2075511 "PENDTREE" 2075635 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-901 2071236 2072004 2072045 "PDRING" 2072702 NIL PDRING (NIL T) -9 NIL 2072988 NIL) (-900 2070339 2070557 2070919 "PDRING-" 2070924 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-899 2067554 2068332 2069000 "PDEPROB" 2069691 T PDEPROB (NIL) -8 NIL NIL NIL) (-898 2065099 2065603 2066158 "PDEPACK" 2067019 T PDEPACK (NIL) -7 NIL NIL NIL) (-897 2064011 2064201 2064452 "PDECOMP" 2064898 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-896 2061590 2062433 2062461 "PDECAT" 2063248 T PDECAT (NIL) -9 NIL 2063961 NIL) (-895 2061341 2061374 2061464 "PCOMP" 2061551 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-894 2059519 2060142 2060439 "PBWLB" 2061070 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-893 2051992 2053592 2054930 "PATTERN" 2058202 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-892 2051624 2051681 2051790 "PATTERN2" 2051929 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-891 2049381 2049769 2050226 "PATTERN1" 2051213 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-890 2046749 2047330 2047811 "PATRES" 2048946 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-889 2046313 2046380 2046512 "PATRES2" 2046676 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-888 2044196 2044601 2045008 "PATMATCH" 2045980 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-887 2043706 2043915 2043956 "PATMAB" 2044063 NIL PATMAB (NIL T) -9 NIL 2044146 NIL) (-886 2042224 2042560 2042818 "PATLRES" 2043511 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-885 2041770 2041893 2041934 "PATAB" 2041939 NIL PATAB (NIL T) -9 NIL 2042111 NIL) (-884 2039251 2039783 2040356 "PARTPERM" 2041217 T PARTPERM (NIL) -7 NIL NIL NIL) (-883 2038872 2038935 2039037 "PARSURF" 2039182 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-882 2038504 2038561 2038670 "PARSU2" 2038809 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-881 2038268 2038308 2038375 "PARSER" 2038457 T PARSER (NIL) -7 NIL NIL NIL) (-880 2037889 2037952 2038054 "PARSCURV" 2038199 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-879 2037521 2037578 2037687 "PARSC2" 2037826 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-878 2037160 2037218 2037315 "PARPCURV" 2037457 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-877 2036792 2036849 2036958 "PARPC2" 2037097 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-876 2036312 2036398 2036517 "PAN2EXPR" 2036693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2035089 2035433 2035661 "PALETTE" 2036104 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2033482 2034094 2034454 "PAIR" 2034775 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2027352 2032741 2032935 "PADICRC" 2033337 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2020581 2026698 2026882 "PADICRAT" 2027200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2018896 2020518 2020563 "PADIC" 2020568 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2016006 2017570 2017610 "PADICCT" 2018191 NIL PADICCT (NIL NIL) -9 NIL 2018473 NIL) (-869 2014963 2015163 2015431 "PADEPAC" 2015793 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2014175 2014308 2014514 "PADE" 2014825 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2012562 2013383 2013663 "OWP" 2013979 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2012055 2012268 2012365 "OVERSET" 2012485 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2011101 2011660 2011832 "OVAR" 2011923 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2010365 2010486 2010647 "OUT" 2010960 T OUT (NIL) -7 NIL NIL NIL) (-863 1999237 2001474 2003674 "OUTFORM" 2008185 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 1998573 1998834 1998961 "OUTBFILE" 1999130 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 1997880 1998045 1998073 "OUTBCON" 1998391 T OUTBCON (NIL) -9 NIL 1998557 NIL) (-860 1997481 1997593 1997750 "OUTBCON-" 1997755 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 1996861 1997210 1997299 "OSI" 1997412 T OSI (NIL) -8 NIL NIL NIL) (-858 1996391 1996729 1996757 "OSGROUP" 1996762 T OSGROUP (NIL) -9 NIL 1996784 NIL) (-857 1995136 1995363 1995648 "ORTHPOL" 1996138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1992687 1994971 1995092 "OREUP" 1995097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1990090 1992378 1992505 "ORESUP" 1992629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1987618 1988118 1988679 "OREPCTO" 1989579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1981304 1983505 1983546 "OREPCAT" 1985894 NIL OREPCAT (NIL T) -9 NIL 1986998 NIL) (-852 1978451 1979233 1980291 "OREPCAT-" 1980296 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1977602 1977900 1977928 "ORDSET" 1978237 T ORDSET (NIL) -9 NIL 1978401 NIL) (-850 1977033 1977181 1977405 "ORDSET-" 1977410 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1975598 1976389 1976417 "ORDRING" 1976619 T ORDRING (NIL) -9 NIL 1976744 NIL) (-848 1975243 1975337 1975481 "ORDRING-" 1975486 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1974623 1975086 1975114 "ORDMON" 1975119 T ORDMON (NIL) -9 NIL 1975140 NIL) (-846 1973785 1973932 1974127 "ORDFUNS" 1974472 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1973123 1973542 1973570 "ORDFIN" 1973635 T ORDFIN (NIL) -9 NIL 1973709 NIL) (-844 1969682 1971709 1972118 "ORDCOMP" 1972747 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1968948 1969075 1969261 "ORDCOMP2" 1969542 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965529 1966439 1967253 "OPTPROB" 1968154 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1962331 1962970 1963674 "OPTPACK" 1964845 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1960018 1960784 1960812 "OPTCAT" 1961631 T OPTCAT (NIL) -9 NIL 1962281 NIL) (-839 1959402 1959695 1959800 "OPSIG" 1959933 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1959170 1959209 1959275 "OPQUERY" 1959356 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1956301 1957481 1957985 "OP" 1958699 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1955675 1955901 1955942 "OPERCAT" 1956154 NIL OPERCAT (NIL T) -9 NIL 1956251 NIL) (-835 1955430 1955486 1955603 "OPERCAT-" 1955608 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1952243 1954227 1954596 "ONECOMP" 1955094 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1951548 1951663 1951837 "ONECOMP2" 1952115 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1950967 1951073 1951203 "OMSERVER" 1951438 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1947829 1950407 1950447 "OMSAGG" 1950508 NIL OMSAGG (NIL T) -9 NIL 1950572 NIL) (-830 1946452 1946715 1946997 "OMPKG" 1947567 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1945882 1945985 1946013 "OM" 1946312 T OM (NIL) -9 NIL NIL NIL) (-828 1944429 1945431 1945600 "OMLO" 1945763 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1943389 1943536 1943756 "OMEXPR" 1944255 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1942680 1942935 1943071 "OMERR" 1943273 T OMERR (NIL) -8 NIL NIL NIL) (-825 1941831 1942101 1942261 "OMERRK" 1942540 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1941282 1941508 1941616 "OMENC" 1941743 T OMENC (NIL) -8 NIL NIL NIL) (-823 1935177 1936362 1937533 "OMDEV" 1940131 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1934246 1934417 1934611 "OMCONN" 1935003 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1932767 1933743 1933771 "OINTDOM" 1933776 T OINTDOM (NIL) -9 NIL 1933797 NIL) (-820 1930105 1931455 1931792 "OFMONOID" 1932462 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1929516 1930042 1930087 "ODVAR" 1930092 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1926939 1929261 1929416 "ODR" 1929421 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1919520 1926715 1926841 "ODPOL" 1926846 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1913342 1919392 1919497 "ODP" 1919502 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1912108 1912323 1912598 "ODETOOLS" 1913116 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1909075 1909733 1910449 "ODESYS" 1911441 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1903957 1904865 1905890 "ODERTRIC" 1908150 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1903383 1903465 1903659 "ODERED" 1903869 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1900271 1900819 1901496 "ODERAT" 1902806 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1897228 1897695 1898292 "ODEPRRIC" 1899800 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1895171 1895767 1896253 "ODEPROB" 1896762 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1891691 1892176 1892823 "ODEPRIM" 1894650 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1890940 1891042 1891302 "ODEPAL" 1891583 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1887102 1887893 1888757 "ODEPACK" 1890096 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1886163 1886270 1886492 "ODEINT" 1886991 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1880264 1881689 1883136 "ODEIFTBL" 1884736 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1875662 1876448 1877400 "ODEEF" 1879423 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1875011 1875100 1875323 "ODECONST" 1875567 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1873136 1873797 1873825 "ODECAT" 1874430 T ODECAT (NIL) -9 NIL 1874961 NIL) (-800 1869991 1872841 1872963 "OCT" 1873046 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1869629 1869672 1869799 "OCTCT2" 1869942 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1864278 1866713 1866753 "OC" 1867850 NIL OC (NIL T) -9 NIL 1868708 NIL) (-797 1861505 1862253 1863243 "OC-" 1863337 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1860857 1861325 1861353 "OCAMON" 1861358 T OCAMON (NIL) -9 NIL 1861379 NIL) (-795 1860388 1860729 1860757 "OASGP" 1860762 T OASGP (NIL) -9 NIL 1860782 NIL) (-794 1859649 1860138 1860166 "OAMONS" 1860206 T OAMONS (NIL) -9 NIL 1860249 NIL) (-793 1859063 1859496 1859524 "OAMON" 1859529 T OAMON (NIL) -9 NIL 1859549 NIL) (-792 1858321 1858839 1858867 "OAGROUP" 1858872 T OAGROUP (NIL) -9 NIL 1858892 NIL) (-791 1858011 1858061 1858149 "NUMTUBE" 1858265 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1851584 1853102 1854638 "NUMQUAD" 1856495 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1847340 1848328 1849353 "NUMODE" 1850579 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1844695 1845575 1845603 "NUMINT" 1846526 T NUMINT (NIL) -9 NIL 1847290 NIL) (-787 1843643 1843840 1844058 "NUMFMT" 1844497 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1830002 1832947 1835479 "NUMERIC" 1841150 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1824372 1829451 1829546 "NTSCAT" 1829551 NIL NTSCAT (NIL T T T T) -9 NIL 1829590 NIL) (-784 1823566 1823731 1823924 "NTPOLFN" 1824211 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1811643 1820391 1821203 "NSUP" 1822787 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1811275 1811332 1811441 "NSUP2" 1811580 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1801503 1811049 1811182 "NSMP" 1811187 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1799935 1800236 1800593 "NREP" 1801191 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1798526 1798778 1799136 "NPCOEF" 1799678 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1797592 1797707 1797923 "NORMRETR" 1798407 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1795633 1795923 1796332 "NORMPK" 1797300 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1795318 1795346 1795470 "NORMMA" 1795599 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1795118 1795275 1795304 "NONE" 1795309 T NONE (NIL) -8 NIL NIL NIL) (-774 1794907 1794936 1795005 "NONE1" 1795082 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1794404 1794466 1794645 "NODE1" 1794839 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1792689 1793540 1793795 "NNI" 1794142 T NNI (NIL) -8 NIL NIL 1794377) (-771 1791109 1791422 1791786 "NLINSOL" 1792357 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1787350 1788345 1789244 "NIPROB" 1790230 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1786107 1786341 1786643 "NFINTBAS" 1787112 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1785281 1785757 1785798 "NETCLT" 1785970 NIL NETCLT (NIL T) -9 NIL 1786052 NIL) (-767 1783989 1784220 1784501 "NCODIV" 1785049 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1783751 1783788 1783863 "NCNTFRAC" 1783946 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1781931 1782295 1782715 "NCEP" 1783376 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1780782 1781555 1781583 "NASRING" 1781693 T NASRING (NIL) -9 NIL 1781773 NIL) (-763 1780577 1780621 1780715 "NASRING-" 1780720 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1779684 1780209 1780237 "NARNG" 1780354 T NARNG (NIL) -9 NIL 1780445 NIL) (-761 1779376 1779443 1779577 "NARNG-" 1779582 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1778255 1778462 1778697 "NAGSP" 1779161 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1769527 1771211 1772884 "NAGS" 1776602 T NAGS (NIL) -7 NIL NIL NIL) (-758 1768075 1768383 1768714 "NAGF07" 1769216 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1762613 1763904 1765211 "NAGF04" 1766788 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1755581 1757195 1758828 "NAGF02" 1761000 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1750805 1751905 1753022 "NAGF01" 1754484 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1744433 1745999 1747584 "NAGE04" 1749240 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1735602 1737723 1739853 "NAGE02" 1742323 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1731555 1732502 1733466 "NAGE01" 1734658 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1729350 1729884 1730442 "NAGD03" 1731017 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1721100 1723028 1724982 "NAGD02" 1727416 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1714911 1716336 1717776 "NAGD01" 1719680 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1711120 1711942 1712779 "NAGC06" 1714094 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1709585 1709917 1710273 "NAGC05" 1710784 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1708961 1709080 1709224 "NAGC02" 1709461 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1707920 1708503 1708543 "NAALG" 1708622 NIL NAALG (NIL T) -9 NIL 1708683 NIL) (-744 1707755 1707784 1707874 "NAALG-" 1707879 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1701705 1702813 1704000 "MULTSQFR" 1706651 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1701024 1701099 1701283 "MULTFACT" 1701617 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1693748 1697661 1697714 "MTSCAT" 1698784 NIL MTSCAT (NIL T T) -9 NIL 1699299 NIL) (-740 1693460 1693514 1693606 "MTHING" 1693688 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1693252 1693285 1693345 "MSYSCMD" 1693420 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1689334 1692007 1692327 "MSET" 1692965 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1686403 1688895 1688936 "MSETAGG" 1688941 NIL MSETAGG (NIL T) -9 NIL 1688975 NIL) (-736 1682244 1683782 1684527 "MRING" 1685703 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1681810 1681877 1682008 "MRF2" 1682171 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1681428 1681463 1681607 "MRATFAC" 1681769 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1679040 1679335 1679766 "MPRFF" 1681133 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1673337 1678894 1678991 "MPOLY" 1678996 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1672827 1672862 1673070 "MPCPF" 1673296 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1672341 1672384 1672568 "MPC3" 1672778 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1671536 1671617 1671838 "MPC2" 1672256 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1669837 1670174 1670564 "MONOTOOL" 1671196 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1669062 1669379 1669407 "MONOID" 1669626 T MONOID (NIL) -9 NIL 1669773 NIL) (-726 1668608 1668727 1668908 "MONOID-" 1668913 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1659083 1665034 1665093 "MONOGEN" 1665767 NIL MONOGEN (NIL T T) -9 NIL 1666223 NIL) (-724 1656301 1657036 1658036 "MONOGEN-" 1658155 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1655134 1655580 1655608 "MONADWU" 1656000 T MONADWU (NIL) -9 NIL 1656238 NIL) (-722 1654506 1654665 1654913 "MONADWU-" 1654918 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1653865 1654109 1654137 "MONAD" 1654344 T MONAD (NIL) -9 NIL 1654456 NIL) (-720 1653550 1653628 1653760 "MONAD-" 1653765 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1651839 1652463 1652742 "MOEBIUS" 1653303 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1651117 1651521 1651561 "MODULE" 1651566 NIL MODULE (NIL T) -9 NIL 1651605 NIL) (-717 1650685 1650781 1650971 "MODULE-" 1650976 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1648365 1649049 1649376 "MODRING" 1650509 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1645309 1646470 1646991 "MODOP" 1647894 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1643897 1644376 1644653 "MODMONOM" 1645172 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1633938 1642188 1642602 "MODMON" 1643534 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1631094 1632782 1633058 "MODFIELD" 1633813 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1630071 1630375 1630565 "MMLFORM" 1630924 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1629597 1629640 1629819 "MMAP" 1630022 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1627676 1628443 1628484 "MLO" 1628907 NIL MLO (NIL T) -9 NIL 1629149 NIL) (-708 1625042 1625558 1626160 "MLIFT" 1627157 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1624433 1624517 1624671 "MKUCFUNC" 1624953 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1624032 1624102 1624225 "MKRECORD" 1624356 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1623079 1623241 1623469 "MKFUNC" 1623843 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1622467 1622571 1622727 "MKFLCFN" 1622962 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1621744 1621846 1622031 "MKBCFUNC" 1622360 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1618451 1621298 1621434 "MINT" 1621628 T MINT (NIL) -8 NIL NIL NIL) (-701 1617263 1617506 1617783 "MHROWRED" 1618206 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1612642 1615798 1616203 "MFLOAT" 1616878 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1611999 1612075 1612246 "MFINFACT" 1612554 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1608314 1609162 1610046 "MESH" 1611135 T MESH (NIL) -7 NIL NIL NIL) (-697 1606704 1607016 1607369 "MDDFACT" 1608001 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1603499 1605863 1605904 "MDAGG" 1606159 NIL MDAGG (NIL T) -9 NIL 1606302 NIL) (-695 1593239 1602792 1602999 "MCMPLX" 1603312 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1592380 1592526 1592726 "MCDEN" 1593088 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1590270 1590540 1590920 "MCALCFN" 1592110 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1589195 1589435 1589668 "MAYBE" 1590076 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1586807 1587330 1587892 "MATSTOR" 1588666 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1582764 1586179 1586427 "MATRIX" 1586592 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1578528 1579237 1579973 "MATLIN" 1582121 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1568634 1571820 1571897 "MATCAT" 1576777 NIL MATCAT (NIL T T T) -9 NIL 1578194 NIL) (-687 1564990 1566011 1567367 "MATCAT-" 1567372 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1563584 1563737 1564070 "MATCAT2" 1564825 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1561696 1562020 1562404 "MAPPKG3" 1563259 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1560677 1560850 1561072 "MAPPKG2" 1561520 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1559176 1559460 1559787 "MAPPKG1" 1560383 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1558255 1558582 1558759 "MAPPAST" 1559019 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1557866 1557924 1558047 "MAPHACK3" 1558191 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1557458 1557519 1557633 "MAPHACK2" 1557798 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1556895 1556999 1557141 "MAPHACK1" 1557349 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1554974 1555595 1555899 "MAGMA" 1556623 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1554453 1554698 1554789 "MACROAST" 1554903 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1550871 1552692 1553153 "M3D" 1554025 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1544977 1549240 1549281 "LZSTAGG" 1550063 NIL LZSTAGG (NIL T) -9 NIL 1550358 NIL) (-674 1540934 1542108 1543565 "LZSTAGG-" 1543570 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1538021 1538825 1539312 "LWORD" 1540479 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1537597 1537825 1537900 "LSTAST" 1537966 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1530763 1537368 1537502 "LSQM" 1537507 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1529987 1530126 1530354 "LSPP" 1530618 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1527799 1528100 1528556 "LSMP" 1529676 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1524578 1525252 1525982 "LSMP1" 1527101 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1518455 1523745 1523786 "LSAGG" 1523848 NIL LSAGG (NIL T) -9 NIL 1523926 NIL) (-666 1515150 1516074 1517287 "LSAGG-" 1517292 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1512749 1514294 1514543 "LPOLY" 1514945 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1512331 1512416 1512539 "LPEFRAC" 1512658 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1510652 1511425 1511678 "LO" 1512163 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1510304 1510416 1510444 "LOGIC" 1510555 T LOGIC (NIL) -9 NIL 1510636 NIL) (-661 1510166 1510189 1510260 "LOGIC-" 1510265 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1509359 1509499 1509692 "LODOOPS" 1510022 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1506782 1509275 1509341 "LODO" 1509346 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1505320 1505555 1505908 "LODOF" 1506529 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1501538 1503969 1504010 "LODOCAT" 1504448 NIL LODOCAT (NIL T) -9 NIL 1504659 NIL) (-656 1501271 1501329 1501456 "LODOCAT-" 1501461 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1498591 1501112 1501230 "LODO2" 1501235 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1496026 1498528 1498573 "LODO1" 1498578 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1494907 1495072 1495377 "LODEEF" 1495849 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1490146 1493037 1493078 "LNAGG" 1494025 NIL LNAGG (NIL T) -9 NIL 1494469 NIL) (-651 1489293 1489507 1489849 "LNAGG-" 1489854 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1485429 1486218 1486857 "LMOPS" 1488708 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1484832 1485220 1485261 "LMODULE" 1485266 NIL LMODULE (NIL T) -9 NIL 1485292 NIL) (-648 1482030 1484477 1484600 "LMDICT" 1484742 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1481436 1481657 1481698 "LLINSET" 1481889 NIL LLINSET (NIL T) -9 NIL 1481980 NIL) (-646 1481135 1481344 1481404 "LITERAL" 1481409 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1474298 1480069 1480373 "LIST" 1480864 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1473823 1473897 1474036 "LIST3" 1474218 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1472830 1473008 1473236 "LIST2" 1473641 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1470964 1471276 1471675 "LIST2MAP" 1472477 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1470560 1470797 1470838 "LINSET" 1470843 NIL LINSET (NIL T) -9 NIL 1470877 NIL) (-640 1469221 1469891 1469932 "LINEXP" 1470187 NIL LINEXP (NIL T) -9 NIL 1470336 NIL) (-639 1467868 1468128 1468425 "LINDEP" 1468973 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1464635 1465354 1466131 "LIMITRF" 1467123 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1462938 1463234 1463643 "LIMITPS" 1464330 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1457366 1462449 1462677 "LIE" 1462759 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1456314 1456783 1456823 "LIECAT" 1456963 NIL LIECAT (NIL T) -9 NIL 1457114 NIL) (-634 1456155 1456182 1456270 "LIECAT-" 1456275 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1448651 1455604 1455769 "LIB" 1456010 T LIB (NIL) -8 NIL NIL NIL) (-632 1444286 1445169 1446104 "LGROBP" 1447768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1442284 1442558 1442908 "LF" 1444007 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1441124 1441816 1441844 "LFCAT" 1442051 T LFCAT (NIL) -9 NIL 1442190 NIL) (-629 1438026 1438656 1439344 "LEXTRIPK" 1440488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1434770 1435596 1436099 "LEXP" 1437606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1434246 1434491 1434583 "LETAST" 1434698 T LETAST (NIL) -8 NIL NIL NIL) (-626 1432644 1432957 1433358 "LEADCDET" 1433928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1431834 1431908 1432137 "LAZM3PK" 1432565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1426751 1429911 1430449 "LAUPOL" 1431346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1426330 1426374 1426535 "LAPLACE" 1426701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1424269 1425431 1425682 "LA" 1426163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1423263 1423847 1423888 "LALG" 1423950 NIL LALG (NIL T) -9 NIL 1424009 NIL) (-620 1422977 1423036 1423172 "LALG-" 1423177 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1422812 1422836 1422877 "KVTFROM" 1422939 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1421735 1422179 1422364 "KTVLOGIC" 1422647 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1421570 1421594 1421635 "KRCFROM" 1421697 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1420474 1420661 1420960 "KOVACIC" 1421370 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1420309 1420333 1420374 "KONVERT" 1420436 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1420144 1420168 1420209 "KOERCE" 1420271 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1417974 1418737 1419114 "KERNEL" 1419800 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1417470 1417551 1417683 "KERNEL2" 1417888 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1411240 1416009 1416063 "KDAGG" 1416440 NIL KDAGG (NIL T T) -9 NIL 1416646 NIL) (-610 1410769 1410893 1411098 "KDAGG-" 1411103 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1403917 1410430 1410585 "KAFILE" 1410647 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1398345 1403428 1403656 "JORDAN" 1403738 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1397724 1397994 1398115 "JOINAST" 1398244 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1397570 1397629 1397684 "JAVACODE" 1397689 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1393822 1395775 1395829 "IXAGG" 1396758 NIL IXAGG (NIL T T) -9 NIL 1397217 NIL) (-604 1392741 1393047 1393466 "IXAGG-" 1393471 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388271 1392663 1392722 "IVECTOR" 1392727 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1387037 1387274 1387540 "ITUPLE" 1388038 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1385539 1385716 1386011 "ITRIGMNP" 1386859 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1384284 1384488 1384771 "ITFUN3" 1385315 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1383916 1383973 1384082 "ITFUN2" 1384221 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1381877 1382936 1383214 "ITAYLOR" 1383671 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1370822 1376014 1377177 "ISUPS" 1380747 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1369926 1370066 1370302 "ISUMP" 1370669 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1365301 1369871 1369912 "ISTRING" 1369917 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1364777 1365022 1365114 "ISAST" 1365229 T ISAST (NIL) -8 NIL NIL NIL) (-593 1363986 1364068 1364284 "IRURPK" 1364691 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1362922 1363123 1363363 "IRSN" 1363766 T IRSN (NIL) -7 NIL NIL NIL) (-591 1360993 1361348 1361777 "IRRF2F" 1362560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1360740 1360778 1360854 "IRREDFFX" 1360949 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1359355 1359614 1359913 "IROOT" 1360473 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1355959 1357039 1357731 "IR" 1358695 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1353572 1354067 1354633 "IR2" 1355437 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1352672 1352785 1352999 "IR2F" 1353455 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1352463 1352497 1352557 "IPRNTPK" 1352632 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1349044 1352352 1352421 "IPF" 1352426 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1347371 1348969 1349026 "IPADIC" 1349031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1346683 1346931 1347061 "IP4ADDR" 1347261 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1346156 1346387 1346497 "IOMODE" 1346593 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1345229 1345753 1345880 "IOBFILE" 1346049 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1344717 1345133 1345161 "IOBCON" 1345166 T IOBCON (NIL) -9 NIL 1345187 NIL) (-578 1344228 1344286 1344469 "INVLAPLA" 1344653 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1333876 1336230 1338616 "INTTR" 1341892 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1330211 1330953 1331818 "INTTOOLS" 1333061 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1329797 1329888 1330005 "INTSLPE" 1330114 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1327750 1329720 1329779 "INTRVL" 1329784 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1325352 1325864 1326439 "INTRF" 1327235 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1324763 1324860 1325002 "INTRET" 1325250 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1322760 1323149 1323619 "INTRAT" 1324371 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1320023 1320606 1321225 "INTPM" 1322245 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1316768 1317367 1318105 "INTPAF" 1319409 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1311947 1312909 1313960 "INTPACK" 1315737 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1308895 1311744 1311853 "INT" 1311858 T INT (NIL) -8 NIL NIL NIL) (-566 1308147 1308299 1308507 "INTHERTR" 1308737 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1307586 1307666 1307854 "INTHERAL" 1308061 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1305432 1305875 1306332 "INTHEORY" 1307149 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1296838 1298459 1300231 "INTG0" 1303784 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1277411 1282201 1287011 "INTFTBL" 1292048 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1276660 1276798 1276971 "INTFACT" 1277270 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1274087 1274533 1275090 "INTEF" 1276214 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1272454 1273193 1273221 "INTDOM" 1273522 T INTDOM (NIL) -9 NIL 1273729 NIL) (-558 1271823 1271997 1272239 "INTDOM-" 1272244 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1268211 1270139 1270193 "INTCAT" 1270992 NIL INTCAT (NIL T) -9 NIL 1271313 NIL) (-556 1267683 1267786 1267914 "INTBIT" 1268103 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1266382 1266536 1266843 "INTALG" 1267528 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1265865 1265955 1266112 "INTAF" 1266286 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1259208 1265675 1265815 "INTABL" 1265820 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1258549 1259015 1259080 "INT8" 1259114 T INT8 (NIL) -8 NIL NIL 1259159) (-551 1257889 1258355 1258420 "INT64" 1258454 T INT64 (NIL) -8 NIL NIL 1258499) (-550 1257229 1257695 1257760 "INT32" 1257794 T INT32 (NIL) -8 NIL NIL 1257839) (-549 1256569 1257035 1257100 "INT16" 1257134 T INT16 (NIL) -8 NIL NIL 1257179) (-548 1251479 1254192 1254220 "INS" 1255154 T INS (NIL) -9 NIL 1255819 NIL) (-547 1248719 1249490 1250464 "INS-" 1250537 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1247494 1247721 1248019 "INPSIGN" 1248472 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1246612 1246729 1246926 "INPRODPF" 1247374 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1245506 1245623 1245860 "INPRODFF" 1246492 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1244506 1244658 1244918 "INNMFACT" 1245342 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1243703 1243800 1243988 "INMODGCD" 1244405 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1242211 1242456 1242780 "INFSP" 1243448 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1241395 1241512 1241695 "INFPROD0" 1242091 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238250 1239460 1239975 "INFORM" 1240888 T INFORM (NIL) -8 NIL NIL NIL) (-538 1237860 1237920 1238018 "INFORM1" 1238185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1237383 1237472 1237586 "INFINITY" 1237766 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1236559 1237103 1237204 "INETCLTS" 1237302 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1235175 1235425 1235746 "INEP" 1236307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1234424 1235072 1235137 "INDE" 1235142 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1233988 1234056 1234173 "INCRMAPS" 1234351 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1232806 1233257 1233463 "INBFILE" 1233802 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1228105 1229042 1229986 "INBFF" 1231894 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1227013 1227282 1227310 "INBCON" 1227823 T INBCON (NIL) -9 NIL 1228089 NIL) (-529 1226265 1226488 1226764 "INBCON-" 1226769 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1225744 1225989 1226080 "INAST" 1226194 T INAST (NIL) -8 NIL NIL NIL) (-527 1225171 1225423 1225529 "IMPTAST" 1225658 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1221617 1225015 1225119 "IMATRIX" 1225124 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1220329 1220452 1220767 "IMATQF" 1221473 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1218549 1218776 1219113 "IMATLIN" 1220085 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1213127 1218473 1218531 "ILIST" 1218536 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1211032 1212987 1213100 "IIARRAY2" 1213105 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1206430 1210943 1211007 "IFF" 1211012 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1205777 1206047 1206163 "IFAST" 1206334 T IFAST (NIL) -8 NIL NIL NIL) (-519 1200772 1205069 1205257 "IFARRAY" 1205634 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1199952 1200676 1200749 "IFAMON" 1200754 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1199536 1199601 1199655 "IEVALAB" 1199862 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1199211 1199279 1199439 "IEVALAB-" 1199444 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1198842 1199125 1199188 "IDPO" 1199193 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1198092 1198731 1198806 "IDPOAMS" 1198811 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1197399 1197981 1198056 "IDPOAM" 1198061 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1196458 1196734 1196787 "IDPC" 1197200 NIL IDPC (NIL T T) -9 NIL 1197349 NIL) (-511 1195927 1196350 1196423 "IDPAM" 1196428 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1195303 1195819 1195892 "IDPAG" 1195897 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1194948 1195139 1195214 "IDENT" 1195248 T IDENT (NIL) -8 NIL NIL NIL) (-508 1191203 1192051 1192946 "IDECOMP" 1194105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1184041 1185126 1186173 "IDEAL" 1190239 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1183205 1183317 1183516 "ICDEN" 1183925 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1182276 1182685 1182832 "ICARD" 1183078 T ICARD (NIL) -8 NIL NIL NIL) (-504 1180336 1180649 1181054 "IBPTOOLS" 1181953 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1175943 1179956 1180069 "IBITS" 1180255 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1172666 1173242 1173937 "IBATOOL" 1175360 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1170445 1170907 1171440 "IBACHIN" 1172201 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1168274 1170291 1170394 "IARRAY2" 1170399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1164380 1168200 1168257 "IARRAY1" 1168262 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1158489 1162792 1163273 "IAN" 1163919 T IAN (NIL) -8 NIL NIL NIL) (-497 1158000 1158057 1158230 "IALGFACT" 1158426 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1157528 1157641 1157669 "HYPCAT" 1157876 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1157066 1157183 1157369 "HYPCAT-" 1157374 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1156661 1156861 1156944 "HOSTNAME" 1157003 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1156506 1156543 1156584 "HOMOTOP" 1156589 NIL HOMOTOP (NIL T) -9 NIL 1156622 NIL) (-492 1153138 1154516 1154557 "HOAGG" 1155538 NIL HOAGG (NIL T) -9 NIL 1156217 NIL) (-491 1151732 1152131 1152657 "HOAGG-" 1152662 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1145736 1151327 1151476 "HEXADEC" 1151603 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1144483 1144706 1144969 "HEUGCD" 1145513 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1143559 1144320 1144450 "HELLFDIV" 1144455 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1141738 1143336 1143424 "HEAP" 1143503 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1141001 1141290 1141424 "HEADAST" 1141624 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1134867 1140916 1140978 "HDP" 1140983 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1128855 1134502 1134654 "HDMP" 1134768 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1128179 1128319 1128483 "HB" 1128711 T HB (NIL) -7 NIL NIL NIL) (-482 1121565 1128025 1128129 "HASHTBL" 1128134 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1121041 1121286 1121378 "HASAST" 1121493 T HASAST (NIL) -8 NIL NIL NIL) (-480 1118819 1120663 1120845 "HACKPI" 1120879 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1114487 1118672 1118785 "GTSET" 1118790 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1107902 1114365 1114463 "GSTBL" 1114468 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1100180 1106933 1107198 "GSERIES" 1107693 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1099321 1099738 1099766 "GROUP" 1099969 T GROUP (NIL) -9 NIL 1100103 NIL) (-475 1098687 1098846 1099097 "GROUP-" 1099102 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1097054 1097375 1097762 "GROEBSOL" 1098364 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1095968 1096256 1096307 "GRMOD" 1096836 NIL GRMOD (NIL T T) -9 NIL 1097004 NIL) (-472 1095736 1095772 1095900 "GRMOD-" 1095905 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1091026 1092090 1093090 "GRIMAGE" 1094756 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1089492 1089753 1090077 "GRDEF" 1090722 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1088936 1089052 1089193 "GRAY" 1089371 T GRAY (NIL) -7 NIL NIL NIL) (-468 1088123 1088529 1088580 "GRALG" 1088733 NIL GRALG (NIL T T) -9 NIL 1088826 NIL) (-467 1087784 1087857 1088020 "GRALG-" 1088025 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1084561 1087369 1087547 "GPOLSET" 1087691 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1083915 1083972 1084230 "GOSPER" 1084498 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1079647 1080353 1080879 "GMODPOL" 1083614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1078652 1078836 1079074 "GHENSEL" 1079459 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1072808 1073651 1074671 "GENUPS" 1077736 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1072505 1072556 1072645 "GENUFACT" 1072751 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1071917 1071994 1072159 "GENPGCD" 1072423 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1071391 1071426 1071639 "GENMFACT" 1071876 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1069957 1070214 1070521 "GENEEZ" 1071134 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1064103 1069568 1069730 "GDMP" 1069880 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1053445 1057874 1058980 "GCNAALG" 1063086 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1051772 1052634 1052662 "GCDDOM" 1052917 T GCDDOM (NIL) -9 NIL 1053074 NIL) (-454 1051242 1051369 1051584 "GCDDOM-" 1051589 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1049914 1050099 1050403 "GB" 1051021 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1038530 1040860 1043252 "GBINTERN" 1047605 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1036367 1036659 1037080 "GBF" 1038205 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1035148 1035313 1035580 "GBEUCLID" 1036183 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1034497 1034622 1034771 "GAUSSFAC" 1035019 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1032864 1033166 1033480 "GALUTIL" 1034216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1031172 1031446 1031770 "GALPOLYU" 1032591 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1028537 1028827 1029234 "GALFACTU" 1030869 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1020342 1021842 1023450 "GALFACT" 1026969 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1017730 1018388 1018416 "FVFUN" 1019572 T FVFUN (NIL) -9 NIL 1020292 NIL) (-443 1016996 1017178 1017206 "FVC" 1017497 T FVC (NIL) -9 NIL 1017680 NIL) (-442 1016639 1016821 1016889 "FUNDESC" 1016948 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1016254 1016436 1016517 "FUNCTION" 1016591 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1013998 1014576 1015042 "FT" 1015808 T FT (NIL) -8 NIL NIL NIL) (-439 1012789 1013299 1013502 "FTEM" 1013815 T FTEM (NIL) -8 NIL NIL NIL) (-438 1011080 1011369 1011766 "FSUPFACT" 1012480 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1009477 1009766 1010098 "FST" 1010768 T FST (NIL) -8 NIL NIL NIL) (-436 1008676 1008782 1008970 "FSRED" 1009359 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1007375 1007631 1007978 "FSPRMELT" 1008391 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1004681 1005119 1005605 "FSPECF" 1006938 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 986319 994650 994691 "FS" 998575 NIL FS (NIL T) -9 NIL 1000864 NIL) (-432 974962 977955 982012 "FS-" 982312 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 974490 974544 974714 "FSINT" 974903 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 972782 973483 973786 "FSERIES" 974269 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 971824 971940 972164 "FSCINT" 972662 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 968032 970768 970809 "FSAGG" 971179 NIL FSAGG (NIL T) -9 NIL 971438 NIL) (-427 965794 966395 967191 "FSAGG-" 967286 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 964836 964979 965206 "FSAGG2" 965647 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 962518 962798 963345 "FS2UPS" 964554 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 962152 962195 962324 "FS2" 962469 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 961030 961201 961503 "FS2EXPXP" 961977 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 960456 960571 960723 "FRUTIL" 960910 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 951869 955951 957309 "FR" 959130 NIL FR (NIL T) -8 NIL NIL NIL) (-420 946838 949512 949552 "FRNAALG" 950948 NIL FRNAALG (NIL T) -9 NIL 951555 NIL) (-419 942511 943587 944862 "FRNAALG-" 945612 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 942149 942192 942319 "FRNAAF2" 942462 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 940529 941003 941298 "FRMOD" 941961 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 938280 938912 939229 "FRIDEAL" 940320 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 937475 937562 937851 "FRIDEAL2" 938187 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 936608 937022 937063 "FRETRCT" 937068 NIL FRETRCT (NIL T) -9 NIL 937244 NIL) (-413 935720 935951 936302 "FRETRCT-" 936307 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 932808 934018 934077 "FRAMALG" 934959 NIL FRAMALG (NIL T T) -9 NIL 935251 NIL) (-411 930942 931397 932027 "FRAMALG-" 932250 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 924863 930417 930693 "FRAC" 930698 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 924499 924556 924663 "FRAC2" 924800 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 924135 924192 924299 "FR2" 924436 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 918648 921541 921569 "FPS" 922688 T FPS (NIL) -9 NIL 923245 NIL) (-406 918097 918206 918370 "FPS-" 918516 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 915399 917068 917096 "FPC" 917321 T FPC (NIL) -9 NIL 917463 NIL) (-404 915192 915232 915329 "FPC-" 915334 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 913982 914680 914721 "FPATMAB" 914726 NIL FPATMAB (NIL T) -9 NIL 914878 NIL) (-402 911655 912158 912584 "FPARFRAC" 913619 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 907048 907547 908229 "FORTRAN" 911087 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 904764 905264 905803 "FORT" 906529 T FORT (NIL) -7 NIL NIL NIL) (-399 902440 903002 903030 "FORTFN" 904090 T FORTFN (NIL) -9 NIL 904714 NIL) (-398 902204 902254 902282 "FORTCAT" 902341 T FORTCAT (NIL) -9 NIL 902403 NIL) (-397 900310 900820 901210 "FORMULA" 901834 T FORMULA (NIL) -8 NIL NIL NIL) (-396 900098 900128 900197 "FORMULA1" 900274 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 899621 899673 899846 "FORDER" 900040 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 898717 898881 899074 "FOP" 899448 T FOP (NIL) -7 NIL NIL NIL) (-393 897298 897997 898171 "FNLA" 898599 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 896027 896442 896470 "FNCAT" 896930 T FNCAT (NIL) -9 NIL 897190 NIL) (-391 895566 895986 896014 "FNAME" 896019 T FNAME (NIL) -8 NIL NIL NIL) (-390 894129 895092 895120 "FMTC" 895125 T FMTC (NIL) -9 NIL 895161 NIL) (-389 892875 894065 894111 "FMONOID" 894116 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2093 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3829 (((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)) 23))) +(((-1227 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)))) (-1051) (-1051) (-1178) (-1178) |#1| |#2|) (T -1227)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1227 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1178))))) +(-10 -7 (-15 -3829 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-567) $) 112) (((-567) $ (-567)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 184)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3077 (((-567) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1228 |#1|) (-140) (-1051)) (T -1228)) +((-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1228 *3)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1228 *3)) (-4 *3 (-1051)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) +(-13 (-1246 |t#1| (-567)) (-10 -8 (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -2288 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -2157 ((-410 (-954 |t#1|)) $ (-567))) (-15 -2157 ((-410 (-954 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T)) +((-2460 (((-112) $) 12)) (-3753 (((-3 |#3| "failed") $) 17) (((-3 (-1178) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-2038 ((|#3| $) 14) (((-1178) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL))) +(((-1229 |#1| |#2| |#3|) (-10 -8 (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) (-1230 |#2| |#3|) (-1051) (-1259 |#2|)) (T -1229)) +NIL +(-10 -8 (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 ((|#2| $) 242 (-1667 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-2821 ((|#2| $) 278)) (-2401 (((-3 |#2| "failed") $) 274)) (-2896 ((|#2| $) 275)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 251 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 248 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) 260 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1178) "failed") $) 253 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-2038 ((|#2| $) 282) (((-567) $) 270 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1178) $) 252 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-3812 (($ $) 277) (($ (-567) $) 276)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2630 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 230 (-1667 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1667 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 37)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-1348 (($) 244 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-4336 (((-112) $) 258 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 236 (-1667 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 235 (-1667 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) 112) (((-567) $ (-567)) 111)) (-1433 (((-112) $) 35)) (-3530 (($ $) 240 (|has| |#1| (-365)))) (-1448 ((|#2| $) 238 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) 272 (-1667 (|has| |#2| (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) 259 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 184)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-1354 (($ $ $) 262 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2981 (($ $ $) 263 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3829 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2907 (($ (-567) |#2|) 279)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2672 (($) 273 (-1667 (|has| |#2| (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4094 (($ $) 243 (-1667 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2780 ((|#2| $) 246 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) 249 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) 250 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) |#2|) 223 (-1667 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 |#2|)) 222 (-1667 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114))) (($ $ |#2|) 217 (-1667 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) 101 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178) (-772)) 100 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1178))) 99 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178)) 98 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-1967 (($ $) 241 (|has| |#1| (-365)))) (-1460 ((|#2| $) 239 (|has| |#1| (-365)))) (-3077 (((-567) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-225) $) 257 (-1667 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) 256 (-1667 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) 255 (-1667 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) 234 (-1667 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) 233 (-1667 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 247 (-1667 (-1667 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#1| (-365))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1178)) 254 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 71)) (-1903 (((-3 $ "failed") $) 60 (-2800 (-1667 (-2800 (|has| |#2| (-145)) (-1667 (|has| $ (-145)) (|has| |#2| (-911)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1423 ((|#2| $) 245 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) 261 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) 105 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178) (-772)) 104 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1178))) 103 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178)) 102 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-2997 (((-112) $ $) 265 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2971 (((-112) $ $) 266 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 264 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2958 (((-112) $ $) 267 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1230 |#1| |#2|) (-140) (-1051) (-1259 |t#1|)) (T -1230)) +((-3077 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3)) (-5 *2 (-567)))) (-2907 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1230 *4 *3)) (-4 *3 (-1259 *4)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1230 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1259 *2)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))) (-2401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3))))) +(-13 (-1228 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2907 ($ (-567) |t#2|)) (-15 -3077 ((-567) $)) (-15 -2821 (|t#2| $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)) (-15 -2896 (|t#2| $)) (-15 -2401 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1178) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1178) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-902 (-1178)) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1178)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) ((-888 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567)))) ((-886 |#2|) |has| |#1| (-365)) ((-911) -12 (|has| |#1| (-365)) (|has| |#2| (-911))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1024) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-1040 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) ((-1040 |#2|) . T) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 |#2|) |has| |#1| (-365)) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 |#2|) |has| |#1| (-365)) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) -12 (|has| |#1| (-365)) (|has| |#2| (-1153))) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1218) |has| |#1| (-365)) ((-1222) |has| |#1| (-365)) ((-1228 |#1|) . T) ((-1246 |#1| #0#) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 81)) (-3093 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 100)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-2821 ((|#2| $) 11)) (-2401 (((-3 |#2| "failed") $) 35)) (-2896 ((|#2| $) 36)) (-3146 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-3166 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1178) "failed") $) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-2038 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1178) $) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-3812 (($ $) 65) (($ (-567) $) 28)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 88)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 74)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) 105) (((-567) $ (-567)) 107)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 ((|#2| $) 165 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) 148)) (-2288 (($ (-1 |#1| (-567)) $) 144)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 20) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2981 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3829 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) |#2|) 10)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 159 (|has| |#1| (-365)))) (-2416 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 233 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-2672 (($) NIL (-12 (|has| |#2| (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2780 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 138)) (-2391 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) |#2|) NIL (-12 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1114))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) 153 (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 ((|#2| $) 166 (|has| |#1| (-365)))) (-3077 (((-567) $) 12)) (-3175 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-225) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2192 (($ $) 136)) (-4132 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1178)) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 85)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) 155 T CONST)) (-2166 ((|#1| $) 102)) (-1423 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1716 (($) 13 T CONST)) (-1728 (($) 18 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2971 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2936 (((-112) $ $) 72)) (-2984 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2958 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3045 (($ $) 227) (($ $ $) 78)) (-3033 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1231 |#1| |#2|) (-1230 |#1| |#2|) (-1051) (-1259 |#1|)) (T -1231)) +NIL +(-1230 |#1| |#2|) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 10)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1950 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-2821 (((-1260 |#1| |#2| |#3|) $) NIL)) (-2401 (((-3 (-1260 |#1| |#2| |#3|) "failed") $) NIL)) (-2896 (((-1260 |#1| |#2| |#3|) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1260 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2038 (((-1260 |#1| |#2| |#3|) $) NIL) (((-1178) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-1260 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-1260 |#1| |#2| |#3|))) (|:| |vec| (-1268 (-1260 |#1| |#2| |#3|)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) NIL)) (-2157 (((-410 (-954 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 18) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) (-1260 |#1| |#2| |#3|)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2780 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1260 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1260 |#1| |#2| |#3|)) (-645 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1114))) (($ $ (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-287 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1264 |#2|)) 26) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3077 (((-567) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-539) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1260 |#1| |#2| |#3|)) NIL) (($ (-1264 |#2|)) 24) (($ (-1178)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4136 ((|#1| $ (-567)) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 11)) (-1423 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1716 (($) 20 T CONST)) (-1728 (($) 15 T CONST)) (-2637 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2958 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1232 |#1| |#2| |#3|) (-13 (-1230 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1232)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1230 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-2033 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)) 13)) (-2688 (((-421 |#1|) |#1|) 26)) (-2706 (((-421 |#1|) |#1|) 24))) +(((-1233 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)))) (-1244 (-567))) (T -1233)) +((-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567)))))) +(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)))) +((-3829 (((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 23 (|has| |#1| (-849))) (((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 17))) +(((-1234 |#1| |#2|) (-10 -7 (-15 -3829 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) |%noBranch|)) (-1218) (-1218)) (T -1234)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-849)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1234 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6))))) +(-10 -7 (-15 -3829 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) |%noBranch|)) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3099 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3829 (((-1158 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-2504 ((|#1| $) 15)) (-1407 ((|#1| $) 12)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1430 (((-567) $) 19)) (-3131 ((|#1| $) 18)) (-1443 ((|#1| $) 13)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1302 (((-112) $) 17)) (-3317 (((-1158 |#1|) $) 41 (|has| |#1| (-849))) (((-1158 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-3893 (($ |#1|) 26)) (-4132 (($ (-1096 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2179 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2715 (($ $ (-567)) 14)) (-2936 (((-112) $ $) 30 (|has| |#1| (-1102))))) +(((-1235 |#1|) (-13 (-1095 |#1|) (-10 -8 (-15 -2179 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4132 ($ (-1096 |#1|))) (-15 -1302 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1158 |#1|))) |%noBranch|))) (-1218)) (T -1235)) +((-2179 (*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1218)) (-5 *1 (-1235 *3)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1218))))) +(-13 (-1095 |#1|) (-10 -8 (-15 -2179 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4132 ($ (-1096 |#1|))) (-15 -1302 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1158 |#1|))) |%noBranch|))) +((-3829 (((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)) 15))) +(((-1236 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)))) (-1178) (-1051) (-1178) (-1051)) (T -1236)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1178)) (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1241 *7 *8)) (-5 *1 (-1236 *5 *6 *7 *8)) (-14 *7 (-1178))))) +(-10 -7 (-15 -3829 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)))) +((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3354 ((|#1| |#3|) 13)) (-4304 ((|#3| |#3|) 19))) +(((-1237 |#1| |#2| |#3|) (-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-1244 |#2|)) (T -1237)) +((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1237 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-4304 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1237 *3 *4 *2)) (-4 *2 (-1244 *4)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1237 *2 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2490 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-2222 (((-3 |#2| "failed") |#2| (-772)) 38)) (-1932 (((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|) 52)) (-3261 (((-645 |#2|) |#2|) 54)) (-1336 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1238 |#1| |#2|) (-10 -7 (-15 -2222 ((-3 |#2| "failed") |#2| (-772))) (-15 -2490 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1336 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1932 ((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|)) (-15 -3261 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1244 |#1|)) (T -1238)) +((-3261 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4)))) (-1336 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1244 *3)))) (-2490 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4)))) (-2222 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4))))) +(-10 -7 (-15 -2222 ((-3 |#2| "failed") |#2| (-772))) (-15 -2490 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1336 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1932 ((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|)) (-15 -3261 ((-645 |#2|) |#2|))) +((-2071 (((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|) 30))) +(((-1239 |#1| |#2|) (-10 -7 (-15 -2071 ((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|))) (-559) (-1244 |#1|)) (T -1239)) +((-2071 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1244 *4))))) +(-10 -7 (-15 -2071 ((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|))) +((-2239 ((|#2| |#2| |#2|) 22)) (-1687 ((|#2| |#2| |#2|) 36)) (-1390 ((|#2| |#2| |#2| (-772) (-772)) 44))) +(((-1240 |#1| |#2|) (-10 -7 (-15 -2239 (|#2| |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2|)) (-15 -1390 (|#2| |#2| |#2| (-772) (-772)))) (-1051) (-1244 |#1|)) (T -1240)) +((-1390 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1240 *4 *2)) (-4 *2 (-1244 *4)))) (-1687 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3)))) (-2239 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3))))) +(-10 -7 (-15 -2239 (|#2| |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2|)) (-15 -1390 (|#2| |#2| |#2| (-772) (-772)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4199 (((-1268 |#2|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#2|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) NIL (|has| |#2| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2349 (($ $ $) NIL (|has| |#2| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#2| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) NIL (|has| |#2| (-559)))) (-3708 (((-2 (|:| -3694 |#2|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#2| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#2| (-1153)))) (-2836 (($ (-1174 |#2|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) 18) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-1647 (((-1174 |#2|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#2| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3110 (($ $ (-772) |#2| $) NIL)) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) NIL) (($ $ (-645 (-1084)) (-645 |#2|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#2| (-365)))) (-1787 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-4132 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) NIL) (($ (-1264 |#1|)) 20) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1241 |#1| |#2|) (-13 (-1244 |#2|) (-617 (-1264 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#2| $)))) (-1178) (-1051)) (T -1241)) +((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1178)) (-4 *3 (-1051))))) +(-13 (-1244 |#2|) (-617 (-1264 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#2| $)))) +((-3829 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1242 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-1244 |#1|) (-1051) (-1244 |#3|)) (T -1242)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *4 *6 *2)) (-4 *4 (-1244 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) +((-4199 (((-1268 |#2|) $ (-772)) 129)) (-2847 (((-645 (-1084)) $) 16)) (-2703 (($ (-1174 |#2|)) 80)) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) 21)) (-4226 (((-421 (-1174 $)) (-1174 $)) 204)) (-3248 (($ $) 194)) (-2908 (((-421 $) $) 192)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 95)) (-1516 (($ $ (-772)) 84)) (-3993 (($ $ (-772)) 86)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3753 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1084) $) NIL)) (-1946 (($ $ $) 170)) (-3708 (((-2 (|:| -3694 |#2|) (|:| -3102 $) (|:| -4194 $)) $ $) 172)) (-4384 (((-772) $ $) 189)) (-3972 (((-3 $ "failed") $) 138)) (-2824 (($ |#2| (-772)) NIL) (($ $ (-1084) (-772)) 59) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) 54) (((-645 (-772)) $ (-645 (-1084))) 55)) (-1647 (((-1174 |#2|) $) 72)) (-3046 (((-3 (-1084) "failed") $) 52)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 83)) (-2416 (($ $) 219)) (-2672 (($) 134)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 201)) (-2435 (((-421 (-1174 $)) (-1174 $)) 101)) (-3517 (((-421 (-1174 $)) (-1174 $)) 99)) (-2706 (((-421 $) $) 120)) (-2631 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) 39) (($ $ (-645 (-1084)) (-645 |#2|)) 36) (($ $ (-1084) $) 32) (($ $ (-645 (-1084)) (-645 $)) 30)) (-1990 (((-772) $) 207)) (-1787 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 212)) (-1593 (($ $ (-1084)) 157) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) 17) (((-645 (-772)) $ (-645 (-1084))) 23)) (-4358 ((|#2| $) NIL) (($ $ (-1084)) 140)) (-2159 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) 64) (($ (-410 (-567))) NIL) (($ $) NIL))) +(((-1243 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -1787 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1787 (|#2| (-410 |#1|) |#2|)) (-15 -2743 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3708 ((-2 (|:| -3694 |#2|) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -2159 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4384 ((-772) |#1| |#1|)) (-15 -1787 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-772))) (-15 -1516 (|#1| |#1| (-772))) (-15 -3139 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| (-772))) (-15 -2703 (|#1| (-1174 |#2|))) (-15 -1647 ((-1174 |#2|) |#1|)) (-15 -4199 ((-1268 |#2|) |#1| (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| |#2|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4226 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -4358 (|#1| |#1| (-1084))) (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -1468 ((-772) |#1| (-645 (-1084)))) (-15 -1468 ((-772) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2824 (|#1| |#1| (-1084) (-772))) (-15 -2656 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2656 ((-772) |#1| (-1084))) (-15 -3046 ((-3 (-1084) "failed") |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3077 ((-772) |#1| (-1084))) (-15 -4132 (|#1| (-1084))) (-15 -3753 ((-3 (-1084) "failed") |#1|)) (-15 -2038 ((-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1084) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 ((-772) |#1|)) (-15 -2824 (|#1| |#2| (-772))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -2656 ((-772) |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -1593 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1084) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1084)))) (-15 -1593 (|#1| |#1| (-1084))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1244 |#2|) (-1051)) (T -1243)) +NIL +(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -1787 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1787 (|#2| (-410 |#1|) |#2|)) (-15 -2743 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3708 ((-2 (|:| -3694 |#2|) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -2159 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4384 ((-772) |#1| |#1|)) (-15 -1787 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-772))) (-15 -1516 (|#1| |#1| (-772))) (-15 -3139 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| (-772))) (-15 -2703 (|#1| (-1174 |#2|))) (-15 -1647 ((-1174 |#2|) |#1|)) (-15 -4199 ((-1268 |#2|) |#1| (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| |#2|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4226 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -4358 (|#1| |#1| (-1084))) (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -1468 ((-772) |#1| (-645 (-1084)))) (-15 -1468 ((-772) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2824 (|#1| |#1| (-1084) (-772))) (-15 -2656 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2656 ((-772) |#1| (-1084))) (-15 -3046 ((-3 (-1084) "failed") |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3077 ((-772) |#1| (-1084))) (-15 -4132 (|#1| (-1084))) (-15 -3753 ((-3 (-1084) "failed") |#1|)) (-15 -2038 ((-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1084) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 ((-772) |#1|)) (-15 -2824 (|#1| |#2| (-772))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -2656 ((-772) |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -1593 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1084) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1084)))) (-15 -1593 (|#1| |#1| (-1084))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-4199 (((-1268 |#1|) $ (-772)) 240)) (-2847 (((-645 (-1084)) $) 112)) (-2703 (($ (-1174 |#1|)) 238)) (-2675 (((-1174 $) $ (-1084)) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 (-1084))) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-2323 (($ $ $) 225 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-3609 (((-112) $ $) 210 (|has| |#1| (-365)))) (-1516 (($ $ (-772)) 233)) (-3993 (($ $ (-772)) 232)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) 138)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) (((-1084) $) 139)) (-2951 (($ $ $ (-1084)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2349 (($ $ $) 214 (|has| |#1| (-365)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 213 (|has| |#1| (-365)))) (-1629 (($ $ $) 231)) (-1946 (($ $ $) 222 (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) 221 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1084)) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) 226 (|has| |#1| (-559)))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-3972 (((-3 $ "failed") $) 206 (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) 119) (($ (-1174 $) (-1084)) 118)) (-3807 (($ $ (-772)) 237)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| (-772)) 155) (($ $ (-1084) (-772)) 121) (($ $ (-645 (-1084)) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) 122) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 235)) (-2656 (((-772) $) 172) (((-772) $ (-1084)) 124) (((-645 (-772)) $ (-645 (-1084))) 123)) (-3273 (($ (-1 (-772) (-772)) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-1647 (((-1174 |#1|) $) 239)) (-3046 (((-3 (-1084) "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 234)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) 115)) (-2416 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) 205 (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 215 (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1084) |#1|) 143) (($ $ (-645 (-1084)) (-645 |#1|)) 142) (($ $ (-1084) $) 141) (($ $ (-645 (-1084)) (-645 $)) 140)) (-1990 (((-772) $) 211 (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) 236)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 212 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) 46) (($ $ (-645 (-1084))) 45) (($ $ (-1084) (-772)) 44) (($ $ (-645 (-1084)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1178)) 252 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 251 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 250 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 249 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3077 (((-772) $) 152) (((-772) $ (-1084)) 132) (((-645 (-772)) $ (-645 (-1084))) 131)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1084)) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1084)) 137) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ (-772)) 157) (($ $ (-1084) (-772)) 130) (($ $ (-645 (-1084)) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1084)) 42) (($ $ (-645 (-1084))) 41) (($ $ (-1084) (-772)) 40) (($ $ (-645 (-1084)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1178)) 248 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 247 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 246 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 245 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1244 |#1|) (-140) (-1051)) (T -1244)) +((-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1244 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-5 *2 (-1174 *3)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1051)) (-4 *1 (-1244 *3)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3997 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-1621 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *3)))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *4)))) (-1516 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3993 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-1629 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)))) (-1593 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-1787 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-4384 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2159 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2159 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-1946 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3694 *3) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *3)))) (-2743 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1244 *3)))) (-1787 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))) +(-13 (-951 |t#1| (-772) (-1084)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4199 ((-1268 |t#1|) $ (-772))) (-15 -1647 ((-1174 |t#1|) $)) (-15 -2703 ($ (-1174 |t#1|))) (-15 -3807 ($ $ (-772))) (-15 -3997 ((-3 $ "failed") $ (-772))) (-15 -1621 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3139 ((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772))) (-15 -1516 ($ $ (-772))) (-15 -3993 ($ $ (-772))) (-15 -1629 ($ $ $)) (-15 -1593 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1153)) (-6 (-1153)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3788 (|t#1| $)) (-15 -2951 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1787 ((-410 $) (-410 $) (-410 $))) (-15 -4384 ((-772) $ $)) (-15 -2323 ($ $ $)) (-15 -2159 ((-3 $ "failed") $ $)) (-15 -2159 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -1946 ($ $ $)) (-15 -3708 ((-2 (|:| -3694 |t#1|) (|:| -3102 $) (|:| -4194 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -2743 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4414) (-15 -1787 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -2416 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1084)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-902 #2#) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) -12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381)))) ((-888 (-567)) -12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))) ((-951 |#1| #0# #2#) . T) ((-911) |has| |#1| (-911)) ((-922) |has| |#1| (-365)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 |#1|) . T) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-1153)) ((-1222) |has| |#1| (-911))) +((-2847 (((-645 (-1084)) $) 34)) (-3014 (($ $) 31)) (-2824 (($ |#2| |#3|) NIL) (($ $ (-1084) |#3|) 28) (($ $ (-645 (-1084)) (-645 |#3|)) 27)) (-2976 (($ $) 14)) (-2989 ((|#2| $) 12)) (-3077 ((|#3| $) 10))) +(((-1245 |#1| |#2| |#3|) (-10 -8 (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2824 (|#1| |#1| (-1084) |#3|)) (-15 -3014 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#3|)) (-15 -3077 (|#3| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2989 (|#2| |#1|))) (-1246 |#2| |#3|) (-1051) (-793)) (T -1245)) +NIL +(-10 -8 (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2824 (|#1| |#1| (-1084) |#3|)) (-15 -3014 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#3|)) (-15 -3077 (|#3| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2989 (|#2| |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-1843 (((-1158 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2762 (((-112) $) 85)) (-4384 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-1433 (((-112) $) 35)) (-3807 (($ $ (-923)) 113)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73) (($ $ (-1084) |#2|) 88) (($ $ (-645 (-1084)) (-645 |#2|)) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2410 (($ $ |#2|) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1787 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3077 ((|#2| $) 76)) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3050 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1246 |#1| |#2|) (-140) (-1051) (-793)) (T -1246)) +((-1843 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1787 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1178)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-4384 (*1 *2 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-1950 (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-1950 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3050 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4132 (*2 (-1178)))) (-4 *2 (-1051)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3))))) +(-13 (-975 |t#1| |t#2| (-1084)) (-10 -8 (-15 -1843 ((-1158 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1787 (|t#1| $ |t#2|)) (-15 -3644 ((-1178) $)) (-15 -2166 (|t#1| $)) (-15 -3807 ($ $ (-923))) (-15 -4384 (|t#2| $)) (-15 -4384 (|t#2| $ |t#2|)) (-15 -1950 ($ $ |t#2|)) (-15 -1950 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4132 (|t#1| (-1178)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3050 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2410 ($ $ |t#2|)) (IF (|has| |t#2| (-1114)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2631 ((-1158 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1114)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| |#2| (-1084)) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-3248 ((|#2| |#2|) 12)) (-2908 (((-421 |#2|) |#2|) 14)) (-2246 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30))) +(((-1247 |#1| |#2|) (-10 -7 (-15 -2908 ((-421 |#2|) |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2246 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1244 |#1|) (-559) (-10 -8 (-15 -2774 ($ $ $))))) (T -1247)) +((-2246 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1247 *3 *4)))) (-3248 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1247 *4 *3)) (-4 *3 (-13 (-1244 *4) (-559) (-10 -8 (-15 -2774 ($ $ $)))))))) +(-10 -7 (-15 -2908 ((-421 |#2|) |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2246 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) +((-3829 (((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)) 24))) +(((-1248 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) (-1051) (-1051) (-1178) (-1178) |#1| |#2|) (T -1248)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1178))))) +(-10 -7 (-15 -3829 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1249 |#1|) (-140) (-1051)) (T -1249)) +((-1306 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1051)) (-4 *1 (-1249 *4)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1249 *3)) (-4 *3 (-1051)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) +(-13 (-1246 |t#1| (-410 (-567))) (-10 -8 (-15 -1306 ($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -3807 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T)) +((-2460 (((-112) $) 12)) (-3753 (((-3 |#3| "failed") $) 17)) (-2038 ((|#3| $) 14))) +(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) (-1251 |#2| |#3|) (-1051) (-1228 |#2|)) (T -1250)) +NIL +(-10 -8 (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 194)) (-2038 ((|#2| $) 195)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3058 (((-410 (-567)) $) 191)) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) |#2|) 192)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3804 ((|#2| $) 190)) (-4144 (((-3 |#2| "failed") $) 188)) (-2907 ((|#2| $) 189)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1251 |#1| |#2|) (-140) (-1051) (-1228 |t#1|)) (T -1251)) +((-3077 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) (-5 *2 (-410 (-567))))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1228 *4)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) (-5 *2 (-410 (-567))))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))) (-4144 (*1 *2 *1) (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3))))) +(-13 (-1249 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2919 ($ (-410 (-567)) |t#2|)) (-15 -3058 ((-410 (-567)) $)) (-15 -3804 (|t#2| $)) (-15 -3077 ((-410 (-567)) $)) (-15 -2907 (|t#2| $)) (-15 -4144 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1040 |#2|) . T) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T) ((-1249 |#1|) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 104)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-3146 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-3166 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL)) (-2038 ((|#2| $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 85)) (-3058 (((-410 (-567)) $) 13)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) |#2|) 11)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) 74)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 130) (($ $ (-410 (-567))) 128)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 33) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 125)) (-3063 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 ((|#2| $) 12)) (-4144 (((-3 |#2| "failed") $) 44)) (-2907 ((|#2| $) 45)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 101 (|has| |#1| (-365)))) (-2416 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 151 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 122)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 16)) (-3175 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 120)) (-4132 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 107)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 127 T CONST)) (-2166 ((|#1| $) 106)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 21 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 72)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3045 (($ $) 142) (($ $ $) 78)) (-3033 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1252 |#1| |#2|) (-1251 |#1| |#2|) (-1051) (-1228 |#1|)) (T -1252)) +NIL +(-1251 |#1| |#2|) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1232 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1260 |#1| |#2| |#3|) "failed") $) 22)) (-2038 (((-1232 |#1| |#2| |#3|) $) NIL) (((-1260 |#1| |#2| |#3|) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3058 (((-410 (-567)) $) 69)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) (-1232 |#1| |#2| |#3|)) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 30) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 (((-1232 |#1| |#2| |#3|) $) 72)) (-4144 (((-3 (-1232 |#1| |#2| |#3|) "failed") $) NIL)) (-2907 (((-1232 |#1| |#2| |#3|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 38)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1232 |#1| |#2| |#3|)) 16) (($ (-1260 |#1| |#2| |#3|)) 17) (($ (-1264 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 32 T CONST)) (-1728 (($) 26 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 34)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1253 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1232 |#1| |#2| |#3|)) (-1040 (-1260 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1253)) +((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1251 |#1| (-1232 |#1| |#2| |#3|)) (-1040 (-1260 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 37)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-3 (-1253 |#2| |#3| |#4|) "failed") $) 22)) (-2038 (((-567) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-3014 (($ $) 41)) (-2109 (((-3 $ "failed") $) 27)) (-3501 (($ $) NIL (|has| (-1253 |#2| |#3| |#4|) (-455)))) (-2320 (($ $ (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 11)) (-2843 (((-112) $) NIL)) (-2824 (($ (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2656 (((-320 |#2| |#3| |#4|) $) NIL)) (-3273 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3829 (($ (-1 (-1253 |#2| |#3| |#4|) (-1253 |#2| |#3| |#4|)) $) NIL)) (-1347 (((-3 (-844 |#2|) "failed") $) 90)) (-2976 (($ $) NIL)) (-2989 (((-1253 |#2| |#3| |#4|) $) 20)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 (((-1253 |#2| |#3| |#4|) $) NIL)) (-2391 (((-3 $ "failed") $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-1339 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $) 74)) (-3077 (((-320 |#2| |#3| |#4|) $) 17)) (-4358 (((-1253 |#2| |#3| |#4|) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1253 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))))) (-3032 (((-645 (-1253 |#2| |#3| |#4|)) $) NIL)) (-4136 (((-1253 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-145)))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| (-1253 |#2| |#3| |#4|) (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1253 |#2| |#3| |#4|)) NIL) (($ (-1253 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567))))))) +(((-1254 |#1| |#2| |#3| |#4|) (-13 (-327 (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -1339 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $)))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -1254)) +((-1347 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4))) (-1339 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1160)))) (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4)))) +(-13 (-327 (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -1339 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $)))) +((-3802 ((|#2| $) 34)) (-3998 ((|#2| $) 18)) (-4283 (($ $) 52)) (-2366 (($ $ (-567)) 85)) (-3445 (((-112) $ (-772)) 46)) (-2138 ((|#2| $ |#2|) 82)) (-2315 ((|#2| $ |#2|) 78)) (-4284 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1301 (($ $ (-645 $)) 81)) (-3984 ((|#2| $) 17)) (-2421 (($ $) NIL) (($ $ (-772)) 59)) (-2182 (((-645 $) $) 31)) (-3512 (((-112) $ $) 69)) (-2077 (((-112) $ (-772)) 45)) (-2863 (((-112) $ (-772)) 43)) (-2769 (((-112) $) 33)) (-3257 ((|#2| $) 25) (($ $ (-772)) 64)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3900 (((-112) $) 23)) (-1644 (($ $) 55)) (-3519 (($ $) 86)) (-3344 (((-772) $) 58)) (-1503 (($ $) 57)) (-2269 (($ $ $) 77) (($ |#2| $) NIL)) (-1531 (((-645 $) $) 32)) (-2936 (((-112) $ $) 67)) (-2414 (((-772) $) 51))) +(((-1255 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#1| (-567))) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -3519 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -3998 (|#2| |#1|)) (-15 -3984 (|#2| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -1787 (|#2| |#1| "first")) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2138 (|#2| |#1| |#2|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1301 (|#1| |#1| (-645 |#1|))) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) (-1256 |#2|) (-1218)) (T -1255)) +NIL +(-10 -8 (-15 -2366 (|#1| |#1| (-567))) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -3519 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -3998 (|#2| |#1|)) (-15 -3984 (|#2| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -1787 (|#2| |#1| "first")) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2138 (|#2| |#1| |#2|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1301 (|#1| |#1| (-645 |#1|))) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1256 |#1|) (-140) (-1218)) (T -1256)) +((-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2421 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3257 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1503 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3519 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2271 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4209 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2315 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) (-4 *3 (-1218))))) +(-13 (-1012 |t#1|) (-10 -8 (-15 -2269 ($ $ $)) (-15 -2269 ($ |t#1| $)) (-15 -2409 (|t#1| $)) (-15 -1787 (|t#1| $ "first")) (-15 -2409 ($ $ (-772))) (-15 -2421 ($ $)) (-15 -1787 ($ $ "rest")) (-15 -2421 ($ $ (-772))) (-15 -3257 (|t#1| $)) (-15 -1787 (|t#1| $ "last")) (-15 -3257 ($ $ (-772))) (-15 -4283 ($ $)) (-15 -3984 (|t#1| $)) (-15 -3998 (|t#1| $)) (-15 -1503 ($ $)) (-15 -3344 ((-772) $)) (-15 -1644 ($ $)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -2484 ($ $ $)) (-15 -2484 ($ $ |t#1|)) (-15 -3519 ($ $)) (-15 -2271 (|t#1| $ |t#1|)) (-15 -4284 (|t#1| $ "first" |t#1|)) (-15 -4209 ($ $ $)) (-15 -4284 ($ $ "rest" $)) (-15 -2315 (|t#1| $ |t#1|)) (-15 -4284 (|t#1| $ "last" |t#1|)) (-15 -2366 ($ $ (-567)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T)) +((-3829 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) (-1051) (-1051) (-1259 |#1|) (-1259 |#2|)) (T -1257)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *6 *4 *2)) (-4 *4 (-1259 *5))))) +(-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) +((-2460 (((-112) $) 17)) (-3146 (($ $) 106)) (-3012 (($ $) 82)) (-3128 (($ $) 102)) (-2987 (($ $) 78)) (-3166 (($ $) 110)) (-3035 (($ $) 86)) (-3063 (($ $) 76)) (-3946 (($ $) 74)) (-3175 (($ $) 112)) (-3049 (($ $) 88)) (-3156 (($ $) 108)) (-3023 (($ $) 84)) (-3137 (($ $) 104)) (-2999 (($ $) 80)) (-4132 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3200 (($ $) 118)) (-3084 (($ $) 94)) (-3183 (($ $) 114)) (-3062 (($ $) 90)) (-3221 (($ $) 122)) (-3106 (($ $) 98)) (-3785 (($ $) 124)) (-3118 (($ $) 100)) (-3211 (($ $) 120)) (-3095 (($ $) 96)) (-3193 (($ $) 116)) (-3074 (($ $) 92)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72))) +(((-1258 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2460 ((-112) |#1|)) (-15 -4132 ((-863) |#1|))) (-1259 |#2|) (-1051)) (T -1258)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2460 ((-112) |#1|)) (-15 -4132 ((-863) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1158 |#1|)) 165)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3842 (($ $) 164)) (-3717 (((-954 |#1|) $ (-772)) 162) (((-954 |#1|) $ (-772) (-772)) 161)) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) 112) (((-772) $ (-772)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 163)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-772)) 73) (($ $ (-1084) (-772)) 88) (($ $ (-645 (-1084)) (-645 (-772))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-2416 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 158 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-2410 (($ $ (-772)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3077 (((-772) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3032 (((-1158 |#1|) $) 166)) (-4136 ((|#1| $ (-772)) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) +(((-1259 |#1|) (-140) (-1051)) (T -1259)) +((-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1259 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-5 *2 (-1158 *3)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-4 *1 (-1259 *3)))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1259 *3)) (-4 *3 (-1051)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (-3717 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) +(-13 (-1246 |t#1| (-772)) (-10 -8 (-15 -1306 ($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -3032 ((-1158 |t#1|) $)) (-15 -1306 ($ (-1158 |t#1|))) (-15 -3842 ($ $)) (-15 -2288 ($ (-1 |t#1| (-567)) $)) (-15 -3717 ((-954 |t#1|) $ (-772))) (-15 -3717 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1114)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1246 |#1| #0#) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 93)) (-1779 (((-1241 |#2| |#1|) $ (-772)) 74)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) 145 (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1158 |#1|)) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2900 (($ $) 137)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3842 (($ $) 143)) (-3717 (((-954 |#1|) $ (-772)) 64) (((-954 |#1|) $ (-772) (-772)) 66)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-1433 (((-112) $) NIL)) (-1486 (($ $) 120)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3352 (($ (-567) (-567) $) 139)) (-3807 (($ $ (-923)) 142)) (-2288 (($ (-1 |#1| (-567)) $) 114)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 16) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 101)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3535 (($ $) 118)) (-1517 (($ $) 116)) (-1505 (($ (-567) (-567) $) 141)) (-2416 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 159 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-1343 (($ $ (-567) (-567)) 124)) (-2410 (($ $ (-772)) 126)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3994 (($ $) 122)) (-2631 (((-1158 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1264 |#2|)) 106)) (-3077 (((-772) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 128)) (-4132 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1241 |#2| |#1|)) 84) (($ (-1264 |#2|)) 22)) (-3032 (((-1158 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) 97)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 94)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 18 T CONST)) (-1728 (($) 13 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 110)) (-3033 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) +(((-1260 |#1| |#2| |#3|) (-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (-15 -1517 ($ $)) (-15 -3535 ($ $)) (-15 -1486 ($ $)) (-15 -3994 ($ $)) (-15 -1343 ($ $ (-567) (-567))) (-15 -2900 ($ $)) (-15 -3352 ($ (-567) (-567) $)) (-15 -1505 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1260)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-1260 *3 *4 *5)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1260 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1517 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3535 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3994 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-1343 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-2900 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3352 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-1505 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) +(-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (-15 -1517 ($ $)) (-15 -3535 ($ $)) (-15 -1486 ($ $)) (-15 -3994 ($ $)) (-15 -1343 ($ $ (-567) (-567))) (-15 -2900 ($ $)) (-15 -3352 ($ (-567) (-567) $)) (-15 -1505 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) +((-4232 (((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-4101 (((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2571 (((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|)) 13)) (-3205 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2171 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1615 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-3112 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-3898 ((|#2| |#2| |#2|) 43))) +(((-1261 |#1| |#2|) (-10 -7 (-15 -2571 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4101 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4232 ((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3898 (|#2| |#2| |#2|)) (-15 -2171 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3205 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3112 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1259 |#1|)) (T -1261)) +((-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1259 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1261 *5 *6)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1259 *5)) (-5 *1 (-1261 *5 *2)))) (-3205 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-3898 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1259 *3)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-645 (-1158 *4)))) (-5 *1 (-1261 *4 *5)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5))))) +(-10 -7 (-15 -2571 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4101 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4232 ((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3898 (|#2| |#2| |#2|)) (-15 -2171 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3205 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3112 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) +((-2131 ((|#2| |#4| (-772)) 34)) (-1804 ((|#4| |#2|) 29)) (-3566 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-1484 (((-1 |#4| (-645 |#4|)) |#3|) 46))) +(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1804 (|#4| |#2|)) (-15 -2131 (|#2| |#4| (-772))) (-15 -1484 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -3566 (|#4| (-410 |#2|))) |%noBranch|)) (-1051) (-1244 |#1|) (-657 |#2|) (-1259 |#1|)) (T -1262)) +((-3566 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-559)) (-4 *4 (-1051)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-1244 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1262 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1259 *4)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-1262 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1259 *5)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-1244 *4)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) +(-10 -7 (-15 -1804 (|#4| |#2|)) (-15 -2131 (|#2| |#4| (-772))) (-15 -1484 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -3566 (|#4| (-410 |#2|))) |%noBranch|)) +NIL +(((-1263) (-140)) (T -1263)) +NIL +(-13 (-10 -7 (-6 -3011))) +((-2403 (((-112) $ $) NIL)) (-3644 (((-1178)) 12)) (-1419 (((-1160) $) 18)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11) (((-1178) $) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15))) +(((-1264 |#1|) (-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4132 ((-1178) $)) (-15 -3644 ((-1178))))) (-1178)) (T -1264)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2))) (-3644 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2)))) +(-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4132 ((-1178) $)) (-15 -3644 ((-1178))))) +((-1316 (($ (-772)) 19)) (-1544 (((-690 |#2|) $ $) 41)) (-3908 ((|#2| $) 51)) (-1699 ((|#2| $) 50)) (-3366 ((|#2| $ $) 36)) (-4295 (($ $ $) 47)) (-3045 (($ $) 23) (($ $ $) 29)) (-3033 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1265 |#1| |#2|) (-10 -8 (-15 -3908 (|#2| |#1|)) (-15 -1699 (|#2| |#1|)) (-15 -4295 (|#1| |#1| |#1|)) (-15 -1544 ((-690 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1316 (|#1| (-772))) (-15 -3033 (|#1| |#1| |#1|))) (-1266 |#2|) (-1218)) (T -1265)) +NIL +(-10 -8 (-15 -3908 (|#2| |#1|)) (-15 -1699 (|#2| |#1|)) (-15 -4295 (|#1| |#1| |#1|)) (-15 -1544 ((-690 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1316 (|#1| (-772))) (-15 -3033 (|#1| |#1| |#1|))) +((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772)) 113 (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3908 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2863 (((-112) $ (-772)) 10)) (-1699 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3366 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-4295 (($ $ $) 105 (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3045 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3033 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418))))) +(((-1266 |#1|) (-140) (-1218)) (T -1266)) +((-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-25)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1266 *3)) (-4 *3 (-23)) (-4 *3 (-1218)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (-1544 (*1 *2 *1 *1) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-1051)) (-5 *2 (-690 *3)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) (-4 *2 (-1051)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) (-4 *2 (-1051))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3033 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1316 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-15 -3366 (|t#1| $ $)) (-15 -1544 ((-690 |t#1|) $ $)) (-15 -4295 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1004)) (IF (|has| |t#1| (-1051)) (PROGN (-15 -1699 (|t#1| $)) (-15 -3908 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T)) +((-2788 (((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|) 13)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|) 15)) (-3829 (((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|)) 30) (((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|)) 18))) +(((-1267 |#1| |#2|) (-10 -7 (-15 -2788 ((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -3829 ((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|))) (-15 -3829 ((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|)))) (-1218) (-1218)) (T -1267)) +((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-1267 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1268 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-1268 *5)) (-5 *1 (-1267 *6 *5))))) +(-10 -7 (-15 -2788 ((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -3829 ((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|))) (-15 -3829 ((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|)))) +((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1581 (($ (-645 |#1|)) 11)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 15 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 10)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1268 |#1|) (-13 (-1266 |#1|) (-10 -8 (-15 -1581 ($ (-645 |#1|))))) (-1218)) (T -1268)) +((-1581 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1268 *3))))) +(-13 (-1266 |#1|) (-10 -8 (-15 -1581 ($ (-645 |#1|))))) +((-2403 (((-112) $ $) NIL)) (-1340 (((-1160) $ (-1160)) 110) (((-1160) $ (-1160) (-1160)) 108) (((-1160) $ (-1160) (-645 (-1160))) 107)) (-2953 (($) 70)) (-3682 (((-1273) $ (-471) (-923)) 55)) (-1741 (((-1273) $ (-923) (-1160)) 92) (((-1273) $ (-923) (-875)) 93)) (-2563 (((-1273) $ (-923) (-381) (-381)) 58)) (-3124 (((-1273) $ (-1160)) 87)) (-4269 (((-1273) $ (-923) (-1160)) 97)) (-2172 (((-1273) $ (-923) (-381) (-381)) 59)) (-1515 (((-1273) $ (-923) (-923)) 56)) (-1315 (((-1273) $) 88)) (-3891 (((-1273) $ (-923) (-1160)) 96)) (-3374 (((-1273) $ (-471) (-923)) 41)) (-3932 (((-1273) $ (-923) (-1160)) 95)) (-3624 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-2151 (((-1273) $ (-772) (-772)) 53)) (-2053 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 48)) (-3430 (((-1122) $) NIL)) (-3541 (((-1268 (-3 (-471) "undefined")) $) 47)) (-2437 (((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-2128 (((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-3962 (((-645 (-945 (-225))) $) NIL)) (-3755 (((-471) $ (-923)) 43)) (-3853 (((-1273) $ (-772) (-772) (-923) (-923)) 51)) (-2691 (((-1273) $ (-1160)) 98)) (-1310 (((-1273) $ (-923) (-1160)) 94)) (-4132 (((-863) $) 105)) (-3995 (((-1273) $) 99)) (-1745 (((-112) $ $) NIL)) (-3585 (((-1273) $ (-923) (-1160)) 90) (((-1273) $ (-923) (-875)) 91)) (-2936 (((-112) $ $) NIL))) +(((-1269) (-13 (-1102) (-10 -8 (-15 -3962 ((-645 (-945 (-225))) $)) (-15 -2953 ($)) (-15 -2053 ($ $)) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2053 ($ (-471) (-645 (-264)))) (-15 -2128 ((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2437 ((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3541 ((-1268 (-3 (-471) "undefined")) $)) (-15 -3124 ((-1273) $ (-1160))) (-15 -3374 ((-1273) $ (-471) (-923))) (-15 -3755 ((-471) $ (-923))) (-15 -3585 ((-1273) $ (-923) (-1160))) (-15 -3585 ((-1273) $ (-923) (-875))) (-15 -1741 ((-1273) $ (-923) (-1160))) (-15 -1741 ((-1273) $ (-923) (-875))) (-15 -3932 ((-1273) $ (-923) (-1160))) (-15 -3891 ((-1273) $ (-923) (-1160))) (-15 -1310 ((-1273) $ (-923) (-1160))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3995 ((-1273) $)) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2172 ((-1273) $ (-923) (-381) (-381))) (-15 -2563 ((-1273) $ (-923) (-381) (-381))) (-15 -4269 ((-1273) $ (-923) (-1160))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -3682 ((-1273) $ (-471) (-923))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -1315 ((-1273) $)) (-15 -1795 ((-567) $)) (-15 -4132 ((-863) $))))) (T -1269)) +((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1269)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1269)))) (-2953 (*1 *1) (-5 *1 (-1269))) (-2053 (*1 *1 *1) (-5 *1 (-1269))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-2053 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1269)))) (-2128 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1269)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1268 (-3 (-471) "undefined"))) (-5 *1 (-1269)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3374 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3755 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1269)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1741 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1741 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3932 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3891 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1310 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3853 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2172 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2563 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-4269 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3682 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269))))) +(-13 (-1102) (-10 -8 (-15 -3962 ((-645 (-945 (-225))) $)) (-15 -2953 ($)) (-15 -2053 ($ $)) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2053 ($ (-471) (-645 (-264)))) (-15 -2128 ((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2437 ((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3541 ((-1268 (-3 (-471) "undefined")) $)) (-15 -3124 ((-1273) $ (-1160))) (-15 -3374 ((-1273) $ (-471) (-923))) (-15 -3755 ((-471) $ (-923))) (-15 -3585 ((-1273) $ (-923) (-1160))) (-15 -3585 ((-1273) $ (-923) (-875))) (-15 -1741 ((-1273) $ (-923) (-1160))) (-15 -1741 ((-1273) $ (-923) (-875))) (-15 -3932 ((-1273) $ (-923) (-1160))) (-15 -3891 ((-1273) $ (-923) (-1160))) (-15 -1310 ((-1273) $ (-923) (-1160))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3995 ((-1273) $)) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2172 ((-1273) $ (-923) (-381) (-381))) (-15 -2563 ((-1273) $ (-923) (-381) (-381))) (-15 -4269 ((-1273) $ (-923) (-1160))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -3682 ((-1273) $ (-471) (-923))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -1315 ((-1273) $)) (-15 -1795 ((-567) $)) (-15 -4132 ((-863) $)))) +((-2403 (((-112) $ $) NIL)) (-2544 (((-1273) $ (-381)) 172) (((-1273) $ (-381) (-381) (-381)) 173)) (-1340 (((-1160) $ (-1160)) 182) (((-1160) $ (-1160) (-1160)) 180) (((-1160) $ (-1160) (-645 (-1160))) 179)) (-4078 (($) 67)) (-2369 (((-1273) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1273) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1273) $ (-381) (-381)) 148) (((-1273) $ (-381) (-381) (-381)) 155)) (-4041 (((-381)) 125) (((-381) (-381)) 126)) (-2628 (((-381)) 120) (((-381) (-381)) 122)) (-2697 (((-381)) 123) (((-381) (-381)) 124)) (-1402 (((-381)) 129) (((-381) (-381)) 130)) (-4156 (((-381)) 127) (((-381) (-381)) 128)) (-2563 (((-1273) $ (-381) (-381)) 174)) (-3124 (((-1273) $ (-1160)) 156)) (-1455 (((-1135 (-225)) $) 68) (($ $ (-1135 (-225))) 69)) (-4118 (((-1273) $ (-1160)) 190)) (-1537 (((-1273) $ (-1160)) 191)) (-1501 (((-1273) $ (-381) (-381)) 154) (((-1273) $ (-567) (-567)) 171)) (-1515 (((-1273) $ (-923) (-923)) 163)) (-1315 (((-1273) $) 140)) (-3379 (((-1273) $ (-1160)) 189)) (-3160 (((-1273) $ (-1160)) 137)) (-3624 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-2151 (((-1273) $ (-772) (-772)) 162)) (-1353 (((-1273) $ (-772) (-945 (-225))) 196)) (-4100 (($ $) 73) (($ (-1135 (-225)) (-1160)) 74) (($ (-1135 (-225)) (-645 (-264))) 75)) (-3476 (((-1273) $ (-381) (-381) (-381)) 134)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 131)) (-4306 (((-1273) $ (-381)) 177)) (-1633 (((-1273) $ (-381)) 194)) (-3430 (((-1122) $) NIL)) (-1878 (((-1273) $ (-381)) 193)) (-3868 (((-1273) $ (-1160)) 139)) (-3853 (((-1273) $ (-772) (-772) (-923) (-923)) 161)) (-3453 (((-1273) $ (-1160)) 136)) (-2691 (((-1273) $ (-1160)) 138)) (-1352 (((-1273) $ (-157) (-157)) 160)) (-4132 (((-863) $) 169)) (-3995 (((-1273) $) 141)) (-3877 (((-1273) $ (-1160)) 192)) (-1745 (((-112) $ $) NIL)) (-3585 (((-1273) $ (-1160)) 135)) (-2936 (((-112) $ $) NIL))) +(((-1270) (-13 (-1102) (-10 -8 (-15 -2628 ((-381))) (-15 -2628 ((-381) (-381))) (-15 -2697 ((-381))) (-15 -2697 ((-381) (-381))) (-15 -4041 ((-381))) (-15 -4041 ((-381) (-381))) (-15 -4156 ((-381))) (-15 -4156 ((-381) (-381))) (-15 -1402 ((-381))) (-15 -1402 ((-381) (-381))) (-15 -4078 ($)) (-15 -4100 ($ $)) (-15 -4100 ($ (-1135 (-225)) (-1160))) (-15 -4100 ($ (-1135 (-225)) (-645 (-264)))) (-15 -1455 ((-1135 (-225)) $)) (-15 -1455 ($ $ (-1135 (-225)))) (-15 -1353 ((-1273) $ (-772) (-945 (-225)))) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -3124 ((-1273) $ (-1160))) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2369 ((-1273) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2369 ((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2369 ((-1273) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381) (-381))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3585 ((-1273) $ (-1160))) (-15 -3453 ((-1273) $ (-1160))) (-15 -3160 ((-1273) $ (-1160))) (-15 -3868 ((-1273) $ (-1160))) (-15 -1501 ((-1273) $ (-381) (-381))) (-15 -1501 ((-1273) $ (-567) (-567))) (-15 -2544 ((-1273) $ (-381))) (-15 -2544 ((-1273) $ (-381) (-381) (-381))) (-15 -2563 ((-1273) $ (-381) (-381))) (-15 -3379 ((-1273) $ (-1160))) (-15 -1878 ((-1273) $ (-381))) (-15 -1633 ((-1273) $ (-381))) (-15 -4118 ((-1273) $ (-1160))) (-15 -1537 ((-1273) $ (-1160))) (-15 -3877 ((-1273) $ (-1160))) (-15 -3476 ((-1273) $ (-381) (-381) (-381))) (-15 -4306 ((-1273) $ (-381))) (-15 -1315 ((-1273) $)) (-15 -1352 ((-1273) $ (-157) (-157))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -3995 ((-1273) $)) (-15 -1795 ((-567) $))))) (T -1270)) +((-2628 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2697 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2697 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4041 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4156 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-1402 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4078 (*1 *1) (-5 *1 (-1270))) (-4100 (*1 *1 *1) (-5 *1 (-1270))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1160)) (-5 *1 (-1270)))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))) (-1353 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-2151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3853 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3585 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3453 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2544 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2563 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1878 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1633 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1537 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3476 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1270)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270))))) +(-13 (-1102) (-10 -8 (-15 -2628 ((-381))) (-15 -2628 ((-381) (-381))) (-15 -2697 ((-381))) (-15 -2697 ((-381) (-381))) (-15 -4041 ((-381))) (-15 -4041 ((-381) (-381))) (-15 -4156 ((-381))) (-15 -4156 ((-381) (-381))) (-15 -1402 ((-381))) (-15 -1402 ((-381) (-381))) (-15 -4078 ($)) (-15 -4100 ($ $)) (-15 -4100 ($ (-1135 (-225)) (-1160))) (-15 -4100 ($ (-1135 (-225)) (-645 (-264)))) (-15 -1455 ((-1135 (-225)) $)) (-15 -1455 ($ $ (-1135 (-225)))) (-15 -1353 ((-1273) $ (-772) (-945 (-225)))) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -3124 ((-1273) $ (-1160))) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2369 ((-1273) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2369 ((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2369 ((-1273) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381) (-381))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3585 ((-1273) $ (-1160))) (-15 -3453 ((-1273) $ (-1160))) (-15 -3160 ((-1273) $ (-1160))) (-15 -3868 ((-1273) $ (-1160))) (-15 -1501 ((-1273) $ (-381) (-381))) (-15 -1501 ((-1273) $ (-567) (-567))) (-15 -2544 ((-1273) $ (-381))) (-15 -2544 ((-1273) $ (-381) (-381) (-381))) (-15 -2563 ((-1273) $ (-381) (-381))) (-15 -3379 ((-1273) $ (-1160))) (-15 -1878 ((-1273) $ (-381))) (-15 -1633 ((-1273) $ (-381))) (-15 -4118 ((-1273) $ (-1160))) (-15 -1537 ((-1273) $ (-1160))) (-15 -3877 ((-1273) $ (-1160))) (-15 -3476 ((-1273) $ (-381) (-381) (-381))) (-15 -4306 ((-1273) $ (-381))) (-15 -1315 ((-1273) $)) (-15 -1352 ((-1273) $ (-157) (-157))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -3995 ((-1273) $)) (-15 -1795 ((-567) $)))) +((-2603 (((-645 (-1160)) (-645 (-1160))) 104) (((-645 (-1160))) 96)) (-4252 (((-645 (-1160))) 94)) (-2347 (((-645 (-923)) (-645 (-923))) 69) (((-645 (-923))) 64)) (-1713 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-2861 (((-1273)) 71)) (-4183 (((-923) (-923)) 87) (((-923)) 86)) (-3873 (((-923) (-923)) 85) (((-923)) 84)) (-4398 (((-875) (-875)) 81) (((-875)) 80)) (-1740 (((-225)) 91) (((-225) (-381)) 93)) (-4235 (((-923)) 88) (((-923) (-923)) 89)) (-3746 (((-923) (-923)) 83) (((-923)) 82)) (-4080 (((-875) (-875)) 75) (((-875)) 73)) (-1421 (((-875) (-875)) 77) (((-875)) 76)) (-2086 (((-875) (-875)) 79) (((-875)) 78))) +(((-1271) (-10 -7 (-15 -4080 ((-875))) (-15 -4080 ((-875) (-875))) (-15 -1421 ((-875))) (-15 -1421 ((-875) (-875))) (-15 -2086 ((-875))) (-15 -2086 ((-875) (-875))) (-15 -4398 ((-875))) (-15 -4398 ((-875) (-875))) (-15 -3746 ((-923))) (-15 -3746 ((-923) (-923))) (-15 -1713 ((-645 (-772)))) (-15 -1713 ((-645 (-772)) (-645 (-772)))) (-15 -2347 ((-645 (-923)))) (-15 -2347 ((-645 (-923)) (-645 (-923)))) (-15 -2861 ((-1273))) (-15 -2603 ((-645 (-1160)))) (-15 -2603 ((-645 (-1160)) (-645 (-1160)))) (-15 -4252 ((-645 (-1160)))) (-15 -3873 ((-923))) (-15 -4183 ((-923))) (-15 -3873 ((-923) (-923))) (-15 -4183 ((-923) (-923))) (-15 -4235 ((-923) (-923))) (-15 -4235 ((-923))) (-15 -1740 ((-225) (-381))) (-15 -1740 ((-225))))) (T -1271)) +((-1740 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1271)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1271)))) (-4235 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4183 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3873 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4252 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2603 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2861 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1271)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))) (-2347 (*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))) (-1713 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))) (-1713 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3746 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4398 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-2086 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-1421 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4080 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))) +(-10 -7 (-15 -4080 ((-875))) (-15 -4080 ((-875) (-875))) (-15 -1421 ((-875))) (-15 -1421 ((-875) (-875))) (-15 -2086 ((-875))) (-15 -2086 ((-875) (-875))) (-15 -4398 ((-875))) (-15 -4398 ((-875) (-875))) (-15 -3746 ((-923))) (-15 -3746 ((-923) (-923))) (-15 -1713 ((-645 (-772)))) (-15 -1713 ((-645 (-772)) (-645 (-772)))) (-15 -2347 ((-645 (-923)))) (-15 -2347 ((-645 (-923)) (-645 (-923)))) (-15 -2861 ((-1273))) (-15 -2603 ((-645 (-1160)))) (-15 -2603 ((-645 (-1160)) (-645 (-1160)))) (-15 -4252 ((-645 (-1160)))) (-15 -3873 ((-923))) (-15 -4183 ((-923))) (-15 -3873 ((-923) (-923))) (-15 -4183 ((-923) (-923))) (-15 -4235 ((-923) (-923))) (-15 -4235 ((-923))) (-15 -1740 ((-225) (-381))) (-15 -1740 ((-225)))) +((-3265 (((-471) (-645 (-645 (-945 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-945 (-225))))) 21) (((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 20)) (-4288 (((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264))) 33) (((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 32)) (-4132 (((-1269) (-471)) 48))) +(((-1272) (-10 -7 (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4132 ((-1269) (-471))))) (T -1272)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-4288 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272))))) +(-10 -7 (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4132 ((-1269) (-471)))) +((-4321 (($) 6)) (-4132 (((-863) $) 9))) +(((-1273) (-13 (-614 (-863)) (-10 -8 (-15 -4321 ($))))) (T -1273)) +((-4321 (*1 *1) (-5 *1 (-1273)))) +(-13 (-614 (-863)) (-10 -8 (-15 -4321 ($)))) +((-3060 (($ $ |#2|) 10))) +(((-1274 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| |#1| |#2|))) (-1275 |#2|) (-365)) (T -1274)) +NIL +(-10 -8 (-15 -3060 (|#1| |#1| |#2|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1879 (((-134)) 33)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 34)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1275 |#1|) (-140) (-365)) (T -1275)) +((-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-365)))) (-1879 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(-13 (-718 |t#1|) (-10 -8 (-15 -3060 ($ $ |t#1|)) (-15 -1879 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) +((-2043 (((-645 (-1212 |#1|)) (-1178) (-1212 |#1|)) 83)) (-2090 (((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|))) 63)) (-2985 (((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|))) 74)) (-2852 (((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772)) 65)) (-3120 (((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178)) 32)) (-1497 (((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772)) 64))) +(((-1276 |#1|) (-10 -7 (-15 -2852 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -1497 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -2090 ((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|)))) (-15 -3120 ((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178))) (-15 -2043 ((-645 (-1212 |#1|)) (-1178) (-1212 |#1|))) (-15 -2985 ((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|))))) (-365)) (T -1276)) +((-2985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1276 *6)) (-5 *5 (-1158 *4)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-645 (-1212 *5))) (-5 *1 (-1276 *5)) (-5 *4 (-1212 *5)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 (-1174 (-954 *4)) (-954 *4))) (-5 *1 (-1276 *4)) (-4 *4 (-365)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-1158 (-1158 (-954 *5)))) (-5 *1 (-1276 *5)) (-5 *4 (-1158 (-954 *5))))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) (-5 *1 (-1276 *4)) (-4 *4 (-365)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) (-5 *1 (-1276 *4)) (-4 *4 (-365))))) +(-10 -7 (-15 -2852 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -1497 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -2090 ((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|)))) (-15 -3120 ((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178))) (-15 -2043 ((-645 (-1212 |#1|)) (-1178) (-1212 |#1|))) (-15 -2985 ((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|))))) +((-3454 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-3675 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81))) +(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1244 |#1|) (-1244 |#2|) (-412 |#2| |#3|)) (T -1277)) +((-3454 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1277 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-3675 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1277 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) +(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) +((-2403 (((-112) $ $) NIL)) (-3276 (((-1137) $) 11)) (-2134 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1278) (-13 (-1085) (-10 -8 (-15 -2134 ((-1137) $)) (-15 -3276 ((-1137) $))))) (T -1278)) +((-2134 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278))))) +(-13 (-1085) (-10 -8 (-15 -2134 ((-1137) $)) (-15 -3276 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2055 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL))) +(((-1279) (-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $))))) (T -1279)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279))))) +(-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 58)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-4221 (((-772)) NIL T CONST)) (-1330 (((-1273) (-772)) 16)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 84 T CONST)) (-2936 (((-112) $ $) 87)) (-3060 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) 89) (($ $ $) NIL)) (-3033 (($ $ $) 63)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1280 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) (-1051) (-851) (-794) (-951 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1280)) +((-3060 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1280 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1273)) (-5 *1 (-1280 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3)))) +(-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) +((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 96)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1724 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 78)) (-1999 ((|#4| |#4| $) 83)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-2777 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 84)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 32 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2140 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-3731 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) NIL)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-3 |#4| "failed") $) NIL)) (-4051 (((-645 |#4|) $) 54)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) 82)) (-3392 (((-112) $ $) 93)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 77)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) NIL)) (-2410 (($ $ |#4|) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 75)) (-3498 (($) 46)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) NIL)) (-2397 (($ $ |#3|) NIL)) (-2120 (($ $ |#3|) NIL)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-2184 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-2041 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2012 (((-112) |#3| $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418))))) +(((-1281 |#1| |#2| |#3| |#4|) (-13 (-1211 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2140 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2140 ((-3 $ "failed") (-645 |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|))) (-15 -2041 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2041 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1281)) +((-2140 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))) (-2140 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1281 *3 *4 *5 *6)))) (-2184 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))) (-2184 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1281 *3 *4 *5 *6)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1281 *6 *7 *8 *9))) (-5 *1 (-1281 *6 *7 *8 *9)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1281 *4 *5 *6 *7))) (-5 *1 (-1281 *4 *5 *6 *7))))) +(-13 (-1211 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2140 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2140 ((-3 $ "failed") (-645 |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|))) (-15 -2041 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2041 ((-645 $) (-645 |#4|))))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1282 |#1|) (-140) (-1051)) (T -1282)) +NIL +(-13 (-1051) (-111 |t#1| |t#1|) (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) +((-2403 (((-112) $ $) 67)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 52)) (-2721 (($ $ (-772)) 46)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL)) (-3014 (($ $) 39)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3851 (($ $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) 38)) (-3592 (($ $) 40)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-2069 (((-820 |#1|) $) NIL)) (-3066 (((-820 |#1|) $) 41)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-1901 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-820 |#1|) $) 35)) (-2989 ((|#2| $) 37)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3077 (((-772) $) 43)) (-1935 (((-112) $) 47)) (-3286 ((|#2| $) NIL)) (-4132 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-820 |#1|)) NIL)) (-3694 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 13 T CONST)) (-1728 (($) 19 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2936 (((-112) $ $) 44)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1283 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1289 |#1| |#2|)) (-851) (-1051)) (T -1283)) +NIL +(-13 (-384 |#2| (-820 |#1|)) (-1289 |#1| |#2|)) +((-3063 ((|#3| |#3| (-772)) 30)) (-3946 ((|#3| |#3| (-772)) 36)) (-3189 ((|#3| |#3| |#3| (-772)) 37))) +(((-1284 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#3| |#3| (-772))) (-15 -3063 (|#3| |#3| (-772))) (-15 -3189 (|#3| |#3| |#3| (-772)))) (-13 (-1051) (-718 (-410 (-567)))) (-851) (-1289 |#2| |#1|)) (T -1284)) +((-3189 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4))))) +(-10 -7 (-15 -3946 (|#3| |#3| (-772))) (-15 -3063 (|#3| |#3| (-772))) (-15 -3189 (|#3| |#3| |#3| (-772)))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 47)) (-3472 (((-3 $ "failed") $ $) 20)) (-1907 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2585 (($) 18 T CONST)) (-2885 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3753 (((-3 (-820 |#1|) "failed") $) 71)) (-2038 (((-820 |#1|) $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3650 (((-112) $) 52)) (-3851 (($ $) 51)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 57)) (-2290 (($ (-820 |#1|) |#2|) 58)) (-3592 (($ $) 56)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2069 (((-820 |#1|) $) 68)) (-3829 (($ (-1 |#2| |#2|) $) 48)) (-2173 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1935 (((-112) $) 54)) (-3286 ((|#2| $) 53)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3694 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1285 |#1| |#2|) (-140) (-851) (-1051)) (T -1285)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1285 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-2173 (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2885 (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2885 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2290 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1285 *4 *3)) (-4 *3 (-1051)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-4132 (*1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3851 (*1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1907 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) (-4 *3 (-172)))) (-1907 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-4 *4 (-172)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-645 *3))))) +(-13 (-1051) (-1282 |t#2|) (-1040 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2069 ((-820 |t#1|) $)) (-15 -3713 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3694 (|t#2| $ (-820 |t#1|))) (-15 -3694 (|t#2| $ $)) (-15 -2173 ($ $ |t#1|)) (-15 -2173 ($ $ (-820 |t#1|))) (-15 -2173 ($ $ $)) (-15 -2885 ($ $ |t#1|)) (-15 -2885 ($ $ (-820 |t#1|))) (-15 -2885 ($ $ $)) (-15 -2290 ($ (-820 |t#1|) |t#2|)) (-15 -2843 ((-112) $)) (-15 -3592 ($ $)) (-15 -4132 ($ |t#1|)) (-15 -1935 ((-112) $)) (-15 -3286 (|t#2| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1907 ($ $ $)) (-15 -1907 ($ $ (-772)))) |%noBranch|) (-15 -3829 ($ (-1 |t#2| |t#2|) $)) (-15 -3267 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4411)) (-6 -4411) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1282 |#2|) . T)) +((-3419 (((-112) $) 15)) (-2012 (((-112) $) 14)) (-3253 (($ $) 19) (($ $ (-772)) 21))) +(((-1286 |#1| |#2|) (-10 -8 (-15 -3253 (|#1| |#1| (-772))) (-15 -3253 (|#1| |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|))) (-1287 |#2|) (-365)) (T -1286)) +NIL +(-10 -8 (-15 -3253 (|#1| |#1| (-772))) (-15 -3253 (|#1| |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3419 (((-112) $) 104)) (-3862 (((-772)) 100)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 111)) (-2038 ((|#1| $) 112)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4225 (($ $ (-772)) 97 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 94 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2051 (((-112) $) 103)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-1953 (((-834 (-923))) 101)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 95 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) 109)) (-3077 (((-834 (-923)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1903 (((-3 $ "failed") $) 93 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2012 (((-112) $) 105)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-3253 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ $ |#1|) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1287 |#1|) (-140) (-365)) (T -1287)) +((-2012 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-1953 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-3862 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-3253 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) +(-13 (-365) (-1040 |t#1|) (-1275 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -2012 ((-112) $)) (-15 -3419 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3077 ((-834 (-923)) $)) (-15 -1953 ((-834 (-923)))) (-15 -3862 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -3253 ($ $)) (-15 -3253 ($ $ (-772)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T) ((-1275 |#1|) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 99)) (-2721 (($ $ (-772)) 103)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-895 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL) (((-895 |#1|) $) NIL)) (-3014 (($ $) 102)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) 91)) (-3851 (($ $) 94)) (-4207 (($ $ $ (-772)) 104)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) NIL) (($ (-895 |#1|) |#2|) 29)) (-3592 (($ $) 121)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2069 (((-820 |#1|) $) NIL)) (-3066 (((-820 |#1|) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3063 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-1901 (((-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-895 |#1|) $) 84)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3946 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-3077 (((-772) $) 100)) (-1935 (((-112) $) 85)) (-3286 ((|#2| $) 89)) (-4132 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-895 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1283 |#1| |#2|) $) 77) (((-1292 |#1| |#2|) $) 82)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-895 |#1|)) NIL)) (-3694 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 28 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1428 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-2936 (((-112) $ $) 78)) (-3045 (($ $) 113) (($ $ $) 112)) (-3033 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-895 |#1|)) NIL))) +(((-1288 |#1| |#2|) (-13 (-1289 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4132 ($ (-665 |#1| |#2|))) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1292 |#1| |#2|) $)) (-15 -1428 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -4207 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3946 ($ $ (-772))) (-15 -3063 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1288)) +((-4132 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1288 *3 *4)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-1428 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4207 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) +(-13 (-1289 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4132 ($ (-665 |#1| |#2|))) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1292 |#1| |#2|) $)) (-15 -1428 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -4207 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3946 ($ $ (-772))) (-15 -3063 ($ $ (-772)))) |%noBranch|))) +((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 47)) (-2721 (($ $ (-772)) 80)) (-3472 (((-3 $ "failed") $ $) 20)) (-1907 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2585 (($) 18 T CONST)) (-2885 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3753 (((-3 (-820 |#1|) "failed") $) 71)) (-2038 (((-820 |#1|) $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3650 (((-112) $) 52)) (-3851 (($ $) 51)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 57)) (-2290 (($ (-820 |#1|) |#2|) 58)) (-3592 (($ $) 56)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2069 (((-820 |#1|) $) 68)) (-3066 (((-820 |#1|) $) 82)) (-3829 (($ (-1 |#2| |#2|) $) 48)) (-2173 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 (((-772) $) 81)) (-1935 (((-112) $) 54)) (-3286 ((|#2| $) 53)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3694 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1289 |#1| |#2|) (-140) (-851) (-1051)) (T -1289)) +((-3066 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) +(-13 (-1285 |t#1| |t#2|) (-10 -8 (-15 -3066 ((-820 |t#1|) $)) (-15 -3077 ((-772) $)) (-15 -2721 ($ $ (-772))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1282 |#2|) . T) ((-1285 |#1| |#2|) . T)) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 (-1178)) $) NIL)) (-3974 (($ (-1283 (-1178) |#1|)) NIL)) (-2721 (($ $ (-772)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ (-1178)) NIL) (($ $ (-820 (-1178))) NIL) (($ $ $) NIL)) (-3753 (((-3 (-820 (-1178)) "failed") $) NIL)) (-2038 (((-820 (-1178)) $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3851 (($ $) NIL)) (-1433 (((-112) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 (-1178)) |#1|) NIL)) (-3592 (($ $) NIL)) (-3713 (((-2 (|:| |k| (-820 (-1178))) (|:| |c| |#1|)) $) NIL)) (-2069 (((-820 (-1178)) $) NIL)) (-3066 (((-820 (-1178)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2173 (($ $ (-1178)) NIL) (($ $ (-820 (-1178))) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3317 (((-1283 (-1178) |#1|) $) NIL)) (-3077 (((-772) $) NIL)) (-1935 (((-112) $) NIL)) (-3286 ((|#1| $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1178))) NIL) (($ (-1178)) NIL)) (-3694 ((|#1| $ (-820 (-1178))) NIL) ((|#1| $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1416 (((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $) NIL)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1178) $) NIL))) +(((-1290 |#1|) (-13 (-1289 (-1178) |#1|) (-10 -8 (-15 -3317 ((-1283 (-1178) |#1|) $)) (-15 -3974 ($ (-1283 (-1178) |#1|))) (-15 -1416 ((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $)))) (-1051)) (T -1290)) +((-3317 (*1 *2 *1) (-12 (-5 *2 (-1283 (-1178) *3)) (-5 *1 (-1290 *3)) (-4 *3 (-1051)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1283 (-1178) *3)) (-4 *3 (-1051)) (-5 *1 (-1290 *3)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1178)) (|:| |c| (-1290 *3))))) (-5 *1 (-1290 *3)) (-4 *3 (-1051))))) +(-13 (-1289 (-1178) |#1|) (-10 -8 (-15 -3317 ((-1283 (-1178) |#1|) $)) (-15 -3974 ($ (-1283 (-1178) |#1|))) (-15 -1416 ((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $)))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL)) (-2038 ((|#2| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 42)) (-3650 (((-112) $) 35)) (-3851 (($ $) 37)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ |#2| |#1|) NIL)) (-2069 ((|#2| $) 24)) (-3066 ((|#2| $) 22)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2976 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1935 (((-112) $) 32)) (-3286 ((|#1| $) 33)) (-4132 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ |#2|) NIL)) (-3694 ((|#1| $ |#2|) 28)) (-4221 (((-772)) 14 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 29 T CONST)) (-1728 (($) 11 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2936 (((-112) $ $) 30)) (-3060 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 50)) (** (($ $ (-923)) NIL) (($ $ (-772)) 52)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2414 (((-772) $) 16))) +(((-1291 |#1| |#2|) (-13 (-1051) (-1282 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2414 ((-772) $)) (-15 -3066 (|#2| $)) (-15 -2069 (|#2| $)) (-15 -3014 ($ $)) (-15 -3694 (|#1| $ |#2|)) (-15 -1935 ((-112) $)) (-15 -3286 (|#1| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3060 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051) (-847)) (T -1291)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-847)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3066 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))) (-2069 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))) (-3694 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3286 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3851 (*1 *1 *1) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3060 (*1 *1 *1 *2) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-847))))) +(-13 (-1051) (-1282 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2414 ((-772) $)) (-15 -3066 (|#2| $)) (-15 -2069 (|#2| $)) (-15 -3014 ($ $)) (-15 -3694 (|#1| $ |#2|)) (-15 -1935 ((-112) $)) (-15 -3286 (|#1| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3060 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) +((-2403 (((-112) $ $) 27)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 132)) (-3974 (($ (-1283 |#1| |#2|)) 50)) (-2721 (($ $ (-772)) 38)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL)) (-2109 (((-3 $ "failed") $) 122)) (-3650 (((-112) $) 117)) (-3851 (($ $) 118)) (-1433 (((-112) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) 20)) (-3592 (($ $) NIL)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2069 (((-820 |#1|) $) 123)) (-3066 (((-820 |#1|) $) 126)) (-3829 (($ (-1 |#2| |#2|) $) 131)) (-2173 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3317 (((-1283 |#1| |#2|) $) 94)) (-3077 (((-772) $) 129)) (-1935 (((-112) $) 81)) (-3286 ((|#2| $) 32)) (-4132 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-3694 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-4221 (((-772)) 120 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 15 T CONST)) (-1416 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1728 (($) 33 T CONST)) (-2936 (((-112) $ $) 14)) (-3045 (($ $) 98) (($ $ $) 101)) (-3033 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1292 |#1| |#2|) (-13 (-1289 |#1| |#2|) (-10 -8 (-15 -3317 ((-1283 |#1| |#2|) $)) (-15 -3974 ($ (-1283 |#1| |#2|))) (-15 -1416 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1051)) (T -1292)) +((-3317 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *1 (-1292 *3 *4)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1292 *3 *4))))) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) +(-13 (-1289 |#1| |#2|) (-10 -8 (-15 -3317 ((-1283 |#1| |#2|) $)) (-15 -3974 ($ (-1283 |#1| |#2|))) (-15 -1416 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1898 (((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567)) 20) (((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|))) 13))) +(((-1293 |#1|) (-10 -7 (-15 -1898 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -1898 ((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567)))) (-1218)) (T -1293)) +((-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1158 *5)) (-645 (-1158 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1158 *5))) (-5 *1 (-1293 *5)) (-4 *5 (-1218)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1293 *4)) (-4 *4 (-1218))))) +(-10 -7 (-15 -1898 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -1898 ((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567)))) +((-3608 (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 174) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 173) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|)) 156)) (-2690 (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|))) 85) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112)) 84) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112)) 83)) (-2908 (((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|)) 73)) (-2032 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 140) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 139) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 132)) (-1645 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 145) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 144) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 142)) (-3893 (((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1174 (-1026 (-410 |#1|))) (-1174 |#1|)) 102) (((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-954 (-1026 (-410 |#1|))) (-954 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33))) +(((-1294 |#1| |#2| |#3|) (-10 -7 (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2908 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3893 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3893 ((-1174 (-1026 (-410 |#1|))) (-1174 |#1|))) (-15 -3893 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1024)) (-645 (-1178)) (-645 (-1178))) (T -1294)) +((-3893 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-1174 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-1645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-1645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1294 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))) +(-10 -7 (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2908 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3893 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3893 ((-1174 (-1026 (-410 |#1|))) (-1174 |#1|))) (-15 -3893 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) +((-2152 (((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|) 21)) (-3784 (((-112) (-1268 |#1|)) 12)) (-1607 (((-3 (-1268 (-567)) "failed") (-1268 |#1|)) 16))) +(((-1295 |#1|) (-10 -7 (-15 -3784 ((-112) (-1268 |#1|))) (-15 -1607 ((-3 (-1268 (-567)) "failed") (-1268 |#1|))) (-15 -2152 ((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|))) (-640 (-567))) (T -1295)) +((-2152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1268 (-410 (-567)))) (-5 *1 (-1295 *4)))) (-1607 (*1 *2 *3) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1268 (-567))) (-5 *1 (-1295 *4)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1295 *4))))) +(-10 -7 (-15 -3784 ((-112) (-1268 |#1|))) (-15 -1607 ((-3 (-1268 (-567)) "failed") (-1268 |#1|))) (-15 -2152 ((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|))) +((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 11)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) 8)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 58)) (-1348 (($) 49)) (-1433 (((-112) $) 57)) (-3972 (((-3 $ "failed") $) 40)) (-4249 (((-923) $) 15)) (-1419 (((-1160) $) NIL)) (-2672 (($) 32 T CONST)) (-3768 (($ (-923)) 50)) (-3430 (((-1122) $) NIL)) (-3893 (((-567) $) 13)) (-4132 (((-863) $) 27) (($ (-567)) 24)) (-4221 (((-772)) 9 T CONST)) (-1745 (((-112) $ $) 60)) (-1716 (($) 29 T CONST)) (-1728 (($) 31 T CONST)) (-2936 (((-112) $ $) 38)) (-3045 (($ $) 52) (($ $ $) 47)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) 54)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43))) +(((-1296 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1153)) (-923)) (T -1296)) +NIL +(-13 (-172) (-370) (-615 (-567)) (-1153)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3222199 3222204 3222209 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3222184 3222189 3222194 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3222169 3222174 3222179 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3222154 3222159 3222164 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1296 3221297 3222029 3222106 "ZMOD" 3222111 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1295 3220407 3220571 3220780 "ZLINDEP" 3221129 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1294 3209707 3211475 3213447 "ZDSOLVE" 3218537 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1293 3208953 3209094 3209283 "YSTREAM" 3209553 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1292 3206727 3208254 3208458 "XRPOLY" 3208796 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1291 3203280 3204598 3205173 "XPR" 3206199 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1290 3201001 3202611 3202815 "XPOLY" 3203111 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1289 3198654 3200022 3200077 "XPOLYC" 3200365 NIL XPOLYC (NIL T T) -9 NIL 3200478 NIL) (-1288 3195029 3197171 3197559 "XPBWPOLY" 3198312 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3190724 3193019 3193061 "XF" 3193682 NIL XF (NIL T) -9 NIL 3194082 NIL) (-1286 3190345 3190433 3190602 "XF-" 3190607 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1285 3185541 3186830 3186885 "XFALG" 3189057 NIL XFALG (NIL T T) -9 NIL 3189846 NIL) (-1284 3184674 3184778 3184983 "XEXPPKG" 3185433 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1283 3182783 3184524 3184620 "XDPOLY" 3184625 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3181590 3182190 3182233 "XALG" 3182238 NIL XALG (NIL T) -9 NIL 3182349 NIL) (-1281 3175032 3179567 3180061 "WUTSET" 3181182 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1280 3173288 3174084 3174407 "WP" 3174843 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1279 3172890 3173110 3173180 "WHILEAST" 3173240 T WHILEAST (NIL) -8 NIL NIL NIL) (-1278 3172362 3172607 3172701 "WHEREAST" 3172818 T WHEREAST (NIL) -8 NIL NIL NIL) (-1277 3171248 3171446 3171741 "WFFINTBS" 3172159 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1276 3169152 3169579 3170041 "WEIER" 3170820 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1275 3168198 3168648 3168690 "VSPACE" 3168826 NIL VSPACE (NIL T) -9 NIL 3168900 NIL) (-1274 3168036 3168063 3168154 "VSPACE-" 3168159 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1273 3167845 3167887 3167955 "VOID" 3167990 T VOID (NIL) -8 NIL NIL NIL) (-1272 3165981 3166340 3166746 "VIEW" 3167461 T VIEW (NIL) -7 NIL NIL NIL) (-1271 3162405 3163044 3163781 "VIEWDEF" 3165266 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1270 3151709 3153953 3156126 "VIEW3D" 3160254 T VIEW3D (NIL) -8 NIL NIL NIL) (-1269 3143960 3145620 3147199 "VIEW2D" 3150152 T VIEW2D (NIL) -8 NIL NIL NIL) (-1268 3139312 3143730 3143822 "VECTOR" 3143903 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1267 3137889 3138148 3138466 "VECTOR2" 3139042 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1266 3131363 3135670 3135713 "VECTCAT" 3136708 NIL VECTCAT (NIL T) -9 NIL 3137295 NIL) (-1265 3130377 3130631 3131021 "VECTCAT-" 3131026 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1264 3129831 3130028 3130148 "VARIABLE" 3130292 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1263 3129764 3129769 3129799 "UTYPE" 3129804 T UTYPE (NIL) -9 NIL NIL NIL) (-1262 3128594 3128748 3129010 "UTSODETL" 3129590 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1261 3126034 3126494 3127018 "UTSODE" 3128135 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1260 3117871 3123660 3124149 "UTS" 3125603 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1259 3108745 3114112 3114155 "UTSCAT" 3115267 NIL UTSCAT (NIL T) -9 NIL 3116025 NIL) (-1258 3106092 3106815 3107804 "UTSCAT-" 3107809 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1257 3105719 3105762 3105895 "UTS2" 3106043 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1256 3099945 3102557 3102600 "URAGG" 3104670 NIL URAGG (NIL T) -9 NIL 3105393 NIL) (-1255 3096884 3097747 3098870 "URAGG-" 3098875 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1254 3092593 3095519 3095984 "UPXSSING" 3096548 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1253 3084659 3091840 3092113 "UPXS" 3092378 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1252 3077732 3084563 3084635 "UPXSCONS" 3084640 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1251 3067477 3074270 3074332 "UPXSCCA" 3074906 NIL UPXSCCA (NIL T T) -9 NIL 3075139 NIL) (-1250 3067115 3067200 3067374 "UPXSCCA-" 3067379 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1249 3056712 3063278 3063321 "UPXSCAT" 3063969 NIL UPXSCAT (NIL T) -9 NIL 3064578 NIL) (-1248 3056142 3056221 3056400 "UPXS2" 3056627 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1247 3054796 3055049 3055400 "UPSQFREE" 3055885 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1246 3048217 3051274 3051329 "UPSCAT" 3052490 NIL UPSCAT (NIL T T) -9 NIL 3053264 NIL) (-1245 3047421 3047628 3047955 "UPSCAT-" 3047960 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1244 3033076 3040844 3040887 "UPOLYC" 3042988 NIL UPOLYC (NIL T) -9 NIL 3044209 NIL) (-1243 3024404 3026830 3029977 "UPOLYC-" 3029982 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1242 3024031 3024074 3024207 "UPOLYC2" 3024355 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1241 3015842 3023714 3023843 "UP" 3023950 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1240 3015181 3015288 3015452 "UPMP" 3015731 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1239 3014734 3014815 3014954 "UPDIVP" 3015094 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1238 3013302 3013551 3013867 "UPDECOMP" 3014483 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1237 3012537 3012649 3012834 "UPCDEN" 3013186 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1236 3012056 3012125 3012274 "UP2" 3012462 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1235 3010523 3011260 3011537 "UNISEG" 3011814 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1234 3009738 3009865 3010070 "UNISEG2" 3010366 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1233 3008798 3008978 3009204 "UNIFACT" 3009554 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1232 2992730 3007975 3008226 "ULS" 3008605 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1231 2980728 2992634 2992706 "ULSCONS" 2992711 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1230 2962747 2974732 2974794 "ULSCCAT" 2975432 NIL ULSCCAT (NIL T T) -9 NIL 2975720 NIL) (-1229 2961797 2962042 2962430 "ULSCCAT-" 2962435 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1228 2951171 2957651 2957694 "ULSCAT" 2958557 NIL ULSCAT (NIL T) -9 NIL 2959288 NIL) (-1227 2950601 2950680 2950859 "ULS2" 2951086 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1226 2949728 2950238 2950345 "UINT8" 2950456 T UINT8 (NIL) -8 NIL NIL 2950541) (-1225 2948854 2949364 2949471 "UINT64" 2949582 T UINT64 (NIL) -8 NIL NIL 2949667) (-1224 2947980 2948490 2948597 "UINT32" 2948708 T UINT32 (NIL) -8 NIL NIL 2948793) (-1223 2947106 2947616 2947723 "UINT16" 2947834 T UINT16 (NIL) -8 NIL NIL 2947919) (-1222 2945409 2946366 2946396 "UFD" 2946608 T UFD (NIL) -9 NIL 2946722 NIL) (-1221 2945203 2945249 2945344 "UFD-" 2945349 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1220 2944285 2944468 2944684 "UDVO" 2945009 T UDVO (NIL) -7 NIL NIL NIL) (-1219 2942101 2942510 2942981 "UDPO" 2943849 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1218 2942034 2942039 2942069 "TYPE" 2942074 T TYPE (NIL) -9 NIL NIL NIL) (-1217 2941794 2941989 2942020 "TYPEAST" 2942025 T TYPEAST (NIL) -8 NIL NIL NIL) (-1216 2940765 2940967 2941207 "TWOFACT" 2941588 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1215 2939788 2940174 2940409 "TUPLE" 2940565 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1214 2937479 2937998 2938537 "TUBETOOL" 2939271 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1213 2936328 2936533 2936774 "TUBE" 2937272 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1212 2931057 2935300 2935583 "TS" 2936080 NIL TS (NIL T) -8 NIL NIL NIL) (-1211 2919697 2923816 2923913 "TSETCAT" 2929182 NIL TSETCAT (NIL T T T T) -9 NIL 2930713 NIL) (-1210 2914429 2916029 2917920 "TSETCAT-" 2917925 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1209 2909068 2909915 2910844 "TRMANIP" 2913565 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1208 2908509 2908572 2908735 "TRIMAT" 2909000 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1207 2906375 2906612 2906969 "TRIGMNIP" 2908258 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1206 2905895 2906008 2906038 "TRIGCAT" 2906251 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1205 2905564 2905643 2905784 "TRIGCAT-" 2905789 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1204 2902409 2904422 2904703 "TREE" 2905318 NIL TREE (NIL T) -8 NIL NIL NIL) (-1203 2901683 2902211 2902241 "TRANFUN" 2902276 T TRANFUN (NIL) -9 NIL 2902342 NIL) (-1202 2900962 2901153 2901433 "TRANFUN-" 2901438 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1201 2900766 2900798 2900859 "TOPSP" 2900923 T TOPSP (NIL) -7 NIL NIL NIL) (-1200 2900114 2900229 2900383 "TOOLSIGN" 2900647 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1199 2898748 2899291 2899530 "TEXTFILE" 2899897 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1198 2896660 2897201 2897630 "TEX" 2898341 T TEX (NIL) -8 NIL NIL NIL) (-1197 2896441 2896472 2896544 "TEX1" 2896623 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1196 2896089 2896152 2896242 "TEMUTL" 2896373 T TEMUTL (NIL) -7 NIL NIL NIL) (-1195 2894243 2894523 2894848 "TBCMPPK" 2895812 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1194 2886020 2892403 2892459 "TBAGG" 2892859 NIL TBAGG (NIL T T) -9 NIL 2893070 NIL) (-1193 2881090 2882578 2884332 "TBAGG-" 2884337 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1192 2880474 2880581 2880726 "TANEXP" 2880979 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1191 2873864 2880331 2880424 "TABLE" 2880429 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1190 2873276 2873375 2873513 "TABLEAU" 2873761 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1189 2867884 2869104 2870352 "TABLBUMP" 2872062 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1188 2867106 2867253 2867434 "SYSTEM" 2867725 T SYSTEM (NIL) -8 NIL NIL NIL) (-1187 2863565 2864264 2865047 "SYSSOLP" 2866357 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1186 2863363 2863520 2863551 "SYSPTR" 2863556 T SYSPTR (NIL) -8 NIL NIL NIL) (-1185 2862407 2862912 2863031 "SYSNNI" 2863217 NIL SYSNNI (NIL NIL) -8 NIL NIL 2863302) (-1184 2861714 2862173 2862252 "SYSINT" 2862312 NIL SYSINT (NIL NIL) -8 NIL NIL 2862357) (-1183 2858046 2858992 2859702 "SYNTAX" 2861026 T SYNTAX (NIL) -8 NIL NIL NIL) (-1182 2855204 2855806 2856438 "SYMTAB" 2857436 T SYMTAB (NIL) -8 NIL NIL NIL) (-1181 2850453 2851355 2852338 "SYMS" 2854243 T SYMS (NIL) -8 NIL NIL NIL) (-1180 2847688 2849911 2850141 "SYMPOLY" 2850258 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1179 2847205 2847280 2847403 "SYMFUNC" 2847600 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1178 2843224 2844517 2845330 "SYMBOL" 2846414 T SYMBOL (NIL) -8 NIL NIL NIL) (-1177 2836763 2838452 2840172 "SWITCH" 2841526 T SWITCH (NIL) -8 NIL NIL NIL) (-1176 2829997 2835584 2835887 "SUTS" 2836518 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2822063 2829244 2829517 "SUPXS" 2829782 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1174 2813822 2821681 2821807 "SUP" 2821972 NIL SUP (NIL T) -8 NIL NIL NIL) (-1173 2812981 2813108 2813325 "SUPFRACF" 2813690 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1172 2812602 2812661 2812774 "SUP2" 2812916 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1171 2811050 2811324 2811680 "SUMRF" 2812301 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1170 2810385 2810451 2810643 "SUMFS" 2810971 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1169 2794352 2809562 2809813 "SULS" 2810192 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1168 2793954 2794174 2794244 "SUCHTAST" 2794304 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1167 2793249 2793479 2793619 "SUCH" 2793862 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1166 2787115 2788155 2789114 "SUBSPACE" 2792337 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1165 2786545 2786635 2786799 "SUBRESP" 2787003 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1164 2779910 2781210 2782521 "STTF" 2785281 NIL STTF (NIL T) -7 NIL NIL NIL) (-1163 2774083 2775203 2776350 "STTFNC" 2778810 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1162 2765393 2767265 2769059 "STTAYLOR" 2772324 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1161 2758523 2765257 2765340 "STRTBL" 2765345 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1160 2753887 2758478 2758509 "STRING" 2758514 T STRING (NIL) -8 NIL NIL NIL) (-1159 2748748 2753260 2753290 "STRICAT" 2753349 T STRICAT (NIL) -9 NIL 2753411 NIL) (-1158 2741501 2746367 2746978 "STREAM" 2748172 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1157 2741011 2741088 2741232 "STREAM3" 2741418 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1156 2739993 2740176 2740411 "STREAM2" 2740824 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1155 2739681 2739733 2739826 "STREAM1" 2739935 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1154 2738697 2738878 2739109 "STINPROD" 2739497 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1153 2738249 2738459 2738489 "STEP" 2738569 T STEP (NIL) -9 NIL 2738647 NIL) (-1152 2731681 2738148 2738225 "STBL" 2738230 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1151 2726807 2730902 2730945 "STAGG" 2731098 NIL STAGG (NIL T) -9 NIL 2731187 NIL) (-1150 2724509 2725111 2725983 "STAGG-" 2725988 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1149 2722656 2724279 2724371 "STACK" 2724452 NIL STACK (NIL T) -8 NIL NIL NIL) (-1148 2715351 2720797 2721253 "SREGSET" 2722286 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1147 2707776 2709145 2710658 "SRDCMPK" 2713957 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1146 2700693 2705216 2705246 "SRAGG" 2706549 T SRAGG (NIL) -9 NIL 2707157 NIL) (-1145 2699710 2699965 2700344 "SRAGG-" 2700349 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1144 2694170 2698657 2699078 "SQMATRIX" 2699336 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1143 2687855 2690888 2691615 "SPLTREE" 2693515 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1142 2683818 2684511 2685157 "SPLNODE" 2687281 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1141 2682865 2683098 2683128 "SPFCAT" 2683572 T SPFCAT (NIL) -9 NIL NIL NIL) (-1140 2681602 2681812 2682076 "SPECOUT" 2682623 T SPECOUT (NIL) -7 NIL NIL NIL) (-1139 2673228 2674998 2675028 "SPADXPT" 2679420 T SPADXPT (NIL) -9 NIL 2681454 NIL) (-1138 2672989 2673029 2673098 "SPADPRSR" 2673181 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1137 2671144 2672944 2672975 "SPADAST" 2672980 T SPADAST (NIL) -8 NIL NIL NIL) (-1136 2663089 2664862 2664905 "SPACEC" 2669278 NIL SPACEC (NIL T) -9 NIL 2671094 NIL) (-1135 2661219 2663021 2663070 "SPACE3" 2663075 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1134 2659971 2660142 2660433 "SORTPAK" 2661024 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1133 2658063 2658366 2658778 "SOLVETRA" 2659635 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1132 2657113 2657335 2657596 "SOLVESER" 2657836 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1131 2652417 2653305 2654300 "SOLVERAD" 2656165 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1130 2648232 2648841 2649570 "SOLVEFOR" 2651784 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1129 2642502 2647581 2647678 "SNTSCAT" 2647683 NIL SNTSCAT (NIL T T T T) -9 NIL 2647753 NIL) (-1128 2636608 2640825 2641216 "SMTS" 2642192 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1127 2631292 2636496 2636573 "SMP" 2636578 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1126 2629451 2629752 2630150 "SMITH" 2630989 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1125 2622164 2626360 2626463 "SMATCAT" 2627814 NIL SMATCAT (NIL NIL T T T) -9 NIL 2628364 NIL) (-1124 2619104 2619927 2621105 "SMATCAT-" 2621110 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1123 2616770 2618340 2618383 "SKAGG" 2618644 NIL SKAGG (NIL T) -9 NIL 2618779 NIL) (-1122 2613081 2616186 2616381 "SINT" 2616568 T SINT (NIL) -8 NIL NIL 2616741) (-1121 2612853 2612891 2612957 "SIMPAN" 2613037 T SIMPAN (NIL) -7 NIL NIL NIL) (-1120 2612132 2612388 2612528 "SIG" 2612735 T SIG (NIL) -8 NIL NIL NIL) (-1119 2610970 2611191 2611466 "SIGNRF" 2611891 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1118 2609803 2609954 2610238 "SIGNEF" 2610799 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1117 2609109 2609386 2609510 "SIGAST" 2609701 T SIGAST (NIL) -8 NIL NIL NIL) (-1116 2606798 2607253 2607759 "SHP" 2608650 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1115 2600650 2606699 2606775 "SHDP" 2606780 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1114 2600223 2600415 2600445 "SGROUP" 2600538 T SGROUP (NIL) -9 NIL 2600600 NIL) (-1113 2600081 2600107 2600180 "SGROUP-" 2600185 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1112 2596916 2597614 2598337 "SGCF" 2599380 T SGCF (NIL) -7 NIL NIL NIL) (-1111 2591284 2596363 2596460 "SFRTCAT" 2596465 NIL SFRTCAT (NIL T T T T) -9 NIL 2596504 NIL) (-1110 2584705 2585723 2586859 "SFRGCD" 2590267 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1109 2577831 2578904 2580090 "SFQCMPK" 2583638 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1108 2577451 2577540 2577651 "SFORT" 2577772 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1107 2576569 2577291 2577412 "SEXOF" 2577417 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1106 2575676 2576450 2576518 "SEX" 2576523 T SEX (NIL) -8 NIL NIL NIL) (-1105 2571189 2571904 2571999 "SEXCAT" 2574936 NIL SEXCAT (NIL T T T T T) -9 NIL 2575514 NIL) (-1104 2568342 2571123 2571171 "SET" 2571176 NIL SET (NIL T) -8 NIL NIL NIL) (-1103 2566566 2567055 2567360 "SETMN" 2568083 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1102 2566062 2566214 2566244 "SETCAT" 2566420 T SETCAT (NIL) -9 NIL 2566530 NIL) (-1101 2565754 2565832 2565962 "SETCAT-" 2565967 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1100 2562115 2564215 2564258 "SETAGG" 2565128 NIL SETAGG (NIL T) -9 NIL 2565468 NIL) (-1099 2561573 2561689 2561926 "SETAGG-" 2561931 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1098 2561016 2561269 2561370 "SEQAST" 2561494 T SEQAST (NIL) -8 NIL NIL NIL) (-1097 2560215 2560509 2560570 "SEGXCAT" 2560856 NIL SEGXCAT (NIL T T) -9 NIL 2560976 NIL) (-1096 2559221 2559881 2560063 "SEG" 2560068 NIL SEG (NIL T) -8 NIL NIL NIL) (-1095 2558200 2558414 2558457 "SEGCAT" 2558979 NIL SEGCAT (NIL T) -9 NIL 2559200 NIL) (-1094 2557132 2557563 2557771 "SEGBIND" 2558027 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1093 2556753 2556812 2556925 "SEGBIND2" 2557067 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1092 2556326 2556554 2556631 "SEGAST" 2556698 T SEGAST (NIL) -8 NIL NIL NIL) (-1091 2555545 2555671 2555875 "SEG2" 2556170 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1090 2554955 2555480 2555527 "SDVAR" 2555532 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1089 2547482 2554725 2554855 "SDPOL" 2554860 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1088 2546075 2546341 2546660 "SCPKG" 2547197 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1087 2545239 2545411 2545603 "SCOPE" 2545905 T SCOPE (NIL) -8 NIL NIL NIL) (-1086 2544459 2544593 2544772 "SCACHE" 2545094 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1085 2544105 2544291 2544321 "SASTCAT" 2544326 T SASTCAT (NIL) -9 NIL 2544339 NIL) (-1084 2543592 2543940 2544016 "SAOS" 2544051 T SAOS (NIL) -8 NIL NIL NIL) (-1083 2543157 2543192 2543365 "SAERFFC" 2543551 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1082 2537096 2543054 2543134 "SAE" 2543139 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2536689 2536724 2536883 "SAEFACT" 2537055 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1080 2535010 2535324 2535725 "RURPK" 2536355 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1079 2533647 2533953 2534258 "RULESET" 2534844 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1078 2530870 2531400 2531858 "RULE" 2533328 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2530482 2530664 2530747 "RULECOLD" 2530822 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1076 2530272 2530300 2530371 "RTVALUE" 2530433 T RTVALUE (NIL) -8 NIL NIL NIL) (-1075 2529743 2529989 2530083 "RSTRCAST" 2530200 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1074 2524591 2525386 2526306 "RSETGCD" 2528942 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1073 2513821 2518900 2518997 "RSETCAT" 2523116 NIL RSETCAT (NIL T T T T) -9 NIL 2524213 NIL) (-1072 2511748 2512287 2513111 "RSETCAT-" 2513116 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1071 2504133 2505510 2507030 "RSDCMPK" 2510347 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1070 2502112 2502579 2502653 "RRCC" 2503739 NIL RRCC (NIL T T) -9 NIL 2504083 NIL) (-1069 2501463 2501637 2501916 "RRCC-" 2501921 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1068 2500906 2501159 2501260 "RPTAST" 2501384 T RPTAST (NIL) -8 NIL NIL NIL) (-1067 2474757 2484114 2484181 "RPOLCAT" 2494845 NIL RPOLCAT (NIL T T T) -9 NIL 2498004 NIL) (-1066 2466255 2468595 2471717 "RPOLCAT-" 2471722 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1065 2457186 2464466 2464948 "ROUTINE" 2465795 T ROUTINE (NIL) -8 NIL NIL NIL) (-1064 2453984 2456812 2456952 "ROMAN" 2457068 T ROMAN (NIL) -8 NIL NIL NIL) (-1063 2452228 2452844 2453104 "ROIRC" 2453789 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1062 2448460 2450744 2450774 "RNS" 2451078 T RNS (NIL) -9 NIL 2451352 NIL) (-1061 2446969 2447352 2447886 "RNS-" 2447961 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1060 2446372 2446780 2446810 "RNG" 2446815 T RNG (NIL) -9 NIL 2446836 NIL) (-1059 2445375 2445737 2445939 "RNGBIND" 2446223 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1058 2444774 2445162 2445205 "RMODULE" 2445210 NIL RMODULE (NIL T) -9 NIL 2445237 NIL) (-1057 2443610 2443704 2444040 "RMCAT2" 2444675 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1056 2440460 2442956 2443253 "RMATRIX" 2443372 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1055 2433287 2435547 2435662 "RMATCAT" 2439021 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440003 NIL) (-1054 2432662 2432809 2433116 "RMATCAT-" 2433121 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1053 2432063 2432284 2432327 "RLINSET" 2432521 NIL RLINSET (NIL T) -9 NIL 2432612 NIL) (-1052 2431630 2431705 2431833 "RINTERP" 2431982 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1051 2430688 2431242 2431272 "RING" 2431328 T RING (NIL) -9 NIL 2431420 NIL) (-1050 2430480 2430524 2430621 "RING-" 2430626 NIL RING- (NIL T) -8 NIL NIL NIL) (-1049 2429321 2429558 2429816 "RIDIST" 2430244 T RIDIST (NIL) -7 NIL NIL NIL) (-1048 2420610 2428789 2428995 "RGCHAIN" 2429169 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1047 2419960 2420366 2420407 "RGBCSPC" 2420465 NIL RGBCSPC (NIL T) -9 NIL 2420517 NIL) (-1046 2419118 2419499 2419540 "RGBCMDL" 2419772 NIL RGBCMDL (NIL T) -9 NIL 2419886 NIL) (-1045 2416112 2416726 2417396 "RF" 2418482 NIL RF (NIL T) -7 NIL NIL NIL) (-1044 2415758 2415821 2415924 "RFFACTOR" 2416043 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1043 2415483 2415518 2415615 "RFFACT" 2415717 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1042 2413600 2413964 2414346 "RFDIST" 2415123 T RFDIST (NIL) -7 NIL NIL NIL) (-1041 2413053 2413145 2413308 "RETSOL" 2413502 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1040 2412689 2412769 2412812 "RETRACT" 2412945 NIL RETRACT (NIL T) -9 NIL 2413032 NIL) (-1039 2412538 2412563 2412650 "RETRACT-" 2412655 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1038 2412140 2412360 2412430 "RETAST" 2412490 T RETAST (NIL) -8 NIL NIL NIL) (-1037 2404878 2411793 2411920 "RESULT" 2412035 T RESULT (NIL) -8 NIL NIL NIL) (-1036 2403469 2404147 2404346 "RESRING" 2404781 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1035 2403105 2403154 2403252 "RESLATC" 2403406 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1034 2402810 2402845 2402952 "REPSQ" 2403064 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1033 2400232 2400812 2401414 "REP" 2402230 T REP (NIL) -7 NIL NIL NIL) (-1032 2399929 2399964 2400075 "REPDB" 2400191 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1031 2393829 2395218 2396441 "REP2" 2398741 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1030 2390206 2390887 2391695 "REP1" 2393056 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1029 2382902 2388347 2388803 "REGSET" 2389836 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1028 2381667 2382050 2382300 "REF" 2382687 NIL REF (NIL T) -8 NIL NIL NIL) (-1027 2381044 2381147 2381314 "REDORDER" 2381551 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1026 2377012 2380257 2380484 "RECLOS" 2380872 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1025 2376064 2376245 2376460 "REALSOLV" 2376819 T REALSOLV (NIL) -7 NIL NIL NIL) (-1024 2375910 2375951 2375981 "REAL" 2375986 T REAL (NIL) -9 NIL 2376021 NIL) (-1023 2372393 2373195 2374079 "REAL0Q" 2375075 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1022 2367994 2368982 2370043 "REAL0" 2371374 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1021 2367465 2367711 2367805 "RDUCEAST" 2367922 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1020 2366870 2366942 2367149 "RDIV" 2367387 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1019 2365938 2366112 2366325 "RDIST" 2366692 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1018 2364535 2364822 2365194 "RDETRS" 2365646 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1017 2362347 2362801 2363339 "RDETR" 2364077 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1016 2360972 2361250 2361647 "RDEEFS" 2362063 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1015 2359481 2359787 2360212 "RDEEF" 2360660 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1014 2353542 2356462 2356492 "RCFIELD" 2357787 T RCFIELD (NIL) -9 NIL 2358518 NIL) (-1013 2351606 2352110 2352806 "RCFIELD-" 2352881 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1012 2347875 2349707 2349750 "RCAGG" 2350834 NIL RCAGG (NIL T) -9 NIL 2351299 NIL) (-1011 2347503 2347597 2347760 "RCAGG-" 2347765 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1010 2346838 2346950 2347115 "RATRET" 2347387 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1009 2346391 2346458 2346579 "RATFACT" 2346766 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1008 2345699 2345819 2345971 "RANDSRC" 2346261 T RANDSRC (NIL) -7 NIL NIL NIL) (-1007 2345433 2345477 2345550 "RADUTIL" 2345648 T RADUTIL (NIL) -7 NIL NIL NIL) (-1006 2338549 2344266 2344576 "RADIX" 2345157 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1005 2330168 2338391 2338521 "RADFF" 2338526 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1004 2329815 2329890 2329920 "RADCAT" 2330080 T RADCAT (NIL) -9 NIL NIL NIL) (-1003 2329597 2329645 2329745 "RADCAT-" 2329750 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1002 2327697 2329369 2329460 "QUEUE" 2329541 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1001 2324236 2327632 2327679 "QUAT" 2327684 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1000 2323871 2323914 2324043 "QUATCT2" 2324187 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-999 2317333 2320678 2320718 "QUATCAT" 2321498 NIL QUATCAT (NIL T) -9 NIL 2322264 NIL) (-998 2313477 2314514 2315901 "QUATCAT-" 2315995 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-997 2310950 2312561 2312602 "QUAGG" 2312977 NIL QUAGG (NIL T) -9 NIL 2313152 NIL) (-996 2310555 2310775 2310843 "QQUTAST" 2310902 T QQUTAST (NIL) -8 NIL NIL NIL) (-995 2309453 2309953 2310125 "QFORM" 2310427 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-994 2300458 2305697 2305737 "QFCAT" 2306395 NIL QFCAT (NIL T) -9 NIL 2307396 NIL) (-993 2296030 2297231 2298822 "QFCAT-" 2298916 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2295668 2295711 2295838 "QFCAT2" 2295981 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2295128 2295238 2295368 "QEQUAT" 2295558 T QEQUAT (NIL) -8 NIL NIL NIL) (-990 2288274 2289347 2290531 "QCMPACK" 2294061 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-989 2285823 2286271 2286699 "QALGSET" 2287929 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2285068 2285242 2285474 "QALGSET2" 2285643 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-987 2283758 2283982 2284299 "PWFFINTB" 2284841 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-986 2281940 2282108 2282462 "PUSHVAR" 2283572 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-985 2277858 2278912 2278953 "PTRANFN" 2280837 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-984 2276260 2276551 2276873 "PTPACK" 2277569 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-983 2275892 2275949 2276058 "PTFUNC2" 2276197 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-982 2270369 2274764 2274805 "PTCAT" 2275101 NIL PTCAT (NIL T) -9 NIL 2275254 NIL) (-981 2270027 2270062 2270186 "PSQFR" 2270328 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-980 2268622 2268920 2269254 "PSEUDLIN" 2269725 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-979 2255385 2257756 2260080 "PSETPK" 2266382 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-978 2248403 2251143 2251239 "PSETCAT" 2254260 NIL PSETCAT (NIL T T T T) -9 NIL 2255074 NIL) (-977 2246239 2246873 2247694 "PSETCAT-" 2247699 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-976 2245588 2245753 2245781 "PSCURVE" 2246049 T PSCURVE (NIL) -9 NIL 2246216 NIL) (-975 2241586 2243102 2243167 "PSCAT" 2244011 NIL PSCAT (NIL T T T) -9 NIL 2244251 NIL) (-974 2240649 2240865 2241265 "PSCAT-" 2241270 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-973 2239354 2240014 2240219 "PRTITION" 2240464 T PRTITION (NIL) -8 NIL NIL NIL) (-972 2238829 2239075 2239167 "PRTDAST" 2239282 T PRTDAST (NIL) -8 NIL NIL NIL) (-971 2227918 2230133 2232321 "PRS" 2236691 NIL PRS (NIL T T) -7 NIL NIL NIL) (-970 2225729 2227268 2227308 "PRQAGG" 2227491 NIL PRQAGG (NIL T) -9 NIL 2227593 NIL) (-969 2224933 2225238 2225266 "PROPLOG" 2225513 T PROPLOG (NIL) -9 NIL 2225679 NIL) (-968 2223363 2223884 2224141 "PROPFRML" 2224709 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-967 2222832 2222939 2223067 "PROPERTY" 2223255 T PROPERTY (NIL) -8 NIL NIL NIL) (-966 2216890 2220998 2221818 "PRODUCT" 2222058 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-965 2214168 2216348 2216582 "PR" 2216701 NIL PR (NIL T T) -8 NIL NIL NIL) (-964 2213964 2213996 2214055 "PRINT" 2214129 T PRINT (NIL) -7 NIL NIL NIL) (-963 2213304 2213421 2213573 "PRIMES" 2213844 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-962 2211369 2211770 2212236 "PRIMELT" 2212883 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-961 2211098 2211147 2211175 "PRIMCAT" 2211299 T PRIMCAT (NIL) -9 NIL NIL NIL) (-960 2207213 2211036 2211081 "PRIMARR" 2211086 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-959 2206220 2206398 2206626 "PRIMARR2" 2207031 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-958 2205863 2205919 2206030 "PREASSOC" 2206158 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-957 2205338 2205471 2205499 "PPCURVE" 2205704 T PPCURVE (NIL) -9 NIL 2205840 NIL) (-956 2204933 2205133 2205216 "PORTNUM" 2205275 T PORTNUM (NIL) -8 NIL NIL NIL) (-955 2202292 2202691 2203283 "POLYROOT" 2204514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-954 2196474 2201896 2202056 "POLY" 2202165 NIL POLY (NIL T) -8 NIL NIL NIL) (-953 2195857 2195915 2196149 "POLYLIFT" 2196410 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-952 2192132 2192581 2193210 "POLYCATQ" 2195402 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-951 2178844 2183972 2184037 "POLYCAT" 2187551 NIL POLYCAT (NIL T T T) -9 NIL 2189429 NIL) (-950 2172293 2174155 2176539 "POLYCAT-" 2176544 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-949 2171880 2171948 2172068 "POLY2UP" 2172219 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-948 2171512 2171569 2171678 "POLY2" 2171817 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-947 2170197 2170436 2170712 "POLUTIL" 2171286 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-946 2168552 2168829 2169160 "POLTOPOL" 2169919 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-945 2164017 2168488 2168534 "POINT" 2168539 NIL POINT (NIL T) -8 NIL NIL NIL) (-944 2162204 2162561 2162936 "PNTHEORY" 2163662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-943 2160662 2160959 2161358 "PMTOOLS" 2161902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-942 2160255 2160333 2160450 "PMSYM" 2160578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-941 2159765 2159834 2160008 "PMQFCAT" 2160180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-940 2159120 2159230 2159386 "PMPRED" 2159642 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2158513 2158599 2158761 "PMPREDFS" 2159021 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-938 2157177 2157385 2157763 "PMPLCAT" 2158275 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-937 2156709 2156788 2156940 "PMLSAGG" 2157092 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-936 2156182 2156258 2156440 "PMKERNEL" 2156627 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-935 2155799 2155874 2155987 "PMINS" 2156101 NIL PMINS (NIL T) -7 NIL NIL NIL) (-934 2155241 2155310 2155519 "PMFS" 2155724 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-933 2154469 2154587 2154792 "PMDOWN" 2155118 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-932 2153636 2153794 2153975 "PMASS" 2154308 T PMASS (NIL) -7 NIL NIL NIL) (-931 2152909 2153019 2153182 "PMASSFS" 2153523 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-930 2152564 2152632 2152726 "PLOTTOOL" 2152835 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-929 2147171 2148375 2149523 "PLOT" 2151436 T PLOT (NIL) -8 NIL NIL NIL) (-928 2142975 2144019 2144940 "PLOT3D" 2146270 T PLOT3D (NIL) -8 NIL NIL NIL) (-927 2141887 2142064 2142299 "PLOT1" 2142779 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-926 2117276 2121953 2126804 "PLEQN" 2137153 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-925 2116594 2116716 2116896 "PINTERP" 2117141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2116287 2116334 2116437 "PINTERPA" 2116541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-923 2115508 2116056 2116143 "PI" 2116183 T PI (NIL) -8 NIL NIL 2116250) (-922 2113805 2114780 2114808 "PID" 2114990 T PID (NIL) -9 NIL 2115124 NIL) (-921 2113556 2113593 2113668 "PICOERCE" 2113762 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-920 2112876 2113015 2113191 "PGROEB" 2113412 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-919 2108463 2109277 2110182 "PGE" 2111991 T PGE (NIL) -7 NIL NIL NIL) (-918 2106586 2106833 2107199 "PGCD" 2108180 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-917 2105924 2106027 2106188 "PFRPAC" 2106470 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-916 2102564 2104472 2104825 "PFR" 2105603 NIL PFR (NIL T) -8 NIL NIL NIL) (-915 2100953 2101197 2101522 "PFOTOOLS" 2102311 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-914 2099486 2099725 2100076 "PFOQ" 2100710 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-913 2097987 2098199 2098555 "PFO" 2099270 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-912 2094540 2097876 2097945 "PF" 2097950 NIL PF (NIL NIL) -8 NIL NIL NIL) (-911 2091874 2093145 2093173 "PFECAT" 2093758 T PFECAT (NIL) -9 NIL 2094142 NIL) (-910 2091319 2091473 2091687 "PFECAT-" 2091692 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-909 2089922 2090174 2090475 "PFBRU" 2091068 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-908 2087788 2088140 2088572 "PFBR" 2089573 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-907 2083670 2085164 2085840 "PERM" 2087145 NIL PERM (NIL T) -8 NIL NIL NIL) (-906 2078904 2079877 2080747 "PERMGRP" 2082833 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-905 2077010 2077967 2078008 "PERMCAT" 2078454 NIL PERMCAT (NIL T) -9 NIL 2078759 NIL) (-904 2076663 2076704 2076828 "PERMAN" 2076963 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-903 2074151 2076328 2076450 "PENDTREE" 2076574 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-902 2072175 2072943 2072984 "PDRING" 2073641 NIL PDRING (NIL T) -9 NIL 2073927 NIL) (-901 2071278 2071496 2071858 "PDRING-" 2071863 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-900 2068493 2069271 2069939 "PDEPROB" 2070630 T PDEPROB (NIL) -8 NIL NIL NIL) (-899 2066038 2066542 2067097 "PDEPACK" 2067958 T PDEPACK (NIL) -7 NIL NIL NIL) (-898 2064950 2065140 2065391 "PDECOMP" 2065837 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-897 2062529 2063372 2063400 "PDECAT" 2064187 T PDECAT (NIL) -9 NIL 2064900 NIL) (-896 2062280 2062313 2062403 "PCOMP" 2062490 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-895 2060458 2061081 2061378 "PBWLB" 2062009 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-894 2052931 2054531 2055869 "PATTERN" 2059141 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-893 2052563 2052620 2052729 "PATTERN2" 2052868 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-892 2050320 2050708 2051165 "PATTERN1" 2052152 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-891 2047688 2048269 2048750 "PATRES" 2049885 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2047252 2047319 2047451 "PATRES2" 2047615 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-889 2045135 2045540 2045947 "PATMATCH" 2046919 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-888 2044645 2044854 2044895 "PATMAB" 2045002 NIL PATMAB (NIL T) -9 NIL 2045085 NIL) (-887 2043163 2043499 2043757 "PATLRES" 2044450 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-886 2042709 2042832 2042873 "PATAB" 2042878 NIL PATAB (NIL T) -9 NIL 2043050 NIL) (-885 2040190 2040722 2041295 "PARTPERM" 2042156 T PARTPERM (NIL) -7 NIL NIL NIL) (-884 2039811 2039874 2039976 "PARSURF" 2040121 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-883 2039443 2039500 2039609 "PARSU2" 2039748 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-882 2039207 2039247 2039314 "PARSER" 2039396 T PARSER (NIL) -7 NIL NIL NIL) (-881 2038828 2038891 2038993 "PARSCURV" 2039138 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-880 2038460 2038517 2038626 "PARSC2" 2038765 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-879 2038099 2038157 2038254 "PARPCURV" 2038396 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-878 2037731 2037788 2037897 "PARPC2" 2038036 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-877 2036792 2037104 2037286 "PARAMAST" 2037569 T PARAMAST (NIL) -8 NIL NIL NIL) (-876 2036312 2036398 2036517 "PAN2EXPR" 2036693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2035089 2035433 2035661 "PALETTE" 2036104 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2033482 2034094 2034454 "PAIR" 2034775 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2027352 2032741 2032935 "PADICRC" 2033337 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2020581 2026698 2026882 "PADICRAT" 2027200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2018896 2020518 2020563 "PADIC" 2020568 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2016006 2017570 2017610 "PADICCT" 2018191 NIL PADICCT (NIL NIL) -9 NIL 2018473 NIL) (-869 2014963 2015163 2015431 "PADEPAC" 2015793 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2014175 2014308 2014514 "PADE" 2014825 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2012562 2013383 2013663 "OWP" 2013979 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2012055 2012268 2012365 "OVERSET" 2012485 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2011101 2011660 2011832 "OVAR" 2011923 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2010365 2010486 2010647 "OUT" 2010960 T OUT (NIL) -7 NIL NIL NIL) (-863 1999237 2001474 2003674 "OUTFORM" 2008185 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 1998573 1998834 1998961 "OUTBFILE" 1999130 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 1997880 1998045 1998073 "OUTBCON" 1998391 T OUTBCON (NIL) -9 NIL 1998557 NIL) (-860 1997481 1997593 1997750 "OUTBCON-" 1997755 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 1996861 1997210 1997299 "OSI" 1997412 T OSI (NIL) -8 NIL NIL NIL) (-858 1996391 1996729 1996757 "OSGROUP" 1996762 T OSGROUP (NIL) -9 NIL 1996784 NIL) (-857 1995136 1995363 1995648 "ORTHPOL" 1996138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1992687 1994971 1995092 "OREUP" 1995097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1990090 1992378 1992505 "ORESUP" 1992629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1987618 1988118 1988679 "OREPCTO" 1989579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1981304 1983505 1983546 "OREPCAT" 1985894 NIL OREPCAT (NIL T) -9 NIL 1986998 NIL) (-852 1978451 1979233 1980291 "OREPCAT-" 1980296 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1977602 1977900 1977928 "ORDSET" 1978237 T ORDSET (NIL) -9 NIL 1978401 NIL) (-850 1977033 1977181 1977405 "ORDSET-" 1977410 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1975598 1976389 1976417 "ORDRING" 1976619 T ORDRING (NIL) -9 NIL 1976744 NIL) (-848 1975243 1975337 1975481 "ORDRING-" 1975486 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1974623 1975086 1975114 "ORDMON" 1975119 T ORDMON (NIL) -9 NIL 1975140 NIL) (-846 1973785 1973932 1974127 "ORDFUNS" 1974472 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1973123 1973542 1973570 "ORDFIN" 1973635 T ORDFIN (NIL) -9 NIL 1973709 NIL) (-844 1969682 1971709 1972118 "ORDCOMP" 1972747 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1968948 1969075 1969261 "ORDCOMP2" 1969542 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965529 1966439 1967253 "OPTPROB" 1968154 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1962331 1962970 1963674 "OPTPACK" 1964845 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1960018 1960784 1960812 "OPTCAT" 1961631 T OPTCAT (NIL) -9 NIL 1962281 NIL) (-839 1959402 1959695 1959800 "OPSIG" 1959933 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1959170 1959209 1959275 "OPQUERY" 1959356 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1956301 1957481 1957985 "OP" 1958699 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1955675 1955901 1955942 "OPERCAT" 1956154 NIL OPERCAT (NIL T) -9 NIL 1956251 NIL) (-835 1955430 1955486 1955603 "OPERCAT-" 1955608 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1952243 1954227 1954596 "ONECOMP" 1955094 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1951548 1951663 1951837 "ONECOMP2" 1952115 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1950967 1951073 1951203 "OMSERVER" 1951438 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1947829 1950407 1950447 "OMSAGG" 1950508 NIL OMSAGG (NIL T) -9 NIL 1950572 NIL) (-830 1946452 1946715 1946997 "OMPKG" 1947567 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1945882 1945985 1946013 "OM" 1946312 T OM (NIL) -9 NIL NIL NIL) (-828 1944429 1945431 1945600 "OMLO" 1945763 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1943389 1943536 1943756 "OMEXPR" 1944255 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1942680 1942935 1943071 "OMERR" 1943273 T OMERR (NIL) -8 NIL NIL NIL) (-825 1941831 1942101 1942261 "OMERRK" 1942540 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1941282 1941508 1941616 "OMENC" 1941743 T OMENC (NIL) -8 NIL NIL NIL) (-823 1935177 1936362 1937533 "OMDEV" 1940131 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1934246 1934417 1934611 "OMCONN" 1935003 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1932767 1933743 1933771 "OINTDOM" 1933776 T OINTDOM (NIL) -9 NIL 1933797 NIL) (-820 1930105 1931455 1931792 "OFMONOID" 1932462 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1929516 1930042 1930087 "ODVAR" 1930092 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1926939 1929261 1929416 "ODR" 1929421 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1919520 1926715 1926841 "ODPOL" 1926846 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1913342 1919392 1919497 "ODP" 1919502 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1912108 1912323 1912598 "ODETOOLS" 1913116 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1909075 1909733 1910449 "ODESYS" 1911441 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1903957 1904865 1905890 "ODERTRIC" 1908150 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1903383 1903465 1903659 "ODERED" 1903869 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1900271 1900819 1901496 "ODERAT" 1902806 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1897228 1897695 1898292 "ODEPRRIC" 1899800 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1895171 1895767 1896253 "ODEPROB" 1896762 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1891691 1892176 1892823 "ODEPRIM" 1894650 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1890940 1891042 1891302 "ODEPAL" 1891583 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1887102 1887893 1888757 "ODEPACK" 1890096 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1886163 1886270 1886492 "ODEINT" 1886991 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1880264 1881689 1883136 "ODEIFTBL" 1884736 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1875662 1876448 1877400 "ODEEF" 1879423 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1875011 1875100 1875323 "ODECONST" 1875567 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1873136 1873797 1873825 "ODECAT" 1874430 T ODECAT (NIL) -9 NIL 1874961 NIL) (-800 1869991 1872841 1872963 "OCT" 1873046 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1869629 1869672 1869799 "OCTCT2" 1869942 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1864278 1866713 1866753 "OC" 1867850 NIL OC (NIL T) -9 NIL 1868708 NIL) (-797 1861505 1862253 1863243 "OC-" 1863337 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1860857 1861325 1861353 "OCAMON" 1861358 T OCAMON (NIL) -9 NIL 1861379 NIL) (-795 1860388 1860729 1860757 "OASGP" 1860762 T OASGP (NIL) -9 NIL 1860782 NIL) (-794 1859649 1860138 1860166 "OAMONS" 1860206 T OAMONS (NIL) -9 NIL 1860249 NIL) (-793 1859063 1859496 1859524 "OAMON" 1859529 T OAMON (NIL) -9 NIL 1859549 NIL) (-792 1858321 1858839 1858867 "OAGROUP" 1858872 T OAGROUP (NIL) -9 NIL 1858892 NIL) (-791 1858011 1858061 1858149 "NUMTUBE" 1858265 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1851584 1853102 1854638 "NUMQUAD" 1856495 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1847340 1848328 1849353 "NUMODE" 1850579 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1844695 1845575 1845603 "NUMINT" 1846526 T NUMINT (NIL) -9 NIL 1847290 NIL) (-787 1843643 1843840 1844058 "NUMFMT" 1844497 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1830002 1832947 1835479 "NUMERIC" 1841150 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1824372 1829451 1829546 "NTSCAT" 1829551 NIL NTSCAT (NIL T T T T) -9 NIL 1829590 NIL) (-784 1823566 1823731 1823924 "NTPOLFN" 1824211 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1811643 1820391 1821203 "NSUP" 1822787 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1811275 1811332 1811441 "NSUP2" 1811580 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1801503 1811049 1811182 "NSMP" 1811187 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1799935 1800236 1800593 "NREP" 1801191 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1798526 1798778 1799136 "NPCOEF" 1799678 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1797592 1797707 1797923 "NORMRETR" 1798407 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1795633 1795923 1796332 "NORMPK" 1797300 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1795318 1795346 1795470 "NORMMA" 1795599 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1795118 1795275 1795304 "NONE" 1795309 T NONE (NIL) -8 NIL NIL NIL) (-774 1794907 1794936 1795005 "NONE1" 1795082 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1794404 1794466 1794645 "NODE1" 1794839 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1792689 1793540 1793795 "NNI" 1794142 T NNI (NIL) -8 NIL NIL 1794377) (-771 1791109 1791422 1791786 "NLINSOL" 1792357 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1787350 1788345 1789244 "NIPROB" 1790230 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1786107 1786341 1786643 "NFINTBAS" 1787112 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1785281 1785757 1785798 "NETCLT" 1785970 NIL NETCLT (NIL T) -9 NIL 1786052 NIL) (-767 1783989 1784220 1784501 "NCODIV" 1785049 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1783751 1783788 1783863 "NCNTFRAC" 1783946 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1781931 1782295 1782715 "NCEP" 1783376 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1780782 1781555 1781583 "NASRING" 1781693 T NASRING (NIL) -9 NIL 1781773 NIL) (-763 1780577 1780621 1780715 "NASRING-" 1780720 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1779684 1780209 1780237 "NARNG" 1780354 T NARNG (NIL) -9 NIL 1780445 NIL) (-761 1779376 1779443 1779577 "NARNG-" 1779582 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1778255 1778462 1778697 "NAGSP" 1779161 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1769527 1771211 1772884 "NAGS" 1776602 T NAGS (NIL) -7 NIL NIL NIL) (-758 1768075 1768383 1768714 "NAGF07" 1769216 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1762613 1763904 1765211 "NAGF04" 1766788 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1755581 1757195 1758828 "NAGF02" 1761000 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1750805 1751905 1753022 "NAGF01" 1754484 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1744433 1745999 1747584 "NAGE04" 1749240 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1735602 1737723 1739853 "NAGE02" 1742323 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1731555 1732502 1733466 "NAGE01" 1734658 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1729350 1729884 1730442 "NAGD03" 1731017 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1721100 1723028 1724982 "NAGD02" 1727416 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1714911 1716336 1717776 "NAGD01" 1719680 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1711120 1711942 1712779 "NAGC06" 1714094 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1709585 1709917 1710273 "NAGC05" 1710784 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1708961 1709080 1709224 "NAGC02" 1709461 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1707920 1708503 1708543 "NAALG" 1708622 NIL NAALG (NIL T) -9 NIL 1708683 NIL) (-744 1707755 1707784 1707874 "NAALG-" 1707879 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1701705 1702813 1704000 "MULTSQFR" 1706651 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1701024 1701099 1701283 "MULTFACT" 1701617 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1693748 1697661 1697714 "MTSCAT" 1698784 NIL MTSCAT (NIL T T) -9 NIL 1699299 NIL) (-740 1693460 1693514 1693606 "MTHING" 1693688 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1693252 1693285 1693345 "MSYSCMD" 1693420 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1689334 1692007 1692327 "MSET" 1692965 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1686403 1688895 1688936 "MSETAGG" 1688941 NIL MSETAGG (NIL T) -9 NIL 1688975 NIL) (-736 1682244 1683782 1684527 "MRING" 1685703 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1681810 1681877 1682008 "MRF2" 1682171 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1681428 1681463 1681607 "MRATFAC" 1681769 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1679040 1679335 1679766 "MPRFF" 1681133 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1673337 1678894 1678991 "MPOLY" 1678996 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1672827 1672862 1673070 "MPCPF" 1673296 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1672341 1672384 1672568 "MPC3" 1672778 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1671536 1671617 1671838 "MPC2" 1672256 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1669837 1670174 1670564 "MONOTOOL" 1671196 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1669062 1669379 1669407 "MONOID" 1669626 T MONOID (NIL) -9 NIL 1669773 NIL) (-726 1668608 1668727 1668908 "MONOID-" 1668913 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1659083 1665034 1665093 "MONOGEN" 1665767 NIL MONOGEN (NIL T T) -9 NIL 1666223 NIL) (-724 1656301 1657036 1658036 "MONOGEN-" 1658155 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1655134 1655580 1655608 "MONADWU" 1656000 T MONADWU (NIL) -9 NIL 1656238 NIL) (-722 1654506 1654665 1654913 "MONADWU-" 1654918 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1653865 1654109 1654137 "MONAD" 1654344 T MONAD (NIL) -9 NIL 1654456 NIL) (-720 1653550 1653628 1653760 "MONAD-" 1653765 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1651839 1652463 1652742 "MOEBIUS" 1653303 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1651117 1651521 1651561 "MODULE" 1651566 NIL MODULE (NIL T) -9 NIL 1651605 NIL) (-717 1650685 1650781 1650971 "MODULE-" 1650976 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1648365 1649049 1649376 "MODRING" 1650509 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1645309 1646470 1646991 "MODOP" 1647894 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1643897 1644376 1644653 "MODMONOM" 1645172 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1633938 1642188 1642602 "MODMON" 1643534 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1631094 1632782 1633058 "MODFIELD" 1633813 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1630071 1630375 1630565 "MMLFORM" 1630924 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1629597 1629640 1629819 "MMAP" 1630022 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1627676 1628443 1628484 "MLO" 1628907 NIL MLO (NIL T) -9 NIL 1629149 NIL) (-708 1625042 1625558 1626160 "MLIFT" 1627157 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1624433 1624517 1624671 "MKUCFUNC" 1624953 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1624032 1624102 1624225 "MKRECORD" 1624356 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1623079 1623241 1623469 "MKFUNC" 1623843 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1622467 1622571 1622727 "MKFLCFN" 1622962 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1621744 1621846 1622031 "MKBCFUNC" 1622360 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1618451 1621298 1621434 "MINT" 1621628 T MINT (NIL) -8 NIL NIL NIL) (-701 1617263 1617506 1617783 "MHROWRED" 1618206 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1612642 1615798 1616203 "MFLOAT" 1616878 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1611999 1612075 1612246 "MFINFACT" 1612554 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1608314 1609162 1610046 "MESH" 1611135 T MESH (NIL) -7 NIL NIL NIL) (-697 1606704 1607016 1607369 "MDDFACT" 1608001 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1603499 1605863 1605904 "MDAGG" 1606159 NIL MDAGG (NIL T) -9 NIL 1606302 NIL) (-695 1593239 1602792 1602999 "MCMPLX" 1603312 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1592380 1592526 1592726 "MCDEN" 1593088 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1590270 1590540 1590920 "MCALCFN" 1592110 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1589195 1589435 1589668 "MAYBE" 1590076 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1586807 1587330 1587892 "MATSTOR" 1588666 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1582764 1586179 1586427 "MATRIX" 1586592 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1578528 1579237 1579973 "MATLIN" 1582121 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1568634 1571820 1571897 "MATCAT" 1576777 NIL MATCAT (NIL T T T) -9 NIL 1578194 NIL) (-687 1564990 1566011 1567367 "MATCAT-" 1567372 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1563584 1563737 1564070 "MATCAT2" 1564825 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1561696 1562020 1562404 "MAPPKG3" 1563259 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1560677 1560850 1561072 "MAPPKG2" 1561520 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1559176 1559460 1559787 "MAPPKG1" 1560383 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1558255 1558582 1558759 "MAPPAST" 1559019 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1557866 1557924 1558047 "MAPHACK3" 1558191 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1557458 1557519 1557633 "MAPHACK2" 1557798 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1556895 1556999 1557141 "MAPHACK1" 1557349 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1554974 1555595 1555899 "MAGMA" 1556623 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1554453 1554698 1554789 "MACROAST" 1554903 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1550871 1552692 1553153 "M3D" 1554025 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1544977 1549240 1549281 "LZSTAGG" 1550063 NIL LZSTAGG (NIL T) -9 NIL 1550358 NIL) (-674 1540934 1542108 1543565 "LZSTAGG-" 1543570 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1538021 1538825 1539312 "LWORD" 1540479 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1537597 1537825 1537900 "LSTAST" 1537966 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1530763 1537368 1537502 "LSQM" 1537507 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1529987 1530126 1530354 "LSPP" 1530618 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1527799 1528100 1528556 "LSMP" 1529676 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1524578 1525252 1525982 "LSMP1" 1527101 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1518455 1523745 1523786 "LSAGG" 1523848 NIL LSAGG (NIL T) -9 NIL 1523926 NIL) (-666 1515150 1516074 1517287 "LSAGG-" 1517292 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1512749 1514294 1514543 "LPOLY" 1514945 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1512331 1512416 1512539 "LPEFRAC" 1512658 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1510652 1511425 1511678 "LO" 1512163 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1510304 1510416 1510444 "LOGIC" 1510555 T LOGIC (NIL) -9 NIL 1510636 NIL) (-661 1510166 1510189 1510260 "LOGIC-" 1510265 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1509359 1509499 1509692 "LODOOPS" 1510022 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1506782 1509275 1509341 "LODO" 1509346 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1505320 1505555 1505908 "LODOF" 1506529 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1501538 1503969 1504010 "LODOCAT" 1504448 NIL LODOCAT (NIL T) -9 NIL 1504659 NIL) (-656 1501271 1501329 1501456 "LODOCAT-" 1501461 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1498591 1501112 1501230 "LODO2" 1501235 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1496026 1498528 1498573 "LODO1" 1498578 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1494907 1495072 1495377 "LODEEF" 1495849 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1490146 1493037 1493078 "LNAGG" 1494025 NIL LNAGG (NIL T) -9 NIL 1494469 NIL) (-651 1489293 1489507 1489849 "LNAGG-" 1489854 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1485429 1486218 1486857 "LMOPS" 1488708 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1484832 1485220 1485261 "LMODULE" 1485266 NIL LMODULE (NIL T) -9 NIL 1485292 NIL) (-648 1482030 1484477 1484600 "LMDICT" 1484742 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1481436 1481657 1481698 "LLINSET" 1481889 NIL LLINSET (NIL T) -9 NIL 1481980 NIL) (-646 1481135 1481344 1481404 "LITERAL" 1481409 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1474298 1480069 1480373 "LIST" 1480864 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1473823 1473897 1474036 "LIST3" 1474218 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1472830 1473008 1473236 "LIST2" 1473641 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1470964 1471276 1471675 "LIST2MAP" 1472477 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1470560 1470797 1470838 "LINSET" 1470843 NIL LINSET (NIL T) -9 NIL 1470877 NIL) (-640 1469221 1469891 1469932 "LINEXP" 1470187 NIL LINEXP (NIL T) -9 NIL 1470336 NIL) (-639 1467868 1468128 1468425 "LINDEP" 1468973 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1464635 1465354 1466131 "LIMITRF" 1467123 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1462938 1463234 1463643 "LIMITPS" 1464330 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1457366 1462449 1462677 "LIE" 1462759 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1456314 1456783 1456823 "LIECAT" 1456963 NIL LIECAT (NIL T) -9 NIL 1457114 NIL) (-634 1456155 1456182 1456270 "LIECAT-" 1456275 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1448651 1455604 1455769 "LIB" 1456010 T LIB (NIL) -8 NIL NIL NIL) (-632 1444286 1445169 1446104 "LGROBP" 1447768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1442284 1442558 1442908 "LF" 1444007 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1441124 1441816 1441844 "LFCAT" 1442051 T LFCAT (NIL) -9 NIL 1442190 NIL) (-629 1438026 1438656 1439344 "LEXTRIPK" 1440488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1434770 1435596 1436099 "LEXP" 1437606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1434246 1434491 1434583 "LETAST" 1434698 T LETAST (NIL) -8 NIL NIL NIL) (-626 1432644 1432957 1433358 "LEADCDET" 1433928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1431834 1431908 1432137 "LAZM3PK" 1432565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1426751 1429911 1430449 "LAUPOL" 1431346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1426330 1426374 1426535 "LAPLACE" 1426701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1424269 1425431 1425682 "LA" 1426163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1423263 1423847 1423888 "LALG" 1423950 NIL LALG (NIL T) -9 NIL 1424009 NIL) (-620 1422977 1423036 1423172 "LALG-" 1423177 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1422812 1422836 1422877 "KVTFROM" 1422939 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1421735 1422179 1422364 "KTVLOGIC" 1422647 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1421570 1421594 1421635 "KRCFROM" 1421697 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1420474 1420661 1420960 "KOVACIC" 1421370 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1420309 1420333 1420374 "KONVERT" 1420436 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1420144 1420168 1420209 "KOERCE" 1420271 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1417974 1418737 1419114 "KERNEL" 1419800 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1417470 1417551 1417683 "KERNEL2" 1417888 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1411240 1416009 1416063 "KDAGG" 1416440 NIL KDAGG (NIL T T) -9 NIL 1416646 NIL) (-610 1410769 1410893 1411098 "KDAGG-" 1411103 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1403917 1410430 1410585 "KAFILE" 1410647 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1398345 1403428 1403656 "JORDAN" 1403738 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1397724 1397994 1398115 "JOINAST" 1398244 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1397570 1397629 1397684 "JAVACODE" 1397689 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1393822 1395775 1395829 "IXAGG" 1396758 NIL IXAGG (NIL T T) -9 NIL 1397217 NIL) (-604 1392741 1393047 1393466 "IXAGG-" 1393471 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388271 1392663 1392722 "IVECTOR" 1392727 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1387037 1387274 1387540 "ITUPLE" 1388038 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1385539 1385716 1386011 "ITRIGMNP" 1386859 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1384284 1384488 1384771 "ITFUN3" 1385315 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1383916 1383973 1384082 "ITFUN2" 1384221 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1381877 1382936 1383214 "ITAYLOR" 1383671 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1370822 1376014 1377177 "ISUPS" 1380747 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1369926 1370066 1370302 "ISUMP" 1370669 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1365301 1369871 1369912 "ISTRING" 1369917 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1364777 1365022 1365114 "ISAST" 1365229 T ISAST (NIL) -8 NIL NIL NIL) (-593 1363986 1364068 1364284 "IRURPK" 1364691 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1362922 1363123 1363363 "IRSN" 1363766 T IRSN (NIL) -7 NIL NIL NIL) (-591 1360993 1361348 1361777 "IRRF2F" 1362560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1360740 1360778 1360854 "IRREDFFX" 1360949 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1359355 1359614 1359913 "IROOT" 1360473 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1355959 1357039 1357731 "IR" 1358695 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1353572 1354067 1354633 "IR2" 1355437 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1352672 1352785 1352999 "IR2F" 1353455 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1352463 1352497 1352557 "IPRNTPK" 1352632 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1349044 1352352 1352421 "IPF" 1352426 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1347371 1348969 1349026 "IPADIC" 1349031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1346683 1346931 1347061 "IP4ADDR" 1347261 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1346156 1346387 1346497 "IOMODE" 1346593 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1345229 1345753 1345880 "IOBFILE" 1346049 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1344717 1345133 1345161 "IOBCON" 1345166 T IOBCON (NIL) -9 NIL 1345187 NIL) (-578 1344228 1344286 1344469 "INVLAPLA" 1344653 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1333876 1336230 1338616 "INTTR" 1341892 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1330211 1330953 1331818 "INTTOOLS" 1333061 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1329797 1329888 1330005 "INTSLPE" 1330114 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1327750 1329720 1329779 "INTRVL" 1329784 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1325352 1325864 1326439 "INTRF" 1327235 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1324763 1324860 1325002 "INTRET" 1325250 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1322760 1323149 1323619 "INTRAT" 1324371 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1320023 1320606 1321225 "INTPM" 1322245 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1316768 1317367 1318105 "INTPAF" 1319409 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1311947 1312909 1313960 "INTPACK" 1315737 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1308895 1311744 1311853 "INT" 1311858 T INT (NIL) -8 NIL NIL NIL) (-566 1308147 1308299 1308507 "INTHERTR" 1308737 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1307586 1307666 1307854 "INTHERAL" 1308061 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1305432 1305875 1306332 "INTHEORY" 1307149 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1296838 1298459 1300231 "INTG0" 1303784 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1277411 1282201 1287011 "INTFTBL" 1292048 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1276660 1276798 1276971 "INTFACT" 1277270 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1274087 1274533 1275090 "INTEF" 1276214 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1272454 1273193 1273221 "INTDOM" 1273522 T INTDOM (NIL) -9 NIL 1273729 NIL) (-558 1271823 1271997 1272239 "INTDOM-" 1272244 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1268211 1270139 1270193 "INTCAT" 1270992 NIL INTCAT (NIL T) -9 NIL 1271313 NIL) (-556 1267683 1267786 1267914 "INTBIT" 1268103 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1266382 1266536 1266843 "INTALG" 1267528 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1265865 1265955 1266112 "INTAF" 1266286 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1259208 1265675 1265815 "INTABL" 1265820 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1258549 1259015 1259080 "INT8" 1259114 T INT8 (NIL) -8 NIL NIL 1259159) (-551 1257889 1258355 1258420 "INT64" 1258454 T INT64 (NIL) -8 NIL NIL 1258499) (-550 1257229 1257695 1257760 "INT32" 1257794 T INT32 (NIL) -8 NIL NIL 1257839) (-549 1256569 1257035 1257100 "INT16" 1257134 T INT16 (NIL) -8 NIL NIL 1257179) (-548 1251479 1254192 1254220 "INS" 1255154 T INS (NIL) -9 NIL 1255819 NIL) (-547 1248719 1249490 1250464 "INS-" 1250537 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1247494 1247721 1248019 "INPSIGN" 1248472 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1246612 1246729 1246926 "INPRODPF" 1247374 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1245506 1245623 1245860 "INPRODFF" 1246492 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1244506 1244658 1244918 "INNMFACT" 1245342 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1243703 1243800 1243988 "INMODGCD" 1244405 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1242211 1242456 1242780 "INFSP" 1243448 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1241395 1241512 1241695 "INFPROD0" 1242091 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238250 1239460 1239975 "INFORM" 1240888 T INFORM (NIL) -8 NIL NIL NIL) (-538 1237860 1237920 1238018 "INFORM1" 1238185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1237383 1237472 1237586 "INFINITY" 1237766 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1236559 1237103 1237204 "INETCLTS" 1237302 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1235175 1235425 1235746 "INEP" 1236307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1234424 1235072 1235137 "INDE" 1235142 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1233988 1234056 1234173 "INCRMAPS" 1234351 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1232806 1233257 1233463 "INBFILE" 1233802 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1228105 1229042 1229986 "INBFF" 1231894 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1227013 1227282 1227310 "INBCON" 1227823 T INBCON (NIL) -9 NIL 1228089 NIL) (-529 1226265 1226488 1226764 "INBCON-" 1226769 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1225744 1225989 1226080 "INAST" 1226194 T INAST (NIL) -8 NIL NIL NIL) (-527 1225171 1225423 1225529 "IMPTAST" 1225658 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1221617 1225015 1225119 "IMATRIX" 1225124 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1220329 1220452 1220767 "IMATQF" 1221473 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1218549 1218776 1219113 "IMATLIN" 1220085 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1213127 1218473 1218531 "ILIST" 1218536 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1211032 1212987 1213100 "IIARRAY2" 1213105 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1206430 1210943 1211007 "IFF" 1211012 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1205777 1206047 1206163 "IFAST" 1206334 T IFAST (NIL) -8 NIL NIL NIL) (-519 1200772 1205069 1205257 "IFARRAY" 1205634 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1199952 1200676 1200749 "IFAMON" 1200754 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1199536 1199601 1199655 "IEVALAB" 1199862 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1199211 1199279 1199439 "IEVALAB-" 1199444 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1198842 1199125 1199188 "IDPO" 1199193 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1198092 1198731 1198806 "IDPOAMS" 1198811 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1197399 1197981 1198056 "IDPOAM" 1198061 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1196458 1196734 1196787 "IDPC" 1197200 NIL IDPC (NIL T T) -9 NIL 1197349 NIL) (-511 1195927 1196350 1196423 "IDPAM" 1196428 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1195303 1195819 1195892 "IDPAG" 1195897 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1194948 1195139 1195214 "IDENT" 1195248 T IDENT (NIL) -8 NIL NIL NIL) (-508 1191203 1192051 1192946 "IDECOMP" 1194105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1184041 1185126 1186173 "IDEAL" 1190239 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1183205 1183317 1183516 "ICDEN" 1183925 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1182276 1182685 1182832 "ICARD" 1183078 T ICARD (NIL) -8 NIL NIL NIL) (-504 1180336 1180649 1181054 "IBPTOOLS" 1181953 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1175943 1179956 1180069 "IBITS" 1180255 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1172666 1173242 1173937 "IBATOOL" 1175360 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1170445 1170907 1171440 "IBACHIN" 1172201 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1168274 1170291 1170394 "IARRAY2" 1170399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1164380 1168200 1168257 "IARRAY1" 1168262 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1158489 1162792 1163273 "IAN" 1163919 T IAN (NIL) -8 NIL NIL NIL) (-497 1158000 1158057 1158230 "IALGFACT" 1158426 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1157528 1157641 1157669 "HYPCAT" 1157876 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1157066 1157183 1157369 "HYPCAT-" 1157374 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1156661 1156861 1156944 "HOSTNAME" 1157003 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1156506 1156543 1156584 "HOMOTOP" 1156589 NIL HOMOTOP (NIL T) -9 NIL 1156622 NIL) (-492 1153138 1154516 1154557 "HOAGG" 1155538 NIL HOAGG (NIL T) -9 NIL 1156217 NIL) (-491 1151732 1152131 1152657 "HOAGG-" 1152662 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1145736 1151327 1151476 "HEXADEC" 1151603 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1144483 1144706 1144969 "HEUGCD" 1145513 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1143559 1144320 1144450 "HELLFDIV" 1144455 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1141738 1143336 1143424 "HEAP" 1143503 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1141001 1141290 1141424 "HEADAST" 1141624 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1134867 1140916 1140978 "HDP" 1140983 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1128855 1134502 1134654 "HDMP" 1134768 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1128179 1128319 1128483 "HB" 1128711 T HB (NIL) -7 NIL NIL NIL) (-482 1121565 1128025 1128129 "HASHTBL" 1128134 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1121041 1121286 1121378 "HASAST" 1121493 T HASAST (NIL) -8 NIL NIL NIL) (-480 1118819 1120663 1120845 "HACKPI" 1120879 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1114487 1118672 1118785 "GTSET" 1118790 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1107902 1114365 1114463 "GSTBL" 1114468 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1100180 1106933 1107198 "GSERIES" 1107693 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1099321 1099738 1099766 "GROUP" 1099969 T GROUP (NIL) -9 NIL 1100103 NIL) (-475 1098687 1098846 1099097 "GROUP-" 1099102 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1097054 1097375 1097762 "GROEBSOL" 1098364 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1095968 1096256 1096307 "GRMOD" 1096836 NIL GRMOD (NIL T T) -9 NIL 1097004 NIL) (-472 1095736 1095772 1095900 "GRMOD-" 1095905 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1091026 1092090 1093090 "GRIMAGE" 1094756 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1089492 1089753 1090077 "GRDEF" 1090722 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1088936 1089052 1089193 "GRAY" 1089371 T GRAY (NIL) -7 NIL NIL NIL) (-468 1088123 1088529 1088580 "GRALG" 1088733 NIL GRALG (NIL T T) -9 NIL 1088826 NIL) (-467 1087784 1087857 1088020 "GRALG-" 1088025 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1084561 1087369 1087547 "GPOLSET" 1087691 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1083915 1083972 1084230 "GOSPER" 1084498 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1079647 1080353 1080879 "GMODPOL" 1083614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1078652 1078836 1079074 "GHENSEL" 1079459 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1072808 1073651 1074671 "GENUPS" 1077736 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1072505 1072556 1072645 "GENUFACT" 1072751 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1071917 1071994 1072159 "GENPGCD" 1072423 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1071391 1071426 1071639 "GENMFACT" 1071876 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1069957 1070214 1070521 "GENEEZ" 1071134 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1064103 1069568 1069730 "GDMP" 1069880 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1053445 1057874 1058980 "GCNAALG" 1063086 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1051772 1052634 1052662 "GCDDOM" 1052917 T GCDDOM (NIL) -9 NIL 1053074 NIL) (-454 1051242 1051369 1051584 "GCDDOM-" 1051589 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1049914 1050099 1050403 "GB" 1051021 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1038530 1040860 1043252 "GBINTERN" 1047605 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1036367 1036659 1037080 "GBF" 1038205 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1035148 1035313 1035580 "GBEUCLID" 1036183 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1034497 1034622 1034771 "GAUSSFAC" 1035019 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1032864 1033166 1033480 "GALUTIL" 1034216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1031172 1031446 1031770 "GALPOLYU" 1032591 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1028537 1028827 1029234 "GALFACTU" 1030869 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1020342 1021842 1023450 "GALFACT" 1026969 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1017730 1018388 1018416 "FVFUN" 1019572 T FVFUN (NIL) -9 NIL 1020292 NIL) (-443 1016996 1017178 1017206 "FVC" 1017497 T FVC (NIL) -9 NIL 1017680 NIL) (-442 1016639 1016821 1016889 "FUNDESC" 1016948 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1016254 1016436 1016517 "FUNCTION" 1016591 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1013998 1014576 1015042 "FT" 1015808 T FT (NIL) -8 NIL NIL NIL) (-439 1012789 1013299 1013502 "FTEM" 1013815 T FTEM (NIL) -8 NIL NIL NIL) (-438 1011080 1011369 1011766 "FSUPFACT" 1012480 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1009477 1009766 1010098 "FST" 1010768 T FST (NIL) -8 NIL NIL NIL) (-436 1008676 1008782 1008970 "FSRED" 1009359 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1007375 1007631 1007978 "FSPRMELT" 1008391 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1004681 1005119 1005605 "FSPECF" 1006938 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 986319 994650 994691 "FS" 998575 NIL FS (NIL T) -9 NIL 1000864 NIL) (-432 974962 977955 982012 "FS-" 982312 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 974490 974544 974714 "FSINT" 974903 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 972782 973483 973786 "FSERIES" 974269 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 971824 971940 972164 "FSCINT" 972662 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 968032 970768 970809 "FSAGG" 971179 NIL FSAGG (NIL T) -9 NIL 971438 NIL) (-427 965794 966395 967191 "FSAGG-" 967286 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 964836 964979 965206 "FSAGG2" 965647 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 962518 962798 963345 "FS2UPS" 964554 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 962152 962195 962324 "FS2" 962469 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 961030 961201 961503 "FS2EXPXP" 961977 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 960456 960571 960723 "FRUTIL" 960910 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 951869 955951 957309 "FR" 959130 NIL FR (NIL T) -8 NIL NIL NIL) (-420 946838 949512 949552 "FRNAALG" 950948 NIL FRNAALG (NIL T) -9 NIL 951555 NIL) (-419 942511 943587 944862 "FRNAALG-" 945612 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 942149 942192 942319 "FRNAAF2" 942462 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 940529 941003 941298 "FRMOD" 941961 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 938280 938912 939229 "FRIDEAL" 940320 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 937475 937562 937851 "FRIDEAL2" 938187 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 936608 937022 937063 "FRETRCT" 937068 NIL FRETRCT (NIL T) -9 NIL 937244 NIL) (-413 935720 935951 936302 "FRETRCT-" 936307 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 932808 934018 934077 "FRAMALG" 934959 NIL FRAMALG (NIL T T) -9 NIL 935251 NIL) (-411 930942 931397 932027 "FRAMALG-" 932250 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 924863 930417 930693 "FRAC" 930698 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 924499 924556 924663 "FRAC2" 924800 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 924135 924192 924299 "FR2" 924436 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 918648 921541 921569 "FPS" 922688 T FPS (NIL) -9 NIL 923245 NIL) (-406 918097 918206 918370 "FPS-" 918516 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 915399 917068 917096 "FPC" 917321 T FPC (NIL) -9 NIL 917463 NIL) (-404 915192 915232 915329 "FPC-" 915334 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 913982 914680 914721 "FPATMAB" 914726 NIL FPATMAB (NIL T) -9 NIL 914878 NIL) (-402 911655 912158 912584 "FPARFRAC" 913619 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 907048 907547 908229 "FORTRAN" 911087 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 904764 905264 905803 "FORT" 906529 T FORT (NIL) -7 NIL NIL NIL) (-399 902440 903002 903030 "FORTFN" 904090 T FORTFN (NIL) -9 NIL 904714 NIL) (-398 902204 902254 902282 "FORTCAT" 902341 T FORTCAT (NIL) -9 NIL 902403 NIL) (-397 900310 900820 901210 "FORMULA" 901834 T FORMULA (NIL) -8 NIL NIL NIL) (-396 900098 900128 900197 "FORMULA1" 900274 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 899621 899673 899846 "FORDER" 900040 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 898717 898881 899074 "FOP" 899448 T FOP (NIL) -7 NIL NIL NIL) (-393 897298 897997 898171 "FNLA" 898599 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 896027 896442 896470 "FNCAT" 896930 T FNCAT (NIL) -9 NIL 897190 NIL) (-391 895566 895986 896014 "FNAME" 896019 T FNAME (NIL) -8 NIL NIL NIL) (-390 894129 895092 895120 "FMTC" 895125 T FMTC (NIL) -9 NIL 895161 NIL) (-389 892875 894065 894111 "FMONOID" 894116 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2098 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 86edd3d5..b0ae6b74 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,707 +1,819 @@ -(731401 . 3465761901) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) - (-4 *5 (-1243 *4)) - (-5 *2 (-2 (|:| -4012 (-410 *5)) (|:| |coeff| (-410 *5)))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) +(731666 . 3466723536) +(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))) +(((*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) + (-4 *6 (-1067 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2780 *1) (|:| |upper| *1))) + (-4 *1 (-978 *4 *5 *3 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1243 *4)) - (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285)))))) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1203) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) + (-5 *1 (-591 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1214))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *1 *2) + (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) + (-4 *4 (-1218)))) + ((*1 *1 *2) + (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) + (-4 *5 (-238 (-2414 *3) (-772))) + (-14 *6 + (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) + (-2 (|:| -3768 *2) (|:| -3458 *5)))) + (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) + (-4 *7 (-951 *4 *5 (-865 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) + (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) + ((*1 *2 *3) + (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) + (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) + (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) + ((*1 *2 *1) + (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) + (-4 *4 (-1244 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) + (-4 *3 (-851)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) + (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) + (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) + (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) + (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) + (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) + (-5 *1 (-914 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) + (-4 *7 (-1244 *6)) (-4 *4 (-1244 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) + (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) + (-5 *1 (-1020 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) + (-5 *2 (-772)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) +(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) +(((*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1201))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) - (-4 *5 (-1243 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1017 *4 *5)) - (-5 *3 (-410 *5))))) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) + (-4 *7 (-1244 (-410 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1382 *3))) + (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |answer| (-410 *6)) (|:| -1382 (-410 *6)) + (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) + (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) + (-5 *1 (-190))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1244 (-169 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1244 (-169 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1244 (-169 *3)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1273)) + (-5 *1 (-471)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)) (-5 *3 (-225))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) + (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) + (-4 *6 (-455))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3845 *3) (|:| -4179 (-645 *5)))) + (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) +(((*1 *1 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) + (-4 *4 (-172))))) (((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-103 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1217)) (-5 *2 (-772))))) -(((*1 *1) (-5 *1 (-804)))) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) + (-5 *5 (-772)) (-5 *6 (-1160)) (-4 *8 (-13 (-308) (-147))) + (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1178)))) + (-4 *10 (-794)) + (-5 *2 + (-2 + (|:| |rgl| + (-645 + (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) + (|:| |wcond| (-645 (-954 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *8)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *8)))))))))) + (|:| |rgsz| (-567)))) + (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) + (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-979 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) + (-5 *1 (-629 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)) + (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) (-4 *2 (-455)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1243 (-567))) (-5 *2 (-645 (-567))) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-1244 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) + ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) + (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-292))))) -(((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-922)) (-5 *1 (-1033 *2)) - (-4 *2 (-13 (-1101) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) - (-4 *3 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1270))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1177)) (-5 *6 (-645 (-613 *3))) - (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) - (-5 *1 (-560 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1177)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-645 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1202) (-27) (-433 *8))) - (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) - (-5 *2 (-645 *4)) (-5 *1 (-1015 *8 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1050) (-851))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1177)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1036)) - (-5 *1 (-750))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-306))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1093 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-91 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) + (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) + (-4 *5 (-238 (-2414 *3) (-772))) + (-14 *6 + (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) + (-2 (|:| -3768 *2) (|:| -3458 *5)))) + (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-951 *4 *5 (-865 *3)))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1260 *3 *2)) - (-4 *2 (-1258 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1258 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1258 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1153 *3))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) - (-4 *8 (-851)) (-5 *1 (-978 *6 *7 *8 *9))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) - (-4 *2 (-688 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1101)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) - (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1101))))) -(((*1 *2 *1) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1243 *4)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) - (-4 *2 (-657 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1608 *1))) - (-4 *1 (-1066 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1608 *1))) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1039 (-567))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112)))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-559)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1037)) (-5 *1 (-749))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1050)) - (-5 *1 (-1030 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 (-953 *6))) (-4 *6 (-559)) - (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) - (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-597 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1227 *3)) (-4 *3 (-1050)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1258 *3)) (-4 *3 (-1050))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1244 *4)) + (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1217)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) - ((*1 *2 *3) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1203)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *2 *2) (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-1221)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3621 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) + (-5 *2 + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1))) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-950 *7 *5 *6)) - (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-308))))) + (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1243 *5)) - (-5 *1 (-728 *5 *2)) (-4 *5 (-365))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1177)) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-4 *4 (-13 (-29 *6) (-1202) (-960))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1975 (-645 *4)))) - (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) + (-12 (-5 *4 (-690 (-410 (-954 (-567))))) + (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) + (-5 *3 (-317 (-567)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1037)) (-5 *1 (-750)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) - (-4 *2 (-455)))) - ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1221)) (-4 *3 (-1243 *2)) - (-4 *4 (-1243 (-410 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-455)))) - ((*1 *1 *1) - (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1164 *3 *2)) - (-4 *2 (-1243 *3))))) + (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1178)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) + (-4 *3 (-1102)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) + (-5 *1 (-906 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) + (-4 *3 (-1244 *4)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-801)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1036))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1277))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) - (-5 *1 (-629 *5 *6))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1217))))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) + (-4 *7 (-1244 (-410 *6))) (-5 *2 (-645 (-954 *5))) + (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) + (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *4 (-365)) + (-5 *2 (-645 (-954 *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) + (-4 *7 (-1244 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) + (-4 *2 (-344 *5 *6 *7))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-1196))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218))))) (((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1177))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) - (-14 *3 (-645 (-1177)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) - (-5 *1 (-1130 *5)))) + (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) + (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1130 *4)))) + (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) - (-5 *1 (-1130 *5)))) + (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) + (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1130 *4)))) + (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) - (-5 *1 (-1130 *5)))) + (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1130 *4)))) + (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-953 *5))))) (-5 *4 (-645 (-1177))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) - (-5 *1 (-1130 *5)))) + (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) + (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) - (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) - (-5 *1 (-1130 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567))))) + (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) + (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-786 *5))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1178)) + (-5 *5 (-844 *7)) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-4 *7 (-13 (-1203) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) + (-4 *6 (-13 (-1203) (-29 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-224 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) -(((*1 *1) (-5 *1 (-1272)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 *7))) (-5 *3 (-1173 *7)) - (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-910)) (-4 *5 (-794)) - (-4 *6 (-851)) (-5 *1 (-907 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 *5))) (-5 *3 (-1173 *5)) - (-4 *5 (-1243 *4)) (-4 *4 (-910)) (-5 *1 (-908 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1268)))) - ((*1 *1 *1) (-5 *1 (-1268)))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1267 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) - (-5 *1 (-668 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-365)) - (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4418)))) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))) - (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) - (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270))))) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-559))))) +(((*1 *2 *3) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-851)))) + ((*1 *2 *2) + (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1203))) + (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-586 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-588 (-410 (-954 *3)))) + (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -4180 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) + (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) + (-5 *3 (-645 (-690 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1268 (-1268 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) + (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) + (-5 *3 (-645 (-690 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1) (-5 *1 (-1273)))) +(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1086))) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) - (-4 *5 (-794)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1267 *1)) (-4 *1 (-369 *3))))) -(((*1 *1 *1) (-4 *1 (-1145)))) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-5 *1 (-440))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) + ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) (((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1243 *4)) - (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285)))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-255 *3)))) - ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) + (-12 + (-5 *3 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) + (-4 *4 (-1244 (-567)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) + ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) ((*1 *1 *1) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-826))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34)))))) + (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-375 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) + (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) + (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1237 *3 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) + (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) + (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) + (-4 *4 (-1102)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) + (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) + (-5 *1 (-933 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) + (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) + (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) + (-5 *1 (-934 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) + (-5 *1 (-935 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) + (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) + (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) + (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) + (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) + (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) + (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) + (-5 *1 (-938 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) + (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) + (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) + (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) + (-5 *1 (-941 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 (-1178))) (-5 *3 (-1178)) (-5 *4 (-894 *5)) + (-4 *5 (-1102)) (-5 *1 (-942 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) + (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) + (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) + (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) + (-5 *1 (-943 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1173 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *2) (-12 (-5 *2 (-1148 (-1159))) (-5 *1 (-394))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-822))))) + (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) + (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 *3)))) + (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1158 *4))) (-5 *1 (-286 *4 *5)) + (-5 *3 (-1158 *4)) (-4 *5 (-1259 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051))))) (((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1272)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) - (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2254 (-645 *9)))) - (-5 *3 (-645 *9)) (-4 *1 (-1210 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2254 (-645 *8)))) - (-5 *3 (-645 *8)) (-4 *1 (-1210 *5 *6 *7 *8))))) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-922)) (-4 *4 (-351)) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) + (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-645 (-1174 *13))) (-5 *3 (-1174 *13)) + (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) + (-5 *7 (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *13))))) + (-5 *8 (-645 (-772))) (-5 *9 (-1268 (-645 (-1174 *10)))) + (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) + (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) + (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) + (-5 *1 (-471))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *2 (-1267 (-317 (-381)))) - (-5 *1 (-306))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1243 *3)) (-5 *1 (-402 *3 *2)) - (-4 *3 (-13 (-365) (-147)))))) + (-12 (-5 *2 (-421 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) + (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1269)) + (-5 *1 (-1272)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) + (-5 *2 (-1269)) (-5 *1 (-1272))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) - (-4 *3 (-1217)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) + (-4 *3 (-1218)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) - (-4 *3 (-1217)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) + (-4 *3 (-1218)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) - (-4 *2 (-1217)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1177)) (-5 *1 (-633)))) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) + (-4 *2 (-1218)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1178)) (-5 *1 (-633)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1234 (-567))) (|has| *1 (-6 -4418)) (-4 *1 (-652 *2)) - (-4 *2 (-1217)))) + (-12 (-5 *3 (-1235 (-567))) (|has| *1 (-6 -4419)) (-4 *1 (-652 *2)) + (-4 *2 (-1218)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4418)) (-4 *1 (-1011 *2)) - (-4 *2 (-1217)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) + (-4 *2 (-1218)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) - (-4 *2 (-1217)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) + (-4 *2 (-1218)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *3)) - (-4 *3 (-1217)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) + (-4 *3 (-1218)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) - (-4 *2 (-1217))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) + (-4 *2 (-1218))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) ((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) - ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) - (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-950 *8 *6 *7)) + ((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-616 *4 *5)) + (-5 *3 (-410 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-1174 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1160)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) + (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1203) (-29 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) + (-4 *2 (-1259 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) + (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1259 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) + (-5 *3 (-645 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) + (-5 *3 (-1104 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) + (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-645 (-2 (|:| -2703 (-1173 *9)) (|:| -4250 (-567))))))) - (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1173 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-331))))) -(((*1 *1 *2) - (-12 (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1143 *3 *4)) - (-14 *3 (-772))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051))))) (((*1 *2 *3) - (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1039 (-567))) - (-4 *4 (-559)) (-5 *2 (-1173 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-1050)) (-4 *1 (-303)) - (-5 *2 (-1173 *1))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1102 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 + (-5 *3 + (-645 + (-2 (|:| -1954 (-772)) + (|:| |eqns| + (-645 + (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) + (|:| |cols| (-645 (-567)))))) + (|:| |fgb| (-645 *7))))) + (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) + (-5 *1 (-926 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-308)) - (-5 *2 (-410 (-421 (-953 *4)))) (-5 *1 (-1043 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1217)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1101)) - (-4 *2 (-1217))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) - (-5 *2 (-645 (-1177))) (-5 *1 (-1077 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))))) + (-12 + (-5 *3 + (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) + (-247 *4 (-410 (-567))))) + (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) - (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *5)) - (-4 *5 (-1243 (-410 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)) - (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -3686 *3) (|:| -2282 *4)))) - (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-4 *3 (-559))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268))))) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048))))) -(((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *5 (-1243 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1243 (-169 *2))))) + (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1243 (-169 *2)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) - (-5 *2 (-1036)) (-5 *1 (-746))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) - (-5 *2 (-645 (-2 (|:| -2166 (-645 *3)) (|:| -2053 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1243 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-849))) - (-5 *2 (-645 (-2 (|:| -2166 (-645 *3)) (|:| -2053 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1280 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1280 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1173 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1173 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1166 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) - (-5 *1 (-1130 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1166 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) - (-5 *1 (-1130 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) - (-4 *2 (-688 *3 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1191 *2)) (-4 *2 (-365))))) + (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) + ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-645 *1)) + (-4 *1 (-1070 *4 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2 *3) + (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) + (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4))))) +(((*1 *1) (-5 *1 (-824)))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-532)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-979 *4 *5 *6 *7))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1272)) (-5 *1 (-471))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1252 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1177)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) + (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-1101)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) - (-14 *4 - (-1 (-112) (-2 (|:| -3763 *3) (|:| -4250 *2)) - (-2 (|:| -3763 *3) (|:| -4250 *2))))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-645 (-1177))) (-4 *2 (-172)) - (-4 *3 (-238 (-2410 *4) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *3)) - (-2 (|:| -3763 *5) (|:| -4250 *3)))) - (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) - (-4 *7 (-950 *2 *3 (-865 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-5 *3 (-944 *5)) (-4 *5 (-1050)) - (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1165 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1050)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) - (-5 *1 (-1165 *4 *5)) (-14 *4 (-922))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1121)) (-4 *4 (-351)) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) + (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5)))))) +(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -4180 (-421 *3)) (|:| |special| (-421 *3)))) + (-5 *1 (-728 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-923)) (-5 *1 (-531 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-559))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1103 *3)) (-5 *1 (-906 *3)) (-4 *3 (-370)) - (-4 *3 (-1101))))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1159)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1036)) - (-5 *1 (-751))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) + (-5 *1 (-691 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1101)) + (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) (-5 *1 (-576 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1159)) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-830))))) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) + (-5 *2 (-1037)) (-5 *1 (-755))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 @@ -716,10 +828,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2221 + (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -728,494 +840,376 @@ (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-890 *4 *5)) (-5 *3 (-890 *4 *6)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-667 *5)) (-5 *1 (-886 *4 *5 *6))))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102))))) (((*1 *2 *3) - (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050))))) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) - (-5 *1 (-306))))) + (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1259 *4)) + (-4 *4 (-38 (-410 (-567)))) + (-5 *2 (-1 (-1158 *4) (-645 (-1158 *4)))) (-5 *1 (-1261 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-953 *5)))) - (-5 *1 (-1275 *5)) (-5 *4 (-1157 (-953 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) - (-4 *9 (-950 *8 *6 *7)) - (-5 *2 (-2 (|:| -1867 (-1173 *9)) (|:| |polval| (-1173 *8)))) - (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1173 *9)) (-5 *4 (-1173 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) - (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3301 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1243 *4))))) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539))))) (((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1050))) (-5 *2 (-1159)) - (-5 *1 (-827 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1050))) - (-5 *2 (-1159)) (-5 *1 (-827 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1050))) - (-5 *2 (-1272)) (-5 *1 (-827 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-829) (-1050))) (-5 *2 (-1272)) (-5 *1 (-827 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1159)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1159)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1272)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1272))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) + (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) + (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) + ((*1 *2 *3) + (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))) + ((*1 *1 *1) (-4 *1 (-405)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-381)))) (-5 *2 (-1095 (-844 (-225)))) - (-5 *1 (-306))))) + (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) + (-5 *2 (-923))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) + (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1218 *2)) - (-4 *2 (-1101)))) + (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) + (-4 *3 (-433 *4)))) + ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))) + ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) + (-4 *3 (-798 *4)))) + ((*1 *2) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) + (-4 *3 (-994 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) + (-4 *3 (-999 *4)))) + ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014)))) + ((*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772)))) + ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062))))) +(((*1 *2 *3) + (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) + (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) + (-5 *1 (-913 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-851)) - (-5 *1 (-1218 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-953 (-567)))) (-5 *1 (-440)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-690 (-225))) (-5 *2 (-1105)) - (-5 *1 (-760)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-690 (-567))) (-5 *2 (-1105)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) + (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) + (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-914 *4 *5 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-929)) (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1101)) (-4 *4 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1177)) (-5 *1 (-676 *3)) (-4 *3 (-1101))))) + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) + (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) + (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) + (-4 *3 (-1244 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-567)) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) + (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) + (-5 *1 (-465 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1040 (-410 (-567))) (-365) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) + (-15 -1460 (*7 $)))))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) + (-4 *4 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-433 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-172))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) + (-4 *2 (-1244 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) + (-5 *1 (-531 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) - (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) - (-14 *6 (-922))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-539))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928))))) -(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) - (-4 *3 (-1050)) (-4 *2 (-793)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1173 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-972)) (-4 *2 (-131)) (-5 *1 (-1179 *3)) (-4 *3 (-559)) - (-4 *3 (-1050)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1240 *4 *3)) (-14 *4 (-1177)) - (-4 *3 (-1050))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) - (-5 *2 (-1036)) (-5 *1 (-747))))) + (-12 (-5 *3 (-1178)) (-5 *2 (-539)) (-5 *1 (-538 *4)) + (-4 *4 (-1218))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) + (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *1 (-1244 *4)) (-4 *4 (-1051)) + (-5 *2 (-1268 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1101)) - (-4 *6 (-1217)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) + (-4 *6 (-1218)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1101)) - (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) + (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1101)) - (-4 *5 (-1217)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) + (-4 *5 (-1218)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1101)) - (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) + (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) - (-4 *5 (-1101)) (-4 *6 (-1217)) (-5 *1 (-642 *5 *6)))) + (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-642 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1101)) (-4 *2 (-1217)) (-5 *1 (-642 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-144)) (-5 *2 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-953 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) - (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1177))) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-953 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) - (-5 *1 (-925 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) - (|:| |wcond| (-645 (-953 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *4)))))))))) - (-5 *1 (-925 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7)) - (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1177)))) - (-4 *8 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) - (|:| |wcond| (-645 (-953 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *6)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *6)))))))))) - (-5 *1 (-925 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1177))) (-5 *5 (-922)) - (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) - (|:| |wcond| (-645 (-953 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *6)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *6)))))))))) - (-5 *1 (-925 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-922)) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-953 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) - (-5 *1 (-925 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1159)) - (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1177))) (-5 *5 (-1159)) - (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-1159)) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-922)) - (-5 *6 (-1159)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-851) (-615 (-1177)))) (-4 *9 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1177))) (-5 *5 (-922)) - (-5 *6 (-1159)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-851) (-615 (-1177)))) (-4 *9 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-922)) (-5 *5 (-1159)) - (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1177)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *6 *7 *8 *9))))) + (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-757))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-752))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-615 (-893 (-567)))) - (-4 *5 (-887 (-567))) - (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) - (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *5 (-370)) - (-5 *2 (-772))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-613 *3)) (-4 *3 (-1101))))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1 (-1173 (-953 *4)) (-953 *4))) - (-5 *1 (-1275 *4)) (-4 *4 (-365))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-4 *2 (-1101)) - (-5 *1 (-890 *4 *2))))) -(((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) + (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *2) (-12 (-5 *2 - (-645 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-794)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *4 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-727))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 *4)) (-5 *1 (-1142 *3 *4)) - (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1095 (-225))) (-5 *6 (-567)) (-5 *2 (-1212 (-927))) - (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1095 (-225))) (-5 *6 (-567)) (-5 *7 (-1159)) - (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1095 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) - (-5 *2 (-1212 (-927))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1095 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1159)) - (-5 *2 (-1212 (-927))) (-5 *1 (-319))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3621 *3) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))) + (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) + (|:| |genIdeal| (-507 *3 *4 *5 *6)))) + (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) + (-4 *4 (-1051))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))) (((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-559)) (-4 *2 (-950 *3 *5 *4)) - (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-953 *6))) (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $)))))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) - (-5 *1 (-471))))) + (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1268 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *3 (-645 (-567))) - (-5 *1 (-884))))) + (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) + (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-793)) (-4 *3 (-172))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) + (-5 *1 (-749))))) +(((*1 *1 *1) (-4 *1 (-1146)))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) + (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1268))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1194 *4 *5)) - (-4 *4 (-1101)) (-4 *5 (-1101))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-1189 (-645 *4))) (-5 *1 (-1188 *4)) - (-5 *3 (-645 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) + (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) + (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) + (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *1) (-5 *1 (-509)))) (((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1210 *5 *6 *7 *8)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) - (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1177)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) - (-5 *1 (-1130 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) - (-5 *1 (-1130 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1221)) - (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1159)) (-5 *1 (-1198))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268))))) + (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1174 (-954 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-1099 *3)))) - ((*1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(((*1 *1 *1 *1) (-4 *1 (-968)))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1140))) ((*1 *1 *1 *1) (-4 *1 (-1140)))) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) + ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-1066 *3 *4 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) + (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) +(((*1 *2 *3) + (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) - ((*1 *2 *1) - (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) - (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) - (-14 *4 *2)))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) - (-4 *2 (-13 (-433 *5) (-27) (-1202))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1101))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-151 *3)))) + (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) + (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) + (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) + (-5 *1 (-400)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) + (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) + (-5 *1 (-400)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-645 (-1178))) (-5 *5 (-1181)) (-5 *3 (-1178)) + (-5 *2 (-1106)) (-5 *1 (-400))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4)) + (-5 *1 (-1179 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-5 *2 (-1268 *3)) (-5 *1 (-1179 *3)) + (-4 *3 (-1051))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-690 *4)) (-4 *5 (-657 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-151 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-645 (-2 (|:| -4250 (-772)) (|:| -2793 *4) (|:| |num| *4)))) - (-4 *4 (-1243 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) + (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) + (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-5 *3 (-645 (-1177))) (-5 *4 (-112)) (-5 *1 (-440)))) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-5 *3 (-645 (-1178))) (-5 *4 (-112)) (-5 *1 (-440)))) ((*1 *2 *1) - (-12 (-5 *2 (-1157 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1158 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1218)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) @@ -1227,195 +1221,206 @@ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1101)) + (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1101)) + (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) (-14 *4 - (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *3)) - (-2 (|:| -3763 *2) (|:| -4250 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1119)) (-5 *1 (-839)))) + (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) + (-2 (|:| -3768 *2) (|:| -3458 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1217)) (-4 *3 (-1217)))) + (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 *4)))) - (-4 *4 (-1101)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) + (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1101) (-34))) - (-5 *2 (-645 (-1141 *3 *5))) (-5 *1 (-1141 *3 *5)) - (-4 *3 (-13 (-1101) (-34))))) + (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) + (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) + (-4 *3 (-13 (-1102) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2564 *5)))) - (-4 *4 (-13 (-1101) (-34))) (-4 *5 (-13 (-1101) (-34))) - (-5 *2 (-645 (-1141 *4 *5))) (-5 *1 (-1141 *4 *5)))) + (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2566 *5)))) + (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) + (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2564 *4))) - (-4 *3 (-13 (-1101) (-34))) (-4 *4 (-13 (-1101) (-34))) - (-5 *1 (-1141 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2566 *4))) + (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) + (-5 *1 (-1142 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34))))) + (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1101) (-34))) - (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))))) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) + (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1141 *2 *3))) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34))) (-5 *1 (-1142 *2 *3)))) + (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1142 *2 *3))) (-5 *1 (-1142 *2 *3)) - (-4 *2 (-13 (-1101) (-34))) (-4 *3 (-13 (-1101) (-34))))) + (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) + (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4)))) + (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) + (-12 (-5 *1 (-1167 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-381)) (-5 *1 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) - (-5 *1 (-306))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) - ((*1 *1 *1) (-4 *1 (-849))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)) (-4 *2 (-1061)))) - ((*1 *1 *1) (-4 *1 (-1061))) ((*1 *1 *1) (-4 *1 (-1140)))) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) (((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-645 (-1177))) - (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1024)) (-5 *5 (-381)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) - (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) + (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) + (-4 *2 (-1228 *3))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1268 *3)) + (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) ((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) + (-12 (-4 *4 (-1051)) + (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))) - (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1157 (-953 *4)) (-1157 (-953 *4)))) - (-5 *1 (-1275 *4)) (-4 *4 (-365))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) - (-4 *2 (-13 (-851) (-21)))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-255 *3)))) + ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-923)) (-14 *5 (-995 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) + (-4 *4 (-1244 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) + (-4 *4 (-1051)) (-4 *5 (-851)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) + (-4 *2 (-851)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) + (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *2 (-851)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) + (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1212 *4)) + (-4 *4 (-1051))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) + (-14 *3 (-923)) (-4 *4 (-1051)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) (((*1 *1 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-365)) (-14 *6 (-1267 (-690 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))))) - ((*1 *1 *2) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-14 *6 (-1268 (-690 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))))) + ((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1218)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'JINT 'X 'ELAM) (-4142) (-700)))) - (-5 *1 (-61 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'JINT 'X 'ELAM) (-4147) (-700)))) + (-5 *1 (-61 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 'XC) (-700)))) - (-5 *1 (-63 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'XC) (-700)))) + (-5 *1 (-63 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-4142 'X) (-4142) (-700))) (-5 *1 (-64 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-341 (-4147 'X) (-4147) (-700))) (-5 *1 (-64 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-4142) (-4142 'XC) (-700))) (-5 *1 (-66 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-341 (-4147) (-4147 'XC) (-700))) (-5 *1 (-66 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'X) (-4142 '-1894) (-700)))) - (-5 *1 (-71 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147 '-1898) (-700)))) + (-5 *1 (-71 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 'X) (-700)))) - (-5 *1 (-74 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'X) (-700)))) + (-5 *1 (-74 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'X 'EPS) (-4142 '-1894) (-700)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1177)) (-14 *4 (-1177)) - (-14 *5 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'X 'EPS) (-4147 '-1898) (-700)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) + (-14 *5 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'EPS) (-4142 'YA 'YB) (-700)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1177)) (-14 *4 (-1177)) - (-14 *5 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'EPS) (-4147 'YA 'YB) (-700)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) + (-14 *5 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-4142) (-4142 'X) (-700))) (-5 *1 (-77 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-341 (-4147) (-4147 'X) (-700))) (-5 *1 (-77 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-4142) (-4142 'X) (-700))) (-5 *1 (-78 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-341 (-4147) (-4147 'X) (-700))) (-5 *1 (-78 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 'XC) (-700)))) - (-5 *1 (-79 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'XC) (-700)))) + (-5 *1 (-79 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142) (-4142 'X) (-700)))) - (-5 *1 (-80 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'X) (-700)))) + (-5 *1 (-80 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'X '-1894) (-4142) (-700)))) - (-5 *1 (-82 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'X '-1898) (-4147) (-700)))) + (-5 *1 (-82 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-4142 'X '-1894) (-4142) (-700)))) - (-5 *1 (-83 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-690 (-341 (-4147 'X '-1898) (-4147) (-700)))) + (-5 *1 (-83 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-4142 'X) (-4142) (-700)))) (-5 *1 (-84 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-690 (-341 (-4147 'X) (-4147) (-700)))) (-5 *1 (-84 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'X) (-4142) (-700)))) - (-5 *1 (-85 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147) (-700)))) + (-5 *1 (-85 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-341 (-4142 'X) (-4142 '-1894) (-700)))) - (-5 *1 (-86 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147 '-1898) (-700)))) + (-5 *1 (-86 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-4142 'XL 'XR 'ELAM) (-4142) (-700)))) - (-5 *1 (-87 *3)) (-14 *3 (-1177)))) + (-12 (-5 *2 (-690 (-341 (-4147 'XL 'XR 'ELAM) (-4147) (-700)))) + (-5 *1 (-87 *3)) (-14 *3 (-1178)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-4142 'X) (-4142 '-1894) (-700))) (-5 *1 (-89 *3)) - (-14 *3 (-1177)))) + (-12 (-5 *2 (-341 (-4147 'X) (-4147 '-1898) (-700))) (-5 *1 (-89 *3)) + (-14 *3 (-1178)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) @@ -1423,33 +1428,33 @@ (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) ((*1 *1 *2) - (-12 (-5 *2 (-1143 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) + (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) ((*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) ((*1 *2 *3) - (-12 (-5 *3 (-1267 (-690 *4))) (-4 *4 (-172)) - (-5 *2 (-1267 (-690 (-410 (-953 *4))))) (-5 *1 (-189 *4)))) + (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) + (-5 *2 (-1268 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-317 *4))) - (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1093 (-381))) + (-12 (-5 *3 (-1094 (-317 *4))) + (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) (-5 *1 (-259 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) ((*1 *2 *1) - (-12 (-4 *2 (-1243 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1244 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) - (-14 *5 (-1177)) (-14 *6 *4) - (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) + (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) + (-14 *5 (-1178)) (-14 *6 *4) + (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4)))) @@ -1458,93 +1463,93 @@ (-4 *3 (-330 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-1291 *3 *4)))) + (-5 *2 (-1292 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-1282 *3 *4)))) + (-5 *2 (-1283 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) - ((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1101)))) + ((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-399)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) - (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) + (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1177)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) - (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1177)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-14 *5 (-645 (-1177))) (-14 *6 (-1181)))) + (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) ((*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) @@ -1552,80 +1557,80 @@ (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-410 (-953 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1101)) + (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1101)) + (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1101)) + (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1126 *3 (-613 *1))) (-4 *3 (-1050)) (-4 *3 (-1101)) + (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-437)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-443)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-700))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-700))) (-4 *1 (-443)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1181)) (|:| -1796 (-645 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-444)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-410 (-953 *3)))) (-4 *3 (-172)) - (-14 *6 (-1267 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-14 *4 (-922)) (-14 *5 (-645 (-1177))))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) + (-12 (-5 *2 (-1268 (-410 (-954 *3)))) (-4 *3 (-172)) + (-14 *6 (-1268 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-14 *4 (-923)) (-14 *5 (-645 (-1178))))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) ((*1 *1 *2) - (-12 (-5 *2 (-1252 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1177)) + (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-505)))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-505)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-527)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-607)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1050)))) + ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-5 *2 (-1287 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) + (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) ((*1 *2 *1) - (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) + (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) ((*1 *2 *1) - (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-5 *1 (-676 *3)) - (-4 *3 (-1101)))) + (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) + (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-4 *3 (-1101)) + (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-682)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1101)))) + ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) + (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) @@ -1636,7 +1641,7 @@ ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) ((*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) ((*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) @@ -1646,80 +1651,80 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -3686 *3) (|:| -2282 *4)))) - (-4 *3 (-1050)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) + (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) + (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) - (|:| -2221 (-645 (-1095 (-844 (-225))))) + (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) - (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) + (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) - ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1217)))) + ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1218)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-825)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2701 (-645 (-225))))))) + (|:| -2672 (-645 (-225))))))) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) + (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) ((*1 *2 *3) - (-12 (-5 *3 (-953 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) + (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 (-48)))) (-5 *2 (-317 (-567))) + (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) + ((*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) ((*1 *1 *2) (-12 (-5 *2 @@ -1729,1364 +1734,1428 @@ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) + (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) - (-5 *1 (-899)))) + (-5 *1 (-900)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1101)) (-5 *1 (-905 *3)))) + (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) + (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3)))) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-915 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) + (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-920 *4)) + (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) (-4 *4 (-559)))) - ((*1 *2 *3) (-12 (-5 *2 (-1272)) (-5 *1 (-1034 *3)) (-4 *3 (-1217)))) - ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1034 *2)) (-4 *2 (-1217)))) + ((*1 *2 *3) (-12 (-5 *2 (-1273)) (-5 *1 (-1035 *3)) (-4 *3 (-1218)))) + ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) + (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-559)))) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) ((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1127 *3 *4 *2)) - (-4 *2 (-950 *3 (-534 *4) *4)))) + (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) + (-4 *2 (-951 *3 (-534 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1127 *3 *2 *4)) - (-4 *4 (-950 *3 (-534 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1145)))) + (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) + (-4 *4 (-951 *3 (-534 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) ((*1 *2 *3) - (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) ((*1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1240 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1177)) - (-14 *5 *3) (-5 *1 (-1175 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1176)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190 (-1177) (-440))) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1189 *3)) (-4 *3 (-1101)))) - ((*1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1196 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) + (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1191 (-1178) (-440))) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))) + ((*1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1197 *3)) (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-5 *1 (-1211 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1211 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1212 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-1051)))) ((*1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-1217)) (-5 *1 (-1234 *3)))) + (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1218)) (-5 *1 (-1235 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1240 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1177)) - (-14 *5 *3) (-5 *1 (-1259 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1263 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1268)))) - ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1268)) (-5 *1 (-1271)))) + (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) + (-14 *5 *3) (-5 *1 (-1260 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1269)))) + ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1269)) (-5 *1 (-1272)))) ((*1 *1 *2) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) ((*1 *2 *1) - (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) + (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) ((*1 *2 *1) - (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) + (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *1 (-1287 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-567))))) + (-5 *1 (-1288 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) ((*1 *1 *1 *1) (-4 *1 (-548))) ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1188 *4)) - (-5 *3 (-645 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-794)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) - (-4 *4 (-455)) (-4 *6 (-851))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1159) (-1182))) - (-5 *1 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1243 (-567))) (-5 *1 (-489 *3))))) -(((*1 *1) (-5 *1 (-1083)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))) - ((*1 *1 *1) (-4 *1 (-405)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-927))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) - (-4 *2 - (-13 (-405) - (-10 -7 (-15 -4127 (*2 *4)) (-15 -3425 ((-922) *2)) - (-15 -1975 ((-1267 *2) (-922))) (-15 -2529 (*2 *2))))) - (-5 *1 (-358 *2 *4))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1173 *4)) - (-4 *4 (-13 (-433 *7) (-27) (-1202))) - (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1173 *4))) - (-4 *4 (-13 (-433 *7) (-27) (-1202))) - (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) + (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) + (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) + (-5 *1 (-597 *3)) (-4 *3 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) + (-4 *3 (-13 (-849) (-365) (-1024))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) + (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) + (-645 + (-2 (|:| -1954 (-772)) + (|:| |eqns| + (-645 + (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) + (|:| |cols| (-645 (-567)))))) + (|:| |fgb| (-645 *8))))) + (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-5 *2 (-1174 *3)) (-5 *1 (-1192 *3)) + (-4 *3 (-365))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) + (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) + (-4 *3 (-1102))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) + (-4 *2 (-657 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) + (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) + (-5 *3 (-645 (-690 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) + (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) + (-5 *3 (-645 (-690 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) + (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) + (-5 *3 (-645 (-690 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) + (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) + (-5 *3 (-645 (-690 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) + (-4 *2 (-688 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1183) (-772)))) (-5 *1 (-334))))) (((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-594)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-627)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1102)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) ((*1 *2 *1) - (-12 (-4 *3 (-1101)) - (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) - (-5 *1 (-1077 *3 *4 *2)) - (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) + (-12 (-4 *3 (-1102)) + (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) + (-5 *1 (-1078 *3 *4 *2)) + (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1101)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1101))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-567)) (-4 *4 (-351)) - (-5 *1 (-531 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *1) (-5 *1 (-1086)))) + (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *3 *2)) (-4 *3 (-1102))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1244 (-410 (-567)))) + (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) + (-5 *1 (-915 *3 *4)) (-4 *4 (-1244 (-410 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) + (-4 *3 (-1244 (-410 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1259 *4)) + (-4 *4 (-38 (-410 (-567)))) + (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1160)) (-5 *1 (-1270)))) + ((*1 *1 *1) (-5 *1 (-1270)))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787))))) (((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-370))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1173 *3))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-559)) - (-5 *2 (-2 (|:| -4138 (-690 *5)) (|:| |vec| (-1267 (-645 (-922)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-4 *1 (-904 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *5 (-559)) - (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) - (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *6)) - (-4 *6 - (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) - (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) - (-4 *2 (-950 (-953 *4) *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-594)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-627)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1101)) - (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) - (-5 *1 (-1077 *3 *4 *2)) - (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1101)) (-5 *1 (-1166 *2 *3)) (-4 *3 (-1101))))) + (|partial| -12 (-5 *2 (-624 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112))) + (-567) *4)) + (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *1 (-577 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) (-5 *2 (-645 (-654 (-410 *5)))) - (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) + (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) + ((*1 *2 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) + ((*1 *1 *1) (-4 *1 (-1062)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 (-410 (-953 (-567))))) - (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1140)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-581)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) - (-4 *6 (-559)) (-4 *7 (-950 *6 *5 *3)) - (-5 *1 (-465 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1039 (-410 (-567))) (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) - (-15 -1455 (*7 $)))))))) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) + (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365)) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) - (-5 *1 (-979 *6)) (-5 *3 (-690 *6))))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1050)) - (-5 *3 (-410 (-567))) (-5 *1 (-1161 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1243 *5)) - (-5 *2 - (-645 - (-2 (|:| -1975 (-690 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-690 *6))))) - (-5 *1 (-501 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1975 (-690 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-690 *6)))) - (-4 *7 (-1243 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) - (-5 *2 (-410 (-567))) (-5 *1 (-1021 *4)) (-4 *4 (-1243 (-567)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-824)) (-5 *1 (-823))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) + (-5 *1 (-980 *6)) (-5 *3 (-690 *6))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) - (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-1001 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *3 (-645 (-264))) - (-5 *1 (-262)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) - (-14 *5 (-645 (-1177))) (-4 *6 (-455)) (-5 *2 (-1267 *6)) - (-5 *1 (-632 *5 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1177)) - (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) - (-5 *2 - (-2 (|:| -4012 (-410 (-953 *5))) (|:| |coeff| (-410 (-953 *5))))) - (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) + (-12 (-4 *3 (-1102)) + (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) + (-5 *1 (-1078 *3 *4 *2)) + (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *2 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) + (-15 -1460 ((-1127 *4 (-613 $)) $)) + (-15 -4132 ($ (-1127 *4 (-613 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) + (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1159)) (-5 *1 (-306))))) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) + ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-581)))) +(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *1) (-5 *1 (-1270)))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *6 *7 *8 *3 *4)) (-4 *4 (-1110 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5))))) + (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1219)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1219))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) - (-14 *5 (-645 (-1177))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) - (-4 *6 (-455)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) - (-14 *5 (-645 (-1177))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) - (-4 *6 (-455))))) -(((*1 *1 *2) - (-12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-13 (-365) (-147))) - (-5 *1 (-402 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-1267 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202)))))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1203) (-961)))))) +(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) + ((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) + (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) + (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *3 (-645 (-567))) + (-5 *1 (-885))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) - (-5 *2 (-645 (-2 (|:| -4250 (-772)) (|:| -2793 *4) (|:| |num| *4)))) - (-5 *1 (-402 *3 *4)) (-4 *4 (-1243 *3))))) + (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) + (-4 *2 (-851))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) + (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) + (-5 *1 (-277 *4 *2))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) + ((*1 *2) + (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1174 (-954 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-308)) - (-5 *2 (-772)) (-5 *1 (-458 *5 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1240 *5 *4)) (-5 *1 (-1175 *4 *5 *6)) - (-4 *4 (-1050)) (-14 *5 (-1177)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1240 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) - (-4 *4 (-1050)) (-14 *5 (-1177)) (-14 *6 *4)))) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1243 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) + (-5 *1 (-190))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4419 "*"))) - (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789))))) +(((*1 *2 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-976))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) + (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) + (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) - (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1050))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-4 *2 (-1243 *5)) - (-5 *1 (-1261 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1258 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) + (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1177)) (-4 *4 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) - (-4 *1 (-433 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) - (-4 *1 (-433 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1113)) (-4 *3 (-1101)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4250 (-567)))) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4250 (-772)))) - (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -4250 (-772)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -4250 (-567)))) - (-5 *1 (-951 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) - (-15 -1455 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1243 *4)) (-4 *4 (-1221)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1243 (-410 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1267 *1)) (-4 *4 (-172)) - (-4 *1 (-369 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-1267 *1)) (-4 *4 (-172)) - (-4 *1 (-372 *4 *5)) (-4 *5 (-1243 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) - (-4 *4 (-1243 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))) + (-12 (-5 *3 (-1268 (-317 (-225)))) + (-5 *2 + (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) + (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-1268 *5))) (-5 *4 (-567)) (-5 *2 (-1268 *5)) + (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-826))))) (((*1 *2 *1) - (-12 (-4 *4 (-1101)) (-5 *2 (-112)) (-5 *1 (-886 *3 *4 *5)) - (-4 *3 (-1101)) (-4 *5 (-667 *4)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-567)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-365) (-147))) + (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) + (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1244 *4)) (-5 *1 (-810 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) + (-4 *5 (-657 (-410 *2)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) + (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1178)) (-4 *5 (-433 *4)) + (-4 *4 (-1102)) (-5 *1 (-576 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))) (((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1036)) (-5 *1 (-756))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-131)) - (-4 *3 (-793))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1141)))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-1272)) (-5 *1 (-214 *3)) + (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) - (-15 -2985 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-397)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-505)))) - ((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1197)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) + (-15 -1345 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-397)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))) + ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1198)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1198))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2951 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1867 *4))) (-5 *5 (-772)) - (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) + (-4 *2 + (-13 (-405) + (-10 -7 (-15 -4132 (*2 *4)) (-15 -4249 ((-923) *2)) + (-15 -2623 ((-1268 *2) (-923))) (-15 -3253 (*2 *2))))) + (-5 *1 (-358 *2 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190))))) +(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) + ((*1 *1 *1 *1) (-4 *1 (-794)))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) + (-4 *2 (-657 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-645 (-954 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) + ((*1 *2) + (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) + ((*1 *2) + (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) + (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) + (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) + (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) + (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) + (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) + (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) + (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) + (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) + (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) + (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) + (-4 *5 (-559)) (-5 *2 (-1268 *5)) (-5 *1 (-639 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) + (-1657 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1268 (-410 *5))) + (-5 *1 (-639 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-452 *6 *7 *8 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922))))) + (-2 (|:| A (-690 *5)) + (|:| |eqs| + (-645 + (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5)) (|:| -3845 *6) + (|:| |rh| *5)))))) + (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) + (-4 *6 (-657 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) + (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) + (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1063 (-1026 *4) (-1174 (-1026 *4)))) (-5 *3 (-863)) + (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) + (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) + (-5 *1 (-869 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) + (-5 *1 (-869 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) + (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) + (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))))) (((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863))))) +(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) + (-4 *2 (-1218))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1218)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) + (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) + (-4 *1 (-1067 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) + (-4 *1 (-1067 *3 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| -1979 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *7))))) - (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-772)) - (-5 *1 (-925 *4 *5 *6 *7))))) + (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) + (-4 *5 (-455)) + (-5 *2 + (-2 (|:| |gblist| (-645 (-247 *4 *5))) + (|:| |gvlist| (-645 (-567))))) + (-5 *1 (-632 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1160)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) + (-5 *1 (-751))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 (-410 (-953 *6)))) - (-5 *3 (-410 (-953 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-147))) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1188 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-109))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (-5 *1 (-560 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *1) (-5 *1 (-141)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1173 (-1173 *5)))) - (-5 *1 (-1215 *5)) (-5 *3 (-1173 (-1173 *5)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-830))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) + (-5 *2 (-1037)) (-5 *1 (-756))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1283 (-1178) *3)) (-4 *3 (-1051)) (-5 *1 (-1290 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *1 (-1292 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *1 *1) (|partial| -4 *1 (-1153)))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *1) (-5 *1 (-381)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1101)) (-4 *5 (-1101)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1217)) (-4 *2 (-1101)) - (-4 *2 (-851))))) + (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *5)))) + (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-2 (|:| -2706 *5) (|:| -3077 (-567))))) + (-5 *4 (-567)) (-4 *5 (-1244 *4)) (-5 *2 (-645 *5)) + (-5 *1 (-697 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1243 *2)) (-4 *2 (-1221)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1243 (-410 *4)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 - (-2 (|:| -2771 (-783 *3)) (|:| |coef1| (-783 *3)) - (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -2771 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-1177)) (|:| |c| (-1289 *3))))) - (-5 *1 (-1289 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1291 *3 *4))))) - (-5 *1 (-1291 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-851)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1050)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1135 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1050)) - (-5 *1 (-1161 *4))))) + (-3 (|:| |overq| (-1174 (-410 (-567)))) + (|:| |overan| (-1174 (-48))) (|:| -3668 (-112)))) + (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) + (-5 *2 (-112)) (-5 *1 (-1143 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) + (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2087 *6))) + (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1217)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1217)))) - ((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-847))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1101)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1159)) (-5 *1 (-1198))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) -(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) - (-5 *3 (-645 (-567))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) - (-5 *3 (-645 (-567)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1050))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1093 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331))))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) + (-4 *4 (-1244 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) + (-5 *1 (-698)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) + (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-922)) (-4 *5 (-559)) (-5 *2 (-690 *5)) - (-5 *1 (-957 *5 *3)) (-4 *3 (-657 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051)) + (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7)) + (-4 *6 (-1244 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) + (-4 *4 (-1244 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) + (-4 *6 (-1244 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1269))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) + (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-645 *8)) - (|:| |towers| (-645 (-1028 *5 *6 *7 *8))))) - (-5 *1 (-1028 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-645 *8)) - (|:| |towers| (-645 (-1147 *5 *6 *7 *8))))) - (-5 *1 (-1147 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1177)) - (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) + (-5 *2 (-1174 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1003) (-1202))) - (-5 *1 (-601 *4 *2 *3)) - (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1202)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) -(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1036)) (-5 *1 (-749))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1173 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-4 *3 (-1243 *4)) (-4 *2 (-1258 *4)) - (-5 *1 (-1261 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-112)) - (-5 *1 (-890 *4 *5)) (-4 *5 (-1101)))) + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893 *5)) (-4 *5 (-1101)) (-5 *2 (-112)) - (-5 *1 (-891 *5 *3)) (-4 *3 (-1217)))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) - (-4 *6 (-1217)) (-5 *2 (-112)) (-5 *1 (-891 *5 *6))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1101) (-1039 *5))) - (-4 *5 (-887 *4)) (-4 *4 (-1101)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-932 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-455)) (-4 *4 (-1102)) + (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) + (-5 *1 (-750))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) + ((*1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) - (-14 *4 (-645 (-1177))))) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) + (-14 *4 (-645 (-1178))))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) (-4 *1 (-285))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) - (-14 *5 (-922)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-14 *5 (-923)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4)))) + (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) + (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) + (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-922))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173 *6)) (-4 *6 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-1173 *7)) (-5 *1 (-322 *4 *5 *6 *7)) - (-4 *7 (-950 *6 *4 *5))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1101) (-34))) (-4 *6 (-13 (-1101) (-34))) - (-5 *2 (-112)) (-5 *1 (-1141 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-944 *4))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1159)) (-5 *1 (-787))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1141 *4 *5)) (-4 *4 (-13 (-1101) (-34))) - (-4 *5 (-13 (-1101) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5))))) + (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) + (-4 *3 (-1102))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-752))))) +(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) + (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) - (-247 *3 (-410 (-567))))) - (-14 *3 (-645 (-1177))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1267 (-700))) (-5 *1 (-306))))) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) + (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3845 *5)))) + (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) + (-4 *6 (-657 (-410 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) +(((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) + (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-567))))) + (-5 *1 (-363 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) + (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-772))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3458 (-567))))) + (-5 *1 (-421 *3)) (-4 *3 (-559))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) + (-4 *4 (-13 (-433 *7) (-27) (-1203))) + (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) + (-4 *4 (-13 (-433 *7) (-27) (-1203))) + (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))) +(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-2 (|:| -3015 (-1157 *4)) (|:| -3026 (-1157 *4)))) - (-5 *1 (-1163 *4)) (-5 *3 (-1157 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-4 *1 (-107 *3))))) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) + (-5 *1 (-348 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1174 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) + (-14 *3 (-645 (-1178)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) (((*1 *2 *3) - (-12 (-4 *1 (-896)) + (-12 (-4 *1 (-840)) (-5 *3 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) - (|:| |tol| (-225)))) - (-5 *2 (-1036))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1173 *4)) - (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-4 *2 (-901 *5)) (-5 *1 (-693 *5 *2 *3 *4)) - (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 (-410 (-567)))) (-5 *2 (-410 (-567))) - (-5 *1 (-190))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-645 (-1240 *5 *4))) - (-5 *1 (-1115 *4 *5)) (-5 *3 (-1240 *5 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-381)) (-5 *1 (-786 *3)) - (-4 *3 (-615 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) + (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) + (|:| |ub| (-645 (-844 (-225)))))) + (-5 *2 (-1037)))) ((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1219))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *1 *2) - (-12 (-5 *2 (-690 *5)) (-4 *5 (-1050)) (-5 *1 (-1055 *3 *4 *5)) - (-14 *3 (-772)) (-14 *4 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6)) - (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *9) (|:| |radicand| *9))) - (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-772)) - (-4 *9 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *8)) (-15 -1441 (*8 $)) (-15 -1455 (*8 $)))))))) + (-12 (-4 *1 (-840)) + (-5 *3 + (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) + (-5 *2 (-1037))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1159)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *4 (-1066 *6 *7 *8)) (-5 *2 (-1272)) - (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1072 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1101))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-509))) (-5 *2 (-509)) (-5 *1 (-486))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1) (-5 *1 (-141)))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) - (-5 *2 (-645 (-2 (|:| -3280 *5) (|:| -3827 *3)))) - (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) - (-4 *7 (-657 (-410 *6)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-351)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218))))) (((*1 *2 *1) - (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) + (-4 *2 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3920 (-645 (-2 (|:| |irr| *10) (|:| -2625 (-567))))))) + (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) + (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) + (-5 *2 + (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) + (|:| |corrfact| (-645 (-1174 *3))))) + (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1174 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-301)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1243 *4)) (-5 *1 (-808 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *5 (-657 (-410 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1243 *4)) (-5 *1 (-808 *4 *2 *5 *3)) - (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-657 *2)) - (-4 *3 (-657 (-410 *2)))))) + (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1273)) (-5 *1 (-832))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *2)) - (-2 (|:| -3763 *5) (|:| -4250 *2)))) - (-4 *2 (-238 (-2410 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-851)) (-4 *7 (-950 *4 *2 (-865 *3)))))) + (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) + (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) + (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1261 *3 *2)) + (-4 *2 (-1259 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) + (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) + (-4 *8 (-951 *3 *7 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) + (-4 *5 (-13 (-433 *4) (-1004) (-1203))) + (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203)))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-893 *4)) - (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1101)) (-4 *3 (-166 *5)))) + (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) + (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1095 (-844 (-381))))) - (-5 *2 (-645 (-1095 (-844 (-225))))) (-5 *1 (-306)))) + (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) + (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) - (-4 *4 (-1243 *3)))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) + (-4 *4 (-1244 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) - (-5 *2 (-1267 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 *3)))) + (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) + (-5 *2 (-1268 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) - (-4 *3 (-1101)))) + (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-539)))) - ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1217)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1243 *3)))) + (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) - (-4 *5 (-615 (-1177))) (-4 *4 (-794)) (-4 *5 (-851)))) + (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) + (-4 *5 (-615 (-1178))) (-4 *4 (-794)) (-4 *5 (-851)))) ((*1 *1 *2) - (-2797 - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) + (-2800 + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) + (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) ((*1 *1 *2) - (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) (-4 *3 (-1050)) + (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) - (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1159)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) + (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) - (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1110 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1159)) - (-5 *1 (-1146 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1182)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1197)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1197)))) + (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) + (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) + (-5 *1 (-1147 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) ((*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1177))) - (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *6 (-645 (-1177))))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) + (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *6 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) + (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) ((*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1177))) - (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) + (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-1173 (-1025 (-410 *4)))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1147 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1177))) - (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1050)) - (-5 *2 (-1267 (-1267 *5))) (-5 *1 (-1030 *5)) (-5 *4 (-1267 *5))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-847))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1173 *3)) - (-4 *3 (-13 (-433 *7) (-27) (-1202))) - (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1101)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) - (-5 *6 (-410 (-1173 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1202))) - (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 (-1173 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1173 *1)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1101)))) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-1174 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *5)) (-4 *5 (-1243 *3)) (-4 *3 (-308)) - (-5 *2 (-112)) (-5 *1 (-458 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1101)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) - (-4 *4 (-1101)) (-14 *5 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1202) (-960)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3621 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1105)) (-5 *3 (-775)) (-5 *1 (-52))))) + (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) + (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) + (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) - (-5 *4 (-645 (-1177))) (-5 *2 (-645 (-645 (-169 *5)))) + (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) + (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-5 *2 (-1159))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1243 (-169 *2)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) + (-12 (-5 *2 - (-645 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 (-169 *4))))))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4418)) (-4 *1 (-1011 *3)) - (-4 *3 (-1217))))) -(((*1 *1) (-5 *1 (-618)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1867 *3)))) - (-5 *4 (-772)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3))))) + (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) + (-247 *3 (-410 (-567))))) + (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) +(((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3))))) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1013)) (-5 *2 (-863))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) (-4 *6 (-455)) - (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) - (-4 *5 (-13 (-365) (-849)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1101)) - (-5 *1 (-679 *2))))) + (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) + (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-752))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *4))))))) - (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) - (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-2 (|:| -2703 (-1173 *6)) (|:| -4250 (-567))))) - (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050))))) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) + ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) + (-5 *3 (-567))))) (((*1 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1178)) + (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-794)) + (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) + (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *3 + (-13 (-851) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) + (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *6)) + (-4 *6 + (-13 (-851) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) + (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) + (-4 *2 (-951 (-954 *4) *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) + (-4 *3 (-615 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) + (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) + (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) + (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) + (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) + (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))) +(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) + (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) + (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-5 *1 (-990 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-4 *3 (-559))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1075)))) + (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-5 *1 (-1109 *3 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-772))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) + (-5 *3 (-410 (-567))) (-5 *1 (-1162 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) + (-5 *2 (-645 (-1178))) (-5 *1 (-1078 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) + (-5 *1 (-679 *2))))) +(((*1 *1) (-5 *1 (-618)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-823))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) + (-5 *1 (-907 *3)) (-4 *3 (-1102))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-241))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1174 *4))) (-5 *1 (-359 *4)) + (-5 *3 (-1174 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) - (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1258 *5)) (-5 *2 (-645 *6)) - (-5 *1 (-1260 *5 *6))))) + (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1244 *5)) + (-5 *1 (-808 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1244 *5)) + (-5 *1 (-808 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) + (-4 *6 (-657 (-410 *2)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) + (-12 (-5 *2 (-863)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) + (-4 *3 (-1218))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1226))) (-5 *3 (-1226))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1101)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) + (-4 *2 (-1259 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) + (-4 *5 (-1244 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) + (-4 *2 (-1259 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) + (-5 *1 (-545 *4 *2)) (-4 *2 (-1259 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) + (-5 *1 (-1154 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1217)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-675 *4))))) + (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) + (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3950 (-567)) (|:| -3920 (-645 *3)))) + (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-645 (-1177))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-645 (-1178))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) @@ -3095,51 +3164,51 @@ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1050) (-851))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1177))))) + (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-5 *2 (-240 *5 *7)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-295 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-295 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1159)) (-5 *5 (-613 *6)) - (-4 *6 (-303)) (-4 *2 (-1217)) (-5 *1 (-298 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1160)) (-5 *5 (-613 *6)) + (-4 *6 (-303)) (-4 *2 (-1218)) (-5 *1 (-298 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) - (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *9 (-365)) (-4 *10 (-1243 *9)) (-4 *11 (-1243 (-410 *10))) + (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *9 (-365)) (-4 *10 (-1244 *9)) (-4 *11 (-1244 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1221)) (-4 *8 (-1221)) - (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) (-4 *9 (-1243 *8)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1222)) (-4 *8 (-1222)) + (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *9 (-1244 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1243 (-410 *9))))) + (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1244 (-410 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1217)) (-4 *6 (-1217)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-1101)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-1102)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6)))) @@ -3148,36 +3217,36 @@ (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) - (-4 *6 (-993 *5)) (-4 *7 (-1243 *6)) - (-4 *8 (-13 (-412 *6 *7) (-1039 *6))) (-4 *9 (-308)) - (-4 *10 (-993 *9)) (-4 *11 (-1243 *10)) + (-4 *6 (-994 *5)) (-4 *7 (-1244 *6)) + (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) + (-4 *10 (-994 *9)) (-4 *11 (-1244 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-412 *10 *11) (-1039 *10))))) + (-4 *12 (-13 (-412 *10 *11) (-1040 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1218)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1101)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-851)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -4012 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -1752 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) - (-5 *2 (-2 (|:| -4012 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -1752 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -3197,4232 +3266,4401 @@ (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-602 *8)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-602 *7)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-602 *7)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1157 *7)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1158 *7)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-645 *8)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1050)) (-4 *8 (-1050)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1050)) - (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) + (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) - (-4 *6 (-1243 *5)) (-4 *2 (-1243 (-410 *8))) - (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1243 (-410 *6))) - (-4 *8 (-1243 *7)))) + (-4 *6 (-1244 *5)) (-4 *2 (-1244 (-410 *8))) + (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1244 (-410 *6))) + (-4 *8 (-1244 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1050)) (-4 *9 (-1050)) - (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-950 *9 *7 *5)) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) + (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) - (-4 *4 (-950 *8 *6 *5)))) + (-4 *4 (-951 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) - (-4 *9 (-1050)) (-4 *2 (-950 *9 *8 *6)) + (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) - (-4 *4 (-950 *9 *7 *5)))) + (-4 *4 (-951 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-736 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *1 (-833 *5 *6)))) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-5 *1 (-843 *5 *6)))) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-890 *5 *6)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-890 *5 *7)) - (-5 *1 (-889 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) + (-5 *1 (-890 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) - (-4 *8 (-1050)) (-4 *6 (-794)) + (-4 *8 (-1051)) (-4 *6 (-794)) (-4 *2 - (-13 (-1101) - (-10 -8 (-15 -3024 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) - (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7)))) + (-13 (-1102) + (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) + (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-959 *6)) (-5 *1 (-958 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1050)) - (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-794)) + (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) + (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) - (-5 *1 (-985 *4 *5 *6 *2)))) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) + (-5 *1 (-986 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) - (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5)))) + (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-998 *6)) (-5 *1 (-999 *4 *5 *2 *6)) (-4 *4 (-998 *5)))) + (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) - (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) + (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) - (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) + (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1050)) (-4 *10 (-1050)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *2 (-1054 *5 *6 *10 *11 *12)) - (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) + (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-1095 *6)) (-5 *1 (-1090 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-849)) - (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-645 *6)) - (-5 *1 (-1090 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) + (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6)) + (-5 *1 (-1091 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-1093 *6)) (-5 *1 (-1092 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1096 *4 *2)) (-4 *4 (-849)) - (-4 *2 (-1150 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) + (-4 *2 (-1151 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1156 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) - (-4 *6 (-1217)) (-4 *7 (-1217)) (-4 *8 (-1217)) (-5 *2 (-1157 *8)) - (-5 *1 (-1156 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7)) + (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) + (-5 *1 (-1157 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-14 *7 (-1177)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1177)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1227 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1178)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-1234 *6)) (-5 *1 (-1233 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5)) (-4 *5 (-849)) - (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1157 *6)) - (-5 *1 (-1233 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-849)) + (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6)) + (-5 *1 (-1234 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1240 *5 *6)) (-14 *5 (-1177)) - (-4 *6 (-1050)) (-4 *8 (-1050)) (-5 *2 (-1240 *7 *8)) - (-5 *1 (-1235 *5 *6 *7 *8)) (-14 *7 (-1177)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1178)) + (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1241 *7 *8)) + (-5 *1 (-1236 *5 *6 *7 *8)) (-14 *7 (-1178)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) - (-4 *2 (-1243 *6)) (-5 *1 (-1241 *5 *4 *6 *2)) (-4 *4 (-1243 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) + (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *4 *6 *2)) (-4 *4 (-1244 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1050)) - (-4 *6 (-1050)) (-14 *7 (-1177)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1177)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1051)) + (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1178)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) - (-4 *2 (-1258 *6)) (-5 *1 (-1256 *5 *6 *4 *2)) (-4 *4 (-1258 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) + (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *6 *4 *2)) (-4 *4 (-1259 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-1217)) - (-4 *6 (-1217)) (-5 *2 (-1267 *6)) (-5 *1 (-1266 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) + (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1267 *5)) - (-4 *5 (-1217)) (-4 *6 (-1217)) (-5 *2 (-1267 *6)) - (-5 *1 (-1266 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1268 *5)) + (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6)) + (-5 *1 (-1267 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-1290 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-847))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-1203 *3))) (-5 *1 (-1203 *3)) (-4 *3 (-1101))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1189 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) + (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1160)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) + (-4 *4 (-1102)))) + ((*1 *1 *2) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-645 + (-2 + (|:| -1795 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -4237 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1158 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1604 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-562))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160))))) +(((*1 *2 *3) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) + (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) + (-4 *3 (-1244 *6)) (-4 *7 (-951 *6 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1244 *5)) + (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-1174 (-567)))) (-5 *3 (-1174 (-567))) + (-5 *1 (-575)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-1174 *1))) (-5 *3 (-1174 *1)) + (-4 *1 (-911))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) + (-4 *4 (-870 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) - (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-922)))) - ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) + (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-567)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-1259 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-559))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) + (-12 (-4 *1 (-1230 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1259 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) + ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) + (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-1268 *2)) (-4 *5 (-308)) + (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) + (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1244 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-923)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-793)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1249 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) + (-4 *4 (-688 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-991)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) + (-4 *1 (-433 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) + (-4 *1 (-433 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) + (-4 *1 (-433 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-772)))) + (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-772)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-567)))) + (-5 *1 (-952 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) + (-15 -1460 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-433 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) + (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) + ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) + (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) + (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) + (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-410 (-567))) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1159)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1101)) - (-4 *4 (-1101)))) - ((*1 *1 *2) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) + (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-2 (|:| -3148 (-1157 *4)) (|:| -3157 (-1157 *4)))) - (-5 *1 (-1163 *4)) (-5 *3 (-1157 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1267 *5)) (-5 *3 (-772)) (-5 *4 (-1121)) (-4 *5 (-351)) - (-5 *1 (-531 *5))))) + (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) + (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) + (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) + (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) + (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) + (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) + (-5 *1 (-786 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1243 *4)) (-5 *2 (-1272)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1243 (-410 *5))) (-14 *7 *6)))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *1) (-12 - (-5 *3 + (-5 *2 (-645 - (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 *2)) - (|:| |logand| (-1173 *2))))) - (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-365)) (-5 *1 (-588 *2))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-567))))) + (-5 *1 (-421 *3)) (-4 *3 (-559)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1244 *3)) + (-5 *2 (-645 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) + (-4 *6 (-1244 *5))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) + (-4 *4 (-1244 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1244 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1244 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) + (-4 *3 (-412 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1244 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) + (-4 *4 (-412 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1211 *5 *6 *7 *3)) + (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1243 *6)) - (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) - (-4 *8 (-1243 (-410 *7))) (-5 *2 (-588 *3)) - (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 (-317 (-225)))) - (-5 *2 - (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) - (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) - (-5 *1 (-306))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) - (-5 *2 (-645 (-1077 *3 *4 *5))) (-5 *1 (-1078 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-439))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) + (-5 *1 (-1295 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) + (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) + (-4 *4 (-365)) (-4 *4 (-1051)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) + (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051))))) +(((*1 *1) (-5 *1 (-1181)))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1178)) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-295 (-834 *3))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-834 (-953 *5)))) (-4 *5 (-455)) - (-5 *2 (-834 (-410 (-953 *5)))) (-5 *1 (-638 *5)) - (-5 *3 (-410 (-953 *5))))) + (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) + (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) + (-4 *4 (-1051)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) - (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1173 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3))))) -(((*1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) - (-5 *2 (-1036)) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-966)))) - ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-990)))) - ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1101) (-34))) (-5 *1 (-1141 *2 *3)) - (-4 *3 (-13 (-1101) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) + (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) + (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) - (-4 *2 (-1258 *3))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1237 *4 *2)) (-4 *2 (-1243 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1217)) (-4 *3 (-1217))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1011 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) + (-5 *1 (-1030 *4)) (-4 *4 (-1051))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2754 *4))) (-5 *1 (-970 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1177))) (-4 *6 (-455)) - (-5 *2 - (-2 (|:| |dpolys| (-645 (-247 *5 *6))) - (|:| |coords| (-645 (-567))))) - (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) + (-12 (-4 *4 (-1244 *2)) (-4 *2 (-1222)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1244 (-410 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-645 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1062 (-1025 *3) (-1173 (-1025 *3)))) - (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-5 *2 - (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) - (|:| |singularities| (-1157 (-225))))) - (-5 *1 (-105))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-645 *5)) - (-5 *1 (-891 *4 *5)) (-4 *5 (-1217))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2564 *7)))) - (-4 *6 (-1066 *3 *4 *5)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2564 *7)))) - (-4 *6 (-1066 *3 *4 *5)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1108 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-410 (-1173 (-317 *3)))) (-4 *3 (-559)) - (-5 *1 (-1131 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) + (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2771 (-783 *3)) (|:| |coef1| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -2771 *1) (|:| |coef1| *1))) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-787))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-972))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) - (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1272)) (-5 *1 (-832))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) + *6)) + (-4 *6 (-365)) (-4 *7 (-1244 *6)) + (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) + (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) ((*1 *2 *1) - (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1101)) + (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) (-14 *4 - (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *3)) - (-2 (|:| -3763 *2) (|:| -4250 *3))))))) -(((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-645 (-2 (|:| -2703 (-567)) (|:| -4250 (-567)))))))) + (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) + (-2 (|:| -3768 *2) (|:| -3458 *3))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1037)) (-5 *1 (-749))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552)))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) - (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-562))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2754 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) - (-4 *3 (-1217))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-851))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) + (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *7))) + (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1244 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) + (-4 *4 (-851)) (-5 *1 (-1189 *4))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) + (-4 *3 (-1073 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) + (|:| |f4| (-645 *5)))) + (-5 *1 (-1189 *6)) (-5 *4 (-645 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) + (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) + (-4 *5 (-1244 (-410 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1269))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) + (-247 *3 (-410 (-567))))) + (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1217)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-341 *3 *4 *5)) + (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) - (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))))) + (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386)))) + (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) + (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) + (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) + (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399)))) + (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) + (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-410 (-953 (-567))))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-410 (-953 (-381))))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-953 (-567)))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-953 (-381)))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-317 (-567)))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1267 (-317 (-381)))) (-4 *1 (-444)))) + (|partial| -12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1243 *5)) - (-5 *2 (-1173 (-1173 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) - (-4 *3 (-1243 *6)) (-14 *7 (-922)))) + (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) + (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) + (-4 *3 (-1244 *6)) (-14 *7 (-923)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1039 *2)) (-4 *2 (-1217)))) + (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *1 (-978 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) - (|partial| -2797 - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) - (-1653 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (|partial| -2800 + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) + (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-548))) (-1653 (-4 *3 (-38 (-410 (-567))))) - (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) + (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) - (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) + (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) ((*1 *1 *2) - (|partial| -2797 - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) + (|partial| -2800 + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) + (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) - (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) - (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) - (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) - (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) - (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) - (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1180))))) -(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225)))))) + (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-567)) (-14 *4 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-911))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1244 *4)) + (-5 *2 (-1268 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) + (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-1159))))) + (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) + (-5 *1 (-920 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-867 *4 *5 *6 *7)) - (-4 *4 (-1050)) (-14 *5 (-645 (-1177))) (-14 *6 (-645 *3)) - (-14 *7 *3))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) + (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) - (-14 *8 (-645 *5)) (-5 *2 (-1272)) - (-5 *1 (-1279 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5)) - (-14 *9 (-645 *3)) (-14 *10 *3)))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-1203 *3))) (-5 *1 (-1203 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) - (-4 *5 (-851)) (-5 *2 (-953 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) - (-4 *5 (-851)) (-5 *2 (-953 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1258 *4)) (-4 *4 (-1050)) - (-5 *2 (-953 *4)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1102))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1268 (-1178))) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) + (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) + (-14 *6 (-645 *2)) (-14 *7 (-1268 (-690 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1268 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) + (-14 *6 (-1268 (-690 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1268 (-1178))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) + (-14 *6 (-1268 (-690 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1268 (-690 *3))))) + ((*1 *1) + (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) + (-14 *4 (-645 (-1178))) (-14 *5 (-1268 (-690 *2)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) + (-4 *2 (-1218))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) + (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218))))) +(((*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1244 *5)) + (-5 *1 (-728 *5 *2)) (-4 *5 (-365))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 (-645 *4))) (-4 *4 (-851)) + (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-645 *7) *7 (-1174 *7))) (-5 *5 (-1 (-421 *7) *7)) + (-4 *7 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3845 *3)))) + (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) + (-4 *8 (-657 (-410 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 + (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3845 (-655 *6 (-410 *6)))))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-492 *3)) + (-4 *3 (-1218))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1258 *4)) (-4 *4 (-1050)) - (-5 *2 (-953 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) - (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1095 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225)))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) + (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-567)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) - (-5 *1 (-452 *5 *6 *7 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1101)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1095 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1095 (-225)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-922)) (-5 *1 (-787))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3))))) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) (((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-1272)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-452 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-794)) (-4 *2 (-267 *4))))) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268 (-700))) (-5 *1 (-306))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-757))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) - (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1016 *4 *5)) (-5 *3 (-410 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) - (-4 *2 (-1101))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1103 (-772))) (-5 *6 (-772)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) - (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1234 (-567)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) - (-5 *1 (-715 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-112))))) + (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-1101)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-922)))) + (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) + (-4 *5 (-851)) (-5 *2 (-954 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) + (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) + (-4 *5 (-851)) (-5 *2 (-954 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) - (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *2 (-1272)) - (-5 *1 (-1180)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1177)) - (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *2 (-1272)) - (-5 *1 (-1180))))) + (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) + (-5 *2 (-954 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) + (-5 *2 (-954 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) + (-14 *4 (-645 (-1178))))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-453 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-453 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) + (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3686 *3) (|:| |gap| (-772)) (|:| -1598 (-783 *3)) - (|:| -1608 (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 - (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1598 *1) - (|:| -1608 *1))) - (-4 *1 (-1066 *4 *5 *3)))) + (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1146)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) + (-5 *1 (-1209 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) + (-4 *4 (-1244 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| -3694 *4) (|:| -3102 *3) (|:| -4194 *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 - (-2 (|:| -3686 *1) (|:| |gap| (-772)) (|:| -1598 *1) - (|:| -1608 *1))) - (-4 *1 (-1066 *3 *4 *5))))) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| -3694 *3) (|:| -3102 *1) (|:| -4194 *1))) + (-4 *1 (-1244 *3))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) + (-4 *5 (-1244 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) + (-5 *3 (-410 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129)))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -3794 *4) (|:| -2415 (-567))))) - (-4 *4 (-1101)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4))))) + (-12 (-5 *3 (-567)) (-4 *4 (-1244 (-410 *3))) (-5 *2 (-923)) + (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-830))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) + (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) + (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) + (-5 *1 (-892 *4 *5)) (-4 *5 (-1218))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1173 (-1173 *4)))) - (-5 *1 (-1215 *4)) (-5 *3 (-1173 (-1173 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1177)) (-4 *1 (-27)) - (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *2 (-645 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1177))) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) - (-5 *2 (-645 (-1095 (-225)))) (-5 *1 (-929))))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1291 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) + (-12 (-5 *3 (-1292 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) + (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-820 *4)) (-4 *1 (-1284 *4 *2)) (-4 *4 (-851)) - (-4 *2 (-1050)))) + (-12 (-5 *3 (-820 *4)) (-4 *1 (-1285 *4 *2)) (-4 *4 (-851)) + (-4 *2 (-1051)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1050)) (-5 *1 (-1290 *2 *3)) (-4 *3 (-847))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1217))))) + (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) + (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1213 (-928))) + (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1160)) + (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) + (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1160)) + (-5 *2 (-1213 (-928))) (-5 *1 (-319))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) + (-4 *2 (-1102))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *1 (-804))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-807 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1036)) (-5 *1 (-749))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1101)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1101)) (-5 *1 (-103 *2))))) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3788 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1134 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) + (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 *5)) (-5 *4 (-1093 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) + (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) + (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-5 *2 (-1134 (-225))) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1134 (-225))) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-883 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) + (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-883 *5)) (-5 *4 (-1093 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1134 (-225))) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) + (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (|has| *1 (-6 -4408)) (-4 *1 (-407)) - (-5 *2 (-922))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1182) (-772)))) (-5 *1 (-334))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-301)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1159)) (-5 *1 (-306))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) - (-4 *4 (-870 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-1229 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-1258 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1229 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1258 *2))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))))) + (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1272)) - (-5 *1 (-1180)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1272)) - (-5 *1 (-1180))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1243 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) - (-4 *10 (-950 *9 *7 *8)) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-923)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1146)))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) + (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752))))) +(((*1 *2) + (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *2 - (-2 (|:| |deter| (-645 (-1173 *10))) - (|:| |dterm| - (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) - (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1173 *10)) (-5 *4 (-645 *6)) - (-5 *5 (-645 *10))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1243 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3))))) + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1244 (-567))) + (-5 *2 + (-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) + (|:| |basisInv| (-690 (-567))))) + (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) + (-5 *2 + (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-690 *4)))) + (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) + (-5 *2 + (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-690 *4)))) + (-5 *1 (-1277 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) +(((*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1252 *4 *5 *6)) - (|:| |%expon| (-320 *4 *5 *6)) - (|:| |%expTerms| - (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) - (|:| |%type| (-1159)))) - (-5 *1 (-1253 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1202) (-433 *3))) - (-14 *5 (-1177)) (-14 *6 *4)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-567)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1243 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) + (-4 *1 (-433 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *3)) (-4 *3 (-1101)) - (-5 *2 (-645 (-2 (|:| -4232 *3) (|:| -3439 (-772)))))))) + (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) + (-5 *1 (-952 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) + (-15 -1460 (*7 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3))))) (((*1 *1) - (-12 (-4 *3 (-1101)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1101)) + (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) - ((*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-904 *3))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) + ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3951 *1) (|:| -4405 *1) (|:| |associate| *1))) + (-4 *1 (-559))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-192))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851))))) + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *1 *1 *1) (-4 *1 (-969)))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-897 *2 *4)) - (-4 *2 (-1243 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) + (-4 *1 (-369 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) + (-4 *1 (-372 *4 *5)) (-4 *5 (-1244 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) + (-4 *4 (-1244 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))) (((*1 *1 *1) (-5 *1 (-863))) ((*1 *2 *1) - (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1158)))) - ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1177))))) + (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) + ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1178))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) + (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1244 *3)) (-5 *1 (-402 *3 *2)) + (-4 *3 (-13 (-365) (-147)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) + (-4 *3 (-1067 *4 *5 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) + (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-847))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-410 (-567)))) + (-5 *2 (-2 (|:| -2987 (-1158 *4)) (|:| -2999 (-1158 *4)))) + (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1218))))) (((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1067))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) - (-5 *1 (-1161 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) - (-14 *4 (-1177)) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) - (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1072 *5 *6 *7 *8)) - (-4 *10 (-1110 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) - (-5 *1 (-629 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1177))) - (-5 *2 - (-645 (-1147 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) - (-5 *1 (-629 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1177))) (-5 *2 (-645 (-1047 *5 *6))) - (-5 *1 (-1047 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1147 *5 *6 *7 *8))) (-5 *1 (-1147 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1210 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -4176 (-421 *3)) (|:| |special| (-421 *3)))) - (-5 *1 (-728 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-906 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-1152)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159))))) (((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-990)))) + (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-991)))) ((*1 *2 *1) - (-12 (-4 *4 (-1217)) (-5 *2 (-1177)) (-5 *1 (-1058 *3 *4)) - (-4 *3 (-1094 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1093 *3)) (-4 *3 (-1217)))) + (-12 (-4 *4 (-1218)) (-5 *2 (-1178)) (-5 *1 (-1059 *3 *4)) + (-4 *3 (-1095 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1094 *3)) (-4 *3 (-1218)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-5 *2 (-1177)))) - ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1263 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-5 *2 (-1178)))) + ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) - (-4 *5 (-559)) (-5 *2 (-645 (-645 (-953 *5)))) (-5 *1 (-1186 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-910)) (-4 *6 (-794)) - (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-421 (-1173 *8))) - (-5 *1 (-907 *5 *6 *7 *8)) (-5 *4 (-1173 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) - (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-494))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *6)))) + (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1178)) (-5 *7 (-410 (-567))) + (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) + (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) + (-5 *1 (-554 *6 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1268)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1268)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1095 (-381))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1095 (-381))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1270)) (-5 *1 (-256)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1095 (-381))) - (-5 *2 (-1269)) (-5 *1 (-256)))) + (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) + (-5 *2 (-1270)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-1177)) (-5 *5 (-645 (-264))) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1039 (-567)))) - (-5 *2 (-1268)) (-5 *1 (-257 *6 *7)))) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-1178)) (-5 *5 (-645 (-264))) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) + (-5 *2 (-1269)) (-5 *1 (-257 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) - (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) + (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1268)) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-878 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1268)) + (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-878 *5)) (-5 *4 (-1093 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1268)) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) + (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) + (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 *5)) (-5 *4 (-1093 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) + (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) + (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) - (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) + (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1093 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1101))))) + (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-615 (-539)) (-1102))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-883 *6)) (-5 *4 (-1093 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) + (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) + (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-883 *5)) (-5 *4 (-1093 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1101))) (-5 *2 (-1269)) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) + (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268)) (-5 *1 (-261)))) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1268)) + (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *2 (-1268)) (-5 *1 (-261)))) + (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1269)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-645 (-264))) - (-5 *2 (-1268)) (-5 *1 (-261)))) + (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) + (-5 *2 (-1269)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261)))) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) + (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) + (-5 *2 (-1037)) (-5 *1 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-1178)) (-4 *6 (-433 *5)) + (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) + (-4 *4 (-267 *3)) (-4 *5 (-794))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1101)) + (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) (-5 *1 (-613 *5))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1291 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-820 *3)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-1238 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) - (-5 *2 - (-645 - (-2 (|:| |outval| *4) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 *4)))))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-331))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *9)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *8 (-1050)) (-4 *2 (-950 *9 *7 *5)) + (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) + (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) - (-4 *4 (-950 *8 *6 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-172))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269))))) + (-4 *4 (-951 *8 *6 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-306)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 (-410 *2))) - (-4 *2 (-1243 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1221)) - (-4 *4 (-1243 (-410 *2))) (-4 *2 (-1243 *3))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1178)) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-4 *4 (-13 (-29 *6) (-1203) (-961))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) + (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) + (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *9 (-1067 *6 *7 *8)) + (-5 *2 + (-645 + (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) + (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) + (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *9 (-1067 *6 *7 *8)) + (-5 *2 + (-645 + (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) + (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270))))) +(((*1 *2 *1) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) + (-5 *2 (-1037)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) - (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3827 *5)))) - (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) - (-4 *6 (-657 (-410 *5)))))) + (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1178)) (-5 *1 (-539))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1244 *6)) + (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *1 *1) + (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) + (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *2)) + (-2 (|:| -3768 *5) (|:| -3458 *2)))) + (-4 *2 (-238 (-2414 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3)))))) (((*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-953 (-567))) (-5 *3 (-1177)) - (-5 *4 (-1095 (-410 (-567)))) (-5 *1 (-30))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-757))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1141 *3 *2)) (-4 *3 (-13 (-1101) (-34))) - (-4 *2 (-13 (-1101) (-34)))))) +(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) + (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $)))))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) - (-14 *4 (-645 (-1177))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) - (-14 *4 (-645 (-1177)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-455)) (-4 *4 (-1101)) - (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4))))) -(((*1 *1 *2) - (-12 + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) + (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-14 *5 (-645 (-1178))) (-5 *2 - (-645 - (-2 - (|:| -1791 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -4232 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2221 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-562))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1111))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1217)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) - (-14 *3 (-922)) (-4 *4 (-1050))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4)))) + (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) + (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) + (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) + (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) + (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-531 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381))))) + (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) + (-5 *1 (-1294 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-13 (-455) (-147))) + (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *2)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1159)) (-5 *1 (-787))))) -(((*1 *1 *1) (-4 *1 (-630))) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) + (-5 *2 (-645 (-645 (-645 (-772)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) + (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-1221)) - (-4 *6 (-1243 (-410 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-344 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) + (-14 *4 (-567))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) + (-5 *3 (-645 (-567))))) ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) + (-5 *3 (-645 (-567)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))) +(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) + (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) + ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) + ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1174 *3)) + (-4 *3 (-13 (-433 *7) (-27) (-1203))) + (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) + (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1203))) + (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) + (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) + (-5 *2 (-645 (-645 (-645 (-945 *3)))))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) + (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) + (-4 *5 (-951 *4 (-534 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1178)) (-5 *1 (-1212 *4)) + (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1040 (-48))) + (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) + (-5 *2 (-421 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) + (-4 *3 (-1244 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1095 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-794)) + (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) - (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) + (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1202))))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1093 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1202))) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1169 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)))) - (-5 *2 (-410 (-953 *5))) (-5 *1 (-1170 *5)) (-5 *3 (-953 *5)))) + (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203))) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1170 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)))) - (-5 *2 (-3 (-410 (-953 *5)) (-317 *5))) (-5 *1 (-1170 *5)) - (-5 *3 (-410 (-953 *5))))) + (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) + (-5 *2 (-410 (-954 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-954 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-953 *5))) (-5 *3 (-953 *5)) - (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 *3)) - (-5 *1 (-1170 *5)))) + (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) + (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1171 *5)) + (-5 *3 (-410 (-954 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) - (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 *3 (-317 *5))) - (-5 *1 (-1170 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) - (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) - (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-567))) - (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))) + (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) + (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) + (-5 *1 (-1171 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) - (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1173 (-410 (-567)))) - (-5 *1 (-436 *5 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1125 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-690 (-1173 *8))) (-4 *5 (-1050)) (-4 *8 (-1050)) - (-4 *6 (-1243 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) - (-4 *7 (-1243 *6))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1145)))) + (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) + (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) + (-5 *1 (-1171 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) - (-5 *2 (-645 *4)) (-5 *1 (-1115 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1243 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-4 *3 (-901 *5)) (-5 *2 (-690 *3)) - (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1190 (-922) (-772)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) + (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2254 (-645 *7)))) - (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) - (-5 *1 (-440))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-241))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2956 *6) (|:| |sol?| (-112))) (-567) - *6)) - (-4 *6 (-365)) (-4 *7 (-1243 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-944 *4)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) - (-5 *1 (-749))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-682)))) - ((*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-1216)) (-5 *1 (-1074)))) - ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1119))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-1253 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1202) (-433 *3))) (-14 *5 (-1177)) - (-14 *6 *4)))) -(((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *1) (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1188))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) + (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 - (-645 - (-2 - (|:| -1791 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -4232 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2221 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-562)))) - ((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) - (-5 *2 (-645 *4))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *4 (-1177)) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1267 (-567))) (-5 *3 (-567)) (-5 *1 (-1111)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1267 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) - (-5 *1 (-1111))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) - (-12 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) (-5 *2 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1177))) (-14 *5 (-772)) - (-5 *1 (-508 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1217)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-675 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-772))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1243 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269))))) + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) + (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-4 *4 (-1217)) (-5 *2 (-112)) - (-5 *1 (-1157 *4))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) + (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *1)))) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34)))))) (((*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6)))) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-1272)) - (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1072 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-682)))) + ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-972)))) + ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-1075)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1120))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) + (-4 *3 (-1102)) (-4 *5 (-667 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) + (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-410 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-559)) + (-4 *4 (-1051)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *5 *6 *2)) + (-4 *6 (-657 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)) + (-5 *3 (-645 *4))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *2 (-1037)) (-5 *1 (-306))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-751))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1243 *4)) - (-5 *1 (-923 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) + (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-645 (-2 (|:| -2706 (-1174 *9)) (|:| -3458 (-567))))))) + (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) + (-5 *2 (-2 (|:| -3694 (-567)) (|:| |var| (-613 *1)))) + (-4 *1 (-433 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) + ((*1 *1 *1) (-5 *1 (-863)))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1125 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) + (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-107 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2623 (-645 *6))) + *7 *6)) + (-4 *6 (-365)) (-4 *7 (-657 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1268 *6) "failed")) + (|:| -2623 (-645 (-1268 *6))))) + (-5 *1 (-814 *6 *7)) (-5 *4 (-1268 *6))))) (((*1 *1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) - (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1061)) (-4 *3 (-1202)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) (((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1268 (-3 (-471) "undefined"))) (-5 *1 (-1269))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) + (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-14 *6 (-1178)) (-14 *7 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4)) - (-4 *4 (-1050))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) - (-4 *1 (-1072 *4 *5 *6 *3))))) + (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) + (-4 *3 (-13 (-433 *4) (-1004)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) + (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) + (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) - (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) - (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-682)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1120))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) + (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) + (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) (((*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| -2774 *1) (|:| |coef2| *1))) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) (((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-645 (-1182))) (-5 *1 (-881))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1101))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1177)) (-14 *5 *3)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)) (-4 *2 (-851)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) - (-14 *3 (-922)) (-4 *4 (-1050)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) + (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) + (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6)) + (-14 *7 (-923))))) +(((*1 *2 *3) + (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) + (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) + ((*1 *2 *3) + (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) + (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1244 *5)) + (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1244 *4)) + (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) + (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) + (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) + (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) + (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) + (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) + (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) +(((*1 *1) (-5 *1 (-440)))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-5 *1 (-989 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) + (-4 *2 (-1259 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-5 *1 (-1108 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) - (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-682)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1119))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-437)) - (-5 *2 - (-645 - (-3 (|:| -1988 (-1177)) - (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567))))))))) - (-5 *1 (-1181))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1007))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1243 *6)) - (-4 *6 (-13 (-365) (-147) (-1039 *4))) (-5 *4 (-567)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3827 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1016 *6 *3))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-953 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *5)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *5)))))))))) - (-5 *4 (-1159)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-950 *5 *7 *6)) - (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-567)) - (-5 *1 (-925 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177))))) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) + (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1259 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) + (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1177))) - (-4 *2 (-13 (-433 (-169 *5)) (-1003) (-1202))) (-4 *5 (-559)) - (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1003) (-1202)))))) -(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (|has| *1 (-6 -4408)) (-4 *1 (-407)) - (-5 *2 (-922))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1101)) - (-5 *1 (-679 *2)))) + (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *1 (-915 *3 *2)) + (-4 *2 (-1244 (-410 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) + (-4 *2 (-1259 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) + (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1259 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1101)) (-5 *1 (-683 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) + (-5 *1 (-1154 *3))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-439))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))) - (-5 *4 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))) (-5 *4 (-410 (-567))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -2944 *5) (|:| -2956 *5)))) (-5 *1 (-1021 *3)) - (-4 *3 (-1243 (-567))) (-5 *4 (-2 (|:| -2944 *5) (|:| -2956 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567)))) - (-5 *4 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -2944 *4) (|:| -2956 *4)))) (-5 *1 (-1022 *3)) - (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -2944 *5) (|:| -2956 *5)))) (-5 *1 (-1022 *3)) - (-4 *3 (-1243 *5)) (-5 *4 (-2 (|:| -2944 *5) (|:| -2956 *5)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) - (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217))))) +(((*1 *1) (-5 *1 (-824)))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1178)) + (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) + (-5 *2 + (-2 (|:| -1752 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) + (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) - (-5 *2 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) - (-5 *1 (-348 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-410 (-953 *6)) (-1166 (-1177) (-953 *6)))) - (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *6))))) - (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-953 *6)))))) - ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-410 (-953 *5)) (-1166 (-1177) (-953 *5)))) - (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) - (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5))))))) -(((*1 *1) (-5 *1 (-157)))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) + (-4 *4 (-455)) (-4 *6 (-851))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) + (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331))))) (((*1 *1 *1) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34)))))) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) + (-4 *2 (-455)))) + ((*1 *1 *1) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) + (-4 *4 (-1244 (-410 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *3 (-455)))) + ((*1 *1 *1) + (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1165 *3 *2)) + (-4 *2 (-1244 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162))))) -(((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) - (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) + (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) + (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1146 *5 *6 *7 *8 *9))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-645 (-1173 *13))) (-5 *3 (-1173 *13)) - (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) - (-5 *7 (-645 (-645 (-2 (|:| -4379 (-772)) (|:| |pcoef| *13))))) - (-5 *8 (-645 (-772))) (-5 *9 (-1267 (-645 (-1173 *10)))) - (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-950 *10 *11 *12)) - (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) - (-4 *3 (-166 *6)) (-4 (-953 *6) (-887 *5)) - (-4 *6 (-13 (-887 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-890 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-887 *4)) - (-4 *4 (-1101)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) - (-4 *6 (-13 (-1101) (-1039 *3))) (-4 *3 (-887 *5)) - (-5 *1 (-932 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) - (-4 *3 (-13 (-433 *6) (-615 *4) (-887 *5) (-1039 (-613 $)))) - (-5 *4 (-893 *5)) (-4 *6 (-13 (-559) (-887 *5))) - (-5 *1 (-933 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 (-567) *3)) (-5 *4 (-893 (-567))) (-4 *3 (-548)) - (-5 *1 (-934 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1101)) - (-4 *6 (-13 (-1101) (-1039 (-613 $)) (-615 *4) (-887 *5))) - (-5 *4 (-893 *5)) (-5 *1 (-935 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1101)) - (-4 *6 (-887 *5)) (-4 *3 (-667 *6)) (-5 *1 (-936 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-890 *6 *3) *8 (-893 *6) (-890 *6 *3))) - (-4 *8 (-851)) (-5 *2 (-890 *6 *3)) (-5 *4 (-893 *6)) - (-4 *6 (-1101)) (-4 *3 (-13 (-950 *9 *7 *8) (-615 *4))) - (-4 *7 (-794)) (-4 *9 (-13 (-1050) (-887 *6))) - (-5 *1 (-937 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) - (-4 *3 (-13 (-950 *8 *6 *7) (-615 *4))) (-5 *4 (-893 *5)) - (-4 *7 (-887 *5)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-13 (-1050) (-887 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1101)) (-4 *3 (-993 *6)) - (-4 *6 (-13 (-559) (-887 *5) (-615 *4))) (-5 *4 (-893 *5)) - (-5 *1 (-940 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-890 *5 (-1177))) (-5 *3 (-1177)) (-5 *4 (-893 *5)) - (-4 *5 (-1101)) (-5 *1 (-941 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-645 (-893 *7))) (-5 *5 (-1 *9 (-645 *9))) - (-5 *6 (-1 (-890 *7 *9) *9 (-893 *7) (-890 *7 *9))) (-4 *7 (-1101)) - (-4 *9 (-13 (-1050) (-615 (-893 *7)) (-1039 *8))) - (-5 *2 (-890 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1050)) - (-5 *1 (-942 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-539)) (-5 *1 (-538 *4)) - (-4 *4 (-1217))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) - (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) + (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) + (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418))))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) + ((*1 *1) (-5 *1 (-863))) + ((*1 *1) + (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) + (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1087))) + ((*1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34))))) + ((*1 *1) (-5 *1 (-1181))) ((*1 *1) (-5 *1 (-1182)))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2) + (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-559))))) (((*1 *2 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1003)) - (-4 *2 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1095 (-225))) - (-5 *2 (-1269)) (-5 *1 (-258))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1102 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-317 (-225)))) + (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) + (-4 *3 (-1244 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) - (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *9 (-950 *8 *6 *7)) - (-4 *6 (-794)) (-5 *2 (-1173 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) + (-645 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) + (-5 *1 (-452 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) + (-5 *3 (-645 (-567)))))) +(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528))))) (((*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-645 (-2 (|:| -3995 *1) (|:| -3823 (-645 *7))))) + (-5 *3 (-645 *7)) (-4 *1 (-1211 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1178)) (-4 *2 (-433 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-5 *4 (-863)) + (-4 *1 (-1014)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) + (-4 *1 (-1070 *4 *2)) (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) + (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1273)) + (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1))))) -(((*1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1270))))) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-1051)) (-4 *2 (-1244 *4)) + (-5 *1 (-447 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-410 (-1174 (-317 *5)))) (-5 *3 (-1268 (-317 *5))) + (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) + (-4 *3 (-1244 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1258 *4)) (-5 *1 (-1260 *4 *2)) - (-4 *4 (-38 (-410 (-567))))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) - (-5 *5 (-112)) (-4 *8 (-1066 *6 *7 *4)) (-4 *9 (-1072 *6 *7 *4 *8)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) - (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2564 *9)))) - (-5 *1 (-1073 *6 *7 *4 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1101)) (-4 *2 (-901 *4)) (-5 *1 (-693 *4 *2 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4417))))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1180))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1157 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-727)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1050)) (-5 *2 (-1157 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-421 *4)) (-4 *4 (-559))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-567)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-567)) (-5 *1 (-241))))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) - (-5 *2 (-1036)) (-5 *1 (-749))))) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-365)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) + (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1244 *2)) + (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) + (-4 *6 (-344 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))) + (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) + (-4 *1 (-337 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-953 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) + (-12 (-4 *1 (-897)) + (-5 *3 + (-2 (|:| |pde| (-645 (-317 (-225)))) + (|:| |constraints| + (-645 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-772)) (|:| |boundaryType| (-567)) + (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) + (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) + (|:| |tol| (-225)))) + (-5 *2 (-1037))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-645 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) + (-5 *1 (-452 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) + (-4 *3 (-1218))))) (((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) - (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *2)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) - (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) - (-4 *6 (-559))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1050)) - (-4 *4 (-1217)))) - ((*1 *1 *2) - (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) - (-4 *5 (-238 (-2410 *3) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *5)) - (-2 (|:| -3763 *2) (|:| -4250 *5)))) - (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) - (-4 *7 (-950 *4 *5 (-865 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1105)) (-5 *1 (-281))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1243 *4)) (-4 *4 (-1050)) - (-5 *2 (-1267 *4))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-944 (-225)))) (-5 *1 (-1268))))) + (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) + (-14 *3 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) - (-5 *1 (-906 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1243 *4)) (-5 *2 (-567)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-1039 *2) (-640 *2) (-455))) - (-5 *2 (-567)) (-5 *1 (-1117 *4 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-844 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) - (-5 *1 (-1117 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-1159)) - (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) - (-5 *1 (-1117 *6 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-567)) - (-5 *1 (-1118 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-844 (-410 (-953 *6)))) - (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-567)) - (-5 *1 (-1118 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1177)) - (-5 *5 (-1159)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1118 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1199 *3)) (-4 *3 (-1050))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-824)) (-5 *1 (-823))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6))))) + (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1178)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) + (-14 *4 + (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *2)) + (-2 (|:| -3768 *3) (|:| -3458 *2))))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-577 *5 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1102)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1102)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) - (-5 *1 (-1188 *4)) (-4 *4 (-851))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) + (-5 *1 (-715 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1101)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) + (-5 *2 + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) - (-4 *3 (-1101)) (-5 *2 (-772)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) - (-4 *4 (-1217)) (-5 *2 (-772))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *2 (-772)) - (-5 *1 (-1165 *4 *5)) (-14 *4 (-922)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1165 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1050)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) - (-5 *1 (-1165 *4 *5)) (-14 *4 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -2703 *4) (|:| -1813 (-567))))) - (-4 *4 (-1243 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) + (-12 (-5 *3 (-567)) (-4 *4 (-1244 *3)) + (-5 *2 + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-1050)) - (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1191 *2)) (-4 *2 (-365))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4408)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1157 (-567)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1036)) (-5 *1 (-754))))) + (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) + (-5 *2 + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) + (-5 *2 + (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-690 *3)))) + (-5 *1 (-1277 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) - (-5 *2 (-2 (|:| -2937 (-772)) (|:| -2610 *8))) - (-5 *1 (-912 *4 *5 *6 *7 *8)))) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-400))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) - (-5 *2 (-2 (|:| -2937 (-772)) (|:| -2610 *6))) - (-5 *1 (-913 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-772))))) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) +(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) - (-5 *2 (-1036)) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101)) (-5 *2 (-1121))))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) + (-5 *2 (-1037)) (-5 *1 (-749))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) + (-4 *3 (-1102)) (-5 *2 (-772)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) + (-4 *4 (-1218)) (-5 *2 (-772))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-613 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-1174 *2)) + (-4 *2 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-613 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) + (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-645 *5)) (-4 *5 (-1244 *3)) (-4 *3 (-308)) + (-5 *2 (-112)) (-5 *1 (-458 *3 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) + (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) + (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3))))) +(((*1 *1) (-4 *1 (-351))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) - (|:| |vals| (-645 *3)))) - (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) - (-4 *2 (-1243 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) + (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1174 *5))) + (|:| |prim| (-1174 *5)))) + (-5 *1 (-435 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-922)) - (-5 *1 (-531 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1217))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1050)) - (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3621 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144))))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) + (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3)))) + (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-954 *5)) (-5 *4 (-1178)) (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) + (|:| |prim| (-1174 *5)))) + (-5 *1 (-962 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) + (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *5))) + (|:| |prim| (-1174 *5)))) + (-5 *1 (-962 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-5 *5 (-1178)) + (-4 *6 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *6))) + (|:| |prim| (-1174 *6)))) + (-5 *1 (-962 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122))))) (((*1 *2 *3) - (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) - (-5 *1 (-673 *4))))) + (-12 (-4 *4 (-455)) + (-5 *2 + (-645 + (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) + (|:| |eigmult| (-772)) + (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1160) (-1183))) + (-5 *1 (-1183))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) + (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-456 *3 *4 *5 *6)) + (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) + (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162))))) (((*1 *2 *1) - (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-410 (-1174 (-317 *3)))) (-4 *3 (-559)) + (-5 *1 (-1132 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -1752 (-410 *6)) (|:| |coeff| (-410 *6)))) + (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-1178)) + (-4 *4 (-13 (-433 *7) (-27) (-1203))) + (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-456 *3 *4 *5 *6)) + (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) + (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) + (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) - (-5 *1 (-1006))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-706 *3 *4)) (-4 *3 (-1218)) (-4 *4 (-1218))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) + (-4 *1 (-308))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1191 (-923) (-772)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) (((*1 *2 *3) - (-12 (-5 *3 (-1143 *4 *2)) (-14 *4 (-922)) - (-4 *2 (-13 (-1050) (-10 -7 (-6 (-4419 "*"))))) - (-5 *1 (-903 *4 *2))))) -(((*1 *2 *1) (-12 + (-5 *3 + (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) + (-247 *4 (-410 (-567))))) + (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-331))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1182)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1182))) (-5 *1 (-1182))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559))))) -(((*1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-972))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-567))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-169 (-381))))) - (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-567)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-169 (-381))))) - (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-700))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-953 (-567)))) - (-5 *4 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-695)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-700)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-317 (-702)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-700))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1159)) (-5 *1 (-331)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-921))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) - ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) - (-5 *2 (-690 *6)) (-5 *1 (-1030 *6)) (-4 *6 (-365)) (-4 *6 (-1050)))) + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2 *3) + (-12 (-4 *1 (-801)) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1037))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4)) - (-4 *4 (-365)) (-4 *4 (-1050)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) - (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-1050))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1101)) (-5 *1 (-905 *3))))) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1101))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) - (-5 *2 (-645 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-706 *3 *4)) (-4 *3 (-1217)) (-4 *4 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) - (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| -1979 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *8))))) - (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-772))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) - (-5 *1 (-698)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1095 (-225))) - (-5 *5 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-698)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-1 (-944 (-225)) (-225) (-225))) - (-5 *4 (-1095 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1188 *3))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) - (-4 *3 (-1050))))) -(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-1181)) (-5 *1 (-1180))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-839)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1116)))) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1182))) (-5 *3 (-1182)) (-5 *1 (-1119))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1111))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *3 (-851)) (-4 *6 (-1066 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 (-1173 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1243 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-615 (-893 *3))) (-4 *3 (-887 *3)) (-4 *3 (-455)) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-615 (-893 *3))) (-4 *2 (-887 *3)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4012 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1243 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-171)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-363 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1101)) (-5 *1 (-650 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 (-844 (-225)))) (-5 *1 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-5 *2 (-645 (-1183))) (-5 *3 (-1183)) (-5 *1 (-1120))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) + (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418))))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1141)))) +(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218))))) (((*1 *2 *1) - (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 *2))) - (-5 *2 (-893 *3)) (-5 *1 (-1077 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-887 *3) (-615 *2)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-532))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-988 (-410 (-567)) (-865 *3) (-240 *4 (-772)) - (-247 *3 (-410 (-567))))) - (-14 *3 (-645 (-1177))) (-14 *4 (-772)) (-5 *1 (-987 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-567)) (-5 *5 (-1159)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-748))))) + (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1268 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) + (-5 *1 (-531 *5))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -4174 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) + (-12 (-4 *4 (-13 (-365) (-849))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3920 (-421 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-112)) - (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) - (-14 *5 (-645 (-1177))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) + (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) + (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) + (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) + (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) + (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) + (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) - (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-5 *2 (-690 (-911 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922)))) - ((*1 *2) - (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1173 *3) - (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121))))))))) - ((*1 *2) - (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-922))))) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1218)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-59 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) + ((*1 *1 *1) (-5 *1 (-863))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1214)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1235 (-567)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) - (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3970 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) + ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) + (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) + (-4 *6 (-455)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) + (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) + (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) + (-4 *6 (-455))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2316 (-690 (-410 (-954 *4)))) + (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1954 (-772)) + (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -4176 (-410 *6)) - (|:| |special| (-410 *6)))) - (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) + (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) + (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-645 (-1178))) (-4 *2 (-172)) + (-4 *3 (-238 (-2414 *4) (-772))) + (-14 *6 + (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *3)) + (-2 (|:| -3768 *5) (|:| -3458 *3)))) + (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) + (-4 *7 (-951 *2 *3 (-865 *4)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) + (-5 *2 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-788)) (-5 *2 (-1037)) + (-5 *3 + (-2 (|:| |fn| (-317 (-225))) + (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-788)) (-5 *2 (-1037)) + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-375 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-897 *3 *4)) - (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -2944 *3) (|:| -2956 *3))) (-5 *1 (-897 *3 *5)) - (-4 *3 (-1243 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1146 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1146 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) - ((*1 *1) (-5 *1 (-863))) - ((*1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) - (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1086))) - ((*1 *1) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34))))) - ((*1 *1) (-5 *1 (-1180))) ((*1 *1) (-5 *1 (-1181)))) -(((*1 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-793))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1258 *4)) (-5 *1 (-1260 *4 *2)) - (-4 *4 (-38 (-410 (-567))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) - (-5 *1 (-749))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567))))) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) + (-5 *1 (-694 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1237 *2 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) + (-5 *1 (-1162 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) + (-14 *4 (-1178)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1051)) + (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) - (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) + (-4 *3 (-1218)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1210 *4 *5 *3 *2)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1066 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1211 *4 *5 *3 *2)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *1 (-1214 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1267 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1243 *5)) - (-5 *2 (-690 *5))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-613 *3)) - (-4 *3 (-13 (-433 *5) (-27) (-1202))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1101))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) - (-4 *2 (-1243 (-567))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-772)) (-5 *1 (-445 *2)) - (-4 *2 (-1243 (-567))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) - (-4 *2 (-1243 (-567))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) - (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) - (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1243 (-567))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-421 *2)) (-4 *2 (-1243 *5)) - (-5 *1 (-447 *5 *2)) (-4 *5 (-1050))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270))))) + (-12 (-5 *3 (-772)) (-5 *1 (-1215 *2)) (-4 *2 (-1218))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567))))) - (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-953 *9)))) - (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) - (-4 *9 (-13 (-308) (-147))) (-4 *12 (-950 *9 *11 *10)) - (-4 *10 (-13 (-851) (-615 (-1177)))) (-4 *11 (-794)) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) + (-5 *1 (-452 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 - (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) - (|:| |wcond| (-645 (-953 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *9)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *9))))))))) - (-5 *1 (-925 *9 *10 *11 *12))))) -(((*1 *2) - (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-345 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) + (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004))))) ((*1 *2) - (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-1173 *3)))) + (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) + (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) + (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1168))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-433 *3)))) ((*1 *2) - (-12 (-5 *2 (-959 (-1121))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-922))))) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) + ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) + (-4 *2 (-1244 *3))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-645 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) + (-5 *1 (-452 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-758))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-369 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-301))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) + (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) - (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-953 (-169 (-567))))))) - (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 (-169 (-567))))) - (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-953 (-169 (-567)))))) - (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1217)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1064))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1291 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-820 *3)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1091))))) + (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1219 *2)) + (-4 *2 (-1102)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) + (-5 *1 (-1219 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1173 *7)) - (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1243 *5)) - (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1243 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) + (|:| |vals| (-645 *3)))) + (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-1173 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) - (-15 -1455 ((-1126 *4 (-613 $)) $)) - (-15 -4127 ($ (-1126 *4 (-613 $)))))))))) + (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) + (|:| |wcond| (-645 (-954 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) + (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) + (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) + (-4 *3 (-853 *5))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1267 (-690 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1267 (-690 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 (-690 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1177))) (-4 *5 (-365)) - (-5 *2 (-1267 (-690 (-410 (-953 *5))))) (-5 *1 (-1087 *5)) - (-5 *4 (-690 (-410 (-953 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1177))) (-4 *5 (-365)) - (-5 *2 (-1267 (-690 (-953 *5)))) (-5 *1 (-1087 *5)) - (-5 *4 (-690 (-953 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) - (-5 *2 (-1267 (-690 *4))) (-5 *1 (-1087 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *3 *3 *4) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) + ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471))))) (((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-953 (-567))))) - (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2771 *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) + (-12 (-4 *4 (-38 (-410 (-567)))) + (-5 *2 (-2 (|:| -3128 (-1158 *4)) (|:| -3137 (-1158 *4)))) + (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) - (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1050)))) + (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) + (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1202))) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) + (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1203))) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-410 (-953 *4)))) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) + (-12 (-5 *3 (-588 (-410 (-954 *4)))) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1150 *3)))) + (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1096 *4 *2)) (-4 *4 (-849)) - (-4 *2 (-1150 *4)))) + (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) + (-4 *2 (-1151 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202))))) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203))))) ((*1 *2 *1) - (-12 (-5 *2 (-1282 (-1177) *3)) (-5 *1 (-1289 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-1283 (-1178) *3)) (-5 *1 (-1290 *3)) (-4 *3 (-1051)))) ((*1 *2 *1) - (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050))))) + (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) + (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) + (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) + (-5 *1 (-920 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) + (-4 *2 (-688 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *4 (-645 (-1177))) - (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) - (-4 *5 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1217)) (-5 *2 (-772))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) + (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) + (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1244 *4))))) (((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $)))))))))) (((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) + (-5 *5 (-1 (-421 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) + (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) + (-5 *5 (-1 (-421 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1108 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5))))) + (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) + (-4 *6 (-1244 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) + (-4 *6 (-1244 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-757))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) +(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) (((*1 *2 *1) - (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) - (-4 *5 (-238 (-2410 *3) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -3763 *2) (|:| -4250 *5)) - (-2 (|:| -3763 *2) (|:| -4250 *5)))) - (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-950 *4 *5 (-865 *3)))))) + (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1268 (-645 (-567)))) (-5 *1 (-483)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1101)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-684 *4 *5)) (-4 *4 (-1101)))) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) + (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) ((*1 *2 *2) - (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) + (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) + (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) ((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) + (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-4 *2 (-1050)) (-5 *1 (-1290 *2 *3)) (-4 *3 (-847))))) -(((*1 *2 *3) - (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) - ((*1 *2 *3) - (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1243 *4)) (-5 *2 (-645 *1)) - (-4 *1 (-1069 *4 *3))))) + (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202)))))) + (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) + (-5 *2 (-863)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1177))) (-4 *6 (-455)) - (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) - (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-793)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1248 *3)) (-4 *3 (-1050))))) + (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) + (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) + (-12 (-4 *3 (-1222)) (-4 *5 (-1244 *3)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-891 *4 *3)) - (-4 *3 (-1217)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-144))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1267 (-645 (-567)))) (-5 *1 (-483)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-602 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1217)) (-5 *1 (-1157 *3))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *2 (-1273)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1244 (-410 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1243 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1243 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) - (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1243 *3))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) - (-5 *4 (-772)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1272)) - (-5 *1 (-1070 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) - (-5 *4 (-772)) (-4 *8 (-1066 *5 *6 *7)) (-4 *9 (-1110 *5 *6 *7 *8)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1272)) - (-5 *1 (-1146 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))) + (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) - (-5 *1 (-946 *4 *5)) (-4 *5 (-1243 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-645 (-317 (-225)))) + (|:| |constraints| + (-645 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-772)) (|:| |boundaryType| (-567)) + (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) + (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) + (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) + (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) + (-4 *6 (-559))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-775)) (-5 *1 (-114))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-793))))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) + (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1051)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) + (-5 *1 (-1166 *4 *5)) (-14 *4 (-923))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) + (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121)))) + ((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1177))) (-5 *1 (-210)) - (-5 *3 (-1177)))) + (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-210)) + (-5 *3 (-1178)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1177))) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) ((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-645 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-5 *2 (-2 (|:| -1791 *3) (|:| -4232 *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-5 *2 (-2 (|:| -1795 *3) (|:| -4237 *4)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) + (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) + (-5 *1 (-1272)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) + (-5 *2 (-471)) (-5 *1 (-1272))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) + (-4 *4 (-559)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) + (-5 *2 (-1174 *1))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) - (-4 *6 (-1243 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-571 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) - (-4 *4 (-1217)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1101))))) + (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) + (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) + (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) + (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) + (-5 *1 (-1147 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) + (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1174 *6)) + (-5 *1 (-322 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-830))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1097)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) - ((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) + (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) + (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) + (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-14 *5 (-645 (-1177))) - (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) - (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) - (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) - (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) - (-5 *1 (-1293 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) - (-5 *1 (-1293 *4 *5 *6)) (-5 *3 (-645 (-953 *4))) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177)))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-748))))) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-1050)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-944 (-225))) (-5 *2 (-225)) (-5 *1 (-1213)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1050))))) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-450 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-559)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1244 *4)) + (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1244 *5)) (-14 *6 (-923)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) + (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) + (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) + (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) + (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) - (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1120)))) - ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1207 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1) (-5 *1 (-509)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) + (-4 *1 (-1073 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1222))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) - (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 (-410 *2))) - (-4 *2 (-1243 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1221)) - (-4 *4 (-1243 (-410 *2))) (-4 *2 (-1243 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-301)))) + (-12 (-4 *3 (-559)) (-5 *1 (-1247 *3 *2)) + (-4 *2 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) + (-4 *4 (-1102)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))) +(((*1 *1) (-5 *1 (-804)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) + (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) + (-4 *10 (-1111 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) + (-5 *1 (-629 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-645 (-1178))) + (-5 *2 + (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) + (-5 *1 (-629 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) + (-5 *1 (-1048 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1159))) (-5 *1 (-306))))) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1211 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) - (-5 *1 (-263 *2)) (-4 *2 (-1217)))) + (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) + (-5 *1 (-263 *2)) (-4 *2 (-1218)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) (-5 *2 (-52)) + (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-52)) (-5 *1 (-264))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-959 (-772))) (-5 *1 (-334))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) - (-4 *2 (-688 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) +(((*1 *1 *1) (-4 *1 (-1146)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)) - (-4 *2 (-1101)))) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) + (-4 *2 (-1102)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) - (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) + (-4 *3 (-1218)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1101)) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1101)))) + (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050))))) + (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) + (-5 *1 (-1166 *4 *5)) (-14 *4 (-923))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) + (-5 *1 (-760)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) + (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2262 (-645 *7)))) + (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) + (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1051)) (-4 *4 (-1244 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1244 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) + (-5 *2 (-645 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1) (-5 *1 (-633)))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-906 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) - (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1029 *4)) - (-4 *4 (-1050)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-906 (-567)))) (-5 *4 (-567)) - (-5 *2 (-645 (-690 *4))) (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-1029 *4)) (-4 *4 (-1050))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-433 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178))))) +(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-5 *2 (-1267 *3)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1243 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) + (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1213 *3)) + (-4 *3 (-976))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) + (-4 *2 (-688 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) + (-5 *2 (-923))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-141))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1267 *5)) (-4 *5 (-308)) - (-4 *5 (-1050)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-567))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-567)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-695))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-700))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) + (-5 *4 (-317 (-702))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-695)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-700)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-702)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-695))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-700))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-702))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-331)))) + ((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) + (-5 *1 (-698))))) (((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) + (-4 *4 (-38 (-410 (-567))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 + (-2 (|:| |solns| (-645 *5)) + (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1130 *3 *5)) (-4 *3 (-1244 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) + (-4 *4 (-1102)) (-14 *5 *2)))) (((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1140)))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1177)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) + (-12 (-5 *3 (-295 (-954 (-567)))) + (-5 *2 + (-2 (|:| |varOrder| (-645 (-1178))) + (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) + (|:| |hom| (-645 (-1268 (-772)))))) + (-5 *1 (-236))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1159)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) - (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) - (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1177))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 - (-645 (-1147 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) - (-5 *1 (-629 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) - (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5))))) + (-3 (-1174 *4) + (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-4 *3 (-559))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-944 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) + (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) + (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) + (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-5 *1 (-989 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) + (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -2963 *7) (|:| |sol?| (-112))) + (-567) *7)) + (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) + (-5 *3 (-410 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-577 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-112)) + (-5 *1 (-264))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) + (-247 *4 (-410 (-567))))) + (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) + ((*1 *2 *1) (-12 (-4 *1 (-1222)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-5 *1 (-1108 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-381)) (-5 *1 (-1064))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-5 *1 (-322 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) - (-4 *3 (-1243 (-410 *4)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) - (-5 *1 (-757))))) + (-12 (-4 *4 (-455)) + (-5 *2 + (-645 + (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) + (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4))))))) +(((*1 *2 *3) + (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3694 (-645 *1)) (|:| -1398 *1))) + (-5 *3 (-645 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) + (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) + (-4 *7 (-1218))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-365)) - (-5 *2 (-112)) (-5 *1 (-668 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-112)) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (-4 *4 (-1050)) - (-5 *1 (-1029 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (-4 *4 (-1050)) - (-5 *1 (-1029 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-539))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1268 *6)) (-5 *4 (-1268 (-567))) (-5 *5 (-567)) + (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-539))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1243 (-567))) (-5 *1 (-489 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-849))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2166 (-421 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *5 (-1221)) (-4 *6 (-1243 *5)) - (-4 *7 (-1243 (-410 *6))) (-5 *2 (-645 (-953 *5))) - (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-452 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) + (-14 *4 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1221)) - (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-4 *4 (-365)) - (-5 *2 (-645 (-953 *4)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1180))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *3))))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1218)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) + (-14 *4 (-645 (-1178))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) + (-4 *7 (-849)) + (-4 *8 + (-13 (-1246 *3 *7) (-365) (-1203) + (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) + (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) + (-14 *10 (-1178))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) + (-4 *8 (-951 *7 *5 *6)) + (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *3))) + (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $)))))))) (((*1 *2) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-752))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) - (-4 *2 (-1258 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) - (-4 *5 (-1243 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) - (-4 *2 (-1258 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) - (-5 *1 (-545 *4 *2)) (-4 *2 (-1258 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1153 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1101))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-794)) (-4 *2 (-267 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-559)) + (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 (-645 (-923)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) + *6)) + (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) - (-5 *2 (-2 (|:| -3988 (-645 *6)) (|:| -3815 (-645 *6))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1217)) - (-4 *2 (-851)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4418)) - (-4 *1 (-375 *3)) (-4 *3 (-1217))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-822))))) + (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) + (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1268 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) + (-5 *1 (-668 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-365)) + (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4419)))) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))) + (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) + (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) + (-5 *1 (-679 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-1051)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) + (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) + (-4 *7 (-951 *4 *6 *5))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-645 (-1173 *11))) (-5 *3 (-1173 *11)) - (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) - (-5 *7 (-1267 (-645 (-1173 *8)))) (-4 *10 (-851)) - (-4 *8 (-308)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-794)) - (-5 *1 (-708 *9 *10 *8 *11))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) - (-14 *4 (-994 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *1) (|partial| -4 *1 (-723))) - ((*1 *1 *1) (|partial| -4 *1 (-727))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1069 *3 *2)) (-4 *3 (-13 (-849) (-365))) - (-4 *2 (-1243 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-772)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) +(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) +(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) + (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-571 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1273)) (-5 *1 (-864))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1177)) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1198))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-1133 *4 *2)) - (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-979 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) + (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) ((*1 *2 *2) - (-12 (-4 *3 (-851)) (-4 *3 (-1217)) (-5 *1 (-1133 *3 *2)) - (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4417) (-6 -4418))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1272)) (-5 *1 (-864))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-1212 *3)) - (-4 *3 (-975))))) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) + (-5 *1 (-1033))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178)) (-5 *2 (-1 (-1174 (-954 *4)) (-954 *4))) + (-5 *1 (-1276 *4)) (-4 *4 (-365))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) - (-4 *3 (-1101)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-112)) - (-5 *1 (-905 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1102 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1243 *5)) - (-4 *7 (-1243 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) - (-5 *1 (-912 *4 *5 *6 *7 *8)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) + (-5 *2 (-1037)) (-5 *1 (-746))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) + (-4 *9 (-951 *8 *6 *7)) + (-5 *2 (-2 (|:| -2517 (-1174 *9)) (|:| |polval| (-1174 *8)))) + (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-241)))) ((*1 *2 *3) - (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-913 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-1173 *3)) (-5 *1 (-1191 *3)) - (-4 *3 (-365))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) - (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1258 *5)) (-4 *6 (-1243 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1177)) (-14 *7 *5) (-5 *2 (-410 (-1240 *6 *5))) - (-5 *1 (-869 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1177)) (-14 *7 *5) (-5 *2 (-410 (-1240 *6 *5))) - (-5 *1 (-869 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *1) (-5 *1 (-1180)))) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1273)) (-5 *1 (-241))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1157 *7))) (-4 *6 (-851)) - (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1050)) - (-5 *2 (-1 (-1157 *7) *7)) (-5 *1 (-1127 *5 *6 *7))))) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) + (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1259 *5)) (-5 *2 (-645 *6)) + (-5 *1 (-1261 *5 *6))))) (((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) + (-4 *3 (-1051)) (-4 *2 (-793)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-1174 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1180 *3)) (-4 *3 (-559)) + (-4 *3 (-1051)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1178)) + (-4 *3 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-1243 *4)) (-5 *2 (-1 *6 (-645 *6))) - (-5 *1 (-1261 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1258 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3))))) + (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) + (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) + (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) + (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) + (-5 *1 (-54 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1066 *5 *6 *7)) + (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-772)) (-5 *1 (-1102 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) + (-4 *3 (-1067 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) + (-4 *3 (-1067 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1218)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1218)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1192 *2)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) + ((*1 *1 *1 *1) (-5 *1 (-863)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2771 *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1141 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1101) (-34))) (-4 *5 (-13 (-1101) (-34))) - (-5 *1 (-1142 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-645 (-1141 *3 *4))) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1243 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-725 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-953 *5)))) (-5 *4 (-1177)) - (-5 *2 (-953 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-5 *2 (-953 *4)) - (-5 *1 (-293 *4)) (-4 *4 (-455)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) - (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1177)) - (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) - (-4 *5 (-13 (-365) (-849))))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-953 (-410 (-567)))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-772)) (-4 *5 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) + (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-1268 (-317 (-381)))) + (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) + (-4 *3 (-13 (-1203) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1177)) - (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *5)) - (-4 *5 (-13 (-365) (-849)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-264)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) + (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) + (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) + (-5 *3 (-410 (-954 *5)))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-578 *4 *2)) + (-4 *2 (-13 (-1203) (-961) (-1141) (-29 *4)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) - (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1177))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) - (-14 *4 (-645 (-1177))) (-5 *1 (-629 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1210 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *3 (-851)) (-4 *6 (-1066 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173 (-567))) (-5 *2 (-567)) (-5 *1 (-943))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (|partial| -12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-675 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) + (-5 *1 (-1131 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) + (-5 *1 (-1131 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1 *1) (-5 *1 (-381))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1272)) (-5 *1 (-241))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-308)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-804))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(((*1 *1 *2) - (-12 + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 - (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) - (|:| |genIdeal| (-507 *3 *4 *5 *6)))) - (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *2 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) + (-2 (|:| |dpolys| (-645 (-247 *5 *6))) + (|:| |coords| (-645 (-567))))) + (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) + ((*1 *1 *1) (|partial| -4 *1 (-723)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1179 (-410 (-567)))) - (-5 *1 (-190))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-585))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1094 *3)) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1217)))) + (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) + (-4 *3 (-1244 (-410 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) + ((*1 *2 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) + (-14 *4 (-645 (-1178))))) + ((*1 *2 *1) + (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) + (-14 *4 (-645 (-1178))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) + (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) + (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) + (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) + (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) + (-4 *4 (-1244 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *3 (-851)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3)) + (-5 *2 (-567)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) + (-5 *2 (-410 (-567))))) ((*1 *2 *1) - (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-1217)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1217))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1063)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1063))))) + (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-772))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-1173 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-312)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1037)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1074))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1177)) - (-4 *2 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *5 *2))))) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171))))))) +(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1237 *4 *2)) (-4 *2 (-1243 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1050)) - (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1243 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) - (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) - (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) - (-5 *2 (-1267 (-410 (-567)))) (-5 *1 (-1294 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *1)))) - (-4 *1 (-1072 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1221))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-1246 *3 *2)) - (-4 *2 (-13 (-1243 *3) (-559) (-10 -8 (-15 -2771 ($ $ $)))))))) -(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *2 *4 *5 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) ((*1 *1) (-4 *1 (-548))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) + (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1267 *2)) (-4 *5 (-308)) - (-4 *6 (-993 *5)) (-4 *2 (-13 (-412 *6 *7) (-1039 *6))) - (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1243 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-455)) - (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-988 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1173 *1)) (-5 *3 (-1177)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) + (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-811 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *2)) (-5 *4 (-1177)) (-4 *2 (-433 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1173 *1)) (-5 *3 (-922)) (-4 *1 (-1013)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1173 *1)) (-5 *3 (-922)) (-5 *4 (-863)) - (-4 *1 (-1013)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-849) (-365))) - (-4 *1 (-1069 *4 *2)) (-4 *2 (-1243 *4))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-788)) (-5 *2 (-1036)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-788)) (-5 *2 (-1036)) - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) - (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) + (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) + (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-5 *2 (-928)) (-5 *1 (-926 *3)) - (-4 *3 (-615 (-539))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1177))) - (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) + (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 - (-2 (|:| -3310 (-772)) (|:| |curves| (-772)) - (|:| |polygons| (-772)) (|:| |constructs| (-772))))))) -(((*1 *1 *1) - (-12 (-4 *2 (-351)) (-4 *2 (-1050)) (-5 *1 (-713 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1161 *4)) (-4 *4 (-1050)) - (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-52))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-645 (-772))) - (-5 *1 (-905 *4))))) -(((*1 *1) (-4 *1 (-351)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1217)) - (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-811 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) + (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))) (((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) + (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-645 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) + (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 *3)))) + (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) + (-4 *7 (-657 (-410 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-645 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) + (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 (-655 *6 (-410 *6)))))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-820 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-567)) (-5 *1 (-944))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 (-410 (-567)))) + (-5 *2 + (-645 + (-2 (|:| |outval| *4) (|:| |outmult| (-567)) + (|:| |outvect| (-645 (-690 *4)))))) + (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *1 *1) (-4 *1 (-285))) ((*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) - (-5 *2 (-645 (-2 (|:| -3686 (-772)) (|:| |logand| *4)))) + (-5 *2 (-645 (-2 (|:| -3694 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4)))) + (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) + (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1287 *3 *4)) + (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) - (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) ((*1 *1 *1 *1) - (-2797 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1217))) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1217))))) + (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218))))) ((*1 *1 *1 *1) (-4 *1 (-365))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1126 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1101)) + (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) ((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) ((*1 *1 *1 *1) (-5 *1 (-539))) ((*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) @@ -7438,63 +7676,51 @@ (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) - (-4 *2 (-1050)) (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-772))) + (-4 *2 (-1051)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) + (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-365)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-851)) + (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) - (-5 *1 (-1279 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3)) + (-5 *1 (-1280 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1050)) + (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-847))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) - (-4 *3 (-13 (-1202) (-29 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) - (-5 *2 (-588 (-410 (-953 *5)))) (-5 *1 (-573 *5)) - (-5 *3 (-410 (-953 *5)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) + (-5 *2 (-1037)) (-5 *1 (-841))))) (((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1177))) (-5 *1 (-632 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2771 *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1243 *4)) - (-5 *2 (-1267 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6))))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) + (-5 *2 (-410 (-567)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) + (-5 *1 (-1019 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-440)) (-5 *1 (-1182))))) (((*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) @@ -7505,2241 +7731,2388 @@ ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-410 (-567))))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1069 *2 *3)) (-4 *2 (-13 (-849) (-365))) - (-4 *3 (-1243 *2)))) + (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) + (-4 *3 (-1244 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4127 (*2 (-1177)))) - (-4 *2 (-1050))))) + (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4132 (*2 (-1178)))) + (-4 *2 (-1051))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) - (-4 *3 (-1066 *4 *5 *6))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) +(((*1 *2 *3) + (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) + (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) ((*1 *1) (-4 *1 (-548))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) + (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *6)) (-15 -1448 (*6 $)) + (-15 -1460 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) + (-5 *2 (-1178)) (-5 *1 (-1045 *4))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) - (-15 -2985 ((-1272) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217)))) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) + (-15 -1345 ((-1273) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-21))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-4 *3 (-1066 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-4 *3 (-1066 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *7 *8 *9 *3 *4)) (-4 *4 (-1110 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *6 *7 *8 *3 *4)) (-4 *4 (-1110 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-5 *2 (-567)) - (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1243 *5)) - (-4 *6 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1243 *4)) - (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1202) (-285)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1187))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4138 (-690 (-410 (-953 *4)))) - (|:| |vec| (-645 (-410 (-953 *4)))) (|:| -1979 (-772)) - (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *4))))))) - (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1267 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) - (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) - (-5 *1 (-691 *4))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1188))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) + ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1158 (-567)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) + (-4 *1 (-853 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1159)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-748))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) + (-5 *2 + (-2 (|:| -3932 (-772)) (|:| |curves| (-772)) + (|:| |polygons| (-772)) (|:| |constructs| (-772))))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) - (-15 -2985 ((-1272) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1217)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1217)))) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) + (-15 -1345 ((-1273) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-131)))) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) - (-4 *2 (-1243 *3)))) + (-4 *2 (-1244 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-539))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-25))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) - (-4 *2 (-172))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-394))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-959 *3)) (-5 *1 (-1164 *4 *3)) - (-4 *3 (-1243 *4))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-25))))) (((*1 *2 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2))))) -(((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567)))))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-5 *2 (-645 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-645 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1158 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-727)))) + ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-5 *2 (-1158 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *1) + (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) + (-14 *4 (-772)) (-4 *5 (-172))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419))))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) + (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) + (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) + (-4 *4 (-1218)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1178))) + (-4 *4 (-455)) (-5 *1 (-632 *3 *4))))) (((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1258 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1229 *3 *4)))) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1227 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1250 *3 *4)) (-4 *5 (-984 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) (-4 *1 (-1205)))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1227 *3)) - (-5 *2 (-410 (-567)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1202)))) - ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1101))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) + (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-410 (-954 (-567))))) + (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-849) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) + (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-849) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) + (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-410 (-954 (-567))))) + (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-849) (-365))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1178)) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-4 *4 (-13 (-29 *6) (-1203) (-961))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) + (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *2)) + (-4 *2 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1268 *5) "failed")) + (|:| -2623 (-645 (-1268 *5))))) + (-5 *1 (-668 *5)) (-5 *4 (-1268 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1268 *5) "failed")) + (|:| -2623 (-645 (-1268 *5))))) + (-5 *1 (-668 *5)) (-5 *4 (-1268 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) + (-5 *2 + (-645 + (-2 (|:| |particular| (-3 (-1268 *5) "failed")) + (|:| -2623 (-645 (-1268 *5)))))) + (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) + (-5 *2 + (-645 + (-2 (|:| |particular| (-3 (-1268 *5) "failed")) + (|:| -2623 (-645 (-1268 *5)))))) + (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-5 *2 + (-645 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2623 (-645 *7))))) + (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) + (-4 *3 (-688 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1203) (-961))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1178)) + (-4 *7 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) + (-5 *1 (-803 *6 *7)) (-5 *4 (-1268 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1178)) + (-4 *6 (-13 (-29 *5) (-1203) (-961))) + (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-1268 *6))) (-5 *1 (-803 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) + (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) + (-5 *1 (-803 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) + (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) + (-5 *1 (-803 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1178)) + (-4 *7 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2623 (-645 *7))) *7 "failed")) + (-5 *1 (-803 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1178)) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2623 (-645 *3))) *3 "failed")) + (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1203) (-961))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) + (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-5 *1 (-803 *6 *2)) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) + (-4 *2 (-13 (-29 *6) (-1203) (-961))) + (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *1 (-803 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) + (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) + (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) + (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2623 (-645 *6))) "failed") + *7 *6)) + (-4 *6 (-365)) (-4 *7 (-657 *6)) + (-5 *2 (-2 (|:| |particular| (-1268 *6)) (|:| -2623 (-690 *6)))) + (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) + (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) + (-5 *2 (-1037)) (-5 *1 (-899)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) + (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) + (-5 *1 (-899)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) + (-5 *1 (-1025)) (-5 *4 (-381)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) + (-5 *4 (-381)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) + (-5 *3 (-317 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) + (-5 *3 (-295 (-317 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) + (-5 *3 (-295 (-317 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) + (-5 *3 (-317 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-1178))) + (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) + (-5 *3 (-645 (-295 (-317 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) + (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) + (-5 *1 (-1187 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5)) + (-5 *3 (-645 (-295 (-410 (-954 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) + (-5 *1 (-1187 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) (-4 *5 (-559)) + (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) + (-5 *3 (-410 (-954 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) (-4 *5 (-559)) + (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) + (-5 *3 (-295 (-410 (-954 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) + (-5 *1 (-1187 *4)) (-5 *3 (-410 (-954 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) + (-5 *1 (-1187 *4)) (-5 *3 (-295 (-410 (-954 *4))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1177))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) - (-14 *3 (-645 (-1177))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) + (-14 *3 (-645 (-1178))))) ((*1 *1 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1101)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) ((*1 *1 *1) - (-12 (-14 *2 (-645 (-1177))) (-4 *3 (-172)) - (-4 *5 (-238 (-2410 *2) (-772))) + (-12 (-14 *2 (-645 (-1178))) (-4 *3 (-172)) + (-4 *5 (-238 (-2414 *2) (-772))) (-14 *6 - (-1 (-112) (-2 (|:| -3763 *4) (|:| -4250 *5)) - (-2 (|:| -3763 *4) (|:| -4250 *5)))) + (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) + (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) - (-4 *7 (-950 *3 *5 (-865 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-851)))) + (-4 *7 (-951 *3 *5 (-865 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) ((*1 *1 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) + (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) ((*1 *1 *1) - (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1050)) + (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) (-4 *3 (-727)))) - ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) + ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) ((*1 *1 *1) - (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847))))) -(((*1 *1) (-4 *1 (-351))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1173 *5))) - (|:| |prim| (-1173 *5)))) - (-5 *1 (-435 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-559) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1173 *3)) - (|:| |pol2| (-1173 *3)) (|:| |prim| (-1173 *3)))) - (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-953 *5)) (-5 *4 (-1177)) (-4 *5 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) - (|:| |prim| (-1173 *5)))) - (-5 *1 (-961 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) - (-4 *5 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 *5))) - (|:| |prim| (-1173 *5)))) - (-5 *1 (-961 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) (-5 *5 (-1177)) - (-4 *6 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| -3686 (-645 (-567))) (|:| |poly| (-645 (-1173 *6))) - (|:| |prim| (-1173 *6)))) - (-5 *1 (-961 *6))))) + (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))))) - ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1) (-4 *1 (-630))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1050)) (-4 *4 (-1243 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1243 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217))))) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) +(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2956 *6) (|:| |sol?| (-112))) (-567) - *6)) - (-4 *6 (-365)) (-4 *7 (-1243 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -4012 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) + (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1178)) (-5 *2 (-613 *6)) + (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) (((*1 *2 *3) - (-12 (-5 *3 (-928)) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153)) (-5 *3 (-645 (-944 (-225)))))) - ((*1 *2 *3) + (-12 (-4 *4 (-351)) + (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) + (-5 *2 (-1037)) (-5 *1 (-747))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-645 (-1217))) (-5 *3 (-1217)) (-5 *1 (-682))))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *1) - (-12 (-4 *1 (-407)) (-1653 (|has| *1 (-6 -4408))) - (-1653 (|has| *1 (-6 -4400))))) - ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-851)))) - ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851))))) -(((*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-439))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050))))) + (-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772)))) + (-5 *1 (-1158 *4)) (-4 *4 (-1218)) (-5 *3 (-772))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) - (-5 *1 (-1077 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) + (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) + (-5 *1 (-1078 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1101)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) - (-5 *1 (-1077 *3 *4 *2)) - (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))))) + (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) + (-5 *1 (-1078 *3 *4 *2)) + (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-950 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1101)) - (-4 *3 (-1217)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-173))) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-951 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) ((*1 *1 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1217)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1036)) (-5 *1 (-757))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1110 *5 *6 *7 *8)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-593 *5 *6 *7 *8 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1272)) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) - (-15 -2985 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1272)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 (*2 $)) - (-15 -2985 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-505))))) -(((*1 *2 *1) - (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2)) - (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-922)) - (-5 *2 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) + (-4 *5 (-1244 *4)) + (-5 *2 (-2 (|:| -1752 (-410 *5)) (|:| |coeff| (-410 *5)))) + (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) + (-5 *2 + (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) + (|:| |genIdeal| (-507 *4 *5 *6 *7)))) + (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)) - (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) - (-5 *2 (-690 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) + (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-772))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1177))))) + (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) ((*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) + (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) ((*1 *2 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1050)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-14 *3 (-645 (-1177))) (-4 *5 (-238 (-2410 *3) (-772))) + (-12 (-14 *3 (-645 (-1178))) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 - (-1 (-112) (-2 (|:| -3763 *4) (|:| -4250 *5)) - (-2 (|:| -3763 *4) (|:| -4250 *5)))) + (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) + (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) - (-4 *7 (-950 *2 *5 (-865 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1101)))) + (-4 *7 (-951 *2 *5 (-865 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) ((*1 *2 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1243 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) + (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) + (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) + ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) - (-4 *2 (-1050)))) + (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) + (-4 *2 (-1051)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) - (-5 *2 (-772))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1065))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1) (-4 *1 (-1206)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *6)) (-4 *5 (-1221)) (-4 *6 (-1243 *5)) - (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1243 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) + (-12 (-4 *5 (-365)) + (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5))))) + (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) + (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1276 *6)) + (-5 *5 (-1158 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) + (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) + (-14 *4 (-772)) (-4 *5 (-172))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *1) + (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) + (-1657 (|has| *1 (-6 -4401))))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) + ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) + (-5 *1 (-757))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-690 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) ((*1 *2 *1) - (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) - (-4 *6 (-238 (-2410 *3) (-772))) + (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) + (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 - (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) - (-2 (|:| -3763 *5) (|:| -4250 *6)))) + (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) + (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-851)) (-4 *8 (-950 *4 *6 (-865 *3))))) + (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) - (-4 *3 (-1050)))) + (-4 *3 (-1051)))) ((*1 *1 *1) - (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) + (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) + (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1203)))))) +(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) + (-4 *3 (-649 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) + (-4 *3 (-649 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) + ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))) (((*1 *1 *1) (-4 *1 (-630))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1217)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) - (-14 *4 (-567))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2771 (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -2771 *1) (|:| |coef2| *1))) - (-4 *1 (-1066 *3 *4 *5))))) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) - (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1039 *4)) (-4 *3 (-559))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1210 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-1066 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 - (-3 (|:| |overq| (-1173 (-410 (-567)))) - (|:| |overan| (-1173 (-48))) (|:| -3661 (-112)))) - (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-959 (-1173 *4))) (-5 *1 (-359 *4)) - (-5 *3 (-1173 *4))))) -(((*1 *2 *2) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2) + (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923)))) + ((*1 *2) + (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1174 *3) + (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))))) + ((*1 *2) + (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-923))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1177)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) - (-5 *1 (-1188 *4)) (-5 *3 (-645 (-645 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1217)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-645 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102))))) +(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1218)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1101)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) (-14 *4 *2)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-169 (-317 *4))) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-169 *3)) (-5 *1 (-1206 *4 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *4)))))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-772)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1181)) (-5 *3 (-1178))))) (((*1 *2 *3) - (-12 (-4 *3 (-1243 (-410 (-567)))) - (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) - (-5 *1 (-914 *3 *4)) (-4 *4 (-1243 (-410 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1243 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) - (-4 *3 (-1243 (-410 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102))))) +(((*1 *1) (-5 *1 (-1269)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *3 (-172)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1217)))) + (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2))))) + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4))))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) - (-5 *2 (-567)) (-5 *1 (-1115 *4 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) - (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6)) - (-4 *6 (-950 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-922)))) - ((*1 *2 *3) - (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) - (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) - (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1243 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) - (-4 *3 (-851)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851)) - (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1243 *5)) (-4 *7 (-1243 (-410 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) - (-5 *2 (-772)) (-5 *1 (-912 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1243 (-410 (-567)))) (-4 *5 (-1243 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) - (-5 *1 (-913 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) - (-4 *7 (-1243 *6)) (-4 *4 (-1243 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) - (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) - (-5 *1 (-1019 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-4 *3 (-559)) - (-5 *2 (-772)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))) + (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) + (-4 *4 (-688 *2 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| -1979 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *7))))) - (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-772)) - (-5 *1 (-925 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) - (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-758))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) + (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) + (-5 *3 (-645 (-567)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) + (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) + (-5 *1 (-891 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-645 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) + (-5 *2 (-645 (-2 (|:| -3286 *5) (|:| -3845 *3)))) + (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) + (-4 *7 (-657 (-410 *6)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1178)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) + (-4 *2 (-365)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) + (-4 *2 (-13 (-433 *4) (-1004) (-1203))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) + (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1178)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961))))) (((*1 *1 *1) (-4 *1 (-243))) ((*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1243 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2797 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1217))) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1217))))) + (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218))))) ((*1 *1 *1) (-4 *1 (-476))) - ((*1 *2 *2) (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-772)) - (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) - (-5 *1 (-246 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 (-1267 *4))) (-4 *4 (-1050)) (-5 *2 (-690 *4)) - (-5 *1 (-1030 *4))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-756)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756))))) +(((*1 *1 *1) (-4 *1 (-630))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) ((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1217))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1267 *4)) - (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1159)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) - (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1267 *4))) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-645 (-1267 *3)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-1064)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1218))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-29 *4)))))) (((*1 *2 *3) - (-12 (-14 *4 (-645 (-1177))) (-4 *5 (-455)) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) - (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5)))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1177)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-645 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1202) (-27) (-433 *8))) - (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2956 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1014 *8 *4))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *1) (-5 *1 (-130)))) + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-978 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4012 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1243 *6)) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 - (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -4012 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) + (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5)))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) + (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-410 (-567))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-410 (-567))) + (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1022 *3)) + (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))) + (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-410 (-567))) + (-5 *2 (-645 (-2 (|:| -2950 *4) (|:| -2963 *4)))) (-5 *1 (-1023 *3)) + (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-410 (-567))) + (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1023 *3)) + (-4 *3 (-1244 *5)) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) + (-5 *5 (-112)) (-5 *2 (-1270)) (-5 *1 (-258))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) + (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *5 (-559)) + (-5 *2 + (-2 (|:| |minor| (-645 (-923))) (|:| -3845 *3) + (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) - (-5 *5 (-1234 (-410 (-567)))) (-5 *6 (-410 (-567))) - (-4 *8 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) + (-4 *8 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-410 (-567)))) - (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *8))) - (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) + (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) + (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1050)) (-4 *1 (-1250 *4 *3)) - (-4 *3 (-1227 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))) + (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1251 *4 *3)) + (-4 *3 (-1228 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-421 *4)) (-4 *4 (-559))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) + (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) + (-4 *6 (-951 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) - (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) + (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) + (-5 *3 (-567))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) + (-5 *1 (-757))))) +(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) ((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-1243 *3)) - (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) + (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 *3)) - (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) + (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1247 *4 *3)) + (-4 *3 (-13 (-1244 *4) (-559) (-10 -8 (-15 -2774 ($ $ $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 *3)) + (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-14 *5 (-645 (-1178))) (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-1276 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1103 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1103 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1173 (-1173 *4)))) - (-5 *1 (-1215 *4)) (-5 *3 (-1173 (-1173 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1050)) (-5 *2 (-1267 *4)) - (-5 *1 (-1178 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-1267 *3)) (-5 *1 (-1178 *3)) - (-4 *3 (-1050))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1101))))) + (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) + (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1039 *4) (-640 *4))) + (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5))))) + (-4 *3 (-13 (-27) (-1203) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-1039 *5) (-640 *5))) (-5 *5 (-567)) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-567))) - (-4 *7 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) + (-4 *7 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-567))) - (-4 *3 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) + (-4 *3 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *4 (-1050)) (-4 *1 (-1229 *4 *3)) - (-4 *3 (-1258 *4)))) + (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1230 *4 *3)) + (-4 *3 (-1259 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1227 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) - (-4 *5 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1050)) - (-5 *2 (-112)) (-5 *1 (-1030 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-863))))) + (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1160)) + (-5 *1 (-827 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) + (-5 *2 (-1160)) (-5 *1 (-827 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) + (-5 *2 (-1273)) (-5 *1 (-827 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1160)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1160)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1273)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1273))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202))) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203))) (-5 *1 (-227 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-1113)) (-4 *2 (-1217)))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-1113)) (-4 *2 (-1217)))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851)))) + (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1101)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-645 (-1177))) (-4 *4 (-172)) - (-4 *6 (-238 (-2410 *3) (-772))) + (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) + (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 - (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) - (-2 (|:| -3763 *5) (|:| -4250 *6)))) + (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) + (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) - (-4 *2 (-950 *4 *6 (-865 *3))))) + (-4 *2 (-951 *4 *6 (-865 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) + (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) ((*1 *1 *1 *1) (-5 *1 (-539))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1059)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-1 *7 *5)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1050)) (-4 *2 (-375 *3)) + (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) + (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-4 *1 (-721))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-559)) - (-5 *1 (-970 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1059)))) - ((*1 *1 *1 *1) (-4 *1 (-1113))) + (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) + (-5 *1 (-971 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) + ((*1 *1 *1 *1) (-4 *1 (-1114))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *2 (-238 *3 *4)) + (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1127 *3 *4 *2)) - (-4 *2 (-950 *3 (-534 *4) *4)))) + (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) + (-4 *2 (-951 *3 (-534 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-944 (-225))) (-5 *3 (-225)) (-5 *1 (-1213)))) + (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1214)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-727)))) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-1265 *3)) (-4 *3 (-1217)) (-4 *3 (-21)))) + (-12 (-5 *2 (-567)) (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) + (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1243 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1243 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5)) - (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1039 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1243 *2)) (-4 *2 (-993 *3)) - (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) - (-14 *6 (-1267 *5)))) + (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) + (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) + (|:| |wcond| (-645 (-954 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) + (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-1050)) - (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1243 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 (-498))) (-5 *3 (-645 (-613 (-498)))) - (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-922)) (-4 *4 (-351)) - (-5 *1 (-531 *4)))) + (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1178))) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) + (|:| |wcond| (-645 (-954 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) + (-5 *1 (-926 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1243 *4)) - (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1243 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1061)))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) + (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) + (|:| |wcond| (-645 (-954 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) + (-5 *1 (-926 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) + (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) + (-4 *8 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) + (|:| |wcond| (-645 (-954 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) + (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) + (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) + (|:| |wcond| (-645 (-954 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) + (-5 *1 (-926 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) + (-5 *2 + (-645 + (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) + (|:| |wcond| (-645 (-954 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) + (-5 *1 (-926 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1160)) + (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-1160)) + (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *8)) (-5 *4 (-1160)) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) + (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) + (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1160)) + (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *6 *7 *8 *9))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) + (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5))))) + (-4 *3 (-13 (-27) (-1203) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-4 *6 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-772))) - (-4 *7 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-772))) + (-4 *7 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-772))) - (-4 *3 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-772))) + (-4 *3 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1258 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1177)) (-5 *2 (-112)) - (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1243 *5)) - (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3827 *3)))) - (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) - (-4 *7 (-657 (-410 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) - (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3827 (-655 *6 (-410 *6)))))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1159)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1243 *4)) - (-5 *2 (-2 (|:| -4282 (-624 *4 *5)) (|:| -4044 (-410 *5)))) - (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))) + (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) + (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) + (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-105))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) + (-5 *2 (-690 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1268 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1268 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1244 *4)) (-5 *2 (-1268 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1165 *3 *4))) (-5 *1 (-1165 *3 *4)) - (-14 *3 (-922)) (-4 *4 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1243 *3))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4))) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2))))) + (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) + (-5 *2 (-1268 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) + (-5 *2 (-1268 *5)) (-5 *1 (-1088 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) (((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) - (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) + (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) + (-4 *6 (-657 (-410 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) + (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) + (-4 *6 (-657 (-410 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050))))) -(((*1 *2) - (-12 (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) + (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) + (-4 *3 (-657 (-410 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) + (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) + (-4 *3 (-657 (-410 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) + (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) + (-5 *2 (-112)) (-5 *1 (-668 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-112)) + (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *3 (-1244 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) + (-4 *5 (-657 (-410 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-410 *5)) + (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) + (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 *8)) + (-5 *4 + (-645 + (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-690 *7))))) + (-5 *5 (-772)) (-4 *8 (-1244 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-351)) + (-5 *2 + (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-690 *7)))) + (-5 *1 (-501 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) - (-5 *1 (-1294 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-1267 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) - (-4 *3 (-1101))))) + (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1244 *4)) + (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455))))) (((*1 *2 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1752 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) + (-5 *3 (-410 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-577 *7 *8))))) +(((*1 *2 *3 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) - (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2701 (-645 (-225))))))) - (-5 *2 (-645 (-1159))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *5 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *6 (-559)) - (-5 *2 (-2 (|:| -2825 (-953 *6)) (|:| -1504 (-953 *6)))) - (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-772)) - (-4 *5 (-13 (-455) (-1039 (-567)))) (-4 *5 (-559)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *5 (-613 $)) $)) - (-15 -1455 ((-1126 *5 (-613 $)) $)) - (-15 -4127 ($ (-1126 *5 (-613 $)))))))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) + (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-645 (-1178))) (-4 *2 (-172)) + (-4 *4 (-238 (-2414 *5) (-772))) + (-14 *6 + (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *4)) + (-2 (|:| -3768 *3) (|:| -3458 *4)))) + (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) + (-4 *7 (-951 *2 *4 (-865 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *2 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1217)) (-4 *3 (-851)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1217)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)) - (-4 *3 (-559)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-905 *4)) - (-4 *4 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) - (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1174 (-1026 *3)))) + (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) + (-5 *1 (-1219 *3))))) +(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1271))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) + (-4 *7 (-1244 *6)) + (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *1) + (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *7 (-1243 *5)) (-4 *4 (-725 *5 *7)) - (-5 *2 (-2 (|:| -4138 (-690 *6)) (|:| |vec| (-1267 *5)))) - (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1210 *4 *5 *6 *7)) - (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) - (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) + (-4 *2 (-688 *3 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) (((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) - (-5 *2 (-645 (-645 (-645 (-772)))))))) -(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-132))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1160)) (|:| -1996 (-1160)))) + (-5 *1 (-823))))) (((*1 *2 *2) - (-12 (-4 *3 (-1243 (-410 (-567)))) (-5 *1 (-914 *3 *2)) - (-4 *2 (-1243 (-410 *3)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3) - (-12 (-5 *3 (-922)) - (-5 *2 - (-3 (-1173 *4) - (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121))))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1173 (-953 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1173 (-953 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *2 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) + (-5 *1 (-1276 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1178))) (-5 *1 (-632 *5 *6))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1268 (-645 *3))) (-4 *4 (-308)) + (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) - (-5 *1 (-786 *5))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1217)) (-5 *2 (-1272))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 (-1267 (-567)))) (-5 *3 (-922)) (-5 *1 (-469))))) + (-645 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) + (-5 *1 (-452 *4 *3 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) - (-5 *2 (-645 (-1177))) (-5 *1 (-268)))) + (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) + (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) ((*1 *2 *3) - (-12 (-5 *3 (-1173 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-645 *5)) + (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) + (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) ((*1 *2 *1) - (-12 (-4 *1 (-433 *3)) (-4 *3 (-1101)) (-5 *2 (-645 (-1177))))) + (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1178))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) ((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) + (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *5)) - (-5 *1 (-951 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) + (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) + (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5)))) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1177))) - (-5 *1 (-1044 *4))))) + (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1178))) + (-5 *1 (-1045 *4))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-772)) (-4 *3 (-1217)) (-4 *1 (-57 *3 *4 *5)) + (-12 (-5 *2 (-772)) (-4 *3 (-1218)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1101)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-392)))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392)))) ((*1 *1) (-5 *1 (-397))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) ((*1 *1) - (-12 (-4 *3 (-1101)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1101)) + (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) - ((*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101)))) + ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) ((*1 *1 *2) - (-12 (-5 *1 (-1143 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1050)))) - ((*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) - ((*1 *1 *1) (-5 *1 (-1177))) ((*1 *1) (-5 *1 (-1177))) - ((*1 *1) (-5 *1 (-1197)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))) + (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) + ((*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) + ((*1 *1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1178))) + ((*1 *1) (-5 *1 (-1198)))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) - (-15 -1455 ((-1126 *4 (-613 $)) $)) - (-15 -4127 ($ (-1126 *4 (-613 $))))))) - (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-613 *2))) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *4 (-613 $)) $)) - (-15 -1455 ((-1126 *4 (-613 $)) $)) - (-15 -4127 ($ (-1126 *4 (-613 $))))))) - (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1218))))) +(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1059)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-1059)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1243 *4)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)) (-4 *2 (-308)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1054 *2 *3 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-823))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *2)) - (-4 *2 (-649 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1050))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1177))) - (-4 *4 (-455)) (-5 *1 (-632 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-421 *1)) (-4 *1 (-950 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 (-410 *7)))) - (-5 *1 (-1172 *4 *5 *6 *7)) (-5 *3 (-1173 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1221)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1246 *4 *3)) - (-4 *3 (-13 (-1243 *4) (-559) (-10 -8 (-15 -2771 ($ $ $))))))) + (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) + (-4 *4 (-1244 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-727)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1174 (-1174 *5)))) + (-5 *1 (-1216 *5)) (-5 *3 (-1174 (-1174 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) + (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) + (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) + (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *8))) + (-5 *1 (-913 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-14 *5 (-645 (-1177))) - (-5 *2 - (-645 (-1147 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) - (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177)))))) + (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) + (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) + (-4 *6 (-344 (-410 (-567)) *4 *5)) + (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *6))) + (-5 *1 (-914 *4 *5 *6))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1173 (-410 (-1173 *2)))) (-5 *4 (-613 *2)) - (-4 *2 (-13 (-433 *5) (-27) (-1202))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1101)))) + (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) + (-4 *2 (-13 (-433 *5) (-27) (-1203))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) + (-12 (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1050)) (-4 *1 (-950 *4 *5 *3)) + (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1173 *2))) (-4 *5 (-794)) (-4 *4 (-851)) - (-4 *6 (-1050)) + (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-794)) (-4 *4 (-851)) + (-4 *6 (-1051)) (-4 *2 (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))) - (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4)))) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) + (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1173 (-410 (-953 *5))))) (-5 *4 (-1177)) - (-5 *2 (-410 (-953 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-559))))) + (-12 (-5 *3 (-410 (-1174 (-410 (-954 *5))))) (-5 *4 (-1178)) + (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -1791 *3) (|:| -4232 *4)))) - (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *1 (-1193 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) - (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-701 *3)) - (-4 *3 (-308))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1148 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) - ((*1 *1 *1 *1) (-4 *1 (-794)))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) + (-12 (-5 *2 (-645 (-2 (|:| -1795 *3) (|:| -4237 *4)))) + (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1194 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) + (-5 *2 (-1037)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-758))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-1174 *4))) (-5 *3 (-1174 *4)) + (-4 *4 (-911)) (-5 *1 (-664 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) + (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) + (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) + (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-308))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1149 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1160)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) + (-5 *2 (-690 (-225))) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) - (-4 *2 (-365)) (-14 *5 (-994 *4 *2)))) + (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) + (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) - (-4 *6 (-238 (-2410 *4) (-772))) + (-4 *6 (-238 (-2414 *4) (-772))) (-14 *7 - (-1 (-112) (-2 (|:| -3763 *5) (|:| -4250 *6)) - (-2 (|:| -3763 *5) (|:| -4250 *6)))) - (-14 *4 (-645 (-1177))) (-4 *2 (-172)) - (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-865 *4))))) + (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) + (-2 (|:| -3768 *5) (|:| -3458 *6)))) + (-14 *4 (-645 (-1178))) (-4 *2 (-172)) + (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-851)))) + (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) - (-4 *4 (-1243 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050)))) + (-4 *4 (-1244 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-727)))) + (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) - (-4 *4 (-1050)) (-4 *5 (-851)))) + (-4 *4 (-1051)) (-4 *5 (-851)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) + (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) - (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) + (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) + (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) + (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-974 *4 *5 *6)) - (-4 *4 (-1050)) (-4 *5 (-793)) (-4 *6 (-851)))) + (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) + (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1050)) (-4 *3 (-793)) + (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) (-4 *2 (-851))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-4 *3 (-901 *5)) (-5 *2 (-1267 *3)) - (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) - (-4 *5 (-13 (-433 *4) (-1003) (-1202))) - (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1202)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-5 *2 (-1272)) - (-5 *1 (-1218 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1101)) (-5 *2 (-1272)) - (-5 *1 (-1218 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1243 (-567)))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) - (-4 *3 (-1217))))) + (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) + (-4 *4 (-1244 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-4 *6 (-887 *5)) (-5 *2 (-886 *5 *6 (-645 *6))) - (-5 *1 (-888 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-893 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-888 *5 *3 *4)) - (-4 *3 (-1039 (-1177))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-5 *2 (-645 (-295 (-953 *3)))) - (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1050)) - (-1653 (-4 *3 (-1039 (-1177)))) (-4 *3 (-887 *5)) - (-4 *4 (-615 (-893 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-5 *2 (-890 *5 *3)) (-5 *1 (-888 *5 *3 *4)) - (-1653 (-4 *3 (-1039 (-1177)))) (-1653 (-4 *3 (-1050))) - (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5)))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-893 *6))) - (-5 *5 (-1 (-890 *6 *8) *8 (-893 *6) (-890 *6 *8))) (-4 *6 (-1101)) - (-4 *8 (-13 (-1050) (-615 (-893 *6)) (-1039 *7))) - (-5 *2 (-890 *6 *8)) (-4 *7 (-1050)) (-5 *1 (-942 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) + (-12 (-5 *3 (-410 *6)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) + (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1244 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-268))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3867)))) (-5 *3 (-225)) - (-5 *2 (-1036)) (-5 *1 (-749))))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) + (-4 *5 (-888 (-567))) + (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) + (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) + (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-794)) + (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) + (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *3 + (-13 (-851) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) + (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *6)) + (-4 *6 + (-13 (-851) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) + (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) + (-4 *2 (-951 (-954 *4) *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) (-5 *2 (-112)) - (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-757))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) - (-14 *4 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1217)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) - (-14 *4 (-645 (-1177))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-851))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) + (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) - (-5 *2 (-1036)) (-5 *1 (-841))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) + (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1174 (-410 (-567)))) + (-5 *1 (-436 *5 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-1177)) (-4 *6 (-433 *5)) - (-4 *5 (-1101)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-241)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-645 (-1159))) (-5 *3 (-567)) (-5 *4 (-1159)) - (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1203)))) + ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *3 (-775)) (-5 *1 (-114))))) + (-12 (-4 *4 (-1218)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-675 *4))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) + (-4 *3 (-1218))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-1267 (-690 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-690 *4)) (-4 *5 (-657 *4))))) -(((*1 *1 *1) (-5 *1 (-1176))) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) + (-5 *2 (-2 (|:| -3694 (-410 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5)))))) +(((*1 *1 *1) (-5 *1 (-1177))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-970 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) - (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) - (-4 *3 (-1243 *6)) (-4 *7 (-950 *6 *4 *5))))) -(((*1 *1) (-4 *1 (-968)))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) - (-4 *3 (-950 *7 *5 *6)) - (-5 *2 - (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| (-645 *3)))) - (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-772)) - (-4 *8 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *3)) (-15 -1441 (*3 $)) (-15 -1455 (*3 $)))))))) + (-12 (-4 *5 (-365)) (-4 *7 (-1244 *5)) (-4 *4 (-725 *5 *7)) + (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) + (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1218)) + (-4 *5 (-1218)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) + (-4 *7 (-1218)) (-4 *5 (-1218)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-239 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1218)) (-4 *5 (-1218)) + (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) + (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1218)) + (-4 *5 (-1218)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1218)) + (-4 *5 (-1218)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1218)) + (-4 *3 (-1218)) (-5 *2 (-1158 *3)) (-5 *1 (-1156 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1268 *6)) (-4 *6 (-1218)) + (-4 *5 (-1218)) (-5 *2 (-1268 *5)) (-5 *1 (-1267 *6 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) + (-5 *1 (-1030 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) + (-5 *1 (-1030 *4))))) +(((*1 *1) (-4 *1 (-969)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 *4)))) - (-5 *1 (-890 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)))) + (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) + (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) ((*1 *2 *1) - (-12 (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) - (-4 *7 (-1101)) (-5 *2 (-645 *1)) (-4 *1 (-1104 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-950 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1050)) (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) - (-4 *1 (-1243 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) - (-5 *1 (-1161 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) - (-14 *4 (-1177)) (-14 *5 *3)))) + (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) + (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1244 (-410 *2))) + (-4 *2 (-1244 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-344 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) + ((*1 *1 *1) (-4 *1 (-1062)))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-567)) (-5 *1 (-241))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) - (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-235 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1101)) - (-5 *1 (-738 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34))) (-5 *1 (-1142 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1173 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1173 *3))))) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) + (-5 *2 (-645 *3))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *1 (-804))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) (((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) ((*1 *1 *1 *1) (-4 *1 (-455))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1243 (-567))))) + (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1243 *3)))) + (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))) ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) - (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) + (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) - (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) + (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1173 *7))) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-308)) (-5 *2 (-1173 *7)) (-5 *1 (-917 *4 *5 *6 *7)) - (-4 *7 (-950 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-922))) + (-12 (-5 *3 (-645 (-1174 *7))) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-918 *4 *5 *6 *7)) + (-4 *7 (-951 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-923))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) - (-4 *2 (-1243 *3)))) + (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) + (-4 *2 (-1244 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-821)) (-14 *5 (-1177)) (-5 *2 (-645 (-1240 *5 *4))) - (-5 *1 (-1115 *4 *5)) (-5 *3 (-1240 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1277))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) (((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-4 *1 (-1099 *3)))) - ((*1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-946 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1101)) (-5 *2 (-112))))) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) + ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) + (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) + (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1268 (-410 *8)) "failed")) + (|:| -2623 (-645 (-1268 (-410 *8)))))) + (-5 *1 (-670 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) + (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) (((*1 *2 *1) - (-12 (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-820 *3)))) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) ((*1 *2 *1) - (-12 (-4 *2 (-847)) (-5 *1 (-1290 *3 *2)) (-4 *3 (-1050))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1267 (-645 *3))) (-4 *4 (-308)) - (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1121)) (-5 *2 (-1272)) (-5 *1 (-832))))) + (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-4 *5 (-851)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-5 *2 (-1267 *3)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1243 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1101)) (-4 *6 (-1101)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1101))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1216))) (-5 *3 (-1216)) (-5 *1 (-682))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1217))))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) + (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) + (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) + (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1177))) (-5 *4 (-1177)) - (-5 *1 (-1180)))) + (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *4 (-1178)) + (-5 *1 (-1181)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1180)))) + (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-1177)) (-5 *1 (-1181)))) + (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1182)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1177))) (-5 *1 (-1181))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-970 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *3 (-851)) (-5 *2 (-772))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1258 *4)) - (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1157 *4) (-1157 *4))) - (-5 *1 (-1260 *4 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1173 *3) (-1173 *3))) - (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) - (-5 *1 (-554 *6 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1039 (-48))) - (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 (-1173 (-48)))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1243 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1093 (-953 (-567)))) (-5 *3 (-953 (-567))) - (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1093 (-953 (-567)))) (-5 *1 (-331))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1975 (-645 *1)))) - (-4 *1 (-369 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -1975 (-645 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) + (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *1 (-1182))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483))))) +(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) + (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) + (-4 *2 (-13 (-851) (-21)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1192 *2)) (-4 *2 (-365))))) (((*1 *1 *2) - (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1217)) (-4 *1 (-238 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4)) - (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823))))) + (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1218)) (-4 *1 (-238 *3 *4))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) + (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) + (-5 *2 (-1037)) (-5 *1 (-757))))) (((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567)))) - (-4 *7 (-1243 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) - (-4 *2 (-344 *5 *6 *7))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1101))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1244 *4)) + (-5 *2 (-2 (|:| -3654 (-624 *4 *5)) (|:| -4036 (-410 *5)))) + (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) + (-14 *3 (-923)) (-4 *4 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-455)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1244 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) + (-4 *3 (-951 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) + (-5 *1 (-926 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) + (-5 *1 (-926 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 - (-2 (|:| A (-690 *5)) - (|:| |eqs| - (-645 - (-2 (|:| C (-690 *5)) (|:| |g| (-1267 *5)) (|:| -3827 *6) - (|:| |rh| *5)))))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) - (-4 *6 (-657 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) - (-5 *2 (-2 (|:| -4138 (-690 *6)) (|:| |vec| (-1267 *5)))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1267 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2166 (-645 (-2 (|:| |irr| *10) (|:| -1594 (-567))))))) - (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) - (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-794)) - (-5 *2 - (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) - (|:| |corrfact| (-645 (-1173 *3))))) - (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1173 *3)))))) + (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) + (-5 *2 (-1268 (-1268 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1268 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) + ((*1 *1 *1 *1) (-4 *1 (-455)))) (((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) - ((*1 *1 *1 *1) (-4 *1 (-455)))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1050)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)) - (-4 *3 (-172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) - (-5 *2 (-645 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-567))) (-5 *4 (-906 (-567))) - (-5 *2 (-690 (-567))) (-5 *1 (-592)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-592)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-906 (-567)))) - (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-863)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-963))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1101)) (-5 *2 (-890 *3 *4)) (-5 *1 (-886 *3 *4 *5)) - (-4 *3 (-1101)) (-4 *5 (-667 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *1) (-5 *1 (-292)))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) + (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-863)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-964))))) +(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1213))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) + (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) + (-5 *1 (-348 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102))))) (((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3)))))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) + (-4 *2 (-1244 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) + (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) + (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) + (-4 *3 (-853 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) - ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) - ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) - ((*1 *1 *1) (-4 *1 (-1061)))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -2703 (-1173 *6)) (|:| -4250 (-567))))) - (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) - (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1270)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1270))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218))))) (((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) - ((*1 *1 *1) (-4 *1 (-1003))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-922)))) - ((*1 *1 *1) (-4 *1 (-1013)))) + ((*1 *1 *1) (-4 *1 (-1004))) + ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) + ((*1 *1 *1) (-4 *1 (-1014)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1094 *3)) (-4 *3 (-1217))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1272))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) + (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) + (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-308))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1199))))) +(((*1 *1) (-5 *1 (-824)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1177))) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *4 (-645 (-1177))) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-301))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1050)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *1)))) - (-4 *1 (-1072 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2956 *7) (|:| |sol?| (-112))) - (-567) *7)) - (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1243 *7)) - (-5 *3 (-410 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) + (-12 (-5 *3 (-929)) + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) + (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) + (-5 *1 (-153))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1243 (-48))))) + (-4 *3 (-1244 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48))))) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) - (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-950 (-48) *6 *5)))) + (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *7 (-950 (-48) *6 *5)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1173 *7)))) + (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1243 (-169 *4))))) + (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1243 *4)))) + (-4 *3 (-1244 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) + (-4 *3 (-1244 (-567))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) + (-4 *3 (-1244 (-567))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) - (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) + (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) + (-4 *3 (-1244 (-567))))) ((*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567))))) @@ -9747,532 +10120,495 @@ (-12 (-4 *4 (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) - (-4 *3 (-950 *7 *5 *4)))) + (-4 *3 (-951 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1173 *4))) (-5 *1 (-461 *4)) - (-5 *3 (-1173 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1174 *4))) (-5 *1 (-461 *4)) + (-5 *3 (-1174 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) + (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) - (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1243 *7)))) + (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1244 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 (-1173 *7)) (-1173 *7))) + (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) - (-4 *3 (-950 *7 *6 *5)))) + (-4 *3 (-951 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 (-1173 *7)) (-1173 *7))) + (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-421 (-1173 *8))) - (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1173 *8)))) + (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1174 *8))) + (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) (-5 *2 (-645 (-654 (-410 *6)))) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) (-5 *2 (-645 (-654 (-410 *5)))) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) - (-4 *3 (-1243 *4)))) + (-4 *3 (-1244 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) - (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) + (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) - (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) + (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) + (-10 -8 (-15 -3893 ((-1178) $)) + (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) - (-4 *3 (-950 (-953 *6) *4 *5)))) + (-4 *3 (-951 (-954 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-794)) - (-4 *5 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *6 (-559)) + (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) - (-4 *3 (-950 (-410 (-953 *6)) *4 *5)))) + (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) - (-4 *3 (-950 (-410 *6) *4 *5)))) + (-4 *3 (-951 (-410 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-950 *6 *5 *4)))) + (-4 *3 (-951 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) + (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) - (-4 *3 (-1243 (-410 (-567)))))) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) + (-4 *3 (-1244 (-410 (-567)))))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1042 *3)) - (-4 *3 (-1243 (-410 (-953 (-567))))))) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) + (-4 *3 (-1244 (-410 (-954 (-567))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1243 (-410 (-567)))) + (-12 (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) - (-5 *2 (-421 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1243 *5)))) + (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1244 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1243 (-410 (-953 (-567))))) - (-4 *5 (-13 (-365) (-147) (-725 (-410 (-953 (-567))) *4))) - (-5 *2 (-421 *3)) (-5 *1 (-1082 *4 *5 *3)) (-4 *3 (-1243 *5)))) + (-12 (-4 *4 (-1244 (-410 (-954 (-567))))) + (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) + (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1244 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1173 (-410 *7)))) - (-5 *1 (-1172 *4 *5 *6 *7)) (-5 *3 (-1173 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1221)))) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) + (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222)))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1028 *5 *6 *7 *3))) (-5 *1 (-1028 *5 *6 *7 *3)) - (-4 *3 (-1066 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-1072 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1147 *5 *6 *7 *3))) (-5 *1 (-1147 *5 *6 *7 *3)) - (-4 *3 (-1066 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *1) (-4 *1 (-1152)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) - (-14 *4 *2)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-241))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1202) (-960))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3) - (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) (-4 *3 (-1050))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2) (-12 (-5 *2 (-1148 (-1159))) (-5 *1 (-394))))) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) + (-5 *1 (-471))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1051)) (-4 *1 (-1244 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))) (((*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) - (-5 *1 (-1188 *4)) (-5 *3 (-645 (-645 (-645 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 (-645 *4))))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) - (-5 *1 (-1161 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1050)) - (-14 *4 (-1177)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1105))) (-5 *1 (-292))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-532)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1177))))) - (-5 *6 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1105)) - (-5 *1 (-400)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1177))))) - (-5 *6 (-645 (-1177))) (-5 *3 (-1177)) (-5 *2 (-1105)) - (-5 *1 (-400)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-645 (-1177))) (-5 *5 (-1180)) (-5 *3 (-1177)) - (-5 *2 (-1105)) (-5 *1 (-400))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-1133 *4 *2)) - (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-851)) (-4 *3 (-1217)) (-5 *1 (-1133 *3 *2)) - (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4417) (-6 -4418))))))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-727))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862))))) +(((*1 *2 *3) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178)) + (-5 *2 + (-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) + (|:| |singularities| (-1158 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1244 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) + (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1244 (-567))))) + ((*1 *2 *3) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) + (-4 *3 (-1244 (-410 (-567)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1244 *4)) + (-5 *1 (-924 *4 *2))))) +(((*1 *1) (-5 *1 (-824)))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-922)) (-5 *1 (-1031 *2)) - (-4 *2 (-13 (-1101) (-10 -8 (-15 -3024 ($ $ $)))))))) + (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) + (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)))))))) (((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312)))) ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) - (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2082 *6))) - (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 (-1173 *7))) (-5 *3 (-1173 *7)) - (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-910)) (-4 *6 (-794)) - (-4 *4 (-851)) (-5 *1 (-907 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) (-5 *2 - (-645 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-567))))) - (-5 *1 (-421 *3)) (-4 *3 (-559)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1243 *3)) - (-5 *2 (-645 (-1173 *3))) (-5 *1 (-501 *3 *5 *6)) - (-4 *6 (-1243 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) + (-2 (|:| |contp| (-567)) + (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) + (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) - (-4 *7 (-950 *3 *5 *6)) - (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *8) (|:| |radicand| *8))) - (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-772)) - (-4 *8 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 (-567))) - (-5 *2 (-1267 (-567))) (-5 *1 (-1294 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) + (-5 *1 (-807 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (-844 *3) + (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) + (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) + "failed")) + (-5 *1 (-637 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1160)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) + (-5 *2 + (-3 (-844 (-410 (-954 *5))) + (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) + "failed")) + (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) + (-4 *5 (-455)) + (-5 *2 + (-3 (-844 *3) + (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) + (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) + "failed")) + (-5 *1 (-638 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1160)) + (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) + (-5 *1 (-638 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) + ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1101)) - (-4 *4 (-559)) (-5 *2 (-410 (-1173 *1))))) + (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) + (-4 *4 (-559)) (-5 *2 (-410 (-1174 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-1173 (-410 (-1173 *3)))) (-5 *1 (-563 *6 *3 *7)) - (-5 *5 (-1173 *3)) (-4 *7 (-1101)))) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-563 *6 *3 *7)) + (-5 *5 (-1174 *3)) (-4 *7 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1263 *5)) (-14 *5 (-1177)) (-4 *6 (-1050)) - (-5 *2 (-1240 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6)))) + (-12 (-5 *4 (-1264 *5)) (-14 *5 (-1178)) (-4 *6 (-1051)) + (-5 *2 (-1241 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-1173 *3)))) + (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-1174 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1173 *1)) - (-4 *1 (-950 *4 *5 *3)))) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1174 *1)) + (-4 *1 (-951 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-410 (-1173 *3))) - (-5 *1 (-951 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1174 *3))) + (-5 *1 (-952 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))))) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1173 *3)) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) (-15 -1455 (*7 $))))) - (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) - (-4 *6 (-1050)) (-5 *1 (-951 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) + (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) + (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-559)) - (-5 *2 (-410 (-1173 (-410 (-953 *5))))) (-5 *1 (-1044 *5)) - (-5 *3 (-410 (-953 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-455)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-5 *4 (-1178)) (-4 *5 (-559)) + (-5 *2 (-410 (-1174 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) + (-5 *3 (-410 (-954 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *1 (-1162 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)))) + ((*1 *1) (-4 *1 (-1153)))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1) (-5 *1 (-863))) + ((*1 *2 *3) + (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1211 *4 *5 *6 *7)) + (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2774 *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) + (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) + (-4 *3 (-649 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1273)) (-5 *1 (-832))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) + (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5)) + (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) + (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1113)) (-4 *3 (-1101)) (-5 *2 (-645 *1)) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) - (-5 *1 (-951 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) - (-15 -1455 (*7 $)))))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-567))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1211 *6)) - (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1275 *6)) - (-5 *5 (-1157 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 *4))) (-5 *3 (-1173 *4)) - (-4 *4 (-910)) (-5 *1 (-664 *4))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) - (-5 *1 (-755))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-590 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *3 (-851)) (-5 *2 (-772))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) + (-4 *5 (-657 (-410 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *5 *3)) + (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) + (-4 *3 (-657 (-410 *2)))))) (((*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-55)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-114)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-114)) (-5 *1 (-163)))) + ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-114)) (-5 *1 (-163)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1003))))) + (-4 *4 (-13 (-433 *3) (-1004))))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-1101)) (-5 *1 (-432 *3 *4)) + (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1101)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1003) (-1202))))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1020))))) + (-4 *4 (-13 (-433 *3) (-1004) (-1203))))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471))))) (((*1 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1975 (-645 *1)))) - (-4 *1 (-369 *3)))) + (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1268 *4))) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -1975 (-645 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1177))) (-4 *4 (-455)) - (-5 *1 (-919 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) - (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1270))))) -(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1217)))) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) + (-5 *2 (-645 (-1268 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) + (-5 *2 + (-2 (|:| -3458 (-772)) (|:| -3694 *5) (|:| |radicand| (-645 *5)))) + (-5 *1 (-321 *5)) (-5 *4 (-772)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1218)))) ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) - (-4 *2 (-657 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-840)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *2 (-1036)))) - ((*1 *2 *3) - (-12 (-4 *1 (-840)) - (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) - (-5 *2 (-1036))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-410 (-567))) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) + (-4 *2 (-13 (-1102) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1050)) (-4 *3 (-1101)) - (-5 *2 (-2 (|:| |val| *1) (|:| -4250 (-567)))) (-4 *1 (-433 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-567)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4250 (-893 *3)))) - (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -4250 (-567)))) - (-5 *1 (-951 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) - (-15 -1455 (*7 $)))))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) + ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-306)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-922)) (-5 *1 (-787))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3074 *3) (|:| -4250 (-772)))) (-5 *1 (-589 *3)) - (-4 *3 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976))))) +(((*1 *2 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) + (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) - (-4 *4 (-1050)))) + (-4 *4 (-1051)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) ((*1 *1 *1) (-4 *1 (-233))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1243 *3)))) + (-4 *4 (-1244 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) - (-4 *3 (-1243 *2)))) - ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) + (-4 *3 (-1244 *2)))) + ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) - (-4 *4 (-1101)))) + (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) + (-4 *4 (-1102)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1101)))) + (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1101)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1101))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1207 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) - (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1050)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1188 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1101))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) + (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) + (-5 *2 (-421 (-1174 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) + (-4 *3 (-1244 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1167 (-1178) (-954 *6)))) + (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) + (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) + (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) + (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1087)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-410 *5)) (-4 *4 (-1221)) (-4 *5 (-1243 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1243 *3)))) + (-12 (-5 *3 (-410 *5)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1244 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-410 (-567)))) (-5 *2 (-410 (-567))) + (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1177))) - (-5 *4 (-1267 (-317 (-225)))) (-5 *1 (-205)))) + (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1178))) + (-5 *4 (-1268 (-317 (-225)))) (-5 *1 (-205)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1101)) - (-4 *3 (-1217)) (-5 *1 (-295 *3)))) + (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) + (-4 *3 (-1218)) (-5 *1 (-295 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-310 *2)) (-4 *2 (-1101)) (-4 *2 (-1217)) + (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)) (-5 *1 (-295 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) @@ -10284,20 +10620,20 @@ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) + (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) + (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-1 *1 (-645 *1)))) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1179 (-410 (-567)))) + (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1180 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) @@ -10305,762 +10641,899 @@ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) + (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-1050)))) + (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) + (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-772))) - (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1101)) - (-4 *5 (-1050)))) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) + (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) + (-4 *5 (-1051)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-645 (-772))) - (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1101)) - (-4 *5 (-1050)))) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) + (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) + (-4 *5 (-1051)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1177)) - (-4 *1 (-433 *5)) (-4 *5 (-1101)) (-4 *5 (-615 (-539))))) + (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1178)) + (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1177)) (-4 *1 (-433 *4)) (-4 *4 (-1101)) + (-12 (-5 *2 (-114)) (-5 *3 (-1178)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-615 (-539))))) ((*1 *1 *1) - (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-615 (-539))))) + (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-1177))) (-4 *1 (-433 *3)) (-4 *3 (-1101)) + (-12 (-5 *2 (-645 (-1178))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)) + (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1217)))) + (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1218)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) - (-4 *4 (-1101)) (-4 *5 (-1217)))) + (-4 *4 (-1102)) (-4 *5 (-1218)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1101)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1177)) (-4 *4 (-559)) - (-5 *1 (-1044 *4)))) + (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-559)) + (-5 *1 (-1045 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-1177))) (-5 *4 (-645 (-410 (-953 *5)))) - (-5 *2 (-410 (-953 *5))) (-4 *5 (-559)) (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-645 (-1178))) (-5 *4 (-645 (-410 (-954 *5)))) + (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-5 *2 (-410 (-953 *4))) - (-4 *4 (-559)) (-5 *1 (-1044 *4)))) + (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) + (-4 *4 (-559)) (-5 *1 (-1045 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-5 *2 (-410 (-953 *4))) - (-4 *4 (-559)) (-5 *1 (-1044 *4)))) + (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) + (-4 *4 (-559)) (-5 *1 (-1045 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) + (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *1)) (-5 *4 (-1268 *1)) (-4 *1 (-640 *5)) + (-4 *5 (-1051)) + (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) + (-5 *2 (-690 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) + (-5 *1 (-1007))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))) +(((*1 *1) (-5 *1 (-581)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) (((*1 *2) - (-12 - (-5 *2 - (-1267 (-645 (-2 (|:| -3794 (-911 *3)) (|:| -3763 (-1121)))))) - (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) - ((*1 *2) - (-12 (-5 *2 (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121)))))) - (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1173 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121)))))) - (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922))))) + (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) + (-4 *4 (-1244 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2) - (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1140)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-131))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1177))) (-4 *5 (-1050)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5))))) + (-12 (-5 *2 (-1268 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) + (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1268 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *3)))) + ((*1 *2) + (-12 (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *1)) + (-4 *1 (-412 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) + (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) + (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) + (-5 *2 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) + (-4 *6 (-412 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-420 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 *4))) (-5 *1 (-531 *4)) + (-4 *4 (-351))))) (((*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) + (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) ((*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-922)) (-4 *5 (-172)) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) + (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) + (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381))) + (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) + (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) + (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) + (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559)) + (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) + (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-192))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) + (-4 *3 (-13 (-1203) (-29 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1101)) (-4 *2 (-1101)) - (-5 *1 (-612 *2 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1173 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1173 *3)))) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) - (-4 *2 (-1243 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-1173 *4)) - (-5 *1 (-531 *4))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1258 *4)) - (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1260 *4 *5))))) + (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) + (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1051)) + (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-4 *5 (-1051)) + (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) + (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 (-567)))) (-5 *1 (-469))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1218)) + (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-1177)) (-5 *1 (-539)))) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1178)) (-5 *1 (-539)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) + (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) + (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) + (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-645 (-1177))) (-5 *2 (-1177)) (-5 *1 (-705 *3)) + (-12 (-5 *4 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) + (-4 *4 (-351)) (-5 *2 (-1273)) (-5 *1 (-531 *4))))) (((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -3301 *5)))) - (-4 *5 (-1243 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) - (-5 *1 (-216 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| -2703 *5) (|:| -1813 (-567))))) - (-5 *4 (-567)) (-4 *5 (-1243 *4)) (-5 *2 (-645 *5)) - (-5 *1 (-697 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-1101)) (-5 *2 (-645 *1)) - (-4 *1 (-384 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-727)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-950 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) + (-5 *1 (-1031 *4))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1177))) - (-4 *6 (-13 (-559) (-1039 *5))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *6)))))) (-5 *1 (-1040 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *1) (-5 *1 (-440)))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-690 (-1174 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) + (-4 *6 (-1244 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) + (-4 *7 (-1244 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-613 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) + (-4 *2 (-13 (-433 *5) (-27) (-1203))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102))))) +(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-308)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-450 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1267 *6)) (-5 *4 (-1267 (-567))) (-5 *5 (-567)) - (-4 *6 (-1101)) (-5 *2 (-1 *6)) (-5 *1 (-1018 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5)) - (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1177)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-241)) (-5 *3 (-1159)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) - (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1258 *5)) (-4 *6 (-1243 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) - (-4 *3 (-1217))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1111))))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1217))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1202))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1101))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) - (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) - (-5 *1 (-755))))) -(((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))) + (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) + (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) + (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1066 *4 *5 *6)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-978 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1036)) (-5 *1 (-758))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1243 *4)) (-5 *1 (-811 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1243 *4)) - (-5 *1 (-811 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))))) + (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1244 (-169 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140))))) (((*1 *2 *3) + (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)) (-5 *3 (-1160)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-567)) (-5 *1 (-204))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1101)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1598 (-772)) (|:| -1608 (-772)))) - (-5 *1 (-772)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *2) + (-5 *5 + (-2 (|:| |done| (-645 *11)) + (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) + (-5 *6 (-772)) + (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) + (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) + (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) + (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) (-12 + (-5 *5 + (-2 (|:| |done| (-645 *11)) + (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) + (-5 *6 (-772)) + (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) + (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) + (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) + (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11))))) +(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1244 *6)) + (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *1 (-268))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1227 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) - (-5 *2 (-410 (-953 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1227 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) - (-5 *2 (-410 (-953 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050)))) - ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3845 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1017 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112)) + (-5 *1 (-1158 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2) + (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *2) + (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) + (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550))) + ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) + ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1178))) + ((*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-923)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) + ((*1 *1) (-5 *1 (-1223))) ((*1 *1) (-5 *1 (-1224))) + ((*1 *1) (-5 *1 (-1225))) ((*1 *1) (-5 *1 (-1226)))) +(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1182)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1050))))) + (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) + (-14 *4 (-567))))) (((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-317 (-567)))) - (-5 *1 (-1032))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) + (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4))) + (-5 *1 (-1261 *4 *5))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) + (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-863)) (-5 *1 (-1174 *3)) (-4 *3 (-1051))))) (((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1217)) - (-4 *3 (-1101)))) + (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1218)) + (-4 *3 (-1102)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1217)) (-4 *3 (-1101)) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-567)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1217)) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-532)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-567)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1145)) (-5 *2 (-567))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1217)) - (-4 *5 (-1217)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) - (-4 *7 (-1217)) (-4 *5 (-1217)) (-5 *2 (-240 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1217)) (-4 *5 (-1217)) - (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1101)) (-4 *5 (-1101)) - (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1217)) - (-4 *5 (-1217)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-959 *6)) (-4 *6 (-1217)) - (-4 *5 (-1217)) (-5 *2 (-959 *5)) (-5 *1 (-958 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1217)) - (-4 *3 (-1217)) (-5 *2 (-1157 *3)) (-5 *1 (-1155 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1267 *6)) (-4 *6 (-1217)) - (-4 *5 (-1217)) (-5 *2 (-1267 *5)) (-5 *1 (-1266 *6 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760))))) (((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-1047 *4 *5))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) - (-4 *3 (-13 (-365) (-147) (-1039 (-567)))) (-5 *1 (-571 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1028 (-844 (-567)))) + (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) + (-5 *1 (-597 *4))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202))))) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1268)))) + (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1036)) (-5 *1 (-750)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-391)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-5 *1 (-597 *3)) (-4 *3 (-1050))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190))))) -(((*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-527))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-1101)) (-4 *3 (-901 *6)) - (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417))))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1036)) - (-5 *1 (-747))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1212 *3)) - (-5 *1 (-791 *3)) (-4 *3 (-975)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1212 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-1173 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-925 *4 *5 *6 *3)) - (-4 *3 (-950 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-966))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1159) (-775))) (-5 *1 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1210 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-567)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381)))) - (-5 *7 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-567)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3032 (-381)))) - (-5 *7 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) (((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1243 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + (-12 (-5 *2 (-171)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1243 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-328 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-519 *3 *4)) + (-14 *4 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) - (|:| -2082 *6))) - (-5 *1 (-1016 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) (|partial| -4 *1 (-723)))) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) (((*1 *2 *3) - (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-972)) - (-5 *3 (-645 (-567)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) - (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) + (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) - (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1198)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1198))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-1159)) (-5 *1 (-990)))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) + (-4 *3 (-1102)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) + (-5 *1 (-738 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1178)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-645 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1203) (-27) (-433 *8))) + (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) + (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-991)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-4 *4 (-1217)) (-5 *1 (-1058 *3 *4)) - (-4 *3 (-1094 *4)))) + (-12 (-5 *2 (-1178)) (-4 *4 (-1218)) (-5 *1 (-1059 *3 *4)) + (-4 *3 (-1095 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1095 *4)) (-4 *4 (-1217)) - (-5 *1 (-1093 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) - (-4 *4 (-267 *3)) (-4 *5 (-794))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1039 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-433 *3)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1173 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1050)) (-4 *1 (-303)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1173 *3)))) - ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1069 *3 *2)) (-4 *3 (-13 (-849) (-365))) - (-4 *2 (-1243 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1243 *4)) - (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1243 *5)) (-14 *6 (-922)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) + (-12 (-5 *2 (-1178)) (-5 *3 (-1096 *4)) (-4 *4 (-1218)) + (-5 *1 (-1094 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *1 *1) (-4 *1 (-1062)))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1101)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1101)) - (-5 *1 (-113 *4)))) + (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3979 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -4180 (-410 *6)) + (|:| |special| (-410 *6)))) + (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1101))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-4 *7 (-950 *4 *6 *5)) + (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) + (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-898 *3 *5)) + (-4 *3 (-1244 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) + (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) + (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) + (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) + (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-2 + (|:| -1795 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -4237 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1158 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1604 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-562)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -1795 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -4237 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))))) + (-5 *1 (-804)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) +(((*1 *1 *2) + (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) + (-14 *3 (-772)) (-14 *4 (-772))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-567)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) + (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4420 "*"))))) + (-5 *1 (-904 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) + (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) + (-4 *3 (-1040 (-1178))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) + (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) + (-1657 (-4 *3 (-1040 (-1178)))) (-4 *3 (-888 *5)) + (-4 *4 (-615 (-894 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) + (-1657 (-4 *3 (-1040 (-1178)))) (-1657 (-4 *3 (-1051))) + (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) (((*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-594)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-481)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1167)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-627)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1097)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1074)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-971)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1037)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-672)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1278)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-520)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-682)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1116)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1277)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-677)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1182))))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1160)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1168)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1278)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) - (-5 *2 (-645 (-944 *4))) (-5 *1 (-1213)) (-5 *3 (-944 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1066 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1072 *3 *4 *5 *6)) (-4 *2 (-1110 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1173 *6)) (-1173 *6))) - (-4 *6 (-365)) + (-12 (-5 *2 - (-645 - (-2 (|:| |outval| *7) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 *7)))))) - (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1217)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) + (-2 (|:| -3694 *3) (|:| |gap| (-772)) (|:| -3102 (-783 *3)) + (|:| -4194 (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-1051)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) + (-5 *2 + (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) + (|:| -4194 *1))) + (-4 *1 (-1067 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 + (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) + (|:| -4194 *1))) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) + (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) (((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) - (-4 *2 (-13 (-851) (-21)))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *1 (-588 *2)) (-4 *2 (-1039 *3)) - (-4 *2 (-365)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) - (-4 *2 (-13 (-433 *4) (-1003) (-1202))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1093 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1202))) - (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-1177)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 *1)) (-4 *1 (-960))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1036)) (-5 *1 (-757))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) + (-5 *1 (-531 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) + (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1178))) + (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) + (-4 *5 (-13 (-849) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-849) (-365)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-567)) (-5 *1 (-204))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) + (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1202) (-433 *3))) - (-14 *4 (-1177)) (-14 *5 *2))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1203) (-433 *3))) + (-14 *4 (-1178)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-4 *2 (-13 (-27) (-1202) (-433 *3) (-10 -8 (-15 -4127 ($ *4))))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-4 *2 (-13 (-27) (-1203) (-433 *3) (-10 -8 (-15 -4132 ($ *4))))) (-4 *4 (-849)) (-4 *5 - (-13 (-1245 *2 *4) (-365) (-1202) - (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) - (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1177))))) + (-13 (-1246 *2 *4) (-365) (-1203) + (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) + (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1178))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 (-954 *6))) (-4 *6 (-559)) + (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) + (-4 *5 (-794)) + (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) - (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) - (-4 *8 (-950 *3 *7 *6))))) -(((*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308))))) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) + (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1244 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-645 + (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) + (|:| |wcond| (-645 (-954 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) + (-5 *4 (-1160)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) + (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567)) + (-5 *1 (-926 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1203))) + (-5 *1 (-586 *4 *2)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-588 (-410 (-954 *4)))) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) + (-5 *1 (-591 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) + (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-701 *3)) + (-4 *3 (-308))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-851)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) + (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 (-894 *3))))) + (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) + (-5 *1 (-894 *4)) (-4 *4 (-1102))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) + (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2) + (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-645 + (-645 + (-3 (|:| -1996 (-1178)) + (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))))) + (-5 *1 (-1182))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -4179 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1217)) - (-4 *2 (-1217)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) + (-4 *2 (-1218)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1101)) (|has| *1 (-6 -4417)) - (-4 *1 (-151 *2)) (-4 *2 (-1217)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4418)) + (-4 *1 (-151 *2)) (-4 *2 (-1218)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) - (-4 *2 (-1217)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) + (-4 *2 (-1218)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) - (-4 *2 (-1217)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) + (-4 *2 (-1218)))) ((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-5 *2 (-2 (|:| -1867 (-1173 *4)) (|:| |deg| (-922)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1173 *4)) (-4 *5 (-559)))) + (-12 (-4 *4 (-1051)) + (-5 *2 (-2 (|:| -2517 (-1174 *4)) (|:| |deg| (-923)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-559)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) - (-4 *6 (-1217)) (-4 *2 (-1217)) (-5 *1 (-239 *5 *6 *2)))) + (-4 *6 (-1218)) (-4 *2 (-1218)) (-5 *1 (-239 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1243 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-4 *2 (-1244 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1101)))) + ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) ((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1243 *2)) - (-4 *4 (-1243 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) + (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1244 *2)) + (-4 *4 (-1244 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1217)) (-4 *2 (-1217)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1101)) (-4 *2 (-1101)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) ((*1 *1 *1) (-5 *1 (-498))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1217)) - (-4 *2 (-1217)) (-5 *1 (-643 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) + (-4 *2 (-1218)) (-5 *1 (-643 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1050)) (-4 *2 (-1050)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) @@ -11069,2333 +11542,2422 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1243 *3)))) + (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-365)) + (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1243 *3)))) + (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-959 *5)) (-4 *5 (-1217)) - (-4 *2 (-1217)) (-5 *1 (-958 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) + (-4 *2 (-1218)) (-5 *1 (-959 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) + (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1050)) (-4 *2 (-1050)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *12 (-1054 *5 *6 *2 *10 *11)))) + (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1217)) - (-4 *2 (-1217)) (-5 *1 (-1155 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) + (-4 *2 (-1218)) (-5 *1 (-1156 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1210 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *2 (-1066 *5 *6 *7)))) + (-4 *1 (-1211 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) + (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1267 *5)) (-4 *5 (-1217)) - (-4 *2 (-1217)) (-5 *1 (-1266 *5 *2))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1141 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1101) (-34))) (-4 *6 (-13 (-1101) (-34))) - (-5 *2 (-112)) (-5 *1 (-1142 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-567)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) - (-5 *1 (-452 *5 *6 *7 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1179 (-410 (-567)))) - (-5 *1 (-190))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) - (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1202))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-1173 (-410 (-1173 *6)))) (-5 *1 (-563 *5 *6 *7)) - (-5 *3 (-1173 *6)) (-4 *7 (-1101)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) + (-4 *2 (-1218)) (-5 *1 (-1267 *5 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1244 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1244 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) ((*1 *2 *1) - (-12 (-4 *2 (-1243 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) ((*1 *2 *1) - (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1243 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1173 *11)) (-5 *6 (-645 *10)) - (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) - (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-950 *11 *9 *10)) - (-5 *2 (-645 (-1173 *5))) (-5 *1 (-743 *9 *10 *11 *5)) - (-5 *3 (-1173 *5)))) + (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) + (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) ((*1 *2 *1) - (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) - (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1027 (-844 (-567)))) - (-5 *3 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1050)) - (-5 *1 (-597 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) - (-4 *3 (-13 (-407) (-1202))))) - ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-978 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-770)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) - (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-770)) (-5 *4 (-1064)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) - (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-788)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2221 (-645 (-1095 (-844 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) - (|:| |extra| (-1036)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-788)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)) - (|:| |extra| (-1036)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-801)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-809)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-809)) (-5 *4 (-1064)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) - (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-842)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-841)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-842)) (-5 *4 (-1064)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-841)))) + (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) + (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) + (-14 *6 (-1268 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-896)) (-5 *3 (-1064)) - (-5 *4 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -2484 (-381)) (|:| |explanations| (-1159)))))) + (-12 (-5 *4 (-923)) (-4 *5 (-1051)) + (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) + (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-645 (-613 (-498)))) + (-5 *1 (-498)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) + (-5 *1 (-531 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-899)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-898)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-899)) (-5 *4 (-1064)) - (-5 *2 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *1 (-898))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) - (-5 *4 (-645 (-922))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) - (-5 *4 (-645 (-922))) (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) - ((*1 *1 *1) (-5 *1 (-471)))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *1) (-4 *1 (-303))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 *7)) (-5 *3 (-567)) (-4 *7 (-950 *6 *4 *5)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-5 *1 (-322 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1217)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) - (-5 *2 (-2 (|:| -3686 (-410 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1050)) (-4 *1 (-1243 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1243 (-169 *3)))))) + (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1244 *4)) + (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1244 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1062)))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2720 *1) (|:| -4404 *1) (|:| |associate| *1))) - (-4 *1 (-559))))) + (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) (((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) - (-5 *2 (-645 (-645 (-645 (-944 *3)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1085 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1085 *2))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1070 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1066 *5 *6 *7)) - (-4 *9 (-1110 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1146 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3621 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))) + (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) + (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *1 *1 *1) (-4 *1 (-662)))) -(((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-1173 *3))))) -(((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-772))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *4)) - (-4 *4 (-1217)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1103 (-1103 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1159)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1159)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822))))) +(((*1 *1 *2) + (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) + (-4 *3 (-13 (-407) (-1203))))) + ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1203))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-563 *5 *6 *7)) + (-5 *3 (-1174 *6)) (-4 *7 (-1102)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) + ((*1 *2 *1) + (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-645 *10)) + (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) + (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) + (-5 *2 (-645 (-1174 *5))) (-5 *1 (-743 *9 *10 *11 *5)) + (-5 *3 (-1174 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) + (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| -2504 (-645 *3)) (|:| -3131 (-645 *3)))) + (-5 *1 (-1219 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) + (-4 *3 (-1244 *4)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1065)))) (((*1 *1 *1 *1) (-4 *1 (-662)))) +(((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-567)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) + (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-567)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) + (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) + (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) + (-5 *1 (-789))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) + (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) + (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1177)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) - (-4 *3 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217)) - (-4 *7 (-1217)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) - (-4 *3 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) - (-5 *2 (-645 (-645 (-944 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *4 (-1050)) - (-4 *1 (-1135 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 (-944 *3)))) (-4 *3 (-1050)) - (-4 *1 (-1135 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) - (-4 *1 (-1135 *4)) (-4 *4 (-1050)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) - (-4 *1 (-1135 *4)) (-4 *4 (-1050)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) - (-5 *4 (-171)) (-4 *1 (-1135 *5)) (-4 *5 (-1050)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-645 (-944 *5)))) (-5 *3 (-645 (-171))) - (-5 *4 (-171)) (-4 *1 (-1135 *5)) (-4 *5 (-1050))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1267 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1267 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1243 *4)) (-5 *2 (-1267 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) - (-5 *2 (-1267 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1267 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 (-1267 *5)) (-5 *1 (-1087 *5))))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5)))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1101)) - (-4 *3 (-1217))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1243 *4)))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*"))) + (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) + (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1244 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) + (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) - (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1243 (-567))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) - (-4 *3 (-1243 (-410 (-567)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1232 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *1) (-4 *1 (-968)))) + (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1217)) - (-4 *2 (-1101))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *1 (-698))))) -(((*1 *2 *3 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) + (-4 *2 (-1102))))) +(((*1 *2) + (-12 (-4 *1 (-351)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) + (|:| |cols| (-645 (-567))))) + (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) + (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) + (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) + (-4 *10 (-13 (-851) (-615 (-1178)))) (-4 *11 (-794)) (-5 *2 - (-645 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-794)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *1 (-452 *4 *5 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1102 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) - (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) + (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) + (|:| |wcond| (-645 (-954 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1268 (-410 (-954 *9)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *9))))))))) + (-5 *1 (-926 *9 *10 *11 *12))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) - (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) - "failed")) - (-5 *1 (-637 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1159)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-844 (-953 *5)))) (-4 *5 (-455)) - (-5 *2 - (-3 (-844 (-410 (-953 *5))) - (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-844 (-410 (-953 *5))) "failed"))) - "failed")) - (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) - (-4 *5 (-455)) - (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) - (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) - "failed")) - (-5 *1 (-638 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 (-410 (-953 *6)))) (-5 *5 (-1159)) - (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) - (-5 *1 (-638 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1101)) (-5 *2 (-645 *1)) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) - (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) - (-5 *1 (-951 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *7)) (-15 -1441 (*7 $)) - (-15 -1455 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) + (-12 (-5 *2 - (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) - (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-14 *6 (-1177)) (-14 *7 *3)))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1101)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1101)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1101)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1101)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) - (-5 *1 (-715 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1173 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) - (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1173 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -4012 *3) (|:| |coeff| *3))) - (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1101))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-953 *8)))) - (-5 *5 (-772)) (-5 *6 (-1159)) (-4 *8 (-13 (-308) (-147))) - (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1177)))) - (-4 *10 (-794)) + (-1268 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) + (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) + (|:| |axesColor| (-875)) (|:| -1741 (-567)) + (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) + (-5 *1 (-1269))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) + (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) + (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) + (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) + (-4 *7 (-849)) + (-4 *8 + (-13 (-1246 *3 *7) (-365) (-1203) + (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *2 - (-2 - (|:| |rgl| - (-645 - (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) - (|:| |wcond| (-645 (-953 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *8)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *8)))))))))) - (|:| |rgsz| (-567)))) - (-5 *1 (-925 *8 *9 *10 *11)) (-5 *7 (-567))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) + (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) + (-14 *10 (-1178))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) + (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *9) (|:| |radicand| *9))) + (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) + (-4 *9 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $)))))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-904 *3)) (-4 *3 (-1101)) (-5 *2 (-1103 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1101)) (-5 *2 (-1103 (-645 *4))) (-5 *1 (-905 *4)) - (-5 *3 (-645 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1101)) (-5 *2 (-1103 (-1103 *4))) (-5 *1 (-905 *4)) - (-5 *3 (-1103 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1103 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1183))) (-5 *1 (-1183))))) (((*1 *1 *1) (-4 *1 (-662)))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1267 *5))) (-5 *4 (-567)) (-5 *2 (-1267 *5)) - (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1) (-5 *1 (-863)))) (((*1 *2 *3) - (-12 (-5 *3 (-1173 *4)) (-4 *4 (-351)) (-5 *2 (-959 (-1121))) - (-5 *1 (-348 *4))))) + (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-394))))) (((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) + ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1210 *2 *3 *4 *5)) (-4 *2 (-559)) - (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1066 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) + (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) + (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-559)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1203) (-961) (-29 *5))) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1070 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1160)) + (-4 *3 (-13 (-1203) (-961) (-29 *6))) + (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2564 *4)))))) - (-5 *1 (-1146 *5 *6 *7 *3 *4)) (-4 *4 (-1110 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) - (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) + (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) + (-5 *5 (-1160)) + (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1160)) + (-5 *3 (-410 (-954 *6))) + (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 + (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) + (-4 *3 (-13 (-1203) (-961) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) + (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) + (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) + (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) + (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) + (-5 *5 (-1160)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) + (-5 *5 (-1178)) (-5 *2 (-1037)) (-5 *1 (-568)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) + (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) + (-4 *3 (-38 (-410 (-567)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1178)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) + (-4 *3 (-1051)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) + (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) + (-5 *1 (-1162 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-567)))) + (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-2800 + (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) + (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) + (-4 *3 (-38 (-410 (-567)))))) + (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) + (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) + (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) + ((*1 *1 *1 *2) + (-2800 + (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) + (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) + (-4 *3 (-38 (-410 (-567)))))) + (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) + (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) + (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2800 + (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) + (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) + (-4 *3 (-38 (-410 (-567)))))) + (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) + (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) + (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-34)) (-5 *2 (-772)))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-34)) (-5 *2 (-772)))) ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) ((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)) (-5 *2 (-567)))) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-1050)) + (-12 (-5 *2 (-772)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847))))) -(((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1282 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *1 (-665 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1287 *3 *4)) - (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4418)) (-4 *4 (-365)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4418)) (-4 *4 (-559)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7)) - (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) - (-4 *10 (-688 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) - (-5 *2 (-645 *7))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1237 *3 *2)) - (-4 *2 (-1243 *3))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-112)) (-5 *1 (-894 *4)) + (-4 *4 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-580)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-851)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) (((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1101)) (-4 *3 (-851)) - (-4 *2 (-1217)))) + (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) + (-4 *2 (-1218)))) ((*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) ((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) ((*1 *2 *1) - (-12 (-4 *2 (-1217)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) + (-12 (-4 *2 (-1218)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) - ((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-1093 (-953 (-567)))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) - (-4 *3 (-1101))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) + (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) + (-5 *2 (-1037)) (-5 *1 (-746))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-645 - (-2 - (|:| -1791 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) - (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) - (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -4232 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381))))))) - (-5 *1 (-804))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-772)) (-4 *4 (-351)) - (-5 *1 (-531 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1039 *4)) (-4 *3 (-308)) - (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-4 *6 (-412 *4 *5)) - (-14 *7 (-1267 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-993 *3)) - (-4 *5 (-1243 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) + (-4 *2 (-1259 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-588 *3) *3 (-1178))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1178))) + (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) + (-5 *4 (-1178)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) + (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) + (-5 *1 (-576 *7 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-2 (|:| -3802 *4) (|:| -3729 (-567))))) + (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-645 (-1177))) (-4 *4 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1177))) - (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1050)) - (-4 *5 (-238 (-2410 *3) (-772))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) - (-14 *3 (-645 (-1177))) (-4 *4 (-1050))))) -(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *1 *2) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) + (-5 *1 (-1189 *4)) (-4 *4 (-851))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-1203 *3)))) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1204 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-1203 *2))) (-5 *1 (-1203 *2)) (-4 *2 (-1101))))) + (-12 (-5 *3 (-645 (-1204 *2))) (-5 *1 (-1204 *2)) (-4 *2 (-1102))))) (((*1 *1) (-5 *1 (-581))) - ((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-864)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-864)))) + ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-864)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-863)) (-5 *2 (-1272)) (-5 *1 (-864)))) + (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1157 *4)) - (-4 *4 (-1101)) (-4 *4 (-1217))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2))))) + (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1158 *4)) + (-4 *4 (-1102)) (-4 *4 (-1218))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1174 *6)) (-1174 *6))) + (-4 *6 (-365)) + (-5 *2 + (-645 + (-2 (|:| |outval| *7) (|:| |outmult| (-567)) + (|:| |outvect| (-645 (-690 *7)))))) + (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849)))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) + (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-559)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-559))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) + (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-772))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) + (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) ((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-4 *4 (-1243 *3)) (-4 *3 (-559)) - (-5 *1 (-970 *3 *4)))) + (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) + (-5 *1 (-971 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) + (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) (|partial| -4 *1 (-723)))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1222)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) - (-5 *2 (-690 (-225))) (-5 *1 (-268))))) + (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $)))))))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-281))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1102)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3102 (-772)) (|:| -4194 (-772)))) + (-5 *1 (-772)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1174 *9))) + (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) + (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) + (-4 *10 (-794)) (-5 *2 (-645 (-1174 *12))) + (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1174 *12))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-410 (-953 *4))) (-5 *1 (-925 *4 *5 *6 *3)) - (-4 *3 (-950 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-690 (-410 (-953 *4)))) - (-5 *1 (-925 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1177)))) - (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4)))) - (-5 *1 (-925 *4 *5 *6 *7))))) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) + (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) + (-14 *6 (-923))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48)))))) (((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1975 (-645 *6))) - *7 *6)) - (-4 *6 (-365)) (-4 *7 (-657 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1267 *6) "failed")) - (|:| -1975 (-645 (-1267 *6))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1267 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1217)) (-5 *2 (-772)) + (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-131)) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-772)))) ((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1101)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1101)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) ((*1 *2) - (-12 (-4 *4 (-1101)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) + (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) + (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1243 *4)) (-5 *2 (-772)) + (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) + ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1173 *1)) (-4 *1 (-1013))))) -(((*1 *2 *3) + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-301))))) + (-5 *2 + (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) + (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) + (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) + (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) - (-5 *1 (-1237 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1202) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) - (-5 *1 (-591 *5))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)))) + (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) + (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) + (-4 *4 (-649 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1101)) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 (-1173 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1243 *2)) - (-4 *4 (-688 *2 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-1066 *5 *6 *7)) (-5 *2 (-645 *3)) - (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1110 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) - (-5 *1 (-1079 *5 *6)) (-5 *3 (-645 (-953 *5))) - (-14 *6 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *4)) (|:| -2446 (-645 (-953 *4)))))) - (-5 *1 (-1079 *4 *5)) (-5 *3 (-645 (-953 *4))) - (-14 *5 (-645 (-1177))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-264)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-645 (-2 (|:| -3859 (-1173 *5)) (|:| -2446 (-645 (-953 *5)))))) - (-5 *1 (-1079 *5 *6)) (-5 *3 (-645 (-953 *5))) - (-14 *6 (-645 (-1177)))))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1270)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-645 (-1174 *11))) (-5 *3 (-1174 *11)) + (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) + (-5 *7 (-1268 (-645 (-1174 *8)))) (-4 *10 (-851)) + (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) + (-5 *1 (-708 *9 *10 *8 *11))))) +(((*1 *1 *1) (-4 *1 (-630))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) + (-4 *3 (-1218))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1158 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-923)) + (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) (((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-645 *3)) (-5 *5 (-922)) (-4 *3 (-1243 *4)) - (-4 *4 (-308)) (-5 *1 (-463 *4 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(((*1 *1) (-5 *1 (-144))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1134 (-225))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-264))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-588 *3)) (-4 *3 (-365))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1050)) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1050)) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-772))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) - (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) - (|:| |args| (-645 (-863))))) - (-5 *1 (-1177))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-5 *1 (-990 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-5 *1 (-1109 *3 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172))))) + (-12 + (-5 *3 + (-645 + (-2 (|:| -1954 (-772)) + (|:| |eqns| + (-645 + (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) + (|:| |cols| (-645 (-567)))))) + (|:| |fgb| (-645 *7))))) + (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) + (-5 *1 (-926 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1196))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) + (-5 *1 (-1189 *6)) (-5 *5 (-645 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))) (((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1165 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1050))))) (((*1 *2 *3) - (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) + (-12 (-14 *4 (-645 (-1178))) (-4 *5 (-455)) + (-5 *2 + (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) + (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5)))))) +(((*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271))))) +(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) ((*1 *2 *3) - (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) - (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) - (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1181))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) - ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1217)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1214 *3)) (-4 *3 (-1217)))) + (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2774 *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-645 + (-2 + (|:| -1795 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -4237 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1158 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1604 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-562)))) ((*1 *2 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1003)) - (-4 *2 (-1050))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-757))))) + (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) + (-5 *2 (-645 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1051))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1101)) (-4 *5 (-1101)) - (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-878 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-880 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-883 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-751))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) + (-5 *2 (-645 (-2 (|:| -4237 *3) (|:| -3439 (-772)))))))) (((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1101))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) - (-4 *7 (-1243 (-410 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1344 *3))) - (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |answer| (-410 *6)) (|:| -1344 (-410 *6)) - (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) - (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1157 *4))) (-5 *1 (-286 *4 *5)) - (-5 *3 (-1157 *4)) (-4 *5 (-1258 *4))))) + (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) + (-4 *3 (-559)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *3) + (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-433 *4) (-1003))) (-4 *4 (-559)) - (-5 *1 (-277 *4 *2))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-4 *1 (-407)))) + (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) + (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) + (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) ((*1 *2 *1) - (-12 (-4 *1 (-1104 *3 *4 *5 *2 *6)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *2 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331))))) + (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) +(((*1 *2) + (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923)))) + ((*1 *2) + (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-1174 *3)))) + ((*1 *2) + (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-923))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-5 *2 (-1177)) (-5 *1 (-331))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1225))) (-5 *3 (-1225))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) - (|:| |f4| (-645 *5)))) - (-5 *1 (-1188 *6)) (-5 *4 (-645 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-582))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-645 (-1177))) (|:| |pred| (-52)))) - (-5 *1 (-893 *3)) (-4 *3 (-1101))))) + (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-331))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) + (-4 *4 (-172))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))))) (((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1101))))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1101)) (-4 *2 (-1217))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1159) (-775))) (-5 *1 (-114))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -1951 (-772)))) - (-5 *1 (-783 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1951 (-772)))) - (-4 *1 (-1066 *3 *4 *5))))) + (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) + (-5 *1 (-306))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) +(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1165 *4 *3)) + (-4 *3 (-1244 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-1243 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-986 *4 *2 *3 *5)) - (-4 *4 (-351)) (-4 *5 (-725 *2 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1173 *9))) - (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) - (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-950 *9 *10 *11)) - (-4 *10 (-794)) (-5 *2 (-645 (-1173 *12))) - (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1173 *12))))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-4 *4 (-1101)) - (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1177)) - (-4 *4 (-13 (-559) (-1039 (-567)) (-147))) (-5 *1 (-573 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-1101)))) - ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1101))))) + (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306))))) (((*1 *1 *1) - (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *2 (-1101)) (-4 *3 (-1101)) - (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-645 (-645 (-944 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-645 (-645 (-944 (-225)))))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1243 *5)) - (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) - (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) + (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) + (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1166 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) + ((*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) - (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) - (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| |minor| (-645 (-922))) (|:| -3827 *3) - (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) + (-5 *1 (-947 *4 *5)) (-4 *5 (-1244 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1267 (-3 (-471) "undefined"))) (-5 *1 (-1268))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-645 - (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4)))) - (|:| |eigmult| (-772)) - (|:| |eigvec| (-645 (-690 (-410 (-953 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4))))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-645 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) + (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-1200 *4)) + (-4 *4 (-1051))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-630))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) + (-5 *1 (-422 *4)))) + ((*1 *1 *1) (-5 *1 (-928))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) + ((*1 *1 *1) (-5 *1 (-929))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) + (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) + (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) + (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) + (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1104 *2 *3 *4 *5 *6)) (-4 *2 (-1101)) (-4 *3 (-1101)) - (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101))))) + (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) + (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-1026 *3 *2)) (-4 *2 (-657 *3)))) + (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) + (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) + (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) + (-4 *5 (-1244 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3827 *3) (|:| -4174 (-645 *5)))) - (-5 *1 (-1026 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) - (-4 *2 (-1227 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1000 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1178)) (-5 *3 (-954 *6)) + (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-4 *4 (-1102)) + (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) + (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1244 (-169 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-849))) + (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1101)))) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-5 *2 (-1157 *3)) (-5 *1 (-1161 *3)) - (-4 *3 (-1050)))) + (-12 (-5 *4 (-567)) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) + (-4 *3 (-1051)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1284 *4 *3)) - (-4 *3 (-1050))))) + (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1285 *4 *3)) + (-4 *3 (-1051))))) (((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1243 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1228 *3)) (-4 *3 (-1051)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1259 *3)) (-4 *3 (-1051))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) + (-4 *3 (-365))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) + (-4 *1 (-853 *3))))) +(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1178))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1177))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1173 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) - (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |upol| (-1173 *8)) (|:| |Lval| (-645 *8)) - (|:| |Lfact| - (-645 (-2 (|:| -2703 (-1173 *8)) (|:| -4250 (-567))))) - (|:| |ctpol| *8))) - (-5 *1 (-743 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-975))))) -(((*1 *1 *1) (-4 *1 (-1061)))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $)))))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1190 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1174 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1174 *3))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) + (-5 *2 (-645 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(((*1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *2 *3) + (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) (((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 - (-1267 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3310 (-567)) - (|:| -2189 (-567)) (|:| |spline| (-567)) (|:| -3348 (-567)) - (|:| |axesColor| (-875)) (|:| -1737 (-567)) - (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) - (-5 *1 (-1268))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-567))))) - (-4 *2 (-559)) (-5 *1 (-421 *2)))) - ((*1 *2 *3) + (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) + (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) + (|:| |args| (-645 (-863))))) + (-5 *1 (-1178)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1178))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-539))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *1) (-5 *1 (-1065))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1155 *4)) + (-4 *4 (-1218)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |contp| (-567)) - (|:| -2166 (-645 (-2 (|:| |irr| *4) (|:| -1594 (-567))))))) - (-4 *4 (-1243 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) + (-5 *2 + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) + (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) + (|:| |ub| (-645 (-844 (-225)))))) + (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175))))) +(((*1 *2 *1) + (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) + (-4 *2 (-851))))) +(((*1 *1) (-5 *1 (-1087)))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-1077 *4 *5 *2))) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) - (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-645 (-1077 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1101)) - (-4 *6 (-13 (-1050) (-887 *5) (-615 (-893 *5)))) - (-4 *2 (-13 (-433 *6) (-887 *5) (-615 (-893 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1267 *5))))) - (-5 *1 (-979 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1267 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-486))))) + (-12 (-5 *3 (-770)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) + (-5 *1 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-770)) (-5 *4 (-1065)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) + (-5 *1 (-568)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-788)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) + (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) + (|:| |extra| (-1037)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-788)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) + (|:| |extra| (-1037)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-801)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-809)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-806)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-809)) (-5 *4 (-1065)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-806)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-840)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) + (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-840)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) + (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) + (|:| |ub| (-645 (-844 (-225)))))) + (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-842)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-841)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-842)) (-5 *4 (-1065)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-841)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-897)) (-5 *3 (-1065)) + (-5 *4 + (-2 (|:| |pde| (-645 (-317 (-225)))) + (|:| |constraints| + (-645 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-772)) (|:| |boundaryType| (-567)) + (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) + (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-900)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-899)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1065)) + (-5 *2 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *1 (-899))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1243 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) - (-4 *2 (-172))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-509)) (-5 *3 (-1105)) (-5 *1 (-292))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1036))) (-5 *2 (-1036)) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *1) (-5 *1 (-1064))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1154 *4)) - (-4 *4 (-1217)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-421 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-1050)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1177))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-922)) (-14 *5 (-994 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1177))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1050)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) - (-4 *4 (-1243 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) - (-4 *4 (-1050)) (-4 *5 (-851)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) - (-4 *2 (-851)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) - (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *2 (-851)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-950 *4 (-534 *5) *5)) - (-5 *1 (-1127 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-851)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-953 *4)) (-5 *1 (-1211 *4)) - (-4 *4 (-1050))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1177)) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1177)) - (-5 *5 (-1095 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-264))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1157 (-953 *4)) (-1157 (-953 *4)))) - (-5 *1 (-1275 *4)) (-4 *4 (-365))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550))) - ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) - ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1177))) - ((*1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922)))) - ((*1 *1) (-5 *1 (-1222))) ((*1 *1) (-5 *1 (-1223))) - ((*1 *1) (-5 *1 (-1224))) ((*1 *1) (-5 *1 (-1225)))) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -1933 (-645 *3)) (|:| -3112 (-645 *3)))) - (-5 *1 (-1218 *3)) (-4 *3 (-1101))))) + (-12 + (-5 *2 + (-1268 (-645 (-2 (|:| -3802 (-912 *3)) (|:| -3768 (-1122)))))) + (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) + ((*1 *2) + (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) + (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) + (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) + (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1244 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) + (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) + (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-842)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-841)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) + (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) + ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) - (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1036)) + (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) - (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-841)))) + (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) - (-5 *2 (-1036)) (-5 *1 (-841))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) - (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *3) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) - (-4 *3 (-559)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) - (-4 *3 (-1101)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) - (-4 *3 (-1039 *2))))) -(((*1 *2 *3) - (-12 (-4 *1 (-921)) (-5 *2 (-2 (|:| -3686 (-645 *1)) (|:| -1394 *1))) - (-5 *3 (-645 *1))))) + (-5 *2 (-1037)) (-5 *1 (-841))))) (((*1 *2 *3) - (-12 (-5 *3 (-1103 *4)) (-4 *4 (-1101)) (-5 *2 (-1 *4)) - (-5 *1 (-1018 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) + (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) + (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1178))))) ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1048))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1050)) - (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1129 *3 *2)) (-4 *3 (-1243 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) + (-14 *5 (-645 (-1178))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1222)) + (-4 *6 (-1244 (-410 *5))) (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-344 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1217)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-1243 (-410 *3))) (-5 *2 (-922)) - (-5 *1 (-914 *4 *5)) (-4 *5 (-1243 (-410 *4)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1177)) - (-4 *4 (-13 (-433 *7) (-27) (-1202))) - (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1101))))) -(((*1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-1101))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1048))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1243 *5)) - (-5 *1 (-808 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-567)))) + (-4 *4 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))) + (-4 *3 (-559)) (-5 *1 (-1247 *3 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) + (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) + (-4 *7 (-1218)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1243 *5)) - (-5 *1 (-808 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *6 (-657 (-410 *2)))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1159)) (-5 *1 (-711))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-410 (-567))))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) + (-12 (-5 *4 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) + (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) - (-5 *2 (-772)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1243 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) + (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3077 *4)))) + (-5 *1 (-697 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) + (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) + (-5 *2 (-1268 *4)) (-5 *1 (-639 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1218)) + (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1174 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) + (-5 *1 (-1143 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) + (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-308)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) + (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1178)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-645 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1203) (-27) (-433 *8))) + (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1015 *8 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *3 (-225)) + (-5 *2 (-1037)) (-5 *1 (-749))))) +(((*1 *1) (-5 *1 (-471)))) (((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) + (|:| |polypart| *6))) + (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) - (-4 *4 (-1050)) (-5 *2 (-1157 *4)) (-5 *1 (-1161 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1101))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863))))) -(((*1 *2 *3) - (-12 (-5 *3 (-410 *5)) (-4 *5 (-1243 *4)) (-4 *4 (-559)) - (-4 *4 (-1050)) (-4 *2 (-1258 *4)) (-5 *1 (-1261 *4 *5 *6 *2)) - (-4 *6 (-657 *5))))) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 (-410 (-954 *6)))) + (-5 *3 (-410 (-954 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *6))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) - (-5 *3 (-645 (-567)))))) -(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-757))))) + (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) + (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) + (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-1268 *6)) + (-5 *1 (-632 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) + (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-645 - (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4)))) - (|:| |geneigvec| (-645 (-690 (-410 (-953 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1050)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1217)) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) + (-4 *7 (-951 *6 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) + (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *9)))) + (-5 *3 (-645 *9)) (-4 *1 (-1211 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) + (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *8)))) + (-5 *3 (-645 *8)) (-4 *1 (-1211 *5 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) + ((*1 *1 *1) (-4 *1 (-849))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) + ((*1 *1 *1) (-4 *1 (-1062))) ((*1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1160)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1273)) + (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) + (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1 *1 *1) (-4 *1 (-762)))) (((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *6))))) + (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1244 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) + ((*1 *1 *1) (|partial| -4 *1 (-723)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-756))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-676 *2)) (-4 *2 (-1050)) (-4 *2 (-1101))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1066 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1210 *5 *6 *7 *3)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) - (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) + (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-645 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-567))))) + (-4 *2 (-559)) (-5 *1 (-421 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-567)) + (|:| -3920 (-645 (-2 (|:| |irr| *4) (|:| -2625 (-567))))))) + (-4 *4 (-1244 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) + (-5 *2 (-381)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1101)) - (-4 *6 (-1101)) (-4 *2 (-1101)) (-5 *1 (-681 *5 *6 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1177)) - (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4319 "void"))) (-5 *1 (-1180))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1177))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-52)) (-5 *1 (-893 *4)) - (-4 *4 (-1101))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1178))) + (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1203))) (-4 *5 (-559)) + (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1203)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1194 *4 *5)) - (-4 *4 (-1101)) (-4 *5 (-1101))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1177))) (-5 *1 (-826))))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) (((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3842 (-772)) (|:| |period| (-772)))) - (-5 *1 (-1157 *4)) (-4 *4 (-1217)) (-5 *3 (-772))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) - (-5 *1 (-179 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *8)) - (-5 *4 - (-645 - (-2 (|:| -1975 (-690 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-690 *7))))) - (-5 *5 (-772)) (-4 *8 (-1243 *7)) (-4 *7 (-1243 *6)) (-4 *6 (-351)) + (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292))))) +(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1178)) (-5 *6 (-112)) + (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-4 *3 (-13 (-1203) (-961) (-29 *7))) (-5 *2 - (-2 (|:| -1975 (-690 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-690 *7)))) - (-5 *1 (-501 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) + ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1) (-4 *1 (-870 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) + (-4 *4 (-851))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) + (-14 *4 (-772)) (-4 *5 (-172))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1178)) + (-4 *5 (-365)) (-5 *1 (-925 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) - (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1066 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) - (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1025 *3)) - (-4 *3 (-13 (-849) (-365) (-1023))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1069 *2 *3)) (-4 *2 (-13 (-849) (-365))) - (-4 *3 (-1243 *2))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-672)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1102 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893 *4)) (-4 *4 (-1101)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-891 *4 *5)) (-4 *5 (-1217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1167))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-1039 (-410 *2)))) (-5 *2 (-567)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1177)) (-5 *3 (-437)) (-4 *5 (-1101)) - (-5 *1 (-1107 *5 *4)) (-4 *4 (-433 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) - (-4 *6 (-1243 *5)) (-5 *2 (-1173 (-1173 *7))) - (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1243 *6))))) -(((*1 *1 *1) (-4 *1 (-1145)))) + (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) + (-5 *1 (-925 *4 *5)) (-14 *4 (-1178)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) + (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1178))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1202) (-960)))))) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1268 (-690 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) + ((*1 *2) + (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 (-690 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) + (-5 *2 (-1268 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) + (-5 *4 (-690 (-410 (-954 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) + (-5 *2 (-1268 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) + (-5 *4 (-690 (-954 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) + (-5 *2 (-1268 (-690 *4))) (-5 *1 (-1088 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2806 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-1281 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 (-567))))) - (-5 *1 (-363 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-4 *1 (-388 *3)) (-4 *3 (-1101)) - (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 (-772))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -2703 *3) (|:| -4250 (-567))))) - (-5 *1 (-421 *3)) (-4 *3 (-559))))) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-331))))) (((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-1267 (-1102 *3 *4))) (-5 *1 (-1102 *3 *4)) - (-14 *3 (-922)) (-14 *4 (-922))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1086))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-588 *3) *3 (-1177))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1177))) - (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1039 *4)) (-4 *3 (-433 *7)) - (-5 *4 (-1177)) (-4 *7 (-615 (-893 (-567)))) (-4 *7 (-455)) - (-4 *7 (-887 (-567))) (-4 *7 (-1101)) (-5 *2 (-588 *3)) - (-5 *1 (-576 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1173 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) - (-4 *3 (-365))))) + (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1066 *3 *4 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1086))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007))))) -(((*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) - ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1202) (-960) (-29 *4)))))) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) - (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) + (-5 *1 (-306))))) +(((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) + (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) - (-14 *4 (-645 (-1177))))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-453 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1159)) (-4 *7 (-950 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-453 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) + (-4 *4 (-38 (-410 (-567))))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) + (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) + (-5 *4 (-645 (-923))) (-5 *1 (-471)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) + ((*1 *1 *1) (-5 *1 (-471)))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1226)))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-645 (-1160))) (-5 *3 (-567)) (-5 *4 (-1160)) + (-5 *1 (-241)))) + ((*1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) ((*1 *2 *2) - (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) - (-14 *4 (-645 (-1177))) (-5 *1 (-629 *3 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1072 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *9 (-1066 *6 *7 *8)) - (-5 *2 - (-645 - (-2 (|:| -3827 (-645 *9)) (|:| -2564 *10) (|:| |ineq| (-645 *9))))) - (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1072 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *9 (-1066 *6 *7 *8)) - (-5 *2 - (-645 - (-2 (|:| -3827 (-645 *9)) (|:| -2564 *10) (|:| |ineq| (-645 *9))))) - (-5 *1 (-1108 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) + (-5 *2 (-645 (-645 (-945 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) + (-4 *1 (-1136 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) + (-4 *1 (-1136 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) + (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) + (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) + (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) + (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051))))) (((*1 *2 *3) - (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567))))) + (-12 (-5 *3 (-1160)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) +(((*1 *1) (-5 *1 (-440)))) (((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) - (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-471)) - (-5 *1 (-1271)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) - (-5 *2 (-471)) (-5 *1 (-1271))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-1125 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1140)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1101)) - (-4 *5 (-1217)) (-5 *1 (-891 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1101)) - (-4 *5 (-1217)) (-5 *1 (-891 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-893 *5)) (-5 *3 (-645 (-1177))) - (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1101)) (-4 *6 (-1217)) - (-5 *1 (-891 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1217)) (-4 *4 (-1101)) - (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1217)) (-4 *4 (-1101)) - (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1217)) - (-5 *2 (-317 (-567))) (-5 *1 (-939 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1217)) - (-5 *2 (-317 (-567))) (-5 *1 (-939 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1177))) (-5 *3 (-1 (-112) (-645 *6))) - (-4 *6 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) - (-5 *1 (-1077 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1166 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1051))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) + (-4 *3 (-559)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003))))) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) + (-5 *2 (-410 (-954 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) + (-5 *2 (-410 (-954 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) - ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + (-12 (-4 *4 (-172)) (-4 *2 (-1244 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-725 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1178)) + (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-1101)) (-5 *2 (-112)) - (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) + (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) + (-5 *1 (-293 *4)) (-4 *4 (-455)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-690 (-169 (-410 (-567))))) + (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) + (-4 *4 (-13 (-365) (-849))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1178)) + (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) + (-4 *5 (-13 (-365) (-849))))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1202)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-410 (-953 *5)) (-1166 (-1177) (-953 *5)))) - (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-452 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) + (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1178)) + (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) + (-4 *5 (-13 (-365) (-849)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1178)) + (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-762)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1243 *6)) - (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) - (-4 *8 (-1243 (-410 *7))) (-5 *2 (-588 *3)) - (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) + (-5 *2 (-1268 (-410 (-567)))) (-5 *1 (-1295 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1182))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) + (-5 *1 (-1162 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) +(((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) + (-14 *3 (-645 (-1178)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1178)) (-5 *3 (-437)) (-4 *5 (-1102)) + (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1202))) - (-5 *1 (-586 *4 *2)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))))) + (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) + (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-410 (-953 *4)))) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-591 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-760))))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-539))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)) + (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) + (-5 *2 (-690 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-1281 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) + (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) + (-5 *2 (-112)) (-5 *1 (-1142 *5 *6))))) (((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-645 (-966))) (-5 *1 (-292))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172))))) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) + (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278))))) +(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) + ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-1177))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) - (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)) - (-4 *7 (-950 *4 *6 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) - (-4 *1 (-853 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1095 (-225))) - (-5 *5 (-112)) (-5 *2 (-1269)) (-5 *1 (-258))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1101) (-34))) - (-4 *3 (-13 (-1101) (-34)))))) + (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1244 *5)) + (-5 *1 (-1262 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1259 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112)) + (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) + (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) + (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *1) (-5 *1 (-1086)))) + (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1217))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) + (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) - (-4 *3 (-13 (-433 *4) (-1003)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 (-944 *4))) (-4 *1 (-1135 *4)) (-4 *4 (-1050)) - (-5 *2 (-772))))) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) + ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381))))) (((*1 *2 *2) - (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931))))) + (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) ((*1 *2 *1) - (-12 (-5 *2 (-1143 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-922)) + (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1050)) - (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) + (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-950 *3 *5 *4)) - (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1177)))) - (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-748))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1258 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1258 *3)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-52)) (-5 *1 (-894 *4)) + (-4 *4 (-1102))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-690 (-567))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) + (-4 *5 (-1218)) (-5 *1 (-892 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) + (-4 *5 (-1218)) (-5 *1 (-892 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1178))) + (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1218)) + (-5 *1 (-892 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1218)) (-4 *4 (-1102)) + (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-4 *4 (-1102)) + (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1218)) + (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) + (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1 (-112) (-645 *6))) + (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) + (-5 *1 (-1078 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) + (-14 *4 (-995 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) + ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) + ((*1 *1 *1) (|partial| -4 *1 (-723))) + ((*1 *1 *1) (|partial| -4 *1 (-727))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) + (-4 *2 (-1244 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1153 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-1077 *3 *4 *5))) (-4 *3 (-1101)) - (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) - (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) - (-5 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1267 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *2 (-1036)) (-5 *1 (-306))))) + (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) (((*1 *2 *1) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1202))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1069 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1243 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-844 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-567)))) ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-967 *3))) (-5 *1 (-967 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *5 (-1243 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-970 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-624 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2956 *4) (|:| |sol?| (-112))) - (-567) *4)) - (-4 *4 (-365)) (-4 *5 (-1243 *4)) (-5 *1 (-577 *4 *5))))) -(((*1 *1) (-5 *1 (-141)))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1189 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) + (-4 *4 (-172))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-758))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -3867 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1176)))) - (-5 *1 (-1176))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)) - (-5 *3 (-567))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1165 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1050))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) + (-5 *1 (-1177))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) + (-5 *2 (-645 (-225))) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) + (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) + (-5 *1 (-698))))) (((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-993 *2)) (-4 *4 (-1243 *3)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3)))))) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-455))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-494)) (-5 *4 (-955)) (-5 *2 (-692 (-536))) - (-5 *1 (-536)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-955)) (-4 *3 (-1101)) (-5 *2 (-692 *1)) - (-4 *1 (-768 *3))))) + (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-1158 (-1158 (-954 *5)))) + (-5 *1 (-1276 *5)) (-5 *4 (-1158 (-954 *5)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) + (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) + (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) + (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) + (-5 *1 (-1074 *6 *7 *4 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) +(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) - (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) - (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-1268)) - (-5 *1 (-1271)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) - (-5 *2 (-1268)) (-5 *1 (-1271))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-793)) (-4 *3 (-172))))) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) + (-4 *3 (-559)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-567))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) + (-4 *3 (-1040 *2))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) + (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) + (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) + (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) + (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) + (-5 *1 (-1079 *3 *4 *5))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3927 *4)))) - (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1101)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1101)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) - (-4 *4 (-1101)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1177)) (-4 *1 (-433 *3)) (-4 *3 (-1101))))) + (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) + (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) + (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-851)) + (-4 *3 (-1102))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1101)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-388 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-476))) - ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-884)))) - ((*1 *1 *1) (-5 *1 (-972))) - ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) - (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) - (-4 *6 (-13 (-851) (-615 (-1177)))) (-4 *7 (-794)) (-5 *2 (-112)) - (-5 *1 (-925 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) - (-14 *4 *2)))) -(((*1 *1 *1) (-5 *1 (-1064)))) + (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) +(((*1 *2) + (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *2) + (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-509)) (-4 *4 (-1101)) (-5 *1 (-930 *4 *2)) + (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) - (-5 *1 (-931))))) -(((*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-906 *3)) (-4 *3 (-1101))))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1101)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-317 (-567))) (-5 *1 (-931))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) - (|:| |polypart| *6))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308))))) -(((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-955))))) + (-12 (-5 *3 (-1178)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) + (-5 *1 (-932))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) + (-5 *2 (-772))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) + (-5 *1 (-1112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-1239 *4 *3)) + (-4 *3 (-1244 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) - (-4 *4 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217)) - (-4 *7 (-1217))))) -(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -4012 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1243 *7)) - (-5 *3 (-410 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) + (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-297)))) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-820 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) + ((*1 *1 *1) (-4 *1 (-303))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) + ((*1 *1 *1) (-5 *1 (-863)))) +(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956))))) +(((*1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-381)) (-5 *1 (-1065))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-690 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) + (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1051)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) + (-5 *1 (-1166 *4 *5)) (-14 *4 (-923))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-313)) (-5 *1 (-297)))) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-313)) (-5 *1 (-297)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1159))) (-5 *3 (-1159)) (-5 *2 (-313)) + (-12 (-5 *4 (-645 (-1160))) (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-455)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1173 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-910)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-910))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-520)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1101) (-34))) (-5 *1 (-1141 *3 *2)) - (-4 *3 (-13 (-1101) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1278))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *1)))) - (-4 *1 (-1072 *4 *5 *6 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-365)) (-5 *1 (-980 *5))))) (((*1 *2 *1) - (-12 (-4 *4 (-1101)) (-5 *2 (-890 *3 *5)) (-5 *1 (-886 *3 *4 *5)) - (-4 *3 (-1101)) (-4 *5 (-667 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| -3988 *1) (|:| -3815 (-645 *7))))) - (-5 *3 (-645 *7)) (-4 *1 (-1210 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3621 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) - (-4 *6 (-1050)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1030 *6)) - (-5 *3 (-645 (-690 *6))))) + (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) + (-4 *1 (-433 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) + (-4 *3 (-1102)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1050)) - (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1030 *4)) - (-5 *3 (-645 (-690 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) - (-5 *3 (-645 (-690 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) - (-5 *3 (-645 (-690 *5)))))) + (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) + (-5 *1 (-952 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) + (-15 -1460 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) + (-4 *3 (-13 (-1102) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-756))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1269)))) + ((*1 *1 *1) (-5 *1 (-1269)))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) + (-5 *2 (-1037)) (-5 *1 (-757))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) - (-4 *5 (-559)) (-5 *2 (-1267 *5)) (-5 *1 (-639 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1267 *4)) (-4 *4 (-640 *5)) - (-1653 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1267 (-410 *5))) - (-5 *1 (-639 *5 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) + (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-645 (-1212 *5))) + (-5 *1 (-1276 *5)) (-5 *4 (-1212 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202))))) + (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1281 *4 *5 *6 *7))) + (-5 *1 (-1281 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) + (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1281 *6 *7 *8 *9))) + (-5 *1 (-1281 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) + (-4 *3 (-1244 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1050)) (-4 *3 (-365)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1217)))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1177))) - (-14 *4 (-645 (-1177))) (-4 *5 (-390)))) + (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) + (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) + (-12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-645 (-1177))) (-14 *4 (-645 (-1177))))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) + (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))))) + ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) + ((*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) + ((*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-410 (-953 (-567))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-410 (-953 (-381))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-953 (-567)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-953 (-381)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-317 (-567)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1267 (-317 (-381)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) - (|:| -2221 (-645 (-1095 (-844 (-225))))) + (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) @@ -13404,13 +13966,13 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2701 (-645 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2701 (-645 (-225))))))) + (|:| -2672 (-645 (-225))))))) (-5 *1 (-842)))) ((*1 *2 *1) (-12 @@ -13421,597 +13983,444 @@ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1159)) + (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) - (-5 *1 (-899)))) + (-5 *1 (-900)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1217)))) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1218)))) ((*1 *1 *2) - (-2797 - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) - (-1653 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (-2800 + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) + (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-548))) (-1653 (-4 *3 (-38 (-410 (-567))))) - (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) + (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 *3)) - (-12 (-1653 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) - (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *1 (-1066 *3 *4 *5)) (-4 *4 (-794)) + (-12 (-5 *2 (-954 *3)) + (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) + (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) ((*1 *1 *2) - (-2797 - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-1653 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1066 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177)))) - (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) + (-2800 + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) + (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) + (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) + (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) ((*1 *1 *2) - (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1066 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1177))) (-4 *3 (-1050)) + (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) + (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *1 (-1161 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 (-690 *4))) (-4 *4 (-172)) - (-5 *2 (-1267 (-690 (-953 *4)))) (-5 *1 (-189 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) + (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2) + (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-567)) + (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) + (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-567)) + (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) + (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1178))) + (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-381)) (-5 *1 (-1064))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1085 *3)) (-4 *3 (-132))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2701 (-645 (-225))))) - (-5 *2 (-381)) (-5 *1 (-268)))) + (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) + (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) ((*1 *2 *3) - (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-365)) + (-4 *4 (-1051)) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4))))) (((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1202) (-29 *6))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) + (-4 *4 (-13 (-1203) (-29 *6))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-27) (-1202) (-433 *6) (-10 -8 (-15 -4127 ($ *7))))) - (-4 *7 (-849)) - (-4 *8 - (-13 (-1245 *3 *7) (-365) (-1202) - (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) - (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1159)) (-4 *9 (-984 *8)) - (-14 *10 (-1177))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) + (-4 *3 (-1102)) (-4 *5 (-667 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-811 *5 *6)))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-585))))) +(((*1 *2 *1) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1174 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) + (-4 *3 (-13 (-1102) (-34)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) + (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1211 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) + (-4 *4 (-1102)) (-4 *5 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1178))) + (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *2 (-1167 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) + (-5 *1 (-507 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) + (-5 *2 (-645 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))) +(((*1 *1) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) + (-4 *3 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) + (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-2 (|:| -1975 (-645 (-410 *6))) (|:| -4138 (-690 *5)))) - (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) + (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) + (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-811 *5 *6)))) + (-12 (-5 *3 (-410 (-954 (-169 (-567))))) + (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-2 (|:| -1975 (-645 (-410 *6))) (|:| -4138 (-690 *5)))) - (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1243 *2)) - (-4 *4 (-688 *2 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) - ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1243 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) - (-4 *4 (-727)))) + (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) + (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1159)) (-5 *3 (-567)) (-5 *1 (-1064))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) - (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-752))))) -(((*1 *1) - (-12 (-4 *1 (-407)) (-1653 (|has| *1 (-6 -4408))) - (-1653 (|has| *1 (-6 -4400))))) - ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1101)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))) - ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) + (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) + ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-441 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) + ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1077 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) + ((*1 *1 *1) (-5 *1 (-1178)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) + (-4 *3 (-793))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) + (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-375 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1086))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1173 *1)) (-5 *3 (-1177)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))) -(((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1243 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1243 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) - (-4 *3 (-412 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1243 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1243 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) - (-4 *4 (-412 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-172)))) + (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) + (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) + (-5 *1 (-694 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) + (-4 *6 (-1244 *5)) + (-5 *2 (-2 (|:| -3845 *7) (|:| |rh| (-645 (-410 *6))))) + (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) + (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) ((*1 *2 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1020)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1136))) (-5 *1 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 *2)) (-4 *4 (-1243 *2)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))) + (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1237 *4 *5 *3)) + (-4 *3 (-1244 *5))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-772)) + (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) + (-5 *1 (-246 *3))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) + (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) + (|:| -2087 *6))) + (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(((*1 *1 *1 *1) (-4 *1 (-969)))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550)))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1244 *5)) + (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) + (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1243 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) - (-5 *1 (-1188 *4))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-1239 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1195))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1101)) (-4 *2 (-1101)))) - ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-441 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) - ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-966)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1076 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1116)))) - ((*1 *1 *1) (-5 *1 (-1177)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) + (-5 *1 (-1162 *3))))) (((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) + (-14 *4 (-645 (-1178))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) + (-14 *4 (-645 (-1178)))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-567)))) - (-4 *4 (-13 (-1243 *3) (-559) (-10 -8 (-15 -2771 ($ $ $))))) - (-4 *3 (-559)) (-5 *1 (-1246 *3 *4))))) + (-645 + (-2 + (|:| -1795 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) + (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) + (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -4237 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381))))))) + (-5 *1 (-804))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3)))))) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-772)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-772)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) + (-247 *4 (-410 (-567))))) + (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) + (-5 *1 (-508 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1177)) - (-5 *2 (-567)) (-5 *1 (-1115 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) - (-4 *3 (-1101))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1050)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1243 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-171))))))) -(((*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(((*1 *1) (-5 *1 (-55)))) + (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) + (-4 *4 (-1244 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-421 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1051)) + (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) + (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) + (-5 *1 (-749))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1218)) + (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) + (-4 *2 (-13 (-851) (-21)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) + (-4 *3 (-1102))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-439))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-114))))) (((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) + (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) ((*1 *2) - (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) - (-5 *2 (-922)))) + (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) + (-5 *2 (-923)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-5 *4 (-1267 *5)) (-4 *5 (-365)) + (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-772)) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) ((*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *3 (-1243 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) - (-4 *5 (-657 (-410 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 *5)) - (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1243 *4)) - (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) - (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1267 (-410 *8)) "failed")) - (|:| -1975 (-645 (-1267 (-410 *8)))))) - (-5 *1 (-670 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1267 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) - (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1267 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1267 *1)) (-4 *1 (-330 *3)))) +(((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1243 *3)) (-5 *2 (-1267 *1)) - (-4 *1 (-412 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) - (-5 *2 (-1267 *6)) (-5 *1 (-416 *3 *4 *5 *6)) - (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) - (-5 *2 (-1267 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) - (-4 *6 (-412 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1267 *1)) (-4 *1 (-420 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1267 (-1267 *4))) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1202)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4)) - (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) - (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-1236 *3 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *3)) (-4 *3 (-1072 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1202) (-433 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-567))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1234 (-567))) - (-4 *7 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-567))) - (-4 *3 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) - (-5 *5 (-1234 (-410 (-567)))) (-5 *6 (-410 (-567))) - (-4 *8 (-13 (-27) (-1202) (-433 *7))) - (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1177)) (-5 *5 (-295 *3)) (-5 *6 (-1234 (-410 (-567)))) - (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1202) (-433 *8))) - (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-4 *3 (-1050)) (-5 *1 (-597 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-598 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-4 *3 (-1050)) (-4 *1 (-1227 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-772)) - (-5 *3 (-1157 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) - (-4 *4 (-1050)) (-4 *1 (-1248 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-4 *1 (-1258 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-772)) (|:| |c| *3)))) - (-4 *3 (-1050)) (-4 *1 (-1258 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) - ((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1143 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) - (-5 *1 (-994 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))))) - (-5 *2 (-1036)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2484 (-381)) (|:| -1988 (-1159)) - (|:| |explanations| (-645 (-1159))) (|:| |extra| (-1036)))) - (-5 *2 (-1036)) (-5 *1 (-306))))) + (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) + ((*1 *2) + (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) - (-5 *1 (-1206 *4 *3)) (-4 *3 (-13 (-27) (-1202) (-433 *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1101))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-645 - (-645 - (-3 (|:| -1988 (-1177)) - (|:| -3322 (-645 (-3 (|:| S (-1177)) (|:| P (-953 (-567)))))))))) - (-5 *1 (-1181))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-264)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1272)) (-5 *1 (-1269)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3719 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1269)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1217)) (-4 *2 (-1101)) - (-4 *2 (-851))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1280 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1066 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1280 *5 *6 *7 *8))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-944 *5)) (-5 *3 (-772)) (-4 *5 (-1050)) - (-5 *1 (-1165 *4 *5)) (-14 *4 (-922))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) - (-4 *8 (-950 *7 *5 *6)) - (-5 *2 (-2 (|:| -4250 (-772)) (|:| -3686 *3) (|:| |radicand| *3))) - (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-772)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4127 ($ *8)) (-15 -1441 (*8 $)) (-15 -1455 (*8 $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1217)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1243 (-410 *2))) - (-4 *2 (-1243 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-344 *5 *2 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *1 (-1161 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| -3686 *4) (|:| -1598 *3) (|:| -1608 *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-1066 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| -3686 *3) (|:| -1598 *1) (|:| -1608 *1))) - (-4 *1 (-1243 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) + (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) + (-5 *3 (-567))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 @@ -14026,10 +14435,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2221 + (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -14037,852 +14446,710 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *2 (-1272)) - (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-981 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-944 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) +(((*1 *1 *1) (-4 *1 (-1062))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-944 *3)) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1213)) (-5 *3 (-225))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-757))))) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) (((*1 *1 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-365)) (-14 *5 (-994 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1101) (-34))) - (-4 *4 (-13 (-1101) (-34)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *3 (-13 (-851) (-10 -8 (-15 -3880 ((-1177) $))))) (-4 *5 (-559)) - (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) - (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *6)) - (-4 *6 - (-13 (-851) - (-10 -8 (-15 -3880 ((-1177) $)) - (-15 -3638 ((-3 $ "failed") (-1177)))))) - (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) - (-4 *2 (-950 (-953 *4) *5 *6))))) + (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-365)) (-14 *5 (-995 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1217)) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *2 *7)) (-4 *6 (-1050)) + (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1243 *4)) (-5 *2 (-690 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1243 *3)) - (-5 *2 (-690 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1202))) - (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1202))) - (-5 *1 (-601 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1269))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1101)) (-5 *2 (-613 *5)) - (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1243 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-248))))) + (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) + (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) + (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1203))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-1270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) + (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) + (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) + (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-590 *4)) - (-4 *4 (-351))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1267 (-1177))) (-5 *3 (-1267 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) - (-14 *6 (-645 (-1177))) (-14 *7 (-1267 (-690 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-1267 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) - (-14 *6 (-645 *2)) (-14 *7 (-1267 (-690 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) - (-14 *6 (-1267 (-690 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 (-1177))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1177))) - (-14 *6 (-1267 (-690 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-922)) (-14 *5 (-645 *2)) (-14 *6 (-1267 (-690 *3))))) - ((*1 *1) - (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) - (-14 *4 (-645 (-1177))) (-14 *5 (-1267 (-690 *2)))))) -(((*1 *2) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1127 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) - (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *1 (-1127 *4 *3 *5)) - (-4 *5 (-950 *4 (-534 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1211 *4))) (-5 *3 (-1177)) (-5 *1 (-1211 *4)) - (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) + (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) + (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) + (-5 *2 (-772))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-567)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) + (-5 *1 (-452 *5 *6 *7 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1272)) - (-5 *1 (-452 *4 *5 *6 *7))))) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *7 (-1067 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) + (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) + (-4 *2 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-847))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-455)) + (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) + (-4 *5 (-13 (-365) (-849)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-1173 *6)) - (-5 *1 (-322 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) - (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1177)) (-5 *5 (-1095 (-225))) (-5 *2 (-928)) - (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1095 (-225))) - (-5 *1 (-928))))) + (-12 (-4 *4 (-1051)) + (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1129 *4 *3)) (-4 *4 (-1243 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1243 *4)) (-4 *4 (-1221)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1243 (-410 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1177)))) - (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) - (-4 *7 (-1243 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-577 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) + (|partial| -12 (-4 *4 (-13 (-559) (-147))) + (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-1238 *4 *3)) + (-4 *3 (-1244 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) - (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-27) (-1202) (-433 *6) (-10 -8 (-15 -4127 ($ *7))))) - (-4 *7 (-849)) + (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) + (-4 *3 (-951 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| (-645 *3)))) + (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 - (-13 (-1245 *3 *7) (-365) (-1202) - (-10 -8 (-15 -1621 ($ $)) (-15 -1576 ($ $))))) + (-13 (-365) + (-10 -8 (-15 -4132 ($ *3)) (-15 -1448 (*3 $)) (-15 -1460 (*3 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-248))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) + (-4 *2 (-649 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-906 *4)) + (-4 *4 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) + (-4 *7 (-794)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1159)) (|:| |prob| (-1159)))))) - (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1159)) (-4 *9 (-984 *8)) - (-14 *10 (-1177))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) - (-5 *1 (-422 *4)))) - ((*1 *1 *1) (-5 *1 (-927))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-927)))) - ((*1 *1 *1) (-5 *1 (-928))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-225))) (-5 *1 (-928)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) - (-5 *4 (-410 (-567))) (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1243 (-567))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) - (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1243 (-410 (-567)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1240 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1177)) - (-4 *5 (-365)) (-5 *1 (-924 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1173 *5)) - (-5 *1 (-924 *4 *5)) (-14 *4 (-1177)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) - (-5 *2 (-410 (-953 *6))) (-5 *1 (-1051 *5 *6)) (-14 *5 (-1177))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) + (-645 + (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) + (|:| |cols| (-645 (-567)))))) + (-5 *1 (-926 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) + (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) + (-5 *1 (-995 *3 *4))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) + (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) + (-5 *2 (-112)) (-5 *1 (-1031 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1102)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-388 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-851)) - (-4 *3 (-1101))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-114))))) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)))) + (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3458 (-567)))) (-4 *1 (-433 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-894 *3)))) + (-5 *1 (-894 *3)) (-4 *3 (-1102)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1050)) (-4 *6 (-950 *5 *4 *2)) - (-4 *2 (-851)) (-5 *1 (-951 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) + (-4 *7 (-951 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3458 (-567)))) + (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) - (-10 -8 (-15 -4127 ($ *6)) (-15 -1441 (*6 $)) - (-15 -1455 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) - (-5 *2 (-1177)) (-5 *1 (-1044 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) + (-15 -1460 (*7 $)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1178))) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *1) (-5 *1 (-562)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) + (-4 *4 (-1051)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) + (-4 *3 (-172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) + (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418))))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911))))) (((*1 *1 *1) (-4 *1 (-630))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003) (-1202)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-97))))) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) + (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) - (-5 *1 (-1292 *4)) (-4 *4 (-1217)))) + (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4)) + (-5 *1 (-1293 *4)) (-4 *4 (-1218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-645 (-1157 *5)) (-645 (-1157 *5)))) (-5 *4 (-567)) - (-5 *2 (-645 (-1157 *5))) (-5 *1 (-1292 *5)) (-4 *5 (-1217))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-953 *6)) (-5 *4 (-1177)) - (-5 *5 (-844 *7)) - (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-4 *7 (-13 (-1202) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1173 *6)) (-5 *4 (-844 *6)) - (-4 *6 (-13 (-1202) (-29 *5))) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-224 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1243 (-169 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 *5))) (-5 *3 (-1173 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1243 *5)) - (-4 *5 (-1243 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 (-567)))) (-5 *3 (-1173 (-567))) - (-5 *1 (-575)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1173 *1))) (-5 *3 (-1173 *1)) - (-4 *1 (-910))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1101) (-34))) - (-5 *2 (-112)) (-5 *1 (-1141 *4 *5)) (-4 *4 (-13 (-1101) (-34)))))) + (-12 (-5 *3 (-1 (-645 (-1158 *5)) (-645 (-1158 *5)))) (-5 *4 (-567)) + (-5 *2 (-645 (-1158 *5))) (-5 *1 (-1293 *5)) (-4 *5 (-1218))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-944 *4)) (-4 *4 (-1050)) (-5 *1 (-1165 *3 *4)) - (-14 *3 (-922))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1072 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1072 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2703 *3) (|:| -1813 *4)))) - (-5 *1 (-697 *3)) (-4 *3 (-1243 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1159)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *1 *1) (-4 *1 (-1061))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1177)) (-5 *2 (-440)) (-5 *1 (-1181))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306))))) + (-12 (-5 *3 (-1268 (-1268 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) + (-5 *1 (-1031 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1101)) (-4 *6 (-1101)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1101))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *1)) (-5 *4 (-1267 *1)) (-4 *1 (-640 *5)) - (-4 *5 (-1050)) - (-5 *2 (-2 (|:| -4138 (-690 *5)) (|:| |vec| (-1267 *5)))))) + (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1268 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1050)) - (-5 *2 (-690 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-351)) (-5 *2 (-1173 *4)) - (-5 *1 (-531 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-645 *11)) - (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2564 *11)))))) - (-5 *6 (-772)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2564 *11)))) - (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1066 *7 *8 *9)) - (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-5 *1 (-1070 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) + (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) + (-5 *2 (-1268 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *1) (-12 - (-5 *5 - (-2 (|:| |done| (-645 *11)) - (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2564 *11)))))) - (-5 *6 (-772)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2564 *11)))) - (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1066 *7 *8 *9)) - (-4 *11 (-1110 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-5 *1 (-1146 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-823))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1145)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) + (-5 *2 + (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)) + (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-5 *2 (-1160))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1141))) ((*1 *1 *1 *1) (-4 *1 (-1141)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1158 *7))) (-4 *6 (-851)) + (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) + (-5 *2 (-1 (-1158 *7) *7)) (-5 *1 (-1128 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1062 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1267 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) - (-5 *2 (-1267 *4)) (-5 *1 (-639 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1272)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1181))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-5 *1 (-700)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-365)) (-5 *1 (-979 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1062 *2 *3)) - (-4 *3 (-1243 *2))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1061)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1177))) (-4 *4 (-455)) - (-5 *1 (-919 *4))))) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-308)) + (-5 *2 (-772)) (-5 *1 (-458 *5 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-645 (-1182))) (-5 *1 (-1137))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| -1663 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1173 *3))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1272)) - (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) + (-5 *1 (-1219 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) - (-5 *5 (-1 (-421 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *7 (-1243 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) - (-5 *5 (-1 (-421 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *7 (-1243 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1243 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) - (-4 *6 (-1243 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1243 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) - (-4 *6 (-1243 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) - (-5 *1 (-698))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1157 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-567)) (-5 *5 (-1159)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1282 (-1177) *3)) (-4 *3 (-1050)) (-5 *1 (-1289 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1282 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *1 (-1291 *3 *4))))) + (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) + (-5 *1 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) (((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-1157 *3)) (-4 *3 (-1101)) - (-4 *3 (-1217))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-645 (-225))) (-5 *1 (-204))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) (((*1 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) - (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4)))) + (-12 (-14 *4 (-772)) (-4 *5 (-1218)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) - (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-910)) (-5 *1 (-908 *2 *3)) (-4 *3 (-1243 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 (-416 *4 (-410 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))) - (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) (-4 *3 (-308)) - (-5 *1 (-416 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) - (-5 *1 (-1188 *6)) (-5 *5 (-645 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1217))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-539))))) -(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-392))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1217)) - (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) - (-14 *4 (-645 (-1177))))) + (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) ((*1 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) - (-14 *4 (-645 (-1177))))) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) - (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1050)) - (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) + (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) + (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) + ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *3) + (-12 (-5 *3 (-690 *2)) (-4 *4 (-1244 *2)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) + (-4 *4 (-1244 *3))))) +(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-437)) + (-5 *2 + (-645 + (-3 (|:| -1996 (-1178)) + (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) + (-5 *1 (-1182))))) +(((*1 *2 *1) + (-12 (-5 *2 (-945 *4)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1051))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1244 *5)) + (-5 *2 + (-645 + (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-690 *6))))) + (-5 *1 (-501 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-690 *6)))) + (-4 *7 (-1244 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1268 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1244 *5)) + (-5 *2 (-690 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1243 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *3 (-851)) (-5 *2 (-772)))) + (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *2 (-793)))) + (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-772)))) + (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1258 *3)) - (-5 *2 (-567)))) + (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1227 *3)) - (-5 *2 (-410 (-567))))) + (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) + (-5 *2 (-1273)) (-5 *1 (-471)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) + (-5 *2 (-1273)) (-5 *1 (-471))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-752))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-613 *4)) + (-4 *4 (-1102)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) + (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) + (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) + (-4 *4 (-1218)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) + (-4 *4 (-1102)) (-4 *5 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-559))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-748))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-582))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *1) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) + (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) + (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) + (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) ((*1 *2 *1) - (-12 (-4 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-772))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1217)) (-4 *2 (-851)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1159)) (-5 *1 (-306))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567))))) -(((*1 *2 *3) (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) - ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) - (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1101)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1050)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-863)) (-5 *1 (-1173 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1157 (-2 (|:| |k| (-567)) (|:| |c| *6)))) - (-5 *4 (-1027 (-844 (-567)))) (-5 *5 (-1177)) (-5 *7 (-410 (-567))) - (-4 *6 (-1050)) (-5 *2 (-863)) (-5 *1 (-597 *6))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-1101))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1111))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *2 *3 *4) + (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) + (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-1138))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 - (-1 (-3 (-2 (|:| -4012 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1243 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1258 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) - (-4 *1 (-1072 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1243 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-851)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1202))) - (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-586 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-410 (-953 *3)))) - (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-645 (-225))) (-5 *1 (-204))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) + (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) + (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -4176 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) + (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) + (-14 *6 (-645 (-1178))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) + (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) + (-14 *5 (-645 (-1178))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 + (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) + (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) + (-14 *6 (-645 (-1178)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1267 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) - (-5 *3 (-645 (-690 *5))))) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-645 *4)) + (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) + (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) + (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) + (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) + (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) + (-4 *4 (-1073 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) + (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) + (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) + (-4 *4 (-1073 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-433 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) + (-5 *1 (-747))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-476))) + ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-973))) + ((*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) + (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1187 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-97))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) + (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1267 (-1267 *5))) (-4 *5 (-365)) (-4 *5 (-1050)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) - (-5 *3 (-645 (-690 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1145)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) + (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) + (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418))))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) + (-4 *4 (-1244 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) + (-5 *2 (-690 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) + (-4 *3 (-1218)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) + (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))))) + (-5 *2 (-1037)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) + (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) + (-5 *2 (-1037)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1051)) (-4 *3 (-1244 *4)) (-4 *2 (-1259 *4)) + (-5 *1 (-1262 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) + (-5 *2 (-1270)) (-5 *1 (-258))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-748))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1177)) - (|:| |arrayIndex| (-645 (-953 (-567)))) + (-2 (|:| |var| (-1178)) + (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1177)) (|:| |rand| (-863)) + (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1176)) (|:| |thenClause| (-331)) + (-2 (|:| |switch| (-1177)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| - (-2 (|:| -3240 (-112)) - (|:| -3794 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-863)))))) + (-2 (|:| -3572 (-112)) + (|:| -3802 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 (-331))) - (|:| |commentBranch| (-645 (-1159))) (|:| |callBranch| (-1159)) + (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| - (-2 (|:| -2221 (-1093 (-953 (-567)))) - (|:| |span| (-953 (-567))) (|:| -1998 (-331)))) - (|:| |labelBranch| (-1121)) - (|:| |loopBranch| (-2 (|:| |switch| (-1176)) (|:| -1998 (-331)))) + (-2 (|:| -1604 (-1094 (-954 (-567)))) + (|:| |span| (-954 (-567))) (|:| -2006 (-331)))) + (|:| |labelBranch| (-1122)) + (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 (-331)))) (|:| |commonBranch| - (-2 (|:| -1988 (-1177)) (|:| |contents| (-645 (-1177))))) + (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1182))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) + (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-452 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1243 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) -(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1) (-5 *1 (-633)))) + (-12 (-4 *1 (-351)) + (-5 *2 (-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567)))))))) (((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1268)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) + (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) - (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112)))) + (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1173 *7))) - (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1173 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-910)) (-4 *5 (-1243 *4)) (-5 *2 (-421 (-1173 *5))) - (-5 *1 (-908 *4 *5)) (-5 *3 (-1173 *5))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1243 *4)) (-5 *1 (-810 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *5 (-657 (-410 *2)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-308) (-147))) - (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-925 *4 *5 *6 *2)) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) - (-4 *4 (-615 (-539))) (-4 *5 (-1217)) (-4 *6 (-1217))))) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) + (-4 *7 (-951 *3 *5 *6)) + (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *8) (|:| |radicand| *8))) + (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) + (-5 *2 (-645 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $)))))))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1217)) + (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1217)))) + (-4 *5 (-375 *2)) (-4 *2 (-1218)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) @@ -14902,30 +15169,30 @@ (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-245 (-1159))) (-5 *1 (-214 *4)) + (-12 (-5 *3 (-1178)) (-5 *2 (-245 (-1160))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ *3)) (-15 -4015 ((-1272) $)) - (-15 -2985 ((-1272) $))))))) + (-10 -8 (-15 -1787 ((-1160) $ *3)) (-15 -4022 ((-1273) $)) + (-15 -1345 ((-1273) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-990)) (-5 *1 (-214 *3)) + (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) - (-10 -8 (-15 -1783 ((-1159) $ (-1177))) (-15 -4015 ((-1272) $)) - (-15 -2985 ((-1272) $))))))) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) + (-15 -1345 ((-1273) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1182)) (-5 *1 (-250)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-250)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) + (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1101)) (-4 *2 (-1217)))) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1243 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-4 *2 (-1244 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) @@ -14934,143 +15201,195 @@ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1221)) (-4 *3 (-1243 *2)) - (-4 *4 (-1243 (-410 *3))))) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) + (-4 *4 (-1244 (-410 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1159)) (-5 *1 (-505)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-633)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1160)) (-5 *1 (-505)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-633)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1101)))) + (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-645 (-893 *4))) (-5 *1 (-893 *4)) - (-4 *4 (-1101)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1101)))) + (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) + (-4 *4 (-1102)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) - (-4 *4 (-1101)))) + (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) + (-4 *4 (-1102)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) - (-5 *1 (-994 *4 *2)))) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) + (-5 *1 (-995 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1011 *2)) (-4 *2 (-1217)))) - ((*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217)))) + (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *2 (-1050)) + (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))) + (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) - (-5 *1 (-1077 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-1101)) - (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) + (-12 (-5 *3 (-923)) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) + (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-923)) (-4 *4 (-1102)) + (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) + (-5 *1 (-1079 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1104 *3 *4 *5 *6 *7)) - (-4 *3 (-1101)) (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) - (-4 *7 (-1101)))) + (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) + (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) + (-4 *7 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *3 (-1101)) - (-4 *4 (-1101)) (-4 *5 (-1101)) (-4 *6 (-1101)) (-4 *7 (-1101)))) - ((*1 *1 *1 *1) (-4 *1 (-1145))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177)))) + (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) + (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) + ((*1 *1 *1 *1) (-4 *1 (-1146))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-410 *1)) (-4 *1 (-1243 *2)) (-4 *2 (-1050)) + (-12 (-5 *3 (-410 *1)) (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-410 *1)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)) + (-12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) + (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1255 *2)) (-4 *2 (-1217)))) + (-12 (-5 *3 "last") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1255 *3)) (-4 *3 (-1217)))) + (-12 (-5 *2 "rest") (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-906 *4)) (-4 *4 (-1101)) (-5 *2 (-645 (-772))) - (-5 *1 (-905 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) - (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1258 *5)) - (-5 *1 (-1260 *5 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1177))))) -(((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1221)) (-4 *3 (-1243 *4)) - (-4 *5 (-1243 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1177)) (-5 *1 (-539))))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) + (-12 (-5 *3 "first") (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550)))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1218)) (-5 *2 (-1273))))) +(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-830)) (-5 *3 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-1195))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1217)) (-5 *2 (-772)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1101)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) - (-4 *3 (-433 *4)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))) - ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) - (-4 *3 (-798 *4)))) - ((*1 *2) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-992 *3 *4)) - (-4 *3 (-993 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-997 *3 *4)) - (-4 *3 (-998 *4)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1012 *3)) (-4 *3 (-1013)))) - ((*1 *2) (-12 (-4 *1 (-1050)) (-5 *2 (-772)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1060 *3)) (-4 *3 (-1061))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1101)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1101)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1101)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) + (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) + (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-1101)) (-5 *1 (-650 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *1) (-5 *1 (-381)))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1041))))) -(((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) - ((*1 *2) - (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112))))) + (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1260 *4 *5 *6)) + (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-295 (-834 *3))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) + (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) + (-5 *3 (-410 (-954 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) + (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1166 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1051))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851)) (-4 *2 (-559))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1268 *4)) + (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)))) + ((*1 *1 *1) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-772)) (-4 *4 (-351)) + (-5 *1 (-531 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) + (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1037)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) + (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) + (-4 *1 (-1073 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) + (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) + (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))) (((*1 *2 *3) - (-12 (-14 *4 (-645 (-1177))) (-14 *5 (-772)) + (-12 (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) @@ -15079,1761 +15398,1342 @@ (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1217))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-448 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 *4)))) - (|:| |xValues| (-1095 *4)) (|:| |yValues| (-1095 *4)))) - (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1202)))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1066 *3 *4 *5)) (-5 *2 (-645 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -1441 ((-1126 *3 (-613 $)) $)) - (-15 -1455 ((-1126 *3 (-613 $)) $)) - (-15 -4127 ($ (-1126 *3 (-613 $)))))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1173 *1)) (-4 *1 (-1013))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *2 (-645 (-225))) (-5 *1 (-306))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 - (-2 (|:| |solns| (-645 *5)) - (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1129 *3 *5)) (-4 *3 (-1243 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1173 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 (-567))))) - (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-953 (-567)))))) - (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 (-295 (-953 *4)))) - (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-953 (-567))))) - (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1177)) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-4 *4 (-13 (-29 *6) (-1202) (-960))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1975 (-645 *4)))) - (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1267 *5) "failed")) - (|:| -1975 (-645 (-1267 *5))))) - (-5 *1 (-668 *5)) (-5 *4 (-1267 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1267 *5) "failed")) - (|:| -1975 (-645 (-1267 *5))))) - (-5 *1 (-668 *5)) (-5 *4 (-1267 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 - (-645 - (-2 (|:| |particular| (-3 (-1267 *5) "failed")) - (|:| -1975 (-645 (-1267 *5)))))) - (-5 *1 (-668 *5)) (-5 *4 (-645 (-1267 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) - (-5 *2 - (-645 - (-2 (|:| |particular| (-3 (-1267 *5) "failed")) - (|:| -1975 (-645 (-1267 *5)))))) - (-5 *1 (-668 *5)) (-5 *4 (-645 (-1267 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1975 (-645 *4)))) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4418)))) - (-5 *2 - (-645 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1975 (-645 *7))))) - (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) - (-4 *3 (-688 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1177))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5)))) +(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) + (-4 *3 (-1244 *4)) (-5 *2 (-567)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1202) (-960))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1177)) - (-4 *7 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) - (-5 *1 (-803 *6 *7)) (-5 *4 (-1267 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1177)) - (-4 *6 (-13 (-29 *5) (-1202) (-960))) - (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-1267 *6))) (-5 *1 (-803 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) - (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) - (-5 *1 (-803 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) - (-5 *5 (-1177)) (-4 *7 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1267 *7)) (|:| -1975 (-645 (-1267 *7))))) - (-5 *1 (-803 *6 *7)))) + (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) + (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1177)) - (-4 *7 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1975 (-645 *7))) *7 "failed")) - (-5 *1 (-803 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1177)) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1975 (-645 *3))) *3 "failed")) - (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1202) (-960))))) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) + (-5 *1 (-1118 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1202) (-960))) (-5 *1 (-803 *6 *2)) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1202) (-960))) - (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-803 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-809)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1267 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1267 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1975 (-645 *6))) "failed") - *7 *6)) - (-4 *6 (-365)) (-4 *7 (-657 *6)) - (-5 *2 (-2 (|:| |particular| (-1267 *6)) (|:| -1975 (-690 *6)))) - (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1267 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-1036)) (-5 *1 (-898)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-899)) (-5 *4 (-1064)) (-5 *2 (-1036)) (-5 *1 (-898)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1159)) - (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) - (-5 *2 (-1036)) (-5 *1 (-898)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1159)) - (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036)) - (-5 *1 (-898)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 (-381))) - (-5 *1 (-1024)) (-5 *4 (-381)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1024)) - (-5 *4 (-381)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1129 *3 *4)) (-4 *3 (-1243 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1132 *4)) - (-5 *3 (-317 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1132 *4)) - (-5 *3 (-295 (-317 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1132 *5)) - (-5 *3 (-295 (-317 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1132 *5)) - (-5 *3 (-317 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1177))) - (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1132 *5)) - (-5 *3 (-645 (-295 (-317 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1177))) - (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) - (-5 *1 (-1186 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1177))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1186 *5)) - (-5 *3 (-645 (-295 (-410 (-953 *5))))))) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-1160)) + (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) + (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1186 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) - (-5 *1 (-1186 *4)) (-5 *3 (-645 (-295 (-410 (-953 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-559)) - (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1186 *5)) - (-5 *3 (-410 (-953 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) (-4 *5 (-559)) - (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1186 *5)) - (-5 *3 (-295 (-410 (-953 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) - (-5 *1 (-1186 *4)) (-5 *3 (-410 (-953 *4))))) + (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) + (-5 *1 (-1119 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 (-410 (-954 *6)))) + (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) + (-5 *1 (-1119 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1178)) + (-5 *5 (-1160)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) - (-5 *1 (-1186 *4)) (-5 *3 (-295 (-410 (-953 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) + (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-613 *3)) + (-4 *3 (-13 (-433 *5) (-27) (-1203))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) + (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) - (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| -1598 *1) (|:| -1608 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) - (-5 *2 (-2 (|:| -1598 *3) (|:| -1608 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1272) (-1267 *5) (-1267 *5) (-381))) - (-5 *3 (-1267 (-381))) (-5 *5 (-381)) (-5 *2 (-1272)) - (-5 *1 (-789))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1217)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1217)) - (-14 *4 (-567))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1101)) (-4 *2 (-1050)))) - ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1217))))) + (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1160)) + (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) (((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1177)))) (-4 *6 (-794)) - (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) - (|:| |wcond| (-645 (-953 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1267 (-410 (-953 *4)))) - (|:| -1975 (-645 (-1267 (-410 (-953 *4)))))))))) - (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1243 (-169 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1267 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -3543 (-645 (-863))) (|:| -2825 (-645 (-863))) - (|:| |presup| (-645 (-863))) (|:| -3159 (-645 (-863))) - (|:| |args| (-645 (-863))))) - (-5 *1 (-1177)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1177))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1101))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) + (-12 (-4 *4 (-851)) (-5 *2 (-1190 (-645 *4))) (-5 *1 (-1189 *4)) + (-5 *3 (-645 *4))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) ((*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1272)) (-5 *1 (-1268)))) + (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1267 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-910)) - (-5 *2 (-1267 *1))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) - (-4 *4 (-1243 *2))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3112 (-645 (-1177))) (|:| -1933 (-645 (-1177))))) - (-5 *1 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-331))))) -(((*1 *1) (-5 *1 (-562)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1267 (-317 (-225)))) (-5 *4 (-645 (-1177))) - (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-4 *6 (-901 *5)) (-5 *2 (-690 *6)) - (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1271)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1271))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52)))) + (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) - (-4 *3 (-1243 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1252 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1177)) - (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -3794 *4) (|:| -2053 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) + (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-690 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) + ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711))))) (((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922)))) - ((*1 *1 *1 *1) (-5 *1 (-1222))) ((*1 *1 *1 *1) (-5 *1 (-1223))) - ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1119)) (-5 *1 (-1116))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) + ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224))) + ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226)))) (((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-4 *1 (-723))) ((*1 *1) (-4 *1 (-727))) - ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) - ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851))))) -(((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-580)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *1) (-5 *1 (-471)))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) - (-14 *3 (-645 (-1177)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) - (-5 *2 (-820 *3)))) + ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) + ((*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) + (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-4 *3 (-559))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) + (-4 *3 (-1244 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-847)) (-5 *1 (-1290 *3 *2)) (-4 *3 (-1050))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) - (-5 *2 (-1036)) (-5 *1 (-746))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1177)) (-5 *2 (-613 *6)) - (-4 *6 (-433 *5)) (-4 *5 (-1101)) (-5 *1 (-576 *5 *6))))) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-567)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) + (-5 *1 (-452 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) + (-5 *1 (-268))))) (((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-922)))) - ((*1 *1 *1 *1) (-5 *1 (-1222))) ((*1 *1 *1 *1) (-5 *1 (-1223))) - ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) - (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2564 *8))) - (-4 *7 (-1066 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1108 *4 *5 *6 *7 *8))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) + ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224))) + ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-539))) - ((*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1059)))) - ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) - ((*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1059))))) + ((*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) + ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) + ((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| -4250 (-772)) (|:| -3686 *5) (|:| |radicand| (-645 *5)))) - (-5 *1 (-321 *5)) (-5 *4 (-772)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-567))))) + (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) + (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) + (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-112)) + (-5 *1 (-926 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1243 *2))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1036)) (-5 *1 (-757))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *3) - (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *4)) (-4 *4 (-993 *2)) (-4 *2 (-559)) - (-5 *1 (-694 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-1236 *2 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) - (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) - (-4 *6 (-455))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) + (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) + (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) + (|:| |args| (-645 (-863))))) + (-5 *1 (-1178))))) +(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) + (-4 *1 (-384 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) + (-4 *4 (-727)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) + (-4 *1 (-951 *3 *4 *5))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178))))) + (-5 *1 (-1220))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1244 *4)) + (-4 *4 (-308)) (-5 *1 (-463 *4 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) + (-5 *1 (-906 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-822))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1159)) (-5 *2 (-775)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1105)) (-5 *1 (-966))))) + (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-775)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967))))) (((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1474)) (-5 *2 (-112)) (-5 *1 (-618)))) + (-12 (-5 *3 (|[\|\|]| -1477)) (-5 *2 (-112)) (-5 *1 (-618)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3849)) (-5 *2 (-112)) (-5 *1 (-618)))) + (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-618)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2782)) (-5 *2 (-112)) (-5 *1 (-618)))) + (-12 (-5 *3 (|[\|\|]| -2786)) (-5 *2 (-112)) (-5 *1 (-618)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1981)) (-5 *2 (-112)) (-5 *1 (-692 *4)) + (-12 (-5 *3 (|[\|\|]| -1986)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) + (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-877)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) + (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1037))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-1277))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1138)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)) (-5 *1 (-1182)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1182)))) + (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1182)))) + (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-1183)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1182))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) -(((*1 *2 *1) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-975))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) + (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1183))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) + (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) + (-4 *3 (-853 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) + (-4 *3 (-1102))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-147))) - (-5 *2 (-2 (|:| -2944 *3) (|:| -2956 *3))) (-5 *1 (-1237 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) - (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3827 (-645 *9)) (|:| -2564 *4) (|:| |ineq| (-645 *9)))) - (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) - (-4 *4 (-1072 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) - (-4 *8 (-851)) (-4 *9 (-1066 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3827 (-645 *9)) (|:| -2564 *4) (|:| |ineq| (-645 *9)))) - (-5 *1 (-1108 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) - (-4 *4 (-1072 *6 *7 *8 *9))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1036)) - (-5 *1 (-747))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1173 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))) + (-12 (-4 *4 (-1051)) + (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) + ((*1 *1 *1) (-4 *1 (-548))) + ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1215 *3)) (-4 *3 (-1218)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) + (-4 *2 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) + (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1174 *8))) + (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1174 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) + (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1158 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1604 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1037)) (-5 *1 (-306))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1213 *3)) + (-5 *1 (-791 *3)) (-4 *3 (-976)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1213 *2)) (-4 *2 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) + (-5 *2 (-690 (-567))) (-5 *1 (-592)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) + (-5 *1 (-592)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) + (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) + (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) + (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) + (-5 *1 (-1181)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1178)) + (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) + (-5 *1 (-1181))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1121)))) -(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1061)))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1050)) (-5 *1 (-715 *2 *4)) - (-4 *4 (-649 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1050))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-1189 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1101)) (-5 *2 (-55))))) + ((*1 *1 *1 *1) (-5 *1 (-1122)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) + (-4 *4 (-1244 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1280 *4 *5 *6 *7))) - (-5 *1 (-1280 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1066 *6 *7 *8)) (-4 *6 (-559)) - (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1280 *6 *7 *8 *9))) - (-5 *1 (-1280 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1177)) - (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-578 *4 *2)) - (-4 *2 (-13 (-1202) (-960) (-1140) (-29 *4)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-4 *1 (-968)))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) - (-5 *1 (-757))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-400))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) - (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-4 *1 (-968)))) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) + (-5 *1 (-1112))))) +(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1101)) - (-4 *3 (-1101))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1111)) (-5 *3 (-567))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-753))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-645 (-1177))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) + (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) + (-5 *1 (-891 *4 *5)) (-4 *5 (-1102)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) + (-5 *1 (-892 *5 *3)) (-4 *3 (-1218)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) + (-4 *6 (-1218)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) + (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) + (-5 *1 (-1181)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) + (-5 *1 (-1181))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1177)) (-5 *3 (-112)) (-5 *1 (-893 *4)) - (-4 *4 (-1101))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1199 *3)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1177)) (-5 *6 (-112)) - (-4 *7 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-1202) (-960) (-29 *7))) + (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1244 (-169 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) + (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) + (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) + (-5 *1 (-979 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1 *1) (-4 *1 (-969)))) +(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *1 *1) (-4 *1 (-173))) + ((*1 *1 *1) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1064))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3))))) + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) + (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1 *1) (-4 *1 (-969)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) + (-5 *1 (-906 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) + (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) + (-5 *1 (-749))))) +(((*1 *2) + (-12 (-5 *2 (-1268 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) + (-14 *3 (-923)) (-14 *4 (-923))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1) (-5 *1 (-440)))) (((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-4 *1 (-968))) ((*1 *1 *1) (-5 *1 (-1121)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) + ((*1 *1 *1) (-4 *1 (-969))) ((*1 *1 *1) (-5 *1 (-1122)))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-690 (-953 *4))) (-5 *1 (-1029 *4)) - (-4 *4 (-1050))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) - (-4 *4 (-375 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1050))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *2 (-1066 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) - (-4 *3 (-1072 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))) + (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) + (-5 *1 (-601 *4 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) + (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567)))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) + (-5 *1 (-749))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *8 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-645 *8)) + (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) + (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *8 (-1067 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-645 *8)) + (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) + (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) + (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *6 (-412 *4 *5)) + (-14 *7 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-4 *2 (-1050)) (-4 *1 (-1124 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) + (-12 (-5 *2 (-1268 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) + (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) + (-4 *3 (-1102))))) (((*1 *2 *3) - (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1177)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1217))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1159)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1066 *4 *5 *6)) (-5 *2 (-1272)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1072 *4 *5 *6 *7))))) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1244 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *1 *1) (-4 *1 (-870 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-5 *2 (-1174 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1243 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3788 *4))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) + (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) + (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) + (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-954 *4))) + (-4 *4 (-13 (-849) (-308) (-147) (-1024))) + (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) + (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1218))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) + (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) + (-5 *1 (-673 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *2) - (-12 (-14 *4 (-772)) (-4 *5 (-1217)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1050)) (-5 *2 (-922)))) - ((*1 *2) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) + (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-559)) (-4 *3 (-1051)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) + (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) + (-4 *3 (-853 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) + (-4 *3 (-1051))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) + (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-951 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) + (-4 *1 (-1244 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) + (-5 *1 (-747))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) + (-4 *2 (-1244 (-567))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) + (-4 *2 (-1244 (-567))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) + (-4 *2 (-1244 (-567))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) + (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) + (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1244 *5)) + (-5 *1 (-447 *5 *2)) (-4 *5 (-1051))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) + (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) + (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1259 *5)) + (-5 *1 (-1261 *5 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) + (|:| |lb| (-645 (-844 (-225)))) + (|:| |cf| (-645 (-317 (-225)))) + (|:| |ub| (-645 (-844 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-645 (-317 (-225)))) + (|:| -2672 (-645 (-225))))))) + (-5 *2 (-645 (-1160))) (-5 *1 (-268))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-772)) (-4 *5 (-559)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224)))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) +(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) + (-5 *2 (-1268 (-567))) (-5 *1 (-1295 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) + (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1189 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-328 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-519 *3 *4)) - (-14 *4 (-567))))) + (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1190 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3047 *3) (|:| -3458 (-772)))) (-5 *1 (-589 *3)) + (-4 *3 (-548))))) +(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1165 3 *3)) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) - ((*1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-822))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3621 *3) (|:| |coef1| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1197))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-52)) (-5 *1 (-830))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303))))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) + (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3))))) +(((*1 *1) (-5 *1 (-1065)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) - (-4 *4 (-1050)))) + (-4 *4 (-1051)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) ((*1 *1 *1) (-4 *1 (-233))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851)))) ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) - (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) + (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1243 *3)))) + (-4 *4 (-1244 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) - (-4 *3 (-1243 *2)))) + (-4 *3 (-1244 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-901 *3)) (-5 *1 (-588 *2)) - (-5 *3 (-1177)))) + (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) + (-5 *3 (-1178)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) - (-4 *4 (-1101)))) + (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) + (-4 *4 (-1102)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1101)))) + (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1101)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1101)))) + (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1174 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1243 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1252 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-1050)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) - (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-365)) (-4 *3 (-1243 *4)) (-4 *5 (-1243 (-410 *3))) - (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1243 *2)) - (-4 *5 (-1243 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) - (-4 *6 (-344 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-365)) (-4 *3 (-1243 *2)) (-4 *4 (-1243 (-410 *3))) - (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) - (-4 *1 (-337 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1177))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-331))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) -(((*1 *1 *2) - (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) - (-4 *4 (-172))))) + (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-1051)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1159)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) - (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1202) (-29 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-1267 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-381)) (-5 *1 (-787))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1177)) (-5 *5 (-645 *3)) - (-4 *3 (-13 (-27) (-1202) (-433 *6))) - (-4 *6 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *6 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-752))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (|has| *1 (-6 -4418)) (-4 *1 (-1255 *3)) - (-4 *3 (-1217))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1243 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) - (-5 *2 (-1272)) (-5 *1 (-1268))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1177)) (-4 *1 (-27)) - (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-559)) (-5 *2 (-645 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 - (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) - (|:| |genIdeal| (-507 *4 *5 *6 *7)))) - (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-1101)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1101)) (-5 *2 (-112)) - (-5 *1 (-1218 *3))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1036)) (-5 *1 (-757))))) -(((*1 *2) - (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1243 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1221)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) - (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) + (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) + (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) ((*1 *2) - (-12 (-4 *3 (-1243 (-567))) - (-5 *2 - (-2 (|:| -1975 (-690 (-567))) (|:| |basisDen| (-567)) - (|:| |basisInv| (-690 (-567))))) - (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) + (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923)))) ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 *4)) - (-5 *2 - (-2 (|:| -1975 (-690 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-690 *4)))) - (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))) + (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1174 *3) + (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))))) ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1243 *3)) (-4 *5 (-1243 *4)) - (-5 *2 - (-2 (|:| -1975 (-690 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-690 *4)))) - (-5 *1 (-1276 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1187))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *4)) (-4 *4 (-1050)) (-4 *2 (-1243 *4)) - (-5 *1 (-447 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-410 (-1173 (-317 *5)))) (-5 *3 (-1267 (-317 *5))) - (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1131 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) - (-4 *3 (-1101))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1221)) (-4 *5 (-1243 *3)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1283 *4 *5 *2)) (-4 *2 (-1288 *5 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) (-5 *2 (-1173 (-410 *5))) (-5 *1 (-616 *4 *5)) - (-5 *3 (-410 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) - (-5 *2 (-1173 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1177)) (-4 *5 (-433 *4)) - (-4 *4 (-1101)) (-5 *1 (-576 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270))))) + (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-923))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1177)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-613 *4)) - (-4 *4 (-1101)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1101)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1101)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1101)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3 *4)) - (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-887 *5)) (-4 *5 (-1101)) - (-5 *2 (-112)) (-5 *1 (-888 *5 *6 *4)) (-4 *4 (-615 (-893 *5)))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1217)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) + (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1244 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1244 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) + (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1244 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-844 *3))) (-4 *3 (-13 (-1202) (-960) (-29 *5))) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1093 (-844 *3))) (-5 *5 (-1159)) - (-4 *3 (-13 (-1202) (-960) (-29 *6))) - (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1093 (-844 (-317 *5)))) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1093 (-844 (-317 *6)))) - (-5 *5 (-1159)) - (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-844 (-410 (-953 *5))))) (-5 *3 (-410 (-953 *5))) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1093 (-844 (-410 (-953 *6))))) (-5 *5 (-1159)) - (-5 *3 (-410 (-953 *6))) - (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) - (-4 *3 (-13 (-1202) (-960) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) - (-5 *5 (-381)) (-5 *6 (-1064)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1095 (-844 (-381)))) - (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) - (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1095 (-844 (-381))))) - (-5 *5 (-381)) (-5 *6 (-1064)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-844 (-381)))) - (-5 *5 (-1159)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-844 (-381)))) - (-5 *5 (-1177)) (-5 *2 (-1036)) (-5 *1 (-568)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1243 *4)) - (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851)) - (-4 *3 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177)) (-5 *1 (-953 *3)) (-4 *3 (-38 (-410 (-567)))) - (-4 *3 (-1050)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-4 *2 (-851)) - (-5 *1 (-1127 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1174 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1175 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1177)) (-5 *1 (-1211 *3)) (-4 *3 (-38 (-410 (-567)))) - (-4 *3 (-1050)))) - ((*1 *1 *1 *2) - (-2797 - (-12 (-5 *2 (-1177)) (-4 *1 (-1227 *3)) (-4 *3 (-1050)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1177)) (-4 *1 (-1227 *3)) (-4 *3 (-1050)) - (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) - (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1231 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-2797 - (-12 (-5 *2 (-1177)) (-4 *1 (-1248 *3)) (-4 *3 (-1050)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1177)) (-4 *1 (-1248 *3)) (-4 *3 (-1050)) - (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) - (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1252 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2797 - (-12 (-5 *2 (-1177)) (-4 *1 (-1258 *3)) (-4 *3 (-1050)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1202)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1177)) (-4 *1 (-1258 *3)) (-4 *3 (-1050)) - (-12 (|has| *3 (-15 -2845 ((-645 *2) *3))) - (|has| *3 (-15 -1576 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1263 *4)) (-14 *4 (-1177)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1159)) (-5 *2 (-567)) (-5 *1 (-1199 *4)) - (-4 *4 (-1050))))) -(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1095 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1134 (-225))) - (-5 *1 (-698))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) - (-5 *1 (-694 *4 *5)))) + (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) + (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *6 (-1243 *5)) - (-5 *2 (-2 (|:| -3827 *7) (|:| |rh| (-645 (-410 *6))))) - (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) - (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1236 *4 *5 *3)) - (-4 *3 (-1243 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1202))) - (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1003) (-1202)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-645 (-1177))) (-4 *2 (-172)) - (-4 *4 (-238 (-2410 *5) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -3763 *3) (|:| -4250 *4)) - (-2 (|:| -3763 *3) (|:| -4250 *4)))) - (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) - (-4 *7 (-950 *2 *4 (-865 *5)))))) + (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) + (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) + (-5 *1 (-333))))) (((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1101)) - (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-894 *3)) (|:| |c| *4)))) - (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-894 *3)) (-4 *3 (-851))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) - (-4 *3 (-13 (-1202) (-29 *5)))))) + (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1173 *7)) (-4 *5 (-1050)) - (-4 *7 (-1050)) (-4 *2 (-1243 *5)) (-5 *1 (-504 *5 *2 *6 *7)) - (-4 *6 (-1243 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) - (-4 *4 (-1243 *5)) (-5 *2 (-1173 *7)) (-5 *1 (-504 *5 *4 *6 *7)) - (-4 *6 (-1243 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1050)) (-5 *1 (-895 *2 *3)) (-4 *2 (-1243 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5))))) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) + (-5 *2 (-2 (|:| -3995 (-645 *6)) (|:| -3823 (-645 *6))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1050))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1217))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1217)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1217))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1202) (-433 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-559) (-1039 (-567)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-1206 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-351)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2166 (-645 (-2 (|:| |irr| *3) (|:| -1594 (-567))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1187))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1101)) (-4 *3 (-1101))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498))))) -(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *3 (-645 (-264))) - (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-264)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1095 (-381)))) (-5 *1 (-471))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-690 (-410 (-953 (-567))))) - (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)) - (-5 *3 (-317 (-567)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1036)) (-5 *1 (-755))))) + (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) + (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1066 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) + (-4 *3 (-1102)) (-4 *5 (-667 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1268 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) + (-5 *1 (-1131 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1179 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) - ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1217)))) - ((*1 *1 *1) (-4 *1 (-870 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) - (-4 *4 (-851))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-615 (-1177))) - (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-1166 (-645 (-953 *4)) (-645 (-295 (-953 *4))))) - (-5 *1 (-507 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1217)) (-4 *3 (-1050)) - (-5 *2 (-690 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) - (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1182))) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) + (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) + (-5 *1 (-1131 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -2703 *4) (|:| -1813 (-567))))) - (-4 *4 (-1243 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-897 *2 *3)) - (-4 *2 (-1243 *3))))) -(((*1 *1) (-5 *1 (-581)))) -(((*1 *2 *1) (-12 (-5 *2 (-959 (-183 (-139)))) (-5 *1 (-334)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1216))) (-5 *1 (-607))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-331))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1243 *4)))) + (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1243 *5)) (-4 *5 (-13 (-455) (-147))) - (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) -(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) - (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1173 (-953 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1173 (-953 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1173 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1267 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-645 (-953 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-953 *3))))) - ((*1 *2) - (-12 (-5 *2 (-645 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-645 (-1177))) (-14 *6 (-1267 (-690 *3))))) + (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) + (-5 *1 (-1131 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1267 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-953 *4))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) - (-14 *5 (-922)) (-14 *6 (-645 (-1177))) (-14 *7 (-1267 (-690 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041))))) + (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1178))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) + (-5 *1 (-1131 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) + (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) + (-5 *1 (-1131 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1101)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1101))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1) (-5 *1 (-141)))) + (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))) + ((*1 *2 *1) + (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) + ((*1 *2 *1) + (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) + (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552)))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1037)) (-5 *1 (-757))))) (((*1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1066 *6 *7 *8)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2564 *4)))) - (-5 *1 (-1109 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2564 *9)))) - (-5 *5 (-112)) (-4 *8 (-1066 *6 *7 *4)) (-4 *9 (-1072 *6 *7 *4 *8)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) - (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2564 *9)))) - (-5 *1 (-1109 *6 *7 *4 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) - (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) - (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-915 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1177)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-421 (-953 *6))) (-5 *5 (-1177)) (-5 *3 (-953 *6)) - (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *6))))) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) + (-5 *2 (-1174 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-690 (-410 (-954 (-567))))) + (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) + (-5 *2 (-1268 (-690 (-954 *4)))) (-5 *1 (-189 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1244 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) + (-4 *10 (-951 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-645 (-1174 *10))) + (|:| |dterm| + (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) + (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-645 *6)) + (-5 *5 (-645 *10))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) + (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) + (-4 *5 (-888 (-567))) + (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) + (-4 *3 (-13 (-27) (-1203) (-433 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1178)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) + (-4 *2 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) + (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) + (-5 *1 (-570 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-420 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) +(((*1 *2) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1157 (-567))) (-5 *1 (-1161 *4)) (-4 *4 (-1050)) - (-5 *3 (-567))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-756))))) + (-12 (-5 *2 (-645 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1008))))) (((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1135 *3))))) + (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1178)) + (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *5)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) + (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567))))) +(((*1 *1) (-5 *1 (-144))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) + (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) + (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4))))) + (-5 *1 (-293 *4))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) - (-4 *4 (-351)) (-5 *2 (-1272)) (-5 *1 (-531 *4))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1202)))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) + (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1178)) + (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-1181))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-1051)) + (-5 *2 (-690 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) (-5 *5 (-1173 *2)) - (-4 *2 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1101)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1177))) - (-5 *5 (-410 (-1173 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1202))) - (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1101))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) + (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1066 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-978 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1036)) (-5 *1 (-753))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) + (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1203) (-1004)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) + (-4 *7 (-1244 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-577 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1218)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1218)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1135 *3)))) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050)))) + (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1135 *3)) (-4 *3 (-1050))))) + (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) + (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) + (-5 *2 + (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-645 *8)) + (|:| |Lfact| + (-645 (-2 (|:| -2706 (-1174 *8)) (|:| -3458 (-567))))) + (|:| |ctpol| *8))) + (-5 *1 (-743 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) + (-14 *3 (-923)) (-4 *4 (-1051))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) + ((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *1 *1) (-5 *1 (-863)))) +(((*1 *1) (-4 *1 (-351)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1273))))) +(((*1 *2 *3) + (-12 (-5 *3 (-690 (-410 (-954 (-567))))) + (-5 *2 + (-645 + (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) + (|:| |radvect| (-645 (-690 (-317 (-567)))))))) + (-5 *1 (-1033))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1268 (-1268 (-567)))) (-5 *3 (-923)) (-5 *1 (-469))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-863)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) + (-5 *1 (-190))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1321 (-567)) (|:| -2166 (-645 *3)))) - (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927))))) + (-12 (-4 *4 (-794)) + (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) + (-5 *2 (-2 (|:| -4016 (-954 *6)) (|:| -3589 (-954 *6)))) + (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1101))))) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) + (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-933 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) + (-5 *2 (-1037)) (-5 *1 (-749))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))) +(((*1 *2) + (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-420 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-863))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) - (-5 *1 (-268))))) + (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-645 (-1178))) + (-5 *2 + (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) + (-5 *1 (-629 *5 *6))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) + (-5 *1 (-1162 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) + (-14 *4 (-1178)) (-14 *5 *3)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1270)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198))))) (((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) + (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) (((*1 *2 *3) - (-12 (-5 *3 (-1240 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) - (-14 *5 (-1177)) (-5 *2 (-567)) (-5 *1 (-1115 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1101)) (-5 *1 (-738 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1101)))) - ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1101))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1050)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1243 *3))))) + (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) + (-5 *1 (-1276 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-755))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) +(((*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))) + ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) + (-5 *2 (-645 (-945 *4))) (-5 *1 (-1214)) (-5 *3 (-945 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *2 (-851)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1267 *4)) (|:| |den| *4)))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-62 *3)) (-14 *3 (-1177)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-69 *3)) (-14 *3 (-1177)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-72 *3)) (-14 *3 (-1177)))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1272)))) - ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1272)) (-5 *1 (-400)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1272)) (-5 *1 (-1139)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1272)) (-5 *1 (-1139))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) - (-4 *4 (-851)) (-5 *1 (-1188 *4))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *5 (-922)) - (-5 *2 (-1272)) (-5 *1 (-471)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1272)) (-5 *1 (-471)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-875)) (-5 *5 (-922)) - (-5 *2 (-1272)) (-5 *1 (-471))))) + (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2774 *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762)))) (((*1 *2 *3) - (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306))))) + (-12 (-4 *4 (-1051)) (-4 *5 (-1244 *4)) (-5 *2 (-1 *6 (-645 *6))) + (-5 *1 (-1262 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1259 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) + (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) + (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) + (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) + (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) ((*1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1177))) - (-14 *3 (-645 (-1177))) (-4 *4 (-390)))) - ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1202)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) + (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) + ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1203)))) +(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-494))))) +(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1999 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) + (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) + (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))) +(((*1 *1) (-4 *1 (-969)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) + (-5 *1 (-536)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) + (-4 *1 (-768 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-4 *4 (-455)) - (-5 *2 (-645 (-3 (-410 (-953 *4)) (-1166 (-1177) (-953 *4))))) - (-5 *1 (-293 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-1165 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1269)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134 (-225))) (-5 *1 (-1269))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-5 *3 (-944 *4)) (-4 *1 (-1135 *4)) - (-4 *4 (-1050)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-944 (-225))) (-5 *2 (-1272)) - (-5 *1 (-1269))))) + (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) + (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1177))) (-4 *6 (-365)) - (-5 *2 (-645 (-295 (-953 *6)))) (-5 *1 (-541 *5 *6 *7)) - (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849)))))) -(((*1 *1) (-4 *1 (-968)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1066 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1066 *4 *5 *6)) - (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-978 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-748))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) + (-5 *1 (-1189 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-4 *3 (-1067 *6 *7 *8)) + (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) + (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) + (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) + (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) + (-5 *1 (-1110 *6 *7 *4 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1203)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) + (-4 *4 (-1102))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) + (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) + ((*1 *2 *1) + (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) + (-4 *5 (-851)) (-5 *2 (-772))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1210 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1066 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1173 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-910))))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-394))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1181))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-970 *2 *4)) - (-4 *4 (-1243 *2))))) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1267 (-645 (-2 (|:| -3794 *4) (|:| -3763 (-1121)))))) - (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1173 *3) - (-1267 (-645 (-2 (|:| -3794 *3) (|:| -3763 (-1121))))))))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-922))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-755))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) + (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) + (-4 *3 (-951 *4 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-141))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-645 (-1178))) (-4 *4 (-1051)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1178))) + (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) + (-4 *5 (-238 (-2414 *3) (-772))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) + (-14 *3 (-645 (-1178))) (-4 *4 (-1051))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -2517 *4))) (-5 *5 (-772)) + (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-452 *6 *7 *8 *4))))) +(((*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1267 (-1267 (-567)))) (-5 *1 (-469))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-993 *2)) (-4 *4 (-1243 *3)) (-4 *2 (-308)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))) + (-12 (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-4 *2 (-308)) + (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1101)) (-5 *2 (-1126 *3 (-613 *1))) + (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) ((*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1217)) - (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *7 *2)) (-4 *6 (-1050)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-760))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1272)) (-5 *1 (-394)))) - ((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-394))))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-4 *5 (-365)) (-5 *2 (-645 (-1211 *5))) - (-5 *1 (-1275 *5)) (-5 *4 (-1211 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 *3)) (-4 *3 (-1050)) (-5 *1 (-690 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *4)) (-4 *4 (-1050)) (-4 *1 (-1124 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1180)) (-5 *3 (-1177))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) - (-4 *7 (-1243 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 (-645 (-567)))) (-5 *1 (-884))))) -(((*1 *2) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) (-4 *6 (-1243 (-410 *5))) - (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) (-4 *4 (-1243 *3)) - (-4 *5 (-1243 (-410 *4))) (-5 *2 (-772))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-645 *7) *7 (-1173 *7))) (-5 *5 (-1 (-421 *7) *7)) - (-4 *7 (-1243 *6)) (-4 *6 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3827 *3)))) - (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) - (-4 *8 (-657 (-410 *7))))) + (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-593 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1178)) + (-4 *2 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) + (-5 *1 (-278 *5 *2))))) +(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) + (|:| |success| (-112)))) + (-5 *1 (-790)) (-5 *5 (-567))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1166 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1244 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-62 *3)) (-14 *3 (-1178)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-69 *3)) (-14 *3 (-1178)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-72 *3)) (-14 *3 (-1178)))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1273)))) + ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-400)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1243 *5)) - (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) + (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) + ((*1 *2 *3) + (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3827 (-655 *6 (-410 *6)))))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1202) (-433 *4)))))) + (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -2673 (-772)))) + (-5 *1 (-783 *3)) (-4 *3 (-1051)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2673 (-772)))) + (-4 *1 (-1067 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-630))) + ((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004) (-1203)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1039 (-567))) (-4 *4 (-559)) + (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *1 *1 *1) (-5 *1 (-134))) ((*1 *2 *2 *2) @@ -16842,1453 +16742,1559 @@ ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1258 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1229 *4 *5)))) + (-4 *5 (-1259 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1230 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1227 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1250 *4 *5)) - (-4 *6 (-984 *5)))) + (-4 *5 (-1228 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1251 *4 *5)) + (-4 *6 (-985 *5)))) ((*1 *1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1101)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *1) (-5 *1 (-381))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1101)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1101)) - (-4 *3 (-1113)))) + (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) + (-4 *3 (-1114)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1267 *4)) (-5 *3 (-567)) (-4 *4 (-351)) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1101)) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) (-5 *1 (-683 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) + (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) + (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)) + (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1050)) + (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1050)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1050)))) + (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1101)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-410 (-567))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-922)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1114)) (-5 *2 (-923)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *4 (-1050)) + (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1162 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-567)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) + (-5 *1 (-1164 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1243 *4)) - (-5 *2 (-1267 *6)) (-5 *1 (-416 *3 *4 *5 *6)) - (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) + (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) + (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1050)) (-4 *3 (-1101)) (-5 *2 (-1126 *3 (-613 *1))) + (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126 (-567) (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) ((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1101)) - (-5 *2 (-2 (|:| -3686 (-567)) (|:| |var| (-613 *1)))) - (-4 *1 (-433 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1036)) (-5 *1 (-750))))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) +(((*1 *1 *1) (-4 *1 (-548)))) (((*1 *1 *1) (-5 *1 (-539)))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) + (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) + (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1211 *5 *6 *7 *8)) (-4 *5 (-559)) + (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) + (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) + (-4 *6 (-794)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) + (-5 *2 + (-2 (|:| |brans| (-645 (-645 (-945 *4)))) + (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) + (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-394))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-577 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1218)) (-5 *2 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) + (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -1791 (-1177)) (|:| -4232 (-440))))) - (-5 *1 (-1181))))) + (|partial| -12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) + (-5 *1 (-665 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1288 *3 *4)) + (-4 *3 (-851)) (-4 *4 (-172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-531 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-421 (-1173 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1173 *1)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1101)))) + (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) ((*1 *2 *3) - (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1173 *1))) (-5 *3 (-1173 *1))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1269)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1134 (-225))) (-5 *3 (-1159)) (-5 *1 (-1269)))) - ((*1 *1 *1) (-5 *1 (-1269)))) + (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1244 *4)) + (-5 *1 (-811 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-394)))) + ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-394))))) +(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) + ((*1 *1 *1) (-4 *1 (-1062)))) +(((*1 *2) + (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) + (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) + (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1244 *2))))) +(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) + ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1160))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1050)) (-5 *1 (-1161 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1177)) - (-14 *4 *2)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1101)) - (-4 *2 (-131))))) + (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1004)))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1101)))) + (-12 (-5 *2 (-645 (-2 (|:| |k| (-1178)) (|:| |c| (-1290 *3))))) + (-5 *1 (-1290 *3)) (-4 *3 (-1051)))) ((*1 *2 *1) - (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1292 *3 *4))))) + (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-882))))) +(((*1 *1 *1) (-5 *1 (-1065)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) + (-4 *3 (-1067 *5 *6 *7)) + (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) + (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1178)) (-5 *6 (-645 (-613 *3))) + (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) + (-5 *1 (-560 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1178))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) + (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1009 *3)) (-4 *3 (-1039 (-410 (-567))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1217)) (-5 *2 (-567))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1066 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1072 *4 *5 *6 *3))))) -(((*1 *1 *1) (-4 *1 (-870 *2)))) + (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) +(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) + (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))) + (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) + (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) + (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) + (-4 *2 (-688 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) + ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1189 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) + (-14 *4 (-645 (-1178))))) + ((*1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) + (-14 *4 (-645 (-1178))))) + ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) + (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) + (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1244 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) + (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) + (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3)) + (-4 *3 (-1218))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)) + (-4 *2 (-851)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4419)) + (-4 *1 (-375 *3)) (-4 *3 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-690 (-169 (-410 (-567))))) + (-5 *2 + (-645 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) + (|:| |outvect| (-645 (-690 (-169 *4))))))) + (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) (((*1 *2 *1) (-12 (-5 *2 (-645 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) + (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) ((*1 *2 *1) - (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1101)) (-4 *4 (-1101)) + (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) + (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1240 *4 *2)) + (-4 *2 (-1244 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) + (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-567)) (-14 *4 (-772))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1999 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) - (-4 *1 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) - (-5 *2 (-863)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-645 (-1159))) (-5 *1 (-1064)) (-5 *3 (-1159))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-1181))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1062 (-1025 *4) (-1173 (-1025 *4)))) (-5 *3 (-863)) - (-5 *1 (-1025 *4)) (-4 *4 (-13 (-849) (-365) (-1023)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1284 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1290 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-950 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1177)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (-5 *1 (-925 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3621 *4))) - (-5 *1 (-970 *4 *3)) (-4 *3 (-1243 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-14 *5 (-645 (-1177))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) - (-5 *1 (-1293 *4 *5 *6)) (-14 *6 (-645 (-1177))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1293 *5 *6 *7)) - (-14 *6 (-645 (-1177))) (-14 *7 (-645 (-1177))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-953 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1023))) - (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1293 *4 *5 *6)) - (-14 *5 (-645 (-1177))) (-14 *6 (-645 (-1177)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1243 *3)) (-4 *3 (-1050))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1217))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-645 *3)) (-5 *1 (-962 *3)) (-4 *3 (-548))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4174 (-114)) (|:| |arg| (-645 (-893 *3))))) - (-5 *1 (-893 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-893 *4))) - (-5 *1 (-893 *4)) (-4 *4 (-1101))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1243 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) + (-12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) + (-5 *1 (-402 *3 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) + (-5 *1 (-531 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) + (-5 *2 (-1037)) (-5 *1 (-748))))) +(((*1 *1) (-5 *1 (-292)))) (((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1227 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-953 (-567))))) + (-12 (-5 *2 (-645 - (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) - (|:| |radvect| (-645 (-690 (-317 (-567)))))))) - (-5 *1 (-1032))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1189 (-645 *4))) (-4 *4 (-851)) - (-5 *2 (-645 (-645 *4))) (-5 *1 (-1188 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) - (-14 *4 (-645 (-1177))))) - ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) - (-14 *4 (-645 (-1177))))) - ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) - (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4))) - (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1243 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1135 *3)) (-4 *3 (-1050)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1217))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1202) (-1003)))))) -(((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3) - (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-823))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))) -(((*1 *1) (-5 *1 (-1268)))) + (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *3)) + (|:| |logand| (-1174 *3))))) + (-5 *1 (-588 *3)) (-4 *3 (-365))))) +(((*1 *2) + (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) + (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) + (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3))))) +(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) + (-4 *2 (-1244 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1101))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) (-5 *2 (-645 (-2 (|:| -2793 *5) (|:| -2534 *5)))) - (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) - (-4 *6 (-657 (-410 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *4 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -2793 *4) (|:| -2534 *4)))) - (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) - (-4 *6 (-657 (-410 *4))))) + (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1268 *5)) (-4 *5 (-308)) + (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331))))) +(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-562))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) + (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *5 (-1243 *4)) (-5 *2 (-645 (-2 (|:| -2793 *5) (|:| -2534 *5)))) - (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) - (-4 *3 (-657 (-410 *5))))) + (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) + (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) + (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) +(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) + ((*1 *1 *1) (-5 *1 (-1122)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) + (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-772)) + (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *5 (-613 $)) $)) + (-15 -1460 ((-1127 *5 (-613 $)) $)) + (-15 -4132 ($ (-1127 *5 (-613 $)))))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) + (-5 *1 (-715 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1178))) (-4 *6 (-365)) + (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) + (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) + (-4 *4 (-851))))) +(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1166 *3 *4)) + (-14 *3 (-923))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) + ((*1 *1 *1 *1) (-5 *1 (-1122)))) +(((*1 *1) + (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) + (-1657 (|has| *1 (-6 -4401))))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) + ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))) + ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) + (-4 *4 (-1051)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1273)) + (-5 *1 (-1270))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-157)) (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) + (-5 *1 (-1131 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) - (-4 *4 (-1243 *5)) (-5 *2 (-645 (-2 (|:| -2793 *4) (|:| -2534 *4)))) - (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) - (-4 *3 (-657 (-410 *4)))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483))))) + (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) + (-5 *1 (-1131 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1173 *4)) (-5 *1 (-359 *4)) + (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) ((*1 *1) (-4 *1 (-370))) ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1267 *4)) (-5 *1 (-531 *4)) + (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) ((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548))) ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1101)))) + ((*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) - (-4 *4 (-1101)))) - ((*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-548)) (-4 *2 (-559))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-823))))) -(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1159)) - (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1243 *5)) - (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1243 *6)) - (-14 *7 (-922))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1243 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -4012 (-410 *6)) (|:| |coeff| (-410 *6)))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1267 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1221)) - (-4 *4 (-1243 *3)) (-4 *5 (-1243 (-410 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1221)) (-4 *5 (-1243 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) - (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1243 (-410 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1258 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-928)) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) - (|:| |xValues| (-1095 (-225))) (|:| |yValues| (-1095 (-225))))) - (-5 *1 (-153))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1217)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1217)) (-5 *1 (-59 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-760))))) + (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) + (-4 *4 (-1102)))) + ((*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1159)) (|:| -1988 (-1159)))) - (-5 *1 (-823))))) -(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1) (-5 *1 (-1121)))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1159)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1036)) (-5 *1 (-755))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) - ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-645 (-2 (|:| -2944 (-410 (-567))) (|:| -2956 (-410 (-567)))))) - (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1021 *4)) - (-4 *4 (-1243 (-567)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1177))) - (-4 *5 (-455)) - (-5 *2 - (-2 (|:| |gblist| (-645 (-247 *4 *5))) - (|:| |gvlist| (-645 (-567))))) - (-5 *1 (-632 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1003)))))) -(((*1 *2) - (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-804))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1036)) (-5 *1 (-756)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) - (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-758))))) + (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) + (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) + (-5 *2 (-844 *4)) (-5 *1 (-1254 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) + (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-225))) - (-5 *1 (-471))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1 *1) (-5 *1 (-1121)))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1270))))) -(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1258 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1243 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1258 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1258 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-1101)) (-4 *7 (-901 *6)) - (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417))))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-645 - (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1173 *3)) - (|:| |logand| (-1173 *3))))) - (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -1975 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-4 *3 (-13 (-308) (-10 -8 (-15 -2833 ((-421 $) $))))) - (-4 *4 (-1243 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) + (-12 (-4 *3 (-1244 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-987 *4 *2 *3 *5)) + (-4 *4 (-351)) (-4 *5 (-725 *2 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-851) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) + (-15 -1345 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-851) + (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) + (-15 -1345 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1258 *4)) - (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-1 (-1157 *4) (-645 (-1157 *4)))) (-5 *1 (-1260 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1270))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-528))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) + (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) + (-5 *1 (-1162 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) + (-14 *4 (-1178)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1 *1) (-5 *1 (-1121)))) + ((*1 *1 *1 *1) (-5 *1 (-1122)))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-1268)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1268)))) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1269)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-645 (-1159))) (-5 *2 (-1159)) (-5 *1 (-1269)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1269)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1269))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) - (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2221 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1036)) (-5 *1 (-306))))) + (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1270)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1253 *4 *5 *6)) + (|:| |%expon| (-320 *4 *5 *6)) + (|:| |%expTerms| + (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) + (|:| |%type| (-1160)))) + (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) + (-14 *5 (-1178)) (-14 *6 *4)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1177)) (-4 *5 (-615 (-893 (-567)))) - (-4 *5 (-887 (-567))) - (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) - (-4 *3 (-13 (-27) (-1202) (-433 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1177)) (-5 *4 (-844 *2)) (-4 *2 (-1140)) - (-4 *2 (-13 (-27) (-1202) (-433 *5))) - (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) - (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) - (-5 *1 (-570 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1272)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1272)) (-5 *1 (-381))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1217)) (-4 *2 (-851)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1217)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1101)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) - (-4 *6 (-1066 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -1842 *1) (|:| |upper| *1))) - (-4 *1 (-977 *4 *5 *3 *6))))) + (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) + (-4 *3 (-615 (-539))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1040 *4)) (-4 *3 (-559))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-1244 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) + (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178)) (-5 *2 (-929)) (-5 *1 (-927 *3)) + (-4 *3 (-615 (-539))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929))))) (((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1217)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1217)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1791 - (-2 (|:| |var| (-1177)) (|:| |fn| (-317 (-225))) - (|:| -2221 (-1095 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -4232 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2221 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-562)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1101)))) - ((*1 *1 *2) +(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564))))) +(((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) + (-5 *1 (-601 *4 *2 *3)) + (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-867 *4 *5 *6 *7)) + (-4 *4 (-1051)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) + (-14 *8 (-645 *5)) (-5 *2 (-1273)) + (-5 *1 (-1280 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) + (-14 *9 (-645 *3)) (-14 *10 *3)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) + (-5 *1 (-753))))) +(((*1 *1 *2 *3 *4) (-12 - (-5 *2 - (-2 - (|:| -1791 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1267 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -4232 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))))) - (-5 *1 (-804)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1272)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-1101)) - (-4 *4 (-1101))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-970 *5 *3)) (-4 *3 (-1243 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1066 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2564 *4)))) - (-5 *1 (-1109 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759))))) + (-5 *3 + (-645 + (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *2)) + (|:| |logand| (-1174 *2))))) + (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-365)) (-5 *1 (-588 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) + (-5 *2 (-169 *3)) (-5 *1 (-1207 *4 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *4)))))) (((*1 *2 *1) - (-12 (-4 *2 (-1101)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1101))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1177))) (-5 *1 (-105))))) -(((*1 *1) (-5 *1 (-1269)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007))))) + (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) + (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) + (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-295 (-953 (-567)))) - (-5 *2 - (-2 (|:| |varOrder| (-645 (-1177))) - (|:| |inhom| (-3 (-645 (-1267 (-772))) "failed")) - (|:| |hom| (-645 (-1267 (-772)))))) - (-5 *1 (-236))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1101)) (-5 *1 (-906 *3))))) + (-12 (|has| *6 (-6 -4419)) (-4 *4 (-365)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) + (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4419)) (-4 *4 (-559)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) + (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) + (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) + (-4 *10 (-688 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) + (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) + (-5 *2 (-645 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1065)) (-5 *3 (-1160))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) (((*1 *2 *1) - (-12 (-4 *1 (-1243 *3)) (-4 *3 (-1050)) (-5 *2 (-1173 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) + (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 (-416 *4 (-410 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1268 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) + (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308)) + (-5 *1 (-416 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) + (-15 -1460 ((-1127 *3 (-613 $)) $)) + (-15 -4132 ($ (-1127 *3 (-613 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) + (-15 -1460 ((-1127 *4 (-613 $)) $)) + (-15 -4132 ($ (-1127 *4 (-613 $))))))) + (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-645 (-613 *2))) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) + (-15 -1460 ((-1127 *4 (-613 $)) $)) + (-15 -4132 ($ (-1127 *4 (-613 $))))))) + (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) + (-5 *1 (-612 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) + (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) + (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1265 *3)) (-4 *3 (-23)) (-4 *3 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1268)))) - ((*1 *2 *1) (-12 (-5 *2 (-1272)) (-5 *1 (-1269))))) -(((*1 *1 *1) (-4 *1 (-559)))) -(((*1 *2 *2) - (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1202) (-1003))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1050)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1394 *1))) - (-4 *1 (-853 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1159)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) + (-12 (-5 *2 (-772)) (-4 *1 (-1266 *3)) (-4 *3 (-23)) (-4 *3 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) + ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1050)) (-4 *2 (-559))))) (((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1243 (-567)))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) + (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)) (-5 *3 (-1160))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-559)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) + (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) + (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) + (-5 *1 (-929))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) + (-5 *1 (-531 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1050)) - (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1202) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1243 *4)))) + (-12 (-5 *3 (-1178)) + (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-1050)) - (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1202) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1243 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1036)) (-5 *3 (-1177)) (-5 *1 (-192))))) -((-1300 . 731324) (-1301 . 731022) (-1302 . 730953) (-1303 . 730854) - (-1304 . 730802) (-1305 . 730722) (-1306 . 730609) (-1307 . 730532) - (-1308 . 730425) (-1309 . 730357) (-1310 . 730213) (-1311 . 730113) - (-1312 . 730082) (-1313 . 729976) (-1314 . 729769) (-1315 . 729717) - (-1316 . 729626) (-1317 . 729548) (-1318 . 729465) (-1319 . 729248) - (-1320 . 729198) (-1321 . 729114) (-1322 . 729085) (-1323 . 729028) - (-1324 . 728942) (-1325 . 728890) (-1326 . 728813) (-1327 . 728725) - (-1328 . 728506) (-1329 . 728346) (-1330 . 725931) (-1331 . 725819) - (-1332 . 725388) (-1333 . 725272) (-1334 . 724686) (-1335 . 723621) - (-1336 . 723508) (-1337 . 723114) (-1338 . 723022) (-1339 . 722969) - (-1340 . 722861) (-1341 . 722760) (-1342 . 722593) (-1343 . 722347) - (-1344 . 722169) (-1345 . 721974) (-1346 . 721528) (-1347 . 721500) - (-1348 . 721444) (-1349 . 721343) (-1350 . 721251) (-1351 . 721151) - (-1352 . 721047) (-1353 . 720509) (-1354 . 720459) (-1355 . 720407) - (-1356 . 720313) (-1357 . 720218) (-1358 . 720011) (-1359 . 719831) - (-1360 . 719694) (-1361 . 719546) (-1362 . 719460) (-1363 . 719366) - (-1364 . 719313) (-1365 . 719169) (-1366 . 719114) (-1367 . 718716) - (-1368 . 718635) (-1369 . 718402) (-1370 . 718271) (-1371 . 718158) - (-1372 . 717955) (-1373 . 717790) (-1374 . 717652) (-1375 . 717602) - (-1376 . 717549) (-1377 . 717497) (-1378 . 716875) (-1379 . 716797) - (-1380 . 715909) (-1381 . 715838) (-1382 . 715737) (-1383 . 715649) - (-1384 . 715620) (-1385 . 715546) (-1386 . 715493) (-1387 . 715395) - (-1388 . 715363) (-1389 . 715248) (-1390 . 715169) (-1391 . 715109) - (-1392 . 715052) (-1393 . 714980) (-1394 . 714369) (-1395 . 714257) - (-1396 . 714044) (-1397 . 713963) (-1398 . 713890) (-1399 . 713791) - (-1400 . 713688) (-1401 . 713432) (-1402 . 713354) (-1403 . 713297) - (-1404 . 713220) (-1405 . 712337) (-1406 . 712187) (-1407 . 711881) - (-1408 . 711729) (-1409 . 711583) (-1410 . 711522) (-1411 . 711488) - (-1412 . 711406) (-1413 . 711293) (-1414 . 711080) (-1415 . 710980) - (-1416 . 710853) (-1417 . 710737) (-1418 . 710518) (-1419 . 710463) - (-1420 . 710357) (-1421 . 710283) (-1422 . 709688) (-1423 . 709654) - (-1424 . 709505) (-1425 . 709433) (-1426 . 708783) (-1427 . 708686) - (-1428 . 708613) (-1429 . 708440) (-1430 . 708242) (-1431 . 708024) - (-1432 . 707922) (-1433 . 707867) (-1434 . 707793) (-1435 . 707736) - (-1436 . 707662) (-1437 . 707268) (-1438 . 707237) (-1439 . 706992) - (-1440 . 706844) (-1441 . 706142) (** . 703148) (-1443 . 702856) - (-1444 . 702282) (-1445 . 702009) (-1446 . 701942) (-1447 . 701699) - (-1448 . 701617) (-1449 . 701173) (-1450 . 701100) (-1451 . 700975) - (-1452 . 700840) (-1453 . 700790) (-1454 . 700538) (-1455 . 699859) - (-1456 . 699722) (-1457 . 699670) (-1458 . 699618) (-1459 . 699568) - (-1460 . 699483) (-1461 . 699376) (-1462 . 698897) (-1463 . 698794) - (-1464 . 698740) (-1465 . 698690) (-1466 . 698659) (-1467 . 698530) - (-1468 . 698442) (-1469 . 698363) (-1470 . 698265) (-1471 . 698038) - (-1472 . 697985) (-1473 . 697676) (-1474 . 697648) (-1475 . 697460) - (-1476 . 697259) (-1477 . 696987) (-1478 . 696829) (-1479 . 696682) - (-1480 . 696429) (-1481 . 696346) (-1482 . 696019) (-1483 . 695898) - (-1484 . 695347) (-1485 . 695181) (-1486 . 695079) (-1487 . 694900) - (-1488 . 694767) (-1489 . 694519) (-1490 . 694412) (-1491 . 694305) - (-1492 . 694206) (-1493 . 694157) (-1494 . 694035) (-1495 . 693699) - (-1496 . 693577) (-1497 . 693499) (-1498 . 693339) (-1499 . 693209) - (-1500 . 692914) (-1501 . 692751) (-1502 . 692159) (-1503 . 692022) - (-1504 . 691953) (-1505 . 691822) (-1506 . 691680) (-1507 . 691603) - (-1508 . 691493) (-1509 . 691393) (-1510 . 691283) (-1511 . 691183) - (-1512 . 691130) (-1513 . 691059) (-1514 . 690973) (-1515 . 690616) - (-1516 . 690480) (-1517 . 690431) (-1518 . 690065) (-1519 . 689535) - (-1520 . 689375) (-1521 . 689347) (-1522 . 689055) (-1523 . 688960) - (-1524 . 688883) (-1525 . 688810) (-1526 . 688142) (-1527 . 687760) - (-1528 . 687662) (-1529 . 687589) (-1530 . 687537) (-1531 . 687485) - (-1532 . 687408) (-1533 . 687355) (-1534 . 687107) (-1535 . 687051) - (-1536 . 686927) (-1537 . 686899) (-1538 . 686801) (-1539 . 686596) - (-1540 . 686468) (-1541 . 686285) (-1542 . 686186) (-1543 . 686131) - (-1544 . 685904) (-1545 . 685818) (-1546 . 685500) (-1547 . 685384) - (-1548 . 685245) (-1549 . 685102) (-1550 . 685029) (-1551 . 684734) - (-1552 . 684663) (-1553 . 684608) (-1554 . 684528) (-1555 . 684477) - (-1556 . 684278) (-1557 . 683711) (-1558 . 683555) (-1559 . 683499) - (-1560 . 683403) (-1561 . 683256) (-1562 . 683094) (-1563 . 683042) - (-1564 . 682708) (-1565 . 682642) (-1566 . 682546) (-1567 . 682367) - (-1568 . 681983) (-1569 . 681690) (-1570 . 681537) (-1571 . 681471) - (-1572 . 680601) (-1573 . 680424) (-1574 . 680322) (-1575 . 680229) - (-1576 . 673286) (-1577 . 673191) (-1578 . 673119) (-1579 . 673036) - (-1580 . 672976) (-1581 . 672846) (-1582 . 672183) (-1583 . 672097) - (-1584 . 671996) (-1585 . 671870) (-1586 . 671800) (-1587 . 671367) - (-1588 . 671214) (-1589 . 670929) (-1590 . 670826) (-1591 . 670585) - (-1592 . 670535) (-1593 . 669537) (-1594 . 669429) (-1595 . 669291) - (-1596 . 669030) (-1597 . 668776) (-1598 . 668526) (-1599 . 668124) - (-1600 . 667966) (-1601 . 667882) (-1602 . 667780) (-1603 . 667657) - (-1604 . 667516) (-1605 . 667382) (-1606 . 667040) (-1607 . 666972) - (-1608 . 666764) (-1609 . 666687) (-1610 . 666524) (-1611 . 666428) - (-1612 . 666366) (-1613 . 666296) (-1614 . 666185) (-1615 . 665987) - (-1616 . 665229) (-1617 . 665084) (-1618 . 664943) (-1619 . 664801) - (-1620 . 664767) (-1621 . 662605) (-1622 . 662540) (-1623 . 662473) - (-1624 . 662374) (-1625 . 662255) (-1626 . 662028) (-1627 . 661897) - (-1628 . 661826) (-1629 . 661694) (-1630 . 661614) (-1631 . 661444) - (-1632 . 661356) (-1633 . 661007) (-1634 . 660854) (-1635 . 660119) - (-1636 . 660045) (-1637 . 659993) (-1638 . 659855) (-1639 . 659710) - (-1640 . 659318) (-1641 . 659247) (-1642 . 659120) (-1643 . 659068) - (-1644 . 658836) (-1645 . 658784) (-1646 . 658623) (-1647 . 658570) - (-1648 . 658508) (-1649 . 658456) (-1650 . 657967) (-1651 . 657865) - (-1652 . 657752) (-1653 . 657635) (-1654 . 657300) (-1655 . 657216) - (-1656 . 657115) (-1657 . 656973) (-1658 . 656858) (-1659 . 656719) - (-1660 . 656597) (-1661 . 656463) (-1662 . 656380) (-1663 . 656281) - (-1664 . 656184) (-1665 . 656132) (-1666 . 655958) (-1667 . 655898) - (-1668 . 655727) (-1669 . 655661) (-1670 . 655608) (-1671 . 655525) - (-1672 . 655359) (-1673 . 655264) (-1674 . 655148) (-1675 . 655025) - (-1676 . 654928) (-1677 . 654873) (-1678 . 654675) (-1679 . 654537) - (-1680 . 654120) (-1681 . 654050) (-1682 . 653963) (-1683 . 653879) - (-1684 . 653691) (-1685 . 653638) (-1686 . 653567) (-1687 . 653467) - (-1688 . 653369) (-1689 . 653209) (-1690 . 653026) (-1691 . 652958) - (-1692 . 652319) (-1693 . 652161) (-1694 . 652020) (-1695 . 651878) - (-1696 . 651822) (-1697 . 651607) (-1698 . 651533) (-1699 . 648198) - (-1700 . 648001) (-1701 . 647772) (-1702 . 647592) (-1703 . 647440) - (-1704 . 647018) (-1705 . 646945) (-1706 . 646866) (-1707 . 646710) - (-1708 . 646628) (-1709 . 646397) (-1710 . 646123) (-1711 . 645920) - (-1712 . 645463) (-1713 . 645241) (-1714 . 645094) (-1715 . 644975) - (-1716 . 644880) (-1717 . 644707) (-1718 . 644606) (-1719 . 644578) - (-1720 . 644490) (-1721 . 644387) (-1722 . 644140) (-1723 . 644058) - (-1724 . 643986) (-1725 . 643764) (-1726 . 643545) (-1727 . 643474) - (-1728 . 643283) (-1729 . 643074) (-1730 . 642775) (-1731 . 642747) - (-1732 . 642694) (-1733 . 642584) (-1734 . 642483) (-1735 . 642292) - (-1736 . 642163) (-1737 . 641779) (-1738 . 641706) (-1739 . 641588) - (-1740 . 641502) (-1741 . 641224) (-1742 . 641108) (-1743 . 641006) - (-1744 . 640953) (-1745 . 640526) (-1746 . 640443) (-1747 . 640318) - (-1748 . 640154) (-1749 . 639991) (-1750 . 639806) (-1751 . 639395) - (-1752 . 639258) (-1753 . 639206) (-1754 . 629756) (-1755 . 629551) - (-1756 . 629295) (-1757 . 629152) (-1758 . 629085) (-1759 . 628800) - (-1760 . 628657) (-1761 . 628528) (-1762 . 628432) (-1763 . 628214) - (-1764 . 628145) (-1765 . 628088) (-1766 . 627803) (-1767 . 627731) - (-1768 . 627400) (-1769 . 627332) (-1770 . 627247) (-1771 . 626826) - (-1772 . 625964) (-1773 . 625896) (-1774 . 625835) (-1775 . 625757) - (-1776 . 625657) (-1777 . 625580) (-1778 . 625328) (-1779 . 625265) - (-1780 . 625119) (-1781 . 625015) (-1782 . 624934) (-1783 . 619766) - (-1784 . 619626) (-1785 . 619448) (-1786 . 619376) (-1787 . 619207) - (-1788 . 618911) (-1789 . 618528) (-1790 . 618370) (-1791 . 618216) - (-1792 . 618131) (-1793 . 618076) (-1794 . 617968) (-1795 . 617916) - (-1796 . 616735) (-1797 . 616670) (-1798 . 616573) (-1799 . 616507) - (-1800 . 615415) (-1801 . 615255) (-1802 . 615173) (-1803 . 614992) - (-1804 . 614879) (-1805 . 614823) (-1806 . 614754) (-1807 . 614544) - (-1808 . 613980) (-1809 . 613785) (-1810 . 613637) (-1811 . 613569) - (-1812 . 613351) (-1813 . 611237) (-1814 . 611114) (-1815 . 611055) - (-1816 . 610984) (-1817 . 610931) (-1818 . 610875) (-1819 . 610677) - (-1820 . 610581) (-1821 . 610103) (-1822 . 609793) (-1823 . 609705) - (-1824 . 609580) (-1825 . 609510) (-1826 . 609268) (-1827 . 608888) - (-1828 . 608795) (-1829 . 608609) (-1830 . 608221) (-1831 . 608059) - (-1832 . 607833) (-1833 . 607613) (-1834 . 605835) (-1835 . 605193) - (-1836 . 605078) (-1837 . 605004) (-1838 . 604797) (-1839 . 604718) - (-1840 . 604607) (-1841 . 604541) (-1842 . 604441) (-1843 . 604375) - (-1844 . 604287) (-1845 . 604191) (-1846 . 604117) (-1847 . 603923) - (-1848 . 603801) (-1849 . 603669) (-1850 . 603598) (-1851 . 603546) - (-1852 . 603482) (-1853 . 603376) (-1854 . 603213) (-1855 . 603099) - (-1856 . 602532) (-1857 . 602434) (-1858 . 602363) (-1859 . 602276) - (-1860 . 602202) (-1861 . 602098) (-1862 . 602016) (-1863 . 601930) - (-1864 . 601877) (-1865 . 601075) (-1866 . 601001) (-1867 . 600903) - (-1868 . 600646) (-1869 . 600587) (-1870 . 600447) (-1871 . 600380) - (-1872 . 600308) (-1873 . 600117) (-1874 . 599918) (-1875 . 599881) - (-1876 . 599749) (-1877 . 598789) (-1878 . 598711) (-1879 . 598609) - (-1880 . 598513) (-1881 . 598457) (-1882 . 598363) (-1883 . 598211) - (-1884 . 597992) (-1885 . 597504) (-1886 . 597451) (-1887 . 597189) - (-1888 . 597094) (-1889 . 596648) (-1890 . 596517) (-1891 . 596465) - (-1892 . 596412) (-1893 . 596305) (-1894 . 596036) (-1895 . 595941) - (-1896 . 595806) (-1897 . 595514) (-1898 . 595382) (-1899 . 595308) - (-1900 . 595257) (-1901 . 595191) (-1902 . 594713) (-1903 . 594604) - (-1904 . 594442) (-1905 . 594052) (-1906 . 592982) (-1907 . 592500) - (-1908 . 592351) (-1909 . 592265) (-1910 . 591962) (-1911 . 591805) - (-1912 . 591520) (-1913 . 591386) (-1914 . 591086) (-1915 . 589906) - (-1916 . 589741) (-1917 . 589581) (-1918 . 589507) (-1919 . 589429) - (-1920 . 589114) (-1921 . 588771) (-1922 . 587775) (-1923 . 587681) - (-1924 . 587585) (-1925 . 587534) (-1926 . 587451) (-1927 . 587398) - (-1928 . 587176) (-1929 . 587099) (-1930 . 587019) (-1931 . 586876) - (-1932 . 586751) (-1933 . 586694) (-1934 . 586593) (-1935 . 586538) - (-1936 . 586364) (-1937 . 586144) (-1938 . 585892) (-1939 . 585235) - (-1940 . 585112) (-1941 . 584997) (-1942 . 584890) (-1943 . 584252) - (-1944 . 584215) (-1945 . 584149) (-1946 . 584070) (-1947 . 583748) - (-1948 . 582452) (-1949 . 582382) (-1950 . 581955) (-1951 . 581856) - (-1952 . 581693) (-1953 . 581443) (-1954 . 581306) (-1955 . 580975) - (-1956 . 580852) (-1957 . 580476) (-1958 . 580381) (-1959 . 579041) - (-1960 . 578864) (-1961 . 578814) (-1962 . 578721) (-1963 . 578499) - (-1964 . 578155) (-1965 . 577819) (-1966 . 577718) (-1967 . 577634) - (-1968 . 577531) (-1969 . 577154) (-1970 . 574313) (-1971 . 573962) - (-1972 . 573522) (-1973 . 573380) (-1974 . 573314) (-1975 . 572448) - (-1976 . 572332) (-1977 . 572054) (-1978 . 571701) (-1979 . 570451) - (-1980 . 570424) (-1981 . 570365) (-1982 . 570277) (-1983 . 570154) - (-1984 . 570062) (-1985 . 569944) (-1986 . 569680) (-1987 . 569445) - (-1988 . 568799) (-1989 . 568745) (-1990 . 568674) (-1991 . 568283) - (-1992 . 568175) (-1993 . 568061) (-1994 . 567766) (-1995 . 567682) - (-1996 . 567623) (-1997 . 567345) (-1998 . 566753) (-1999 . 566050) - (-2000 . 565948) (-2001 . 565895) (-2002 . 565593) (-2003 . 565533) - (-2004 . 565253) (-2005 . 565098) (-2006 . 565042) (-2007 . 564824) - (-2008 . 564687) (-2009 . 564395) (-2010 . 564117) (-2011 . 563961) - (-2012 . 563874) (-2013 . 563703) (-2014 . 563168) (-2015 . 562982) - (-2016 . 561954) (-2017 . 561472) (-2018 . 561255) (-2019 . 561130) - (-2020 . 560912) (-2021 . 560843) (-2022 . 560777) (-2023 . 560700) - (-2024 . 560593) (-2025 . 560251) (-2026 . 560114) (-2027 . 559962) - (-2028 . 559843) (-2029 . 559787) (-2030 . 559650) (-2031 . 559550) - (-2032 . 559451) (-2033 . 554113) (-2034 . 554056) (-2035 . 553846) - (-2036 . 553680) (-2037 . 553631) (-2038 . 553384) (-2039 . 553298) - (-2040 . 552979) (-2041 . 552302) (-2042 . 552207) (-2043 . 552048) - (-2044 . 551929) (-2045 . 551546) (-2046 . 551416) (-2047 . 551210) - (-2048 . 551088) (-2049 . 550759) (-2050 . 550551) (-2051 . 550332) - (-2052 . 550073) (-2053 . 549764) (-2054 . 549642) (-2055 . 549504) - (-2056 . 549037) (-2057 . 548868) (-2058 . 548812) (-2059 . 548647) - (-2060 . 548594) (-2061 . 548524) (-2062 . 548387) (-2063 . 548165) - (-2064 . 548011) (-2065 . 547953) (-2066 . 547853) (-2067 . 547782) - (-2068 . 547533) (-2069 . 547501) (-2070 . 547328) (-2071 . 547275) - (-2072 . 547051) (-2073 . 546772) (-2074 . 546650) (-2075 . 546234) - (-2076 . 546144) (-2077 . 546001) (-2078 . 545916) (-2079 . 545801) - (-2080 . 545521) (-2081 . 545493) (-2082 . 545420) (-2083 . 545362) - (-2084 . 545051) (-2085 . 544872) (-2086 . 544680) (-2087 . 544536) - (-2088 . 544440) (-2089 . 544316) (-2090 . 544188) (-2091 . 544045) - (-2092 . 543740) (-2093 . 543568) (-2094 . 543540) (-2095 . 543322) - (-2096 . 543219) (-2097 . 543148) (-2098 . 542957) (-2099 . 542874) - (-2100 . 542593) (-2101 . 542521) (-2102 . 542273) (-2103 . 542053) - (-2104 . 541972) (-2105 . 541766) (-2106 . 541320) (-2107 . 541216) - (-2108 . 541031) (-2109 . 540598) (-2110 . 540444) (-2111 . 540339) - (-2112 . 540270) (-2113 . 540160) (-2114 . 540062) (-2115 . 539906) - (-2116 . 539877) (-2117 . 539782) (-2118 . 539674) (-2119 . 539528) - (-2120 . 539384) (-2121 . 539166) (-2122 . 538951) (-2123 . 538856) - (-2124 . 538777) (-2125 . 538693) (-2126 . 538641) (-2127 . 538345) - (-2128 . 538278) (-2129 . 538040) (-2130 . 537944) (-2131 . 537878) - (-2132 . 537713) (-2133 . 537520) (-2134 . 536678) (-2135 . 535526) - (-2136 . 535299) (-2137 . 535198) (-2138 . 535146) (-2139 . 534935) - (-2140 . 534847) (-2141 . 534480) (-2142 . 534385) (-2143 . 534301) - (-2144 . 534216) (-2145 . 534114) (-2146 . 533481) (-2147 . 532664) - (-2148 . 532526) (-2149 . 532355) (-2150 . 532269) (-2151 . 532101) - (-2152 . 531906) (-2153 . 531805) (-2154 . 531648) (-2155 . 531520) - (-2156 . 531407) (-2157 . 531310) (-2158 . 530932) (-2159 . 530848) - (-2160 . 530792) (-2161 . 530651) (-2162 . 530596) (-2163 . 530488) - (-2164 . 530359) (-2165 . 530240) (-2166 . 529900) (-2167 . 529716) - (-2168 . 529684) (-2169 . 529508) (-2170 . 529388) (-2171 . 529267) - (-2172 . 529094) (-2173 . 528933) (-2174 . 528758) (-2175 . 528662) - (-2176 . 528607) (-2177 . 528300) (-2178 . 528247) (-2179 . 528219) - (-2180 . 527466) (-2181 . 526880) (-2182 . 526717) (-2183 . 526637) - (-2184 . 526521) (-2185 . 526417) (-2186 . 526364) (-2187 . 526229) - (-2188 . 526155) (-2189 . 526062) (-2190 . 526011) (-2191 . 525898) - (-2192 . 525755) (-2193 . 525616) (-2194 . 525536) (-2195 . 525331) - (-2196 . 525250) (-2197 . 524829) (-2198 . 524750) (-2199 . 524482) - (-2200 . 524339) (-2201 . 524286) (-2202 . 524090) (-2203 . 523848) - (-2204 . 523645) (-2205 . 523589) (-2206 . 523492) (-2207 . 523329) - (-2208 . 523273) (-2209 . 523196) (-2210 . 523122) (-2211 . 523009) - (-2212 . 522936) (-2213 . 522870) (-2214 . 522721) (-2215 . 522537) - (-2216 . 522485) (-2217 . 522226) (-2218 . 522075) (-2219 . 521987) - (-2220 . 521929) (-2221 . 521790) (-2222 . 521722) (-2223 . 521663) - (-2224 . 521473) (-2225 . 521070) (-2226 . 521008) (-2227 . 520951) - (-2228 . 520641) (-2229 . 520546) (-2230 . 520460) (-2231 . 520359) - (-2232 . 520229) (-2233 . 519983) (-2234 . 519764) (-2235 . 519625) - (-2236 . 519523) (-2237 . 519396) (-2238 . 519142) (-2239 . 519032) - (-2240 . 518215) (-2241 . 518141) (-2242 . 517428) (-2243 . 516749) - (-2244 . 516633) (-2245 . 516099) (-2246 . 515974) (-2247 . 515876) - (-2248 . 515773) (-2249 . 515642) (-2250 . 515563) (-2251 . 515458) - (-2252 . 515184) (-2253 . 513596) (-2254 . 513539) (-2255 . 513505) - (-2256 . 513368) (-2257 . 513318) (-2258 . 513078) (-2259 . 512990) - (-2260 . 512360) (-2261 . 512281) (-2262 . 512175) (-2263 . 512087) - (-2264 . 511991) (-2265 . 511876) (-2266 . 511714) (-2267 . 511284) - (-2268 . 511190) (-2269 . 511139) (-2270 . 510768) (-2271 . 510709) - (-2272 . 510349) (-2273 . 510317) (-2274 . 510246) (-2275 . 509880) - (-2276 . 509765) (-2277 . 509670) (-2278 . 509576) (-2279 . 509442) - (-2280 . 509284) (-2281 . 509253) (-2282 . 508977) (-2283 . 508822) - (-2284 . 508748) (-2285 . 508651) (-2286 . 508623) (-2287 . 508390) - (-2288 . 508252) (-2289 . 508200) (-2290 . 507964) (-2291 . 507696) - (-2292 . 507534) (-2293 . 507482) (-2294 . 507243) (-2295 . 506993) - (-2296 . 506897) (-2297 . 506715) (-2298 . 506571) (-2299 . 506433) - (-2300 . 506307) (-2301 . 506162) (-2302 . 506046) (-2303 . 506015) - (-2304 . 505684) (-2305 . 505604) (-2306 . 505476) (-2307 . 505160) - (-2308 . 505091) (-2309 . 505042) (-2310 . 504965) (-2311 . 504858) - (-2312 . 504738) (-2313 . 504685) (-2314 . 504460) (-2315 . 504379) - (-2316 . 504298) (-2317 . 504185) (-2318 . 504133) (-2319 . 503871) - (-2320 . 503692) (-2321 . 503477) (-2322 . 503347) (-2323 . 502896) - (-2324 . 502819) (-2325 . 502685) (-2326 . 502578) (-2327 . 502441) - (-2328 . 502346) (-2329 . 502209) (-2330 . 501991) (-2331 . 501905) - (-2332 . 501787) (-2333 . 501677) (-2334 . 501002) (-2335 . 500887) - (-2336 . 500826) (-2337 . 500749) (-2338 . 500610) (-2339 . 500492) - (-2340 . 500404) (-2341 . 500108) (-2342 . 499984) (-2343 . 499855) - (-2344 . 499758) (-2345 . 499663) (-2346 . 499575) (-2347 . 499459) - (-2348 . 499192) (-2349 . 499113) (-2350 . 498870) (-2351 . 498479) - (-2352 . 498311) (-2353 . 498259) (-2354 . 498135) (-2355 . 498038) - (-2356 . 497174) (-2357 . 496960) (-2358 . 496777) (-2359 . 496597) - (-2360 . 496538) (-2361 . 496486) (-2362 . 496433) (-2363 . 496349) - (-2364 . 496242) (-2365 . 496039) (-2366 . 495942) (-2367 . 495611) - (-2368 . 495497) (-2369 . 495287) (-2370 . 495220) (-2371 . 494284) - (-2372 . 493680) (-2373 . 493625) (-2374 . 493499) (-2375 . 493400) - (-2376 . 493237) (-2377 . 492630) (-2378 . 492519) (-2379 . 492433) - (-2380 . 492405) (-2381 . 492352) (-2382 . 492299) (-2383 . 492174) - (-2384 . 492114) (-2385 . 491993) (-2386 . 491927) (-2387 . 491066) - (-2388 . 490938) (-2389 . 490580) (-2390 . 490362) (-2391 . 490292) - (-2392 . 490236) (-2393 . 489862) (-2394 . 489769) (-2395 . 489408) - (-2396 . 489311) (-2397 . 489239) (-2398 . 488693) (-2399 . 488606) - (-2400 . 488533) (-2401 . 488447) (-2402 . 488143) (-2403 . 488073) - (-2404 . 487955) (-2405 . 487342) (-2406 . 487230) (-2407 . 486343) - (-2408 . 486119) (-2409 . 486088) (-2410 . 485721) (-2411 . 485549) - (-2412 . 485263) (-2413 . 485045) (-2414 . 484485) (-2415 . 484047) - (-2416 . 483948) (-2417 . 483521) (-2418 . 483419) (-2419 . 483264) - (-2420 . 483232) (-2421 . 483201) (-2422 . 482829) (-2423 . 482657) - (-2424 . 482037) (-2425 . 481978) (-2426 . 481390) (-2427 . 481232) - (-2428 . 480630) (-2429 . 480568) (-2430 . 480249) (-2431 . 480097) - (-2432 . 479489) (-2433 . 479394) (-2434 . 478096) (-2435 . 477924) - (-2436 . 477638) (-2437 . 477535) (-2438 . 477296) (-2439 . 477126) - (-2440 . 477027) (-2441 . 476993) (-2442 . 476938) (-2443 . 476140) - (-2444 . 476050) (-2445 . 475878) (-2446 . 474686) (-2447 . 474631) - (-2448 . 474540) (-2449 . 474293) (-2450 . 474177) (-2451 . 473370) - (-2452 . 473058) (-2453 . 472992) (-2454 . 472802) (-2455 . 472768) - (-2456 . 472644) (-2457 . 472503) (-2458 . 472450) (-2459 . 472388) - (-2460 . 472303) (-2461 . 472179) (-2462 . 472095) (-2463 . 471936) - (-2464 . 471842) (-2465 . 471808) (-2466 . 471646) (-2467 . 471222) - (-2468 . 471144) (-2469 . 471116) (-2470 . 470947) (-2471 . 470894) - (-2472 . 470820) (-2473 . 470719) (-2474 . 470613) (-2475 . 470511) - (-2476 . 470433) (-2477 . 470267) (-2478 . 470233) (-2479 . 470135) - (-2480 . 470081) (-2481 . 469917) (-2482 . 469747) (-2483 . 469362) - (-2484 . 466063) (-2485 . 465864) (-2486 . 465631) (-2487 . 465483) - (-2488 . 464641) (-2489 . 464518) (-2490 . 464421) (-2491 . 464318) - (-2492 . 464065) (-2493 . 463962) (-2494 . 463876) (-2495 . 463795) - (-2496 . 463618) (-2497 . 463490) (-2498 . 463386) (-2499 . 459777) - (-2500 . 459722) (-2501 . 459542) (-2502 . 459471) (-2503 . 459316) - (-2504 . 458812) (-2505 . 458734) (-2506 . 458679) (-2507 . 458532) - (-2508 . 458024) (-2509 . 457950) (-2510 . 457831) (-2511 . 457721) - (-2512 . 457644) (-2513 . 457414) (-2514 . 457124) (-2515 . 457050) - (-2516 . 456861) (-2517 . 456719) (-2518 . 456537) (-2519 . 454680) - (-2520 . 454416) (-2521 . 454320) (-2522 . 453992) (-2523 . 453831) - (-2524 . 453732) (-2525 . 453659) (-2526 . 453600) (-2527 . 453421) - (-2528 . 453348) (-2529 . 453046) (-2530 . 452562) (-2531 . 452466) - (-2532 . 452414) (-2533 . 452296) (-2534 . 451968) (-2535 . 451704) - (-2536 . 451595) (-2537 . 451184) (-2538 . 451091) (-2539 . 450970) - (-2540 . 450695) (-2541 . 450558) (-2542 . 449845) (-2543 . 449760) - (-2544 . 449217) (-2545 . 448936) (-2546 . 448883) (-2547 . 448760) - (-2548 . 448582) (-2549 . 448498) (-2550 . 448267) (-2551 . 448087) - (-2552 . 447895) (-2553 . 447835) (-2554 . 447782) (-2555 . 447712) - (-2556 . 447600) (-2557 . 447499) (-2558 . 446956) (-2559 . 446711) - (-2560 . 446570) (-2561 . 446466) (-2562 . 446371) (-2563 . 445727) - (-2564 . 445665) (-2565 . 444484) (-2566 . 444384) (-2567 . 443863) - (-2568 . 443522) (-2569 . 443414) (-2570 . 443017) (-2571 . 442776) - (-2572 . 442557) (-2573 . 442136) (-2574 . 441926) (-2575 . 441608) - (-2576 . 441534) (-2577 . 441405) (-2578 . 441069) (-2579 . 440946) - (-2580 . 440759) (-2581 . 440676) (-2582 . 440648) (-2583 . 440441) - (-2584 . 440371) (-2585 . 440281) (-2586 . 440189) (-2587 . 440088) - (-2588 . 439992) (-2589 . 439812) (-2590 . 439709) (-2591 . 439550) - (-2592 . 439364) (-2593 . 439264) (-2594 . 439137) (-2595 . 438996) - (-2596 . 438530) (-2597 . 438502) (-2598 . 438420) (-2599 . 438346) - (-2600 . 438255) (-2601 . 438059) (-2602 . 437856) (-2603 . 437559) - (-2604 . 437243) (-2605 . 437100) (-2606 . 436973) (-2607 . 436920) - (-2608 . 436608) (-2609 . 436556) (-2610 . 436110) (-2611 . 435943) - (-2612 . 435568) (-2613 . 435444) (-2614 . 435333) (-2615 . 435159) - (-2616 . 434949) (-2617 . 434897) (-2618 . 434842) (-2619 . 432710) - (-2620 . 432580) (-2621 . 432479) (-2622 . 432264) (-2623 . 432212) - (-2624 . 432118) (-2625 . 432066) (-2626 . 432003) (-2627 . 431599) - (-2628 . 431504) (-2629 . 431064) (-2630 . 431012) (-2631 . 427005) - (-2632 . 426939) (-2633 . 426823) (-2634 . 425857) (-2635 . 425724) - (-2636 . 424892) (-2637 . 424702) (-2638 . 424575) (-2639 . 424507) - (-2640 . 424445) (-2641 . 423859) (-2642 . 423695) (-2643 . 423325) - (-2644 . 423147) (-2645 . 423076) (-2646 . 422956) (-2647 . 422898) - (-2648 . 421042) (-2649 . 420938) (-2650 . 420827) (-2651 . 420419) - (-2652 . 419324) (-2653 . 419269) (-2654 . 419235) (-2655 . 419201) - (-2656 . 419100) (-2657 . 418986) (-2658 . 418865) (-2659 . 418707) - (-2660 . 418480) (-2661 . 418357) (-2662 . 417747) (-2663 . 417509) - (-2664 . 417408) (-2665 . 417356) (-2666 . 417128) (-2667 . 417037) - (-2668 . 416960) (-2669 . 416831) (-2670 . 415429) (-2671 . 415395) - (-2672 . 415272) (-2673 . 415206) (-2674 . 414890) (-2675 . 414835) - (-2676 . 414500) (-2677 . 414307) (-2678 . 413994) (-2679 . 413848) - (-2680 . 413733) (-2681 . 413437) (-2682 . 412834) (-2683 . 412731) - (-2684 . 412648) (-2685 . 412430) (-2686 . 412344) (-2687 . 412228) - (-2688 . 412165) (-2689 . 412021) (-2690 . 411863) (-2691 . 411835) - (-2692 . 411682) (-2693 . 411445) (-2694 . 411387) (-2695 . 411281) - (-2696 . 411212) (-2697 . 410876) (-2698 . 410805) (-2699 . 410632) - (-2700 . 410281) (-2701 . 410156) (-2702 . 409496) (-2703 . 403982) - (-2704 . 403496) (-2705 . 403395) (-2706 . 403343) (-2707 . 402890) - (-2708 . 402376) (-2709 . 402324) (-2710 . 402241) (-2711 . 402182) - (-2712 . 402111) (-2713 . 402034) (-2714 . 401641) (-2715 . 401569) - (-2716 . 401453) (-2717 . 401425) (-2718 . 401222) (-2719 . 401163) - (-2720 . 400974) (-2721 . 400624) (-2722 . 400569) (-2723 . 400473) - (-2724 . 400032) (-2725 . 399959) (-2726 . 399875) (-2727 . 399847) - (-2728 . 399795) (-2729 . 399673) (-2730 . 399554) (-2731 . 399229) - (-2732 . 399131) (-2733 . 398922) (-2734 . 398839) (-2735 . 398752) - (-2736 . 398417) (-2737 . 397966) (-2738 . 397494) (-2739 . 397442) - (-2740 . 397357) (-2741 . 397118) (-2742 . 397044) (-2743 . 396992) - (-2744 . 396856) (-2745 . 396797) (-2746 . 396717) (-2747 . 396309) - (-2748 . 396141) (-2749 . 395941) (-2750 . 395765) (-2751 . 395612) - (-2752 . 395149) (-2753 . 394862) (-2754 . 394762) (-2755 . 394679) - (-2756 . 394193) (-2757 . 394134) (-2758 . 394053) (-2759 . 393913) - (-2760 . 393811) (-2761 . 393739) (-2762 . 393578) (-2763 . 393433) - (-2764 . 393341) (-2765 . 393168) (-2766 . 393097) (-2767 . 393000) - (-2768 . 392785) (-2769 . 392731) (-2770 . 392596) (-2771 . 391494) - (-2772 . 391292) (-2773 . 391196) (-2774 . 390453) (-2775 . 390370) - (-2776 . 390152) (-2777 . 389900) (-2778 . 389834) (-2779 . 389540) - (-2780 . 389251) (-2781 . 388924) (-2782 . 388896) (-2783 . 388726) - (-2784 . 388670) (-2785 . 388563) (-2786 . 388364) (-2787 . 388240) - (-2788 . 388187) (-2789 . 388110) (-2790 . 387965) (-2791 . 387909) - (-2792 . 387418) (-2793 . 387087) (-2794 . 386928) (-2795 . 386784) - (-2796 . 386752) (-2797 . 386580) (-2798 . 386492) (-2799 . 386296) - (-2800 . 386247) (-2801 . 386101) (-2802 . 385923) (-2803 . 385419) - (-2804 . 385288) (-2805 . 384897) (-2806 . 384703) (-12 . 384531) - (-2808 . 384476) (-2809 . 384212) (-2810 . 383502) (-2811 . 383398) - (-2812 . 383245) (-2813 . 383162) (-2814 . 382984) (-2815 . 382457) - (-2816 . 382264) (-2817 . 382169) (-2818 . 381995) (-2819 . 381899) - (-2820 . 381724) (-2821 . 380095) (-2822 . 379897) (-2823 . 379845) - (-2824 . 379778) (-2825 . 379677) (-2826 . 379600) (-2827 . 379303) - (-2828 . 379208) (-2829 . 379120) (-2830 . 379068) (-2831 . 378866) - (-2832 . 378007) (-2833 . 376734) (-2834 . 376619) (-2835 . 376447) - (-2836 . 376369) (-2837 . 376316) (-2838 . 375498) (-2839 . 375182) - (-2840 . 374695) (-2841 . 373731) (-2842 . 373575) (-2843 . 373288) - (-2844 . 372518) (-2845 . 371222) (-2846 . 371134) (-2847 . 370607) - (-2848 . 370483) (-2849 . 370419) (-2850 . 369579) (-2851 . 369006) - (-2852 . 368624) (-2853 . 368536) (-2854 . 368442) (-2855 . 368276) - (-2856 . 368188) (-2857 . 368126) (-2858 . 368022) (-2859 . 367951) - (-2860 . 367853) (-2861 . 367601) (-2862 . 367422) (-2863 . 367210) - (-2864 . 367065) (-2865 . 367012) (-2866 . 366844) (-2867 . 366734) - (-2868 . 366463) (-2869 . 366322) (-2870 . 366219) (-2871 . 366028) - (-2872 . 365704) (-2873 . 365465) (-2874 . 365066) (-2875 . 364963) - (-2876 . 364803) (-2877 . 364701) (-2878 . 364602) (-2879 . 364474) - (-2880 . 363950) (-2881 . 363898) (-2882 . 363825) (-2883 . 363730) - (-2884 . 363570) (-2885 . 363421) (-2886 . 363275) (-2887 . 362852) - (-2888 . 362753) (-2889 . 362526) (-2890 . 362007) (-2891 . 361909) - (-2892 . 360143) (-2893 . 359973) (-2894 . 359884) (-2895 . 359825) - (-2896 . 358042) (-2897 . 357926) (* . 353659) (-2899 . 353590) - (-2900 . 353524) (-2901 . 353294) (-2902 . 353044) (-2903 . 351589) - (-2904 . 351393) (-2905 . 351263) (-2906 . 351067) (-2907 . 350945) - (-2908 . 350793) (-2909 . 350710) (-2910 . 349831) (-2911 . 349758) - (-2912 . 349653) (-2913 . 348163) (-2914 . 348084) (-2915 . 347918) - (-2916 . 347835) (-2917 . 347505) (-2918 . 347342) (-2919 . 347314) - (-2920 . 347232) (-2921 . 346721) (-2922 . 346523) (-2923 . 346494) - (-2924 . 345967) (-2925 . 345767) (-2926 . 345647) (-2927 . 345482) - (-2928 . 345345) (-2929 . 345073) (-2930 . 344966) (-2931 . 344820) - (-2932 . 344755) (-2933 . 344019) (-2934 . 343920) (-2935 . 343766) - (-2936 . 343373) (-2937 . 341117) (-2938 . 340842) (-2939 . 340721) - (-2940 . 340578) (-2941 . 340470) (-2942 . 340211) (-2943 . 340048) - (-2944 . 339710) (-2945 . 339644) (-2946 . 339585) (-2947 . 339250) - (-2948 . 338976) (-2949 . 338666) (-2950 . 338508) (-2951 . 338345) - (-2952 . 338114) (-2953 . 338041) (-2954 . 337802) (-2955 . 337674) - (-2956 . 337336) (-2957 . 337218) (-2958 . 336959) (-2959 . 336854) - (-2960 . 336621) (-2961 . 336496) (-2962 . 336379) (-2963 . 336248) - (-2964 . 336161) (-2965 . 335861) (-2966 . 335697) (-2967 . 335565) - (-2968 . 335457) (-2969 . 334813) (-2970 . 334567) (-2971 . 334321) - (-2972 . 334163) (-2973 . 334103) (-2974 . 333892) (-2975 . 333806) - (-2976 . 333729) (-2977 . 333570) (-2978 . 332988) (-2979 . 332880) - (-2980 . 331708) (-2981 . 331375) (-2982 . 331313) (-2983 . 331156) - (-2984 . 331033) (-2985 . 330611) (-2986 . 330401) (-2987 . 330128) - (-2988 . 330041) (-2989 . 329762) (-2990 . 329656) (-2991 . 329520) - (-2992 . 329405) (-2993 . 329030) (-2994 . 328941) (-2995 . 328647) - (-2996 . 328578) (-2997 . 328521) (-2998 . 328243) (-2999 . 327327) - (-3000 . 326977) (-3001 . 326818) (-3002 . 326686) (-3003 . 326633) - (-3004 . 326100) (-3005 . 324952) (-3006 . 323815) (-3007 . 323747) - (-3008 . 323589) (-3009 . 323529) (-3010 . 323385) (-3011 . 323189) - (-3012 . 323111) (-3013 . 323005) (-3014 . 322973) (-3015 . 322244) - (-3016 . 322089) (-3017 . 322010) (-3018 . 321906) (-3019 . 321856) - (-3020 . 321755) (-3021 . 321649) (-3022 . 321576) (-3023 . 321523) - (-3024 . 320337) (-3025 . 320205) (-3026 . 319476) (-3027 . 319370) - (-3028 . 319292) (-3029 . 319165) (-3030 . 318999) (-3031 . 318551) - (-3032 . 318495) (-3033 . 318400) (-3034 . 318330) (-3035 . 317998) - (-3036 . 316268) (-3037 . 315086) (-3038 . 314926) (-3039 . 314250) - (-3040 . 313574) (-3041 . 313414) (-3042 . 313284) (-3043 . 312890) - (-3044 . 312730) (-3045 . 312577) (-3046 . 312519) (-3047 . 312175) - (-3048 . 312093) (-3049 . 312027) (-3050 . 309820) (-3051 . 309679) - (-3052 . 309115) (-3053 . 307889) (-3054 . 307748) (-3055 . 307646) - (-3056 . 307523) (-3057 . 307495) (-3058 . 307391) (-3059 . 307339) - (-3060 . 307283) (-3061 . 307183) (-3062 . 307059) (-3063 . 306961) - (-3064 . 306786) (-3065 . 306222) (-3066 . 306079) (-3067 . 306008) - (-3068 . 305627) (-3069 . 305220) (-3070 . 304483) (-3071 . 304409) - (-3072 . 304265) (-3073 . 304081) (-3074 . 303835) (-3075 . 303745) - (-3076 . 303181) (-3077 . 303043) (-3078 . 302991) (-3079 . 302896) - (-3080 . 302841) (-3081 . 302394) (-3082 . 302261) (-3083 . 301800) - (-3084 . 301714) (-3085 . 301584) (-3086 . 301518) (-3087 . 300844) - (-3088 . 300636) (-3089 . 300326) (-3090 . 300232) (-3091 . 300127) - (-3092 . 299857) (-3093 . 299761) (-3094 . 299705) (-3095 . 299636) - (-3096 . 299554) (-3097 . 299460) (-3098 . 298786) (-3099 . 298576) - (-3100 . 298340) (-3101 . 298259) (-3102 . 298115) (-3103 . 297991) - (-3104 . 297846) (-3105 . 297693) (-3106 . 297608) (-3107 . 297534) - (-3108 . 297293) (-3109 . 296556) (-3110 . 296418) (-3111 . 296341) - (-3112 . 296284) (-3113 . 296072) (-3114 . 295814) (-3115 . 295541) - (-3116 . 294456) (-3117 . 294146) (-3118 . 294016) (-3119 . 293454) - (-3120 . 293345) (-3121 . 293156) (-3122 . 292909) (-3123 . 292830) - (-3124 . 292677) (-3125 . 292625) (-3126 . 292554) (-3127 . 292476) - (-3128 . 291914) (-3129 . 291848) (-3130 . 291657) (-3131 . 291628) - (-3132 . 291525) (-3133 . 290989) (-3134 . 290891) (-3135 . 290464) - (-3136 . 290148) (-3137 . 289586) (-3138 . 289489) (-3139 . 289415) - (-3140 . 289281) (-3141 . 289215) (-3142 . 288919) (-3143 . 288865) - (-3144 . 288806) (-3145 . 288747) (-3146 . 288495) (-3147 . 288423) - (-3148 . 287748) (-3149 . 287581) (-3150 . 287522) (-3151 . 287364) - (-3152 . 287270) (-3153 . 286054) (-3154 . 285931) (-3155 . 285815) - (-3156 . 285470) (-3157 . 284795) (-3158 . 284742) (-3159 . 284708) - (-3160 . 284674) (-3161 . 284466) (-3162 . 284308) (-3163 . 284123) - (-3164 . 283901) (-3165 . 283226) (-3166 . 283155) (-3167 . 283127) - (-3168 . 283003) (-3169 . 282478) (-3170 . 282350) (-3171 . 282174) - (-3172 . 282041) (-3173 . 281946) (-3174 . 281383) (-3175 . 280760) - (-3176 . 280641) (-3177 . 280586) (-3178 . 280234) (-3179 . 280181) - (-3180 . 280086) (-3181 . 279929) (-3182 . 279846) (-3183 . 279790) - (-3184 . 279227) (-3185 . 279164) (-3186 . 279030) (-3187 . 278759) - (-3188 . 278630) (-3189 . 278575) (-3190 . 278374) (-3191 . 278059) - (-3192 . 277496) (-3193 . 277386) (-3194 . 277271) (-3195 . 277185) - (-3196 . 277113) (-3197 . 277027) (-3198 . 276961) (-3199 . 276610) - (-3200 . 276537) (-3201 . 275975) (-3202 . 275848) (-3203 . 275721) - (-3204 . 275498) (-3205 . 275317) (-3206 . 275031) (-3207 . 274961) - (-3208 . 274927) (-3209 . 274807) (-3210 . 274245) (-3211 . 274121) - (-3212 . 274005) (-3213 . 273871) (-3214 . 273656) (-3215 . 273572) - (-3216 . 273538) (-3217 . 273482) (-3218 . 273340) (-3219 . 273230) - (-3220 . 272668) (-3221 . 272513) (-3222 . 272240) (-3223 . 272212) - (-3224 . 271987) (-3225 . 271885) (-3226 . 271411) (-3227 . 271362) - (-3228 . 270800) (-3229 . 270723) (-3230 . 270124) (-3231 . 269968) - (-3232 . 269807) (-3233 . 269748) (-3234 . 269549) (-3235 . 269326) - (-3236 . 269078) (-3237 . 268690) (-3238 . 268569) (-3239 . 268503) - (-3240 . 268198) (-3241 . 267636) (-3242 . 267608) (-3243 . 267536) - (-3244 . 267403) (-3245 . 267084) (-3246 . 266768) (-3247 . 266673) - (-3248 . 266547) (-3249 . 265245) (-3250 . 264871) (-3251 . 264800) - (-3252 . 264704) (-3253 . 264579) (-3254 . 264436) (-3255 . 264384) - (-3256 . 264260) (-3257 . 263951) (-3258 . 263813) (-3259 . 262997) - (-3260 . 262909) (-3261 . 262813) (-3262 . 262776) (-3263 . 262646) - (-3264 . 262142) (-3265 . 262056) (-3266 . 261970) (-3267 . 261892) - (-3268 . 261842) (-3269 . 261552) (-3270 . 261237) (-3271 . 261138) - (-3272 . 261028) (-3273 . 260856) (-3274 . 260469) (-3275 . 260214) - (-3276 . 260015) (-3277 . 259946) (-3278 . 259807) (-3279 . 259218) - (-3280 . 258801) (-3281 . 258514) (-3282 . 258354) (-3283 . 257618) - (-3284 . 257508) (-3285 . 257429) (-3286 . 257401) (-3287 . 257116) - (-3288 . 257057) (-3289 . 257005) (-3290 . 256830) (-3291 . 256758) - (-3292 . 256685) (-3293 . 256572) (-3294 . 256393) (-3295 . 256253) - (-3296 . 256165) (-3297 . 256068) (-3298 . 255927) (-3299 . 255576) - (-3300 . 255523) (-3301 . 255426) (-3302 . 255139) (-3303 . 255049) - (-3304 . 254082) (-3305 . 253932) (-3306 . 253817) (-3307 . 253599) - (-3308 . 253446) (-3309 . 253394) (-3310 . 253301) (-3311 . 253228) - (-3312 . 253076) (-3313 . 252999) (-3314 . 252904) (-3315 . 252810) - (-3316 . 252109) (-3317 . 252021) (-3318 . 251854) (-3319 . 251607) - (-3320 . 251511) (-3321 . 251313) (-3322 . 251252) (-3323 . 250761) - (-3324 . 250704) (-3325 . 250622) (-3326 . 249970) (-3327 . 249850) - (-3328 . 249707) (-3329 . 249540) (-3330 . 249242) (-3331 . 248608) - (-3332 . 248513) (-3333 . 248412) (-3334 . 247959) (-3335 . 247208) - (-3336 . 246943) (-3337 . 246784) (-3338 . 246297) (-3339 . 246214) - (-3340 . 246072) (-3341 . 245948) (-3342 . 245780) (-3343 . 245708) - (-3344 . 245584) (-3345 . 245483) (-3346 . 245312) (-3347 . 244936) - (-3348 . 244682) (-3349 . 243105) (-3350 . 242964) (-3351 . 242883) - (-3352 . 242747) (-3353 . 242388) (-3354 . 242163) (-3355 . 241784) - (-3356 . 241525) (-3357 . 241263) (-3358 . 241197) (-3359 . 240928) - (-3360 . 240802) (-3361 . 240721) (-3362 . 240655) (-3363 . 240333) - (-3364 . 240267) (-3365 . 240087) (-3366 . 239893) (-3367 . 239837) - (-3368 . 239662) (-3369 . 239609) (-3370 . 239542) (-3371 . 239172) - (-3372 . 239091) (-3373 . 238831) (-3374 . 238646) (-3375 . 238466) - (-3376 . 238274) (-3377 . 238131) (-3378 . 238079) (-3379 . 237872) - (-3380 . 237701) (-3381 . 237611) (-3382 . 237577) (-3383 . 237540) - (-3384 . 237253) (-3385 . 237167) (-3386 . 237094) (-3387 . 237029) - (-3388 . 236925) (-3389 . 236872) (-3390 . 236791) (-3391 . 236708) - (-3392 . 236163) (-3393 . 235749) (-3394 . 235561) (-3395 . 235431) - (-3396 . 235359) (-3397 . 235140) (-3398 . 235081) (-3399 . 234993) - (-3400 . 234898) (-3401 . 234815) (-3402 . 234396) (-3403 . 234334) - (-3404 . 234239) (-3405 . 234165) (-3406 . 233581) (-3407 . 233513) - (-3408 . 230732) (-3409 . 230679) (-3410 . 230627) (-3411 . 230593) - (-3412 . 230322) (-3413 . 230179) (-3414 . 229664) (-3415 . 229527) - (-3416 . 229430) (-3417 . 229243) (-3418 . 229150) (-3419 . 229040) - (-3420 . 228890) (-3421 . 228838) (-3422 . 228699) (-3423 . 228636) - (-3424 . 228536) (-3425 . 228392) (-3426 . 228211) (-3427 . 228098) - (-3428 . 227992) (-3429 . 227740) (-3430 . 227686) (-3431 . 227520) - (-3432 . 227449) (-3433 . 226908) (-3434 . 226731) (-3435 . 226416) - (-3436 . 226342) (-3437 . 226077) (-3438 . 225713) (-3439 . 225474) - (-3440 . 225319) (-3441 . 225204) (-3442 . 225061) (-3443 . 224943) - (-3444 . 224582) (-3445 . 224512) (-3446 . 224354) (-3447 . 224211) - (-3448 . 224137) (-3449 . 222794) (-3450 . 222741) (-3451 . 222375) - (-3452 . 222250) (-3453 . 222183) (-3454 . 222042) (-3455 . 221943) - (-3456 . 221880) (-3457 . 221442) (-3458 . 221238) (-3459 . 221111) - (-3460 . 221067) (-3461 . 220984) (-3462 . 220818) (-3463 . 220701) - (-3464 . 220648) (-3465 . 220616) (-3466 . 220473) (-3467 . 220353) - (-3468 . 219842) (-3469 . 219791) (-3470 . 219638) (-3471 . 219108) - (-3472 . 218990) (-3473 . 218894) (-3474 . 218779) (-3475 . 218695) - (-3476 . 218481) (-3477 . 218429) (-3478 . 218222) (-3479 . 218069) - (-3480 . 218016) (-3481 . 217912) (-3482 . 217784) (-3483 . 217665) - (-3484 . 217529) (-3485 . 217435) (-3486 . 217356) (-3487 . 217225) - (-3488 . 217133) (-3489 . 214906) (-3490 . 214836) (-3491 . 214762) - (-3492 . 214341) (-3493 . 214255) (-3494 . 213831) (-3495 . 213579) - (-3496 . 213495) (-3497 . 213314) (-3498 . 213209) (-3499 . 213181) - (-3500 . 212696) (-3501 . 212551) (-3502 . 212360) (-3503 . 210928) - (-3504 . 210859) (-3505 . 210810) (-3506 . 210620) (-3507 . 210526) - (-3508 . 210474) (-3509 . 210264) (-3510 . 210169) (-3511 . 210116) - (-3512 . 209668) (-3513 . 209324) (-3514 . 209195) (-3515 . 209126) - (-3516 . 209054) (-3517 . 208980) (-3518 . 208799) (-3519 . 208680) - (-3520 . 208515) (-3521 . 208164) (-3522 . 208069) (-3523 . 207531) - (-3524 . 207460) (-3525 . 207343) (-3526 . 207265) (-3527 . 207075) - (-3528 . 206997) (-3529 . 206902) (-3530 . 206781) (-3531 . 206683) - (-3532 . 206595) (-3533 . 206465) (-3534 . 206291) (-3535 . 206195) - (-3536 . 206034) (-3537 . 205926) (-3538 . 205842) (-3539 . 205709) - (-3540 . 205627) (-3541 . 205599) (-3542 . 205546) (-3543 . 205512) - (-3544 . 205354) (-3545 . 205231) (-3546 . 205049) (-3547 . 204975) - (-3548 . 204872) (-3549 . 204765) (-3550 . 204671) (-3551 . 204612) - (-3552 . 204270) (-3553 . 204157) (-3554 . 204043) (-3555 . 203942) - (-3556 . 203784) (-3557 . 203707) (-3558 . 203594) (-3559 . 203499) - (-3560 . 203059) (-3561 . 202868) (-3562 . 202723) (-3563 . 202639) - (-3564 . 201097) (-3565 . 201001) (-3566 . 200574) (-3567 . 200442) - (-3568 . 200183) (-3569 . 200046) (-3570 . 199942) (-3571 . 199784) - (-3572 . 199685) (-3573 . 199405) (-3574 . 199355) (-3575 . 199299) - (-3576 . 199007) (-3577 . 198834) (-3578 . 198741) (-3579 . 198508) - (-3580 . 198436) (-3581 . 198352) (-3582 . 198178) (-3583 . 197953) - (-3584 . 197829) (-3585 . 197743) (-3586 . 197514) (-3587 . 197304) - (-3588 . 197026) (-3589 . 196965) (-3590 . 196850) (-3591 . 196822) - (-3592 . 196616) (-3593 . 195188) (-3594 . 195092) (-3595 . 194844) - (-3596 . 194618) (-3597 . 194486) (-3598 . 194418) (-3599 . 194280) - (-3600 . 194212) (-3601 . 193941) (-3602 . 193756) (-3603 . 193673) - (-3604 . 193591) (-3605 . 193433) (-3606 . 193350) (-3607 . 191904) - (-3608 . 191773) (-3609 . 191557) (-3610 . 191449) (-3611 . 191342) - (-3612 . 191221) (-3613 . 191105) (-3614 . 190876) (-3615 . 190601) - (-3616 . 190530) (-3617 . 190186) (-3618 . 189946) (-3619 . 189809) - (-3620 . 189666) (-3621 . 189279) (-3622 . 188878) (-3623 . 188661) - (-3624 . 188609) (-3625 . 188461) (-3626 . 187970) (-3627 . 187661) - (-3628 . 187602) (-3629 . 187524) (-3630 . 187366) (-3631 . 187298) - (-3632 . 183235) (-3633 . 183182) (-3634 . 183108) (-3635 . 182791) - (-3636 . 182640) (-3637 . 182556) (-3638 . 182038) (-3639 . 181985) - (-3640 . 181897) (-3641 . 181855) (-3642 . 181781) (-3643 . 181613) - (-3644 . 181468) (-3645 . 179500) (-3646 . 179282) (-3647 . 179163) - (-3648 . 179064) (-3649 . 178965) (-3650 . 178886) (-3651 . 178616) - (-3652 . 178516) (-3653 . 178488) (-3654 . 178418) (-3655 . 178332) - (-3656 . 177973) (-3657 . 177815) (-3658 . 177720) (-3659 . 177646) - (-3660 . 177591) (-3661 . 177423) (-3662 . 177308) (-3663 . 176921) - (-3664 . 176847) (-3665 . 176384) (-3666 . 176198) (-3667 . 175789) - (-3668 . 175509) (-3669 . 175311) (-3670 . 175183) (-3671 . 174587) - (-3672 . 174387) (-3673 . 174307) (-3674 . 174215) (-3675 . 174141) - (-3676 . 174047) (-3677 . 171702) (-3678 . 171519) (-3679 . 171410) - (-3680 . 171261) (-3681 . 171066) (-3682 . 170773) (-3683 . 170717) - (-3684 . 170238) (-3685 . 170155) (-3686 . 169797) (-3687 . 169689) - (-3688 . 169624) (-3689 . 169078) (-3690 . 168956) (-3691 . 168857) - (-3692 . 168725) (-3693 . 168179) (-3694 . 167961) (-3695 . 167874) - (-3696 . 167501) (-3697 . 167403) (-3698 . 167260) (-3699 . 167115) - (-3700 . 166753) (-3701 . 166665) (-3702 . 166233) (-3703 . 166177) - (-3704 . 166099) (-3705 . 165917) (-3706 . 165850) (-3707 . 165671) - (-3708 . 165491) (-3709 . 165418) (-3710 . 165184) (-3711 . 165083) - (-3712 . 164955) (-3713 . 164764) (-3714 . 164646) (-3715 . 164590) - (-3716 . 164395) (-3717 . 164241) (-3718 . 163950) (-3719 . 163671) - (-3720 . 163572) (-3721 . 163506) (-3722 . 163433) (-3723 . 163365) - (-3724 . 163247) (-3725 . 163176) (-3726 . 163078) (-3727 . 162923) - (-3728 . 162853) (-3729 . 162597) (-3730 . 162417) (-3731 . 162365) - (-3732 . 162247) (-3733 . 162176) (-3734 . 162061) (-3735 . 161843) - (-3736 . 161417) (-3737 . 161332) (-3738 . 160952) (-3739 . 160898) - (-3740 . 160794) (-3741 . 160690) (-3742 . 160546) (-3743 . 160486) - (-3744 . 160435) (-3745 . 160290) (-3746 . 158509) (-3747 . 153967) - (-3748 . 153893) (-3749 . 153666) (-3750 . 153542) (-3751 . 153315) - (-3752 . 153150) (-3753 . 153066) (-3754 . 152998) (-3755 . 152657) - (-3756 . 152599) (-3757 . 152549) (-3758 . 152496) (-3759 . 152264) - (-3760 . 152205) (-3761 . 152019) (-3762 . 151922) (-3763 . 151595) - (-3764 . 151461) (-3765 . 151373) (-3766 . 151286) (-3767 . 151134) - (-3768 . 151022) (-3769 . 150942) (-3770 . 150642) (-3771 . 150536) - (-3772 . 150373) (-3773 . 150273) (-3774 . 149844) (-3775 . 149761) - (-3776 . 149645) (-3777 . 149398) (-3778 . 149221) (-3779 . 149080) - (-3780 . 148984) (-3781 . 148907) (-3782 . 148657) (-3783 . 148509) - (-3784 . 148423) (-3785 . 148339) (-3786 . 148259) (-3787 . 148132) - (-3788 . 148000) (-3789 . 147903) (-3790 . 147755) (-3791 . 147724) - (-3792 . 147592) (-3793 . 147497) (-3794 . 147185) (-3795 . 147019) - (-3796 . 146990) (-3797 . 146908) (-3798 . 146834) (-3799 . 146338) - (-3800 . 146283) (-3801 . 146233) (-3802 . 146030) (-3803 . 145898) - (-3804 . 145846) (-3805 . 145633) (-3806 . 145395) (-3807 . 144833) - (-3808 . 144441) (-3809 . 144283) (-3810 . 144037) (-3811 . 143881) - (-3812 . 143765) (-3813 . 143695) (-3814 . 143540) (-3815 . 143366) - (-3816 . 143329) (-3817 . 143237) (-3818 . 142861) (-3819 . 142708) - (-3820 . 142623) (-3821 . 142595) (-3822 . 128508) (-3823 . 128411) - (-3824 . 128358) (-3825 . 128270) (-3826 . 128099) (-3827 . 127889) - (-3828 . 127725) (-3829 . 127570) (-3830 . 127309) (-3831 . 127237) - (-3832 . 126943) (-3833 . 126891) (-3834 . 126814) (-3835 . 126740) - (-3836 . 126667) (-3837 . 126572) (-3838 . 126471) (-3839 . 126418) - (-3840 . 126384) (-3841 . 126283) (-3842 . 126221) (-3843 . 126027) - (-3844 . 125964) (-3845 . 125822) (-3846 . 125739) (-3847 . 125645) - (-3848 . 125441) (-3849 . 125413) (-3850 . 125308) (-3851 . 125256) - (-3852 . 125018) (-3853 . 124899) (-3854 . 124803) (-3855 . 124701) - (-3856 . 124649) (-3857 . 124553) (-3858 . 124440) (-3859 . 124125) - (-3860 . 124055) (-3861 . 123996) (-3862 . 123866) (-3863 . 123701) - (-3864 . 123546) (-3865 . 123473) (-3866 . 123201) (-3867 . 123123) - (-3868 . 122695) (-3869 . 122599) (-3870 . 122481) (-3871 . 122263) - (-3872 . 121473) (-3873 . 121285) (-3874 . 121181) (-3875 . 121086) - (-3876 . 120935) (-3877 . 120857) (-3878 . 120733) (-3879 . 120655) - (-3880 . 116988) (-3881 . 116704) (-3882 . 116616) (-3883 . 116274) - (-3884 . 115887) (-3885 . 115808) (-3886 . 115554) (-3887 . 115526) - (-3888 . 115446) (-3889 . 115367) (-3890 . 115227) (-3891 . 115028) - (-3892 . 114814) (-3893 . 114476) (-3894 . 114358) (-3895 . 114287) - (-3896 . 114135) (-3897 . 114084) (-3898 . 113966) (-3899 . 113917) - (-3900 . 112996) (-3901 . 112913) (-3902 . 112778) (-3903 . 112642) - (-3904 . 112479) (-3905 . 112405) (-3906 . 112331) (-3907 . 112234) - (-3908 . 112081) (-3909 . 111935) (-3910 . 111506) (-3911 . 111432) - (-3912 . 111277) (-3913 . 111193) (-3914 . 111126) (-3915 . 110946) - (-3916 . 110801) (-3917 . 110705) (-3918 . 110637) (-3919 . 110531) - (-3920 . 110461) (-3921 . 110402) (-3922 . 110218) (-3923 . 110053) - (-3924 . 109897) (-3925 . 109823) (-3926 . 109740) (-3927 . 108540) - (-3928 . 108469) (-3929 . 108302) (-3930 . 108198) (-3931 . 107823) - (-3932 . 107696) (-3933 . 107624) (-3934 . 107565) (-3935 . 107506) - (-3936 . 107287) (-3937 . 107186) (-3938 . 107084) (-3939 . 106892) - (-3940 . 106790) (-3941 . 106717) (-3942 . 106602) (-3943 . 106447) - (-3944 . 106361) (-3945 . 106263) (-3946 . 106168) (-3947 . 106010) - (-3948 . 105922) (-3949 . 105828) (-3950 . 105657) (-3951 . 105591) - (-3952 . 105532) (-3953 . 105321) (-3954 . 105165) (-3955 . 105077) - (-3956 . 104842) (-3957 . 104332) (-3958 . 104262) (-3959 . 104166) - (-3960 . 104111) (-3961 . 103981) (-3962 . 103928) (-3963 . 103344) - (-3964 . 103253) (-3965 . 103106) (-3966 . 102968) (-3967 . 102855) - (-3968 . 102783) (-3969 . 102594) (-3970 . 102538) (-3971 . 102489) - (-3972 . 102336) (-3973 . 102157) (-3974 . 102029) (-3975 . 101802) - (-3976 . 101495) (-3977 . 101363) (-3978 . 101131) (-3979 . 101024) - (-3980 . 100947) (-3981 . 99749) (-3982 . 99618) (-3983 . 99362) - (-3984 . 99279) (-3985 . 99191) (-3986 . 98969) (-3987 . 98616) - (-3988 . 98457) (-3989 . 98342) (-3990 . 98166) (-3991 . 98109) - (-3992 . 97994) (-3993 . 97899) (-3994 . 97778) (-3995 . 97711) - (-3996 . 97565) (-3997 . 97335) (-3998 . 97282) (-3999 . 97202) - (-4000 . 96977) (-4001 . 96837) (-4002 . 96751) (-4003 . 96687) - (-4004 . 96608) (-4005 . 96465) (-4006 . 96139) (-4007 . 95746) - (-4008 . 95655) (-4009 . 95466) (-4010 . 95176) (-4011 . 95116) - (-4012 . 95061) (-4013 . 94971) (-4014 . 94919) (-4015 . 94165) - (-4016 . 94068) (-4017 . 93918) (-4018 . 93867) (-4019 . 93781) - (-4020 . 93721) (-4021 . 93635) (-4022 . 93582) (-4023 . 93359) - (-4024 . 93150) (-4025 . 92553) (-4026 . 91475) (-4027 . 91423) - (-4028 . 91395) (-4029 . 91315) (-4030 . 91256) (-4031 . 91204) - (-4032 . 91059) (-4033 . 91010) (-4034 . 90907) (-4035 . 90650) - (-4036 . 90242) (-4037 . 90084) (-4038 . 89971) (-4039 . 89858) - (-4040 . 89586) (-4041 . 89468) (-4042 . 89340) (-4043 . 89257) - (-4044 . 89090) (-4045 . 89021) (-4046 . 88803) (-4047 . 88643) - (-4048 . 88530) (-4049 . 88209) (-4050 . 88050) (-4051 . 87909) - (-4052 . 87706) (-4053 . 87650) (-4054 . 86532) (-4055 . 86464) - (-4056 . 86371) (-4057 . 85607) (-4058 . 85367) (-4059 . 85022) - (-4060 . 84945) (-4061 . 84741) (-4062 . 84655) (-4063 . 84584) - (-4064 . 84516) (-4065 . 84464) (-4066 . 84398) (-4067 . 84242) - (-4068 . 84147) (-4069 . 83818) (-4070 . 83765) (-4071 . 83642) - (-4072 . 83610) (-4073 . 83251) (-4074 . 82945) (-4075 . 82764) - (-4076 . 82712) (-4077 . 82611) (-4078 . 82386) (-4079 . 82171) - (-4080 . 81964) (-4081 . 81843) (-4082 . 81770) (-4083 . 81561) - (-4084 . 81002) (-4085 . 80892) (-4086 . 80235) (-4087 . 80152) - (-4088 . 80071) (-4089 . 79901) (-9 . 79873) (-4091 . 79779) - (-4092 . 79708) (-4093 . 79555) (-4094 . 79503) (-4095 . 79474) - (-4096 . 79355) (-4097 . 79180) (-4098 . 79124) (-4099 . 79027) - (-4100 . 78468) (-4101 . 78355) (-4102 . 78259) (-4103 . 78193) - (-4104 . 78137) (-8 . 78109) (-4106 . 78057) (-4107 . 77976) - (-4108 . 77890) (-4109 . 77250) (-4110 . 77024) (-4111 . 76958) - (-4112 . 76874) (-4113 . 76845) (-4114 . 76762) (-4115 . 76710) - (-4116 . 76463) (-4117 . 76310) (-7 . 76282) (-4119 . 76059) - (-4120 . 75955) (-4121 . 75866) (-4122 . 75811) (-4123 . 75758) - (-4124 . 75630) (-4125 . 75381) (-4126 . 75304) (-4127 . 56729) - (-4128 . 56610) (-4129 . 56485) (-4130 . 56342) (-4131 . 56275) - (-4132 . 56206) (-4133 . 55778) (-4134 . 55391) (-4135 . 54129) - (-4136 . 53848) (-4137 . 53363) (-4138 . 53259) (-4139 . 53182) - (-4140 . 53096) (-4141 . 53016) (-4142 . 50195) (-4143 . 49925) - (-4144 . 49752) (-4145 . 49243) (-4146 . 49022) (-4147 . 48936) - (-4148 . 48581) (-4149 . 48547) (-4150 . 48418) (-4151 . 48325) - (-4152 . 48072) (-4153 . 48008) (-4154 . 47824) (-4155 . 47744) - (-4156 . 47678) (-4157 . 47367) (-4158 . 47133) (-4159 . 46930) - (-4160 . 46856) (-4161 . 46754) (-4162 . 46621) (-4163 . 46516) - (-4164 . 46403) (-4165 . 46332) (-4166 . 46198) (-4167 . 46018) - (-4168 . 45921) (-4169 . 45827) (-4170 . 45724) (-4171 . 45654) - (-4172 . 45461) (-4173 . 45279) (-4174 . 45200) (-4175 . 44978) - (-4176 . 44900) (-4177 . 44769) (-4178 . 44717) (-4179 . 44588) - (-4180 . 43834) (-4181 . 43751) (-4182 . 43628) (-4183 . 43349) - (-4184 . 43168) (-4185 . 42929) (-4186 . 42815) (-4187 . 42735) - (-4188 . 42582) (-4189 . 42464) (-4190 . 42380) (-4191 . 42222) - (-4192 . 41911) (-4193 . 37751) (-4194 . 36878) (-4195 . 36718) - (-4196 . 36221) (-4197 . 36169) (-4198 . 35752) (-4199 . 35700) - (-4200 . 35647) (-4201 . 35474) (-4202 . 35397) (-4203 . 35299) - (-4204 . 35007) (-4205 . 34948) (-4206 . 34875) (-4207 . 34215) - (-4208 . 34127) (-4209 . 34047) (-4210 . 33904) (-4211 . 33727) - (-4212 . 33508) (-4213 . 33412) (-4214 . 33355) (-4215 . 33095) - (-4216 . 32893) (-4217 . 32785) (-4218 . 32689) (-4219 . 32615) - (-4220 . 32273) (-4221 . 32171) (-4222 . 32061) (-4223 . 32002) - (-4224 . 31226) (-4225 . 31087) (-4226 . 30837) (-4227 . 30784) - (-4228 . 30644) (-4229 . 30551) (-4230 . 30463) (-4231 . 30317) - (-4232 . 29115) (-4233 . 28978) (-4234 . 28882) (-4235 . 28825) - (-4236 . 28710) (-4237 . 28552) (-4238 . 28411) (-4239 . 28359) - (-4240 . 27997) (-4241 . 27902) (-4242 . 27821) (-4243 . 27575) - (-4244 . 27543) (-4245 . 27448) (-4246 . 27356) (-4247 . 27255) - (-4248 . 26888) (-4249 . 26595) (-4250 . 26127) (-4251 . 26047) - (-4252 . 25973) (-4253 . 25817) (-4254 . 25704) (-4255 . 25337) - (-4256 . 25001) (-4257 . 24523) (-4258 . 24147) (-4259 . 23801) - (-4260 . 23682) (-4261 . 23477) (-4262 . 23289) (-4263 . 23232) - (-4264 . 23147) (-4265 . 23054) (-4266 . 22994) (-4267 . 22830) - (-4268 . 22449) (-4269 . 22270) (-4270 . 22076) (-4271 . 21868) - (-4272 . 21796) (-4273 . 21678) (-4274 . 21571) (-4275 . 21338) - (-4276 . 21225) (-4277 . 21126) (-4278 . 21073) (-4279 . 20755) - (-4280 . 20548) (-4281 . 19244) (-4282 . 19149) (-4283 . 19051) - (-4284 . 18907) (-4285 . 18828) (-4286 . 18699) (-4287 . 18597) - (-4288 . 18453) (-4289 . 18207) (-4290 . 17781) (-4291 . 17263) - (-4292 . 17167) (-4293 . 17071) (-4294 . 16994) (-4295 . 16855) - (-4296 . 16702) (-4297 . 16649) (-4298 . 16598) (-4299 . 16540) - (-4300 . 16446) (-4301 . 16328) (-4302 . 16268) (-4303 . 15941) - (-4304 . 15744) (-4305 . 15692) (-4306 . 15534) (-4307 . 15502) - (-4308 . 15431) (-4309 . 15276) (-4310 . 15248) (-4311 . 15195) - (-4312 . 15135) (-4313 . 14889) (-4314 . 14772) (-4315 . 14189) - (-4316 . 14079) (-4317 . 13963) (-4318 . 13632) (-4319 . 13603) - (-4320 . 13538) (-4321 . 13363) (-4322 . 13106) (-4323 . 11883) - (-4324 . 11828) (-4325 . 11582) (-4326 . 11471) (-4327 . 11371) - (-4328 . 11188) (-4329 . 11105) (-4330 . 10976) (-4331 . 10804) - (-4332 . 10750) (-4333 . 10457) (-4334 . 9862) (-4335 . 9610) - (-4336 . 9488) (-4337 . 9326) (-4338 . 9240) (-4339 . 9188) - (-4340 . 9058) (-4341 . 8669) (-4342 . 8583) (-4343 . 8506) - (-4344 . 8256) (-4345 . 8204) (-4346 . 7993) (-4347 . 7885) - (-4348 . 7727) (-4349 . 7653) (-4350 . 7594) (-4351 . 7491) - (-4352 . 7439) (-4353 . 7158) (-4354 . 6825) (-4355 . 6647) - (-4356 . 6528) (-4357 . 6280) (-4358 . 6075) (-4359 . 5922) - (-4360 . 5694) (-4361 . 5248) (-4362 . 5196) (-4363 . 5144) - (-4364 . 5045) (-4365 . 4957) (-4366 . 4823) (-4367 . 4742) - (-4368 . 4669) (-4369 . 4357) (-4370 . 4106) (-4371 . 3905) - (-4372 . 3786) (-4373 . 3271) (-4374 . 2984) (-4375 . 2849) - (-4376 . 2797) (-4377 . 2682) (-4378 . 2579) (-4379 . 2468) - (-4380 . 2413) (-4381 . 2357) (-4382 . 2275) (-4383 . 2223) - (-4384 . 2174) (-4385 . 1792) (-4386 . 1764) (-4387 . 1692) - (-4388 . 1534) (-4389 . 1455) (-4390 . 1282) (-4391 . 1068) - (-4392 . 889) (-4393 . 837) (-4394 . 650) (-4395 . 492) (-4396 . 277) - (-4397 . 30))
\ No newline at end of file + (-12 (-5 *4 (-410 (-567))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1203) (-433 *5))) + (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) + (-4 *7 (-13 (-27) (-1203) (-433 *6))) + (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) + (-4 *3 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) + (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) + (-4 *8 (-13 (-27) (-1203) (-433 *7))) + (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) + (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) + (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) + (-5 *1 (-462 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) + (-4 *3 (-1051)) (-5 *1 (-597 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) + (-4 *3 (-1051)) (-4 *1 (-1228 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-772)) + (-5 *3 (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) + (-4 *4 (-1051)) (-4 *1 (-1249 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-4 *1 (-1259 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-772)) (|:| |c| *3)))) + (-4 *3 (-1051)) (-4 *1 (-1259 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) + (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) + (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) + (-4 *4 (-13 (-1102) (-34)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1218))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4419)) (-4 *1 (-1012 *3)) + (-4 *3 (-1218))))) +((-1301 . 731561) (-1302 . 731489) (-1303 . 731389) (-1304 . 731231) + (-1305 . 731082) (-1306 . 728241) (-1307 . 728140) (-1308 . 726960) + (-1309 . 726818) (-1310 . 726725) (-1311 . 726647) (-1312 . 726495) + (-1313 . 726394) (-1314 . 726204) (-1315 . 726098) (-1316 . 725891) + (-1317 . 725817) (-1318 . 725690) (-1319 . 725579) (-1320 . 724615) + (-1321 . 724137) (-1322 . 724066) (-1323 . 723988) (-1324 . 723906) + (-1325 . 723019) (-1326 . 722738) (-1327 . 722428) (-1328 . 722182) + (-1329 . 722063) (-1330 . 721683) (-1331 . 721559) (-1332 . 721403) + (-1333 . 721333) (-1334 . 721221) (-1335 . 720840) (-1336 . 720728) + (-1337 . 720611) (-1338 . 720377) (-1339 . 719914) (-1340 . 719520) + (-1341 . 719428) (-1342 . 719375) (-1343 . 719157) (-1344 . 718952) + (-1345 . 718530) (-1346 . 718402) (-1347 . 717975) (-1348 . 717353) + (-1349 . 717287) (-1350 . 716976) (-1351 . 716948) (-1352 . 716871) + (-1353 . 716670) (-1354 . 716392) (-1355 . 716300) (-1356 . 716227) + (-1357 . 716125) (-1358 . 716057) (-1359 . 715959) (-1360 . 715771) + (-1361 . 715589) (-1362 . 715265) (-1363 . 715210) (-1364 . 715031) + (-1365 . 714979) (-1366 . 714893) (-1367 . 714841) (-1368 . 714652) + (-1369 . 714286) (-1370 . 714236) (-1371 . 714180) (-1372 . 714090) + (-1373 . 713949) (-1374 . 713807) (-1375 . 713717) (-1376 . 713638) + (-1377 . 713532) (-1378 . 713464) (-1379 . 713397) (-1380 . 713318) + (-1381 . 713007) (-1382 . 712829) (-1383 . 712801) (-1384 . 712675) + (-1385 . 712578) (-1386 . 712522) (-1387 . 712409) (-1388 . 712221) + (-1389 . 712143) (-1390 . 712035) (-1391 . 711440) (-1392 . 711352) + (-1393 . 711114) (-1394 . 710906) (-1395 . 710802) (-1396 . 710675) + (-1397 . 710554) (-1398 . 709943) (-1399 . 709871) (-1400 . 709800) + (-1401 . 708834) (-1402 . 708733) (-1403 . 708631) (-1404 . 708379) + (-1405 . 708327) (-1406 . 708256) (-1407 . 708199) (-1408 . 708062) + (-1409 . 707888) (-1410 . 707837) (-1411 . 707550) (-1412 . 707467) + (-1413 . 707249) (-1414 . 707217) (-1415 . 707139) (-1416 . 706883) + (-1417 . 706788) (-1418 . 706682) (-1419 . 706628) (-1420 . 706569) + (-1421 . 706468) (-1422 . 706158) (-1423 . 706058) (-1424 . 705923) + (-1425 . 705605) (-1426 . 705334) (-1427 . 705248) (-1428 . 705024) + (-1429 . 704895) (-1430 . 704823) (-1431 . 704682) (-1432 . 704608) + (-1433 . 704321) (-1434 . 704205) (-1435 . 704047) (-1436 . 703997) + (-1437 . 703945) (-1438 . 703727) (-1439 . 703520) (-1440 . 703414) + (-1441 . 703211) (-1442 . 703088) (-1443 . 703031) (-1444 . 702873) + (-1445 . 702842) (-1446 . 702811) (-1447 . 702723) (-1448 . 702021) + (** . 699027) (-1450 . 698895) (-1451 . 698579) (-1452 . 698322) + (-1453 . 697771) (-1454 . 697585) (-1455 . 697313) (-1456 . 697094) + (-1457 . 697037) (-1458 . 696829) (-1459 . 696619) (-1460 . 695940) + (-1461 . 695648) (-1462 . 695596) (-1463 . 695306) (-1464 . 694932) + (-1465 . 694822) (-1466 . 694644) (-1467 . 694538) (-1468 . 694295) + (-1469 . 694202) (-1470 . 694106) (-1471 . 693576) (-1472 . 693462) + (-1473 . 693333) (-1474 . 693245) (-1475 . 693106) (-1476 . 692914) + (-1477 . 692886) (-1478 . 692745) (-1479 . 692632) (-1480 . 692561) + (-1481 . 692508) (-1482 . 692255) (-1483 . 692017) (-1484 . 691864) + (-1485 . 691799) (-1486 . 691626) (-1487 . 691568) (-1488 . 691516) + (-1489 . 691366) (-1490 . 691208) (-1491 . 691005) (-1492 . 690863) + (-1493 . 690756) (-1494 . 690703) (-1495 . 690653) (-1496 . 690546) + (-1497 . 690421) (-1498 . 690338) (-1499 . 690219) (-1500 . 690066) + (-1501 . 689914) (-1502 . 689756) (-1503 . 689699) (-1504 . 689566) + (-1505 . 689348) (-1506 . 689125) (-1507 . 689056) (-1508 . 688961) + (-1509 . 688880) (-1510 . 688714) (-1511 . 688547) (-1512 . 688408) + (-1513 . 688325) (-1514 . 688190) (-1515 . 688038) (-1516 . 687961) + (-1517 . 687788) (-1518 . 687549) (-1519 . 687486) (-1520 . 687389) + (-1521 . 687355) (-1522 . 687168) (-1523 . 687080) (-1524 . 686920) + (-1525 . 686707) (-1526 . 686636) (-1527 . 686608) (-1528 . 686577) + (-1529 . 686486) (-1530 . 686415) (-1531 . 686230) (-1532 . 685864) + (-1533 . 685411) (-1534 . 685342) (-1535 . 685254) (-1536 . 685199) + (-1537 . 685126) (-1538 . 685002) (-1539 . 684928) (-1540 . 684625) + (-1541 . 684510) (-1542 . 684357) (-1543 . 684244) (-1544 . 684145) + (-1545 . 684032) (-1546 . 683895) (-1547 . 683752) (-1548 . 683683) + (-1549 . 683554) (-1550 . 683396) (-1551 . 683323) (-1552 . 683155) + (-1553 . 683081) (-1554 . 682961) (-1555 . 682726) (-1556 . 682673) + (-1557 . 682607) (-1558 . 682520) (-1559 . 682451) (-1560 . 682295) + (-1561 . 682211) (-1562 . 681938) (-1563 . 681883) (-1564 . 681787) + (-1565 . 681689) (-1566 . 681633) (-1567 . 681574) (-1568 . 681522) + (-1569 . 680936) (-1570 . 680843) (-1571 . 680699) (-1572 . 680290) + (-1573 . 680171) (-1574 . 680056) (-1575 . 679962) (-1576 . 679802) + (-1577 . 679529) (-1578 . 679470) (-1579 . 678961) (-1580 . 677738) + (-1581 . 677661) (-1582 . 677539) (-1583 . 677386) (-1584 . 677303) + (-1585 . 677118) (-1586 . 677007) (-1587 . 676785) (-1588 . 676687) + (-1589 . 676505) (-1590 . 676210) (-1591 . 675920) (-1592 . 675441) + (-1593 . 673279) (-1594 . 673031) (-1595 . 672935) (-1596 . 672831) + (-1597 . 672802) (-1598 . 672505) (-1599 . 672431) (-1600 . 672241) + (-1601 . 672145) (-1602 . 672092) (-1603 . 671743) (-1604 . 671604) + (-1605 . 671483) (-1606 . 671430) (-1607 . 671307) (-1608 . 671233) + (-1609 . 671148) (-1610 . 671096) (-1611 . 671045) (-1612 . 670985) + (-1613 . 670804) (-1614 . 670405) (-1615 . 670259) (-1616 . 670156) + (-1617 . 669965) (-1618 . 669843) (-1619 . 669092) (-1620 . 668909) + (-1621 . 668657) (-1622 . 668562) (-1623 . 668458) (-1624 . 668172) + (-1625 . 668106) (-1626 . 668054) (-1627 . 667971) (-1628 . 667876) + (-1629 . 667816) (-1630 . 667742) (-1631 . 667617) (-1632 . 667551) + (-1633 . 667479) (-1634 . 667346) (-1635 . 667258) (-1636 . 667100) + (-1637 . 667047) (-1638 . 666954) (-1639 . 666823) (-1640 . 666761) + (-1641 . 666622) (-1642 . 666551) (-1643 . 666502) (-1644 . 666445) + (-1645 . 665562) (-1646 . 665415) (-1647 . 665337) (-1648 . 665303) + (-1649 . 665237) (-1650 . 665124) (-1651 . 665020) (-1652 . 664659) + (-1653 . 664149) (-1654 . 664045) (-1655 . 663889) (-1656 . 663715) + (-1657 . 663598) (-1658 . 663570) (-1659 . 663517) (-1660 . 663461) + (-1661 . 663353) (-1662 . 663188) (-1663 . 663115) (-1664 . 662588) + (-1665 . 662402) (-1666 . 662298) (-1667 . 662201) (-1668 . 662129) + (-1669 . 662033) (-1670 . 661876) (-1671 . 661654) (-1672 . 661436) + (-1673 . 661331) (-1674 . 661303) (-1675 . 661197) (-1676 . 661126) + (-1677 . 661029) (-1678 . 660693) (-1679 . 660472) (-1680 . 660370) + (-1681 . 660090) (-1682 . 660016) (-1683 . 659641) (-1684 . 659297) + (-1685 . 659231) (-1686 . 659137) (-1687 . 659053) (-1688 . 658950) + (-1689 . 658852) (-1690 . 658479) (-1691 . 658154) (-1692 . 657923) + (-1693 . 657857) (-1694 . 657679) (-1695 . 657524) (-1696 . 656459) + (-1697 . 656332) (-1698 . 656015) (-1699 . 655340) (-1700 . 655241) + (-1701 . 654955) (-1702 . 651457) (-1703 . 651260) (-1704 . 651031) + (-1705 . 650978) (-1706 . 650874) (-1707 . 650750) (-1708 . 650640) + (-1709 . 650324) (-1710 . 650258) (-1711 . 649991) (-1712 . 649727) + (-1713 . 649612) (-1714 . 649557) (-1715 . 649333) (-1716 . 649059) + (-1717 . 648837) (-1718 . 648730) (-1719 . 648632) (-1720 . 648379) + (-1721 . 648170) (-1722 . 648111) (-1723 . 647980) (-1724 . 647816) + (-1725 . 647748) (-1726 . 647630) (-1727 . 647596) (-1728 . 647349) + (-1729 . 647127) (-1730 . 647059) (-1731 . 646841) (-1732 . 646759) + (-1733 . 646655) (-1734 . 646521) (-1735 . 646262) (-1736 . 646132) + (-1737 . 646062) (-1738 . 645942) (-1739 . 645789) (-1740 . 645673) + (-1741 . 645289) (-1742 . 644967) (-1743 . 644862) (-1744 . 644721) + (-1745 . 644665) (-1746 . 644571) (-1747 . 644430) (-1748 . 644165) + (-1749 . 644007) (-1750 . 642664) (-1751 . 642379) (-1752 . 642324) + (-1753 . 642241) (-1754 . 642138) (-1755 . 642067) (-1756 . 641918) + (-1757 . 641808) (-1758 . 641713) (-1759 . 641508) (-1760 . 641364) + (-1761 . 641279) (-1762 . 641182) (-1763 . 641129) (-1764 . 640904) + (-1765 . 640682) (-1766 . 640545) (-1767 . 640416) (-1768 . 640279) + (-1769 . 640201) (-1770 . 640131) (-1771 . 639471) (-1772 . 639241) + (-1773 . 639167) (-1774 . 639112) (-1775 . 639029) (-1776 . 638905) + (-1777 . 638409) (-1778 . 638256) (-1779 . 637984) (-1780 . 637692) + (-1781 . 637583) (-1782 . 637531) (-1783 . 637407) (-1784 . 637348) + (-1785 . 637262) (-1786 . 637112) (-1787 . 631944) (-1788 . 631659) + (-1789 . 631561) (-1790 . 631245) (-1791 . 630718) (-1792 . 630648) + (-1793 . 630592) (-1794 . 630456) (-1795 . 630302) (-1796 . 630205) + (-1797 . 630040) (-1798 . 629986) (-1799 . 629906) (-1800 . 628725) + (-1801 . 628593) (-1802 . 628541) (-1803 . 628413) (-1804 . 628286) + (-1805 . 627950) (-1806 . 627868) (-1807 . 627798) (-1808 . 627646) + (-1809 . 627578) (-1810 . 627406) (-1811 . 627186) (-1812 . 627120) + (-1813 . 626922) (-1814 . 626841) (-1815 . 626740) (-1816 . 626441) + (-1817 . 626345) (-1818 . 626296) (-1819 . 626237) (-1820 . 626086) + (-1821 . 625988) (-1822 . 625885) (-1823 . 625606) (-1824 . 625403) + (-1825 . 625223) (-1826 . 625135) (-1827 . 624997) (-1828 . 624894) + (-1829 . 624751) (-1830 . 624492) (-1831 . 624396) (-1832 . 624102) + (-1833 . 623463) (-1834 . 623435) (-1835 . 623312) (-1836 . 622752) + (-1837 . 622701) (-1838 . 622543) (-1839 . 621679) (-1840 . 621576) + (-1841 . 621334) (-1842 . 621255) (-1843 . 620874) (-1844 . 620776) + (-1845 . 620723) (-1846 . 620612) (-1847 . 620511) (-1848 . 620412) + (-1849 . 620299) (-1850 . 620247) (-1851 . 620195) (-1852 . 620112) + (-1853 . 619988) (-1854 . 619325) (-1855 . 619212) (-1856 . 619159) + (-1857 . 619087) (-1858 . 618957) (-1859 . 618630) (-1860 . 618571) + (-1861 . 618471) (-1862 . 617821) (-1863 . 617769) (-1864 . 617619) + (-1865 . 617540) (-1866 . 617381) (-1867 . 617052) (-1868 . 616953) + (-1869 . 616772) (-1870 . 616721) (-1871 . 616619) (-1872 . 616553) + (-1873 . 616525) (-1874 . 616453) (-1875 . 616319) (-1876 . 616231) + (-1877 . 615953) (-1878 . 615881) (-1879 . 615146) (-1880 . 615094) + (-1881 . 614934) (-1882 . 614806) (-1883 . 614751) (-1884 . 614558) + (-1885 . 614440) (-1886 . 614374) (-1887 . 614279) (-1888 . 614088) + (-1889 . 614036) (-1890 . 613681) (-1891 . 613630) (-1892 . 613534) + (-1893 . 613181) (-1894 . 613126) (-1895 . 612935) (-1896 . 612828) + (-1897 . 612746) (-1898 . 612477) (-1899 . 612284) (-1900 . 612150) + (-1901 . 612031) (-1902 . 611899) (-1903 . 611770) (-1904 . 611689) + (-1905 . 611616) (-1906 . 611424) (-1907 . 611215) (-1908 . 611132) + (-1909 . 611104) (-1910 . 611048) (-1911 . 610968) (-1912 . 610382) + (-1913 . 609995) (-1914 . 609873) (-1915 . 609623) (-1916 . 609537) + (-1917 . 609418) (-1918 . 609344) (-1919 . 609243) (-1920 . 609155) + (-1921 . 609072) (-1922 . 608961) (-1923 . 608927) (-1924 . 608621) + (-1925 . 608453) (-1926 . 608358) (-1927 . 608308) (-1928 . 608181) + (-1929 . 608009) (-1930 . 607956) (-1931 . 607629) (-1932 . 607471) + (-1933 . 607328) (-1934 . 607134) (-1935 . 606827) (-1936 . 606730) + (-1937 . 606516) (-1938 . 606460) (-1939 . 606204) (-1940 . 605622) + (-1941 . 605242) (-1942 . 604876) (-1943 . 604673) (-1944 . 604421) + (-1945 . 604306) (-1946 . 604229) (-1947 . 604148) (-1948 . 603901) + (-1949 . 603849) (-1950 . 603658) (-1951 . 602362) (-1952 . 602262) + (-1953 . 601931) (-1954 . 600681) (-1955 . 600572) (-1956 . 600522) + (-1957 . 600389) (-1958 . 600333) (-1959 . 600234) (-1960 . 600115) + (-1961 . 599992) (-1962 . 599854) (-1963 . 599689) (-1964 . 599502) + (-1965 . 599470) (-1966 . 599411) (-1967 . 599287) (-1968 . 599129) + (-1969 . 599077) (-1970 . 598812) (-1971 . 598372) (-1972 . 598272) + (-1973 . 597726) (-1974 . 597510) (-1975 . 597415) (-1976 . 597320) + (-1977 . 597221) (-1978 . 597169) (-1979 . 596833) (-1980 . 596651) + (-1981 . 596404) (-1982 . 596351) (-1983 . 596317) (-1984 . 596265) + (-1985 . 596161) (-1986 . 596102) (-1987 . 595827) (-1988 . 595681) + (-1989 . 594811) (-1990 . 594759) (-1991 . 594675) (-1992 . 594616) + (-1993 . 594519) (-1994 . 594431) (-1995 . 594287) (-1996 . 593641) + (-1997 . 593588) (-1998 . 593435) (-1999 . 593307) (-2000 . 592655) + (-2001 . 592563) (-2002 . 592475) (-2003 . 592401) (-2004 . 592311) + (-2005 . 591909) (-2006 . 591317) (-2007 . 591090) (-2008 . 591002) + (-2009 . 590918) (-2010 . 590802) (-2011 . 590749) (-2012 . 590537) + (-2013 . 590417) (-2014 . 590312) (-2015 . 590080) (-2016 . 589986) + (-2017 . 589846) (-2018 . 589777) (-2019 . 589699) (-2020 . 589636) + (-2021 . 589421) (-2022 . 589299) (-2023 . 589082) (-2024 . 588933) + (-2025 . 588776) (-2026 . 588707) (-2027 . 588654) (-2028 . 588560) + (-2029 . 588481) (-2030 . 588254) (-2031 . 587857) (-2032 . 586595) + (-2033 . 586216) (-2034 . 586157) (-2035 . 586063) (-2036 . 585864) + (-2037 . 585684) (-2038 . 580346) (-2039 . 580180) (-2040 . 580083) + (-2041 . 579666) (-2042 . 579589) (-2043 . 579464) (-2044 . 579357) + (-2045 . 579271) (-2046 . 579140) (-2047 . 578859) (-2048 . 578751) + (-2049 . 578607) (-2050 . 578530) (-2051 . 578459) (-2052 . 578389) + (-2053 . 578279) (-2054 . 578169) (-2055 . 577961) (-2056 . 577351) + (-2057 . 577157) (-2058 . 576848) (-2059 . 576690) (-2060 . 576580) + (-2061 . 576464) (-2062 . 576100) (-2063 . 575930) (-2064 . 575858) + (-2065 . 575830) (-2066 . 575675) (-2067 . 575622) (-2068 . 575452) + (-2069 . 575279) (-2070 . 575125) (-2071 . 574977) (-2072 . 574786) + (-2073 . 574628) (-2074 . 574379) (-2075 . 574224) (-2076 . 574093) + (-2077 . 573931) (-2078 . 573635) (-2079 . 573539) (-2080 . 573453) + (-2081 . 573247) (-2082 . 572769) (-2083 . 572511) (-2084 . 572094) + (-2085 . 571277) (-2086 . 571176) (-2087 . 571103) (-2088 . 571029) + (-2089 . 570499) (-2090 . 570359) (-2091 . 570246) (-2092 . 570069) + (-2093 . 569998) (-2094 . 569880) (-2095 . 569737) (-2096 . 569647) + (-2097 . 569510) (-2098 . 569338) (-2099 . 569267) (-2100 . 569181) + (-2101 . 569130) (-2102 . 569010) (-2103 . 568915) (-2104 . 568791) + (-2105 . 568731) (-2106 . 568588) (-2107 . 568342) (-2108 . 568245) + (-2109 . 567029) (-2110 . 566977) (-2111 . 565825) (-2112 . 565421) + (-2113 . 565317) (-2114 . 564884) (-2115 . 564730) (-2116 . 564634) + (-2117 . 564518) (-2118 . 564466) (-2119 . 564207) (-2120 . 564079) + (-2121 . 563954) (-2122 . 563872) (-2123 . 563701) (-2124 . 563631) + (-2125 . 563491) (-2126 . 563411) (-2127 . 563130) (-2128 . 562972) + (-2129 . 562734) (-2130 . 562343) (-2131 . 562198) (-2132 . 562145) + (-2133 . 562019) (-2134 . 561965) (-2135 . 561879) (-2136 . 561813) + (-2137 . 561629) (-2138 . 561545) (-2139 . 561361) (-2140 . 560985) + (-2141 . 560652) (-2142 . 560599) (-2143 . 560549) (-2144 . 560394) + (-2145 . 560272) (-2146 . 560152) (-2147 . 560051) (-2148 . 559949) + (-2149 . 559842) (-2150 . 559720) (-2151 . 559568) (-2152 . 559435) + (-2153 . 559398) (-2154 . 559253) (-2155 . 558168) (-2156 . 558031) + (-2157 . 557790) (-2158 . 557542) (-2159 . 557271) (-2160 . 557147) + (-2161 . 557054) (-2162 . 557026) (-2163 . 556949) (-2164 . 556142) + (-2165 . 555878) (-2166 . 555547) (-2167 . 555495) (-2168 . 555435) + (-2169 . 555367) (-2170 . 554982) (-2171 . 554864) (-2172 . 554585) + (-2173 . 554094) (-2174 . 553999) (-2175 . 553947) (-2176 . 553859) + (-2177 . 553598) (-2178 . 553519) (-2179 . 553344) (-2180 . 553251) + (-2181 . 553098) (-2182 . 553021) (-2183 . 552506) (-2184 . 552130) + (-2185 . 552044) (-2186 . 551879) (-2187 . 551808) (-2188 . 551741) + (-2189 . 551040) (-2190 . 550650) (-2191 . 550527) (-2192 . 550209) + (-2193 . 549874) (-2194 . 549772) (-2195 . 549693) (-2196 . 549659) + (-2197 . 549572) (-2198 . 549362) (-2199 . 549219) (-2200 . 549164) + (-2201 . 549084) (-2202 . 548866) (-2203 . 548515) (-2204 . 548144) + (-2205 . 547876) (-2206 . 547733) (-2207 . 547618) (-2208 . 547581) + (-2209 . 547460) (-2210 . 547386) (-2211 . 546673) (-2212 . 546572) + (-2213 . 546459) (-2214 . 546425) (-2215 . 546372) (-2216 . 546227) + (-2217 . 546028) (-2218 . 545939) (-2219 . 545454) (-2220 . 544936) + (-2221 . 544771) (-2222 . 544644) (-2223 . 544595) (-2224 . 544529) + (-2225 . 544184) (-2226 . 544049) (-2227 . 543723) (-2228 . 543501) + (-2229 . 543449) (-2230 . 543421) (-2231 . 543227) (-2232 . 542716) + (-2233 . 541898) (-2234 . 541842) (-2235 . 541532) (-2236 . 541389) + (-2237 . 541137) (-2238 . 541022) (-2239 . 540938) (-2240 . 540809) + (-2241 . 540677) (-2242 . 540578) (-2243 . 540451) (-2244 . 540319) + (-2245 . 540007) (-2246 . 539772) (-2247 . 539706) (-2248 . 539565) + (-2249 . 539509) (-2250 . 539283) (-2251 . 539021) (-2252 . 538342) + (-2253 . 538246) (-2254 . 537785) (-2255 . 537682) (-2256 . 537620) + (-2257 . 537180) (-2258 . 537096) (-2259 . 536997) (-2260 . 536925) + (-2261 . 536830) (-2262 . 536773) (-2263 . 536632) (-2264 . 533333) + (-2265 . 533304) (-2266 . 533209) (-2267 . 533150) (-2268 . 532931) + (-2269 . 532301) (-2270 . 532248) (-2271 . 532164) (-2272 . 531711) + (-2273 . 531433) (-2274 . 531356) (-2275 . 531268) (-2276 . 531152) + (-2277 . 531121) (-2278 . 531039) (-2279 . 530809) (-2280 . 530607) + (-2281 . 530523) (-2282 . 530238) (-2283 . 530019) (-2284 . 529904) + (-2285 . 529760) (-2286 . 529663) (-2287 . 529597) (-2288 . 529347) + (-2289 . 529316) (-2290 . 529040) (-2291 . 528694) (-2292 . 528578) + (-2293 . 528221) (-2294 . 528126) (-2295 . 527795) (-2296 . 527657) + (-2297 . 527555) (-2298 . 526485) (-2299 . 526353) (-2300 . 526237) + (-2301 . 526153) (-2302 . 526060) (-2303 . 525917) (-2304 . 525787) + (-2305 . 525721) (-2306 . 525589) (-2307 . 525451) (-2308 . 525200) + (-2309 . 525096) (-2310 . 525041) (-2311 . 524989) (-2312 . 524930) + (-2313 . 524795) (-2314 . 524718) (-2315 . 524634) (-2316 . 524530) + (-2317 . 524493) (-2318 . 524416) (-2319 . 524309) (-2320 . 524224) + (-2321 . 524129) (-2322 . 524076) (-2323 . 523805) (-2324 . 523724) + (-2325 . 523611) (-2326 . 523313) (-2327 . 523051) (-2328 . 522999) + (-2329 . 522785) (-2330 . 522648) (-2331 . 521935) (-2332 . 521858) + (-2333 . 521751) (-2334 . 521636) (-2335 . 521548) (-2336 . 521474) + (-2337 . 521371) (-2338 . 521312) (-2339 . 519770) (-2340 . 519640) + (-2341 . 519582) (-2342 . 519523) (-2343 . 519446) (-2344 . 519328) + (-2345 . 519232) (-2346 . 519076) (-2347 . 518961) (-2348 . 518763) + (-2349 . 518666) (-2350 . 518350) (-2351 . 518152) (-2352 . 518098) + (-2353 . 517705) (-2354 . 517354) (-2355 . 516963) (-2356 . 516863) + (-2357 . 516744) (-2358 . 516673) (-2359 . 516587) (-2360 . 516490) + (-2361 . 516333) (-2362 . 516265) (-2363 . 516199) (-2364 . 515685) + (-2365 . 515544) (-2366 . 515442) (-2367 . 515310) (-2368 . 514965) + (-2369 . 513625) (-2370 . 512665) (-2371 . 512477) (-2372 . 512425) + (-2373 . 512300) (-2374 . 512006) (-2375 . 511070) (-2376 . 511004) + (-2377 . 510805) (-2378 . 510728) (-2379 . 510654) (-2380 . 510491) + (-2381 . 510413) (-2382 . 510240) (-2383 . 509909) (-2384 . 509488) + (-2385 . 509345) (-2386 . 509292) (-2387 . 509033) (-2388 . 508805) + (-2389 . 508659) (-2390 . 508593) (-2391 . 507732) (-2392 . 507442) + (-2393 . 507084) (-2394 . 506866) (-2395 . 506730) (-2396 . 506612) + (-2397 . 506484) (-2398 . 506352) (-2399 . 506249) (-2400 . 505871) + (-2401 . 505774) (-2402 . 505722) (-2403 . 505635) (-2404 . 505516) + (-2405 . 505430) (-2406 . 505378) (-2407 . 505313) (-2408 . 505260) + (-2409 . 504647) (-2410 . 503449) (-2411 . 503346) (-2412 . 503293) + (-2413 . 503192) (-2414 . 502825) (-2415 . 502653) (-2416 . 495710) + (-2417 . 495624) (-2418 . 495553) (-2419 . 495393) (-2420 . 495316) + (-2421 . 494889) (-2422 . 494839) (-2423 . 494751) (-2424 . 494654) + (-2425 . 494623) (-2426 . 494480) (-2427 . 494406) (-2428 . 494234) + (-2429 . 493896) (-2430 . 493707) (-2431 . 493627) (-2432 . 493575) + (-2433 . 493513) (-2434 . 493031) (-2435 . 492947) (-2436 . 492683) + (-2437 . 492323) (-2438 . 492151) (-2439 . 491517) (-2440 . 491451) + (-2441 . 491355) (-2442 . 491255) (-2443 . 491164) (-2444 . 491065) + (-2445 . 490678) (-2446 . 490503) (-2447 . 490429) (-2448 . 490172) + (-2449 . 489961) (-2450 . 489789) (-2451 . 489599) (-2452 . 489258) + (-2453 . 489185) (-2454 . 489099) (-2455 . 488556) (-2456 . 488449) + (-2457 . 488397) (-2458 . 488363) (-2459 . 488334) (-2460 . 487847) + (-2461 . 487794) (-2462 . 487698) (-2463 . 487646) (-2464 . 487530) + (-2465 . 486688) (-2466 . 486592) (-2467 . 486359) (-2468 . 486306) + (-2469 . 486233) (-2470 . 486199) (-2471 . 486119) (-2472 . 485996) + (-2473 . 485944) (-2474 . 485848) (-2475 . 484065) (-2476 . 483903) + (-2477 . 480294) (-2478 . 480025) (-2479 . 479934) (-2480 . 479866) + (-2481 . 479689) (-2482 . 479595) (-2483 . 479501) (-2484 . 479140) + (-2485 . 479011) (-2486 . 478755) (-2487 . 478632) (-2488 . 478495) + (-2489 . 478347) (-2490 . 478217) (-2491 . 478102) (-2492 . 478031) + (-2493 . 477954) (-2494 . 477852) (-2495 . 477782) (-2496 . 477591) + (-2497 . 477509) (-2498 . 477290) (-2499 . 477199) (-2500 . 476902) + (-2501 . 476786) (-2502 . 476490) (-2503 . 476042) (-2504 . 475985) + (-2505 . 475834) (-2506 . 475750) (-2507 . 475634) (-2508 . 475423) + (-2509 . 474919) (-2510 . 474870) (-2511 . 474623) (-2512 . 474413) + (-2513 . 474327) (-2514 . 474040) (-2515 . 473826) (-2516 . 473684) + (-2517 . 473586) (-2518 . 473500) (-2519 . 473109) (-2520 . 473059) + (-2521 . 472513) (-2522 . 472457) (-2523 . 470499) (-2524 . 470443) + (-2525 . 469733) (-2526 . 469596) (-2527 . 469350) (-2528 . 469292) + (-2529 . 469174) (-2530 . 469047) (-2531 . 466632) (-2532 . 465055) + (-2533 . 465021) (-2534 . 464938) (-2535 . 464906) (-2536 . 464835) + (-2537 . 464507) (-2538 . 463992) (-2539 . 463249) (-2540 . 463178) + (-2541 . 463003) (-2542 . 462751) (-2543 . 462687) (-2544 . 462345) + (-2545 . 461937) (-2546 . 461842) (-2547 . 461653) (-2548 . 461576) + (-2549 . 461523) (-2550 . 461400) (-2551 . 461351) (-2552 . 461219) + (-2553 . 461151) (-2554 . 460624) (-2555 . 460528) (-2556 . 460424) + (-2557 . 460336) (-2558 . 460166) (-2559 . 460005) (-2560 . 459922) + (-2561 . 459826) (-2562 . 459534) (-2563 . 459289) (-2564 . 459141) + (-2565 . 459064) (-2566 . 459002) (-2567 . 458952) (-2568 . 458899) + (-2569 . 458378) (-2570 . 457814) (-2571 . 457661) (-2572 . 457497) + (-2573 . 457424) (-2574 . 457328) (-2575 . 457261) (-2576 . 457201) + (-2577 . 457129) (-2578 . 457033) (-2579 . 456967) (-2580 . 456893) + (-2581 . 456797) (-2582 . 456714) (-2583 . 456659) (-2584 . 456603) + (-2585 . 456069) (-2586 . 455961) (-2587 . 455697) (-2588 . 455629) + (-2589 . 455474) (-2590 . 455400) (-2591 . 455286) (-2592 . 455170) + (-2593 . 454826) (-2594 . 454774) (-2595 . 453972) (-2596 . 453872) + (-2597 . 453686) (-2598 . 453627) (-2599 . 453525) (-2600 . 453329) + (-2601 . 453251) (-2602 . 453156) (-2603 . 453039) (-2604 . 452769) + (-2605 . 452691) (-2606 . 452593) (-2607 . 452364) (-2608 . 452277) + (-2609 . 452119) (-2610 . 452011) (-2611 . 451928) (-2612 . 451876) + (-2613 . 451734) (-2614 . 451288) (-2615 . 451165) (-2616 . 451080) + (-2617 . 450778) (-2618 . 450676) (-2619 . 450429) (-2620 . 450314) + (-2621 . 450135) (-2622 . 448003) (-2623 . 447137) (-2624 . 447082) + (-2625 . 446974) (-2626 . 446922) (-2627 . 446894) (-2628 . 446793) + (-2629 . 446696) (-2630 . 446439) (-2631 . 442432) (-2632 . 442403) + (-2633 . 442250) (-2634 . 441765) (-2635 . 441585) (-2636 . 441508) + (-2637 . 440676) (-2638 . 440624) (-2639 . 440486) (-2640 . 440415) + (-2641 . 440353) (-2642 . 440009) (-2643 . 439914) (-2644 . 439818) + (-2645 . 439719) (-2646 . 439473) (-2647 . 439365) (-2648 . 439224) + (-2649 . 439104) (-2650 . 439052) (-2651 . 438821) (-2652 . 438621) + (-2653 . 438541) (-2654 . 437446) (-2655 . 437104) (-2656 . 436641) + (-2657 . 436547) (-2658 . 436470) (-2659 . 436397) (-2660 . 436244) + (-2661 . 436177) (-2662 . 436059) (-2663 . 435861) (-2664 . 435789) + (-2665 . 435623) (-2666 . 435350) (-2667 . 435220) (-2668 . 435041) + (-2669 . 434705) (-2670 . 434617) (-2671 . 434585) (-2672 . 434460) + (-2673 . 434361) (-2674 . 434275) (-2675 . 432873) (-2676 . 432678) + (-2677 . 431380) (-2678 . 431087) (-2679 . 431032) (-2680 . 430958) + (-2681 . 430848) (-2682 . 430782) (-2683 . 430548) (-2684 . 430402) + (-2685 . 430287) (-2686 . 430259) (-2687 . 430156) (-2688 . 429358) + (-2689 . 429236) (-2690 . 428592) (-2691 . 428448) (-2692 . 428271) + (-2693 . 428061) (-2694 . 427958) (-2695 . 427679) (-2696 . 427591) + (-2697 . 427490) (-2698 . 427253) (-2699 . 427184) (-2700 . 427119) + (-2701 . 427049) (-2702 . 426878) (-2703 . 426800) (-2704 . 426700) + (-2705 . 426641) (-2706 . 421127) (-2707 . 420729) (-2708 . 420644) + (-2709 . 420425) (-2710 . 420397) (-2711 . 420288) (-2712 . 420101) + (-2713 . 419991) (-2714 . 419829) (-2715 . 419752) (-2716 . 419359) + (-2717 . 419299) (-2718 . 419174) (-2719 . 419058) (-2720 . 418647) + (-2721 . 418455) (-2722 . 418311) (-2723 . 418213) (-2724 . 417961) + (-2725 . 417908) (-2726 . 417853) (-2727 . 417412) (-2728 . 417125) + (-2729 . 417048) (-2730 . 416903) (-2731 . 416678) (-2732 . 416626) + (-2733 . 416507) (-2734 . 416336) (-2735 . 416222) (-2736 . 416127) + (-2737 . 416032) (-2738 . 415895) (-2739 . 415560) (-2740 . 415473) + (-2741 . 415322) (-2742 . 414715) (-2743 . 414292) (-2744 . 414218) + (-2745 . 414080) (-2746 . 413932) (-2747 . 413757) (-2748 . 413669) + (-2749 . 413589) (-2750 . 413515) (-2751 . 413420) (-2752 . 413259) + (-2753 . 413140) (-2754 . 412746) (-2755 . 412672) (-2756 . 412594) + (-2757 . 412398) (-2758 . 412346) (-2759 . 411860) (-2760 . 411801) + (-2761 . 411417) (-2762 . 411236) (-2763 . 410849) (-2764 . 410782) + (-2765 . 410686) (-2766 . 410605) (-2767 . 410402) (-2768 . 410257) + (-2769 . 410091) (-2770 . 409813) (-2771 . 409060) (-2772 . 408845) + (-2773 . 408697) (-2774 . 407595) (-2775 . 407457) (-2776 . 406978) + (-2777 . 406759) (-2778 . 406580) (-2779 . 406437) (-2780 . 406337) + (-2781 . 406174) (-2782 . 406016) (-2783 . 405955) (-2784 . 405666) + (-2785 . 405592) (-2786 . 405564) (-2787 . 405363) (-2788 . 404182) + (-2789 . 403970) (-2790 . 403771) (-2791 . 403605) (-2792 . 403495) + (-2793 . 403405) (-2794 . 403353) (-2795 . 403275) (-2796 . 403185) + (-2797 . 403088) (-2798 . 403021) (-2799 . 402825) (-2800 . 402653) + (-2801 . 402375) (-2802 . 401718) (-2803 . 401559) (-2804 . 401461) + (-2805 . 401150) (-2806 . 401050) (-2807 . 400979) (-2808 . 400836) + (-12 . 400664) (-2810 . 400613) (-2811 . 400541) (-2812 . 400482) + (-2813 . 400354) (-2814 . 400143) (-2815 . 400027) (-2816 . 399917) + (-2817 . 399780) (-2818 . 399641) (-2819 . 399555) (-2820 . 399350) + (-2821 . 399269) (-2822 . 399183) (-2823 . 399043) (-2824 . 397414) + (-2825 . 397362) (-2826 . 397219) (-2827 . 397108) (-2828 . 397009) + (-2829 . 396932) (-2830 . 396521) (-2831 . 396435) (-2832 . 396314) + (-2833 . 396210) (-2834 . 396063) (-2835 . 395861) (-2836 . 395002) + (-2837 . 394461) (-2838 . 394353) (-2839 . 394162) (-2840 . 394022) + (-2841 . 393943) (-2842 . 393871) (-2843 . 393336) (-2844 . 393274) + (-2845 . 393118) (-2846 . 392348) (-2847 . 391052) (-2848 . 390909) + (-2849 . 390670) (-2850 . 390525) (-2851 . 390365) (-2852 . 390240) + (-2853 . 390160) (-2854 . 390066) (-2855 . 390017) (-2856 . 389943) + (-2857 . 389787) (-2858 . 389699) (-2859 . 389620) (-2860 . 389377) + (-2861 . 389326) (-2862 . 389255) (-2863 . 388994) (-2864 . 388853) + (-2865 . 388757) (-2866 . 388661) (-2867 . 388368) (-2868 . 388300) + (-2869 . 388059) (-2870 . 387592) (-2871 . 387492) (-2872 . 387379) + (-2873 . 387221) (-2874 . 387155) (-2875 . 387127) (-2876 . 386541) + (-2877 . 386188) (-2878 . 386111) (-2879 . 385796) (-2880 . 385713) + (-2881 . 385577) (-2882 . 385543) (-2883 . 384655) (-2884 . 384572) + (-2885 . 384081) (-2886 . 383998) (-2887 . 382806) (-2888 . 382749) + (-2889 . 382696) (-2890 . 382551) (-2891 . 382490) (-2892 . 382033) + (-2893 . 381933) (-2894 . 381831) (-2895 . 381736) (-2896 . 379970) + (-2897 . 379846) (-2898 . 375686) (-2899 . 375568) (-2900 . 375395) + (-2901 . 375267) (* . 371000) (-2903 . 370885) (-2904 . 370109) + (-2905 . 369859) (-2906 . 369807) (-2907 . 368352) (-2908 . 367079) + (-2909 . 366956) (-2910 . 366856) (-2911 . 366757) (-2912 . 366190) + (-2913 . 365915) (-2914 . 365849) (-2915 . 365729) (-2916 . 365601) + (-2917 . 365549) (-2918 . 365482) (-2919 . 363992) (-2920 . 363753) + (-2921 . 363701) (-2922 . 363649) (-2923 . 363563) (-2924 . 363485) + (-2925 . 363412) (-2926 . 363329) (-2927 . 363138) (-2928 . 363052) + (-2929 . 362906) (-2930 . 362729) (-2931 . 362643) (-2932 . 361211) + (-2933 . 360978) (-2934 . 360619) (-2935 . 360451) (-2936 . 360179) + (-2937 . 360047) (-2938 . 359509) (-2939 . 358773) (-2940 . 358265) + (-2941 . 358011) (-2942 . 357897) (-2943 . 357754) (-2944 . 357527) + (-2945 . 357434) (-2946 . 357248) (-2947 . 357180) (-2948 . 357128) + (-2949 . 356965) (-2950 . 356627) (-2951 . 356240) (-2952 . 356148) + (-2953 . 356119) (-2954 . 356036) (-2955 . 355954) (-2956 . 355825) + (-2957 . 355658) (-2958 . 355427) (-2959 . 355281) (-2960 . 355002) + (-2961 . 354950) (-2962 . 354822) (-2963 . 354484) (-2964 . 354371) + (-2965 . 354344) (-2966 . 354126) (-2967 . 353957) (-2968 . 353804) + (-2969 . 353445) (-2970 . 353357) (-2971 . 353270) (-2972 . 353174) + (-2973 . 353042) (-2974 . 352458) (-2975 . 352305) (-2976 . 351661) + (-2977 . 351606) (-2978 . 351468) (-2979 . 351127) (-2980 . 351017) + (-2981 . 350739) (-2982 . 350624) (-2983 . 350511) (-2984 . 350352) + (-2985 . 350194) (-2986 . 350032) (-2987 . 349303) (-2988 . 349246) + (-2989 . 348074) (-2990 . 347996) (-2991 . 347883) (-2992 . 347775) + (-2993 . 347424) (-2994 . 347170) (-2995 . 346955) (-2996 . 346857) + (-2997 . 346770) (-2998 . 346690) (-2999 . 345961) (-3000 . 345846) + (-3001 . 345471) (-3002 . 345308) (-3003 . 345227) (-3004 . 345067) + (-3005 . 344952) (-3006 . 344864) (-3007 . 344725) (-3008 . 344652) + (-3009 . 344505) (-3010 . 344175) (-3011 . 344122) (-3012 . 343446) + (-3013 . 343288) (-3014 . 342151) (-3015 . 342096) (-3016 . 341986) + (-3017 . 341900) (-3018 . 332450) (-3019 . 332397) (-3020 . 332214) + (-3021 . 332153) (-3022 . 332058) (-3023 . 331494) (-3024 . 331379) + (-3025 . 331255) (-3026 . 331005) (-3027 . 330977) (-3028 . 330858) + (-3029 . 330721) (-3030 . 330608) (-3031 . 330381) (-3032 . 329870) + (-3033 . 328684) (-3034 . 328509) (-3035 . 327945) (-3036 . 327868) + (-3037 . 327724) (-3038 . 327409) (-3039 . 327340) (-3040 . 327133) + (-3041 . 327077) (-3042 . 326882) (-3043 . 326801) (-3044 . 326731) + (-3045 . 325549) (-3046 . 325071) (-3047 . 324825) (-3048 . 324698) + (-3049 . 324134) (-3050 . 323458) (-3051 . 323386) (-3052 . 323358) + (-3053 . 323205) (-3054 . 323138) (-3055 . 322884) (-3056 . 322826) + (-3057 . 322767) (-3058 . 322661) (-3059 . 322483) (-3060 . 320276) + (-3061 . 320220) (-3062 . 319546) (-3063 . 318320) (-3064 . 318103) + (-3065 . 318026) (-3066 . 317853) (-3067 . 317334) (-3068 . 316890) + (-3069 . 316838) (-3070 . 316680) (-3071 . 315652) (-3072 . 315546) + (-3073 . 315416) (-3074 . 314742) (-3075 . 314668) (-3076 . 314580) + (-3077 . 312466) (-3078 . 312351) (-3079 . 312287) (-3080 . 312166) + (-3081 . 311916) (-3082 . 311820) (-3083 . 311770) (-3084 . 311033) + (-3085 . 310895) (-3086 . 310528) (-3087 . 310433) (-3088 . 310235) + (-3089 . 309891) (-3090 . 309835) (-3091 . 309733) (-3092 . 309679) + (-3093 . 309452) (-3094 . 308963) (-3095 . 308401) (-3096 . 308310) + (-3097 . 308000) (-3098 . 307926) (-3099 . 307656) (-3100 . 307434) + (-3101 . 306774) (-3102 . 306524) (-3103 . 306496) (-3104 . 306249) + (-3105 . 305819) (-3106 . 305257) (-3107 . 305192) (-3108 . 304982) + (-3109 . 304886) (-3110 . 304389) (-3111 . 304323) (-3112 . 304152) + (-3113 . 304007) (-3114 . 303941) (-3115 . 303691) (-3116 . 303572) + (-3117 . 303504) (-3118 . 302942) (-3119 . 302842) (-3120 . 302724) + (-3121 . 302616) (-3122 . 302411) (-3123 . 302186) (-3124 . 301913) + (-3125 . 301774) (-3126 . 301719) (-3127 . 301556) (-3128 . 300881) + (-3129 . 300807) (-3130 . 300498) (-3131 . 300441) (-3132 . 300389) + (-3133 . 300336) (-3134 . 300157) (-3135 . 300106) (-3136 . 300047) + (-3137 . 299372) (-3138 . 299154) (-3139 . 299031) (-3140 . 298841) + (-3141 . 298258) (-3142 . 297908) (-3143 . 297738) (-3144 . 297637) + (-3145 . 297582) (-3146 . 296907) (-3147 . 296827) (-3148 . 296753) + (-3149 . 296674) (-3150 . 296287) (-3151 . 296169) (-3152 . 295990) + (-3153 . 295920) (-3154 . 295762) (-3155 . 295431) (-3156 . 294868) + (-3157 . 294797) (-3158 . 294703) (-3159 . 294476) (-3160 . 294403) + (-3161 . 294258) (-3162 . 294202) (-3163 . 293720) (-3164 . 293216) + (-3165 . 293021) (-3166 . 292458) (-3167 . 292395) (-3168 . 292309) + (-3169 . 292138) (-3170 . 292104) (-3171 . 291997) (-3172 . 291923) + (-3173 . 291800) (-3174 . 291659) (-3175 . 291096) (-3176 . 291026) + (-3177 . 290922) (-3178 . 290757) (-3179 . 290647) (-3180 . 290405) + (-3181 . 290241) (-3182 . 290093) (-3183 . 289531) (-3184 . 289142) + (-3185 . 288951) (-3186 . 288818) (-3187 . 288720) (-3188 . 288234) + (-3189 . 288081) (-3190 . 287986) (-3191 . 287780) (-3192 . 287678) + (-3193 . 287116) (-3194 . 287021) (-3195 . 286822) (-3196 . 286743) + (-3197 . 286579) (-3198 . 286413) (-3199 . 286319) (-3200 . 285757) + (-3201 . 285540) (-3202 . 285268) (-3203 . 285191) (-3204 . 284935) + (-3205 . 284811) (-3206 . 284777) (-3207 . 284557) (-3208 . 284402) + (-3209 . 281621) (-3210 . 281566) (-3211 . 281004) (-3212 . 280952) + (-3213 . 280806) (-3214 . 280712) (-3215 . 280630) (-3216 . 280483) + (-3217 . 280455) (-3218 . 280358) (-3219 . 280306) (-3220 . 279994) + (-3221 . 279432) (-3222 . 279347) (-3223 . 279210) (-3224 . 278664) + (-3225 . 278539) (-3226 . 278380) (-3227 . 278274) (-3228 . 278041) + (-3229 . 278013) (-3230 . 277858) (-3231 . 277799) (-3232 . 277639) + (-3233 . 277508) (-3234 . 277248) (-3235 . 277144) (-3236 . 276990) + (-3237 . 276867) (-3238 . 276268) (-3239 . 276186) (-3240 . 276154) + (-3241 . 276092) (-3242 . 276039) (-3243 . 275816) (-3244 . 273848) + (-3245 . 273796) (-3246 . 273768) (-3247 . 273352) (-3248 . 272905) + (-3249 . 272610) (-3250 . 272417) (-3251 . 272365) (-3252 . 271941) + (-3253 . 271639) (-3254 . 271487) (-3255 . 271327) (-3256 . 270861) + (-3257 . 270487) (-3258 . 270239) (-3259 . 270054) (-3260 . 269889) + (-3261 . 269775) (-3262 . 269271) (-3263 . 269038) (-3264 . 268904) + (-3265 . 268537) (-3266 . 268399) (-3267 . 267583) (-3268 . 267500) + (-3269 . 267181) (-3270 . 267015) (-3271 . 266648) (-3272 . 266507) + (-3273 . 266406) (-3274 . 266261) (-3275 . 266057) (-3276 . 266003) + (-3277 . 265575) (-3278 . 265415) (-3279 . 265305) (-3280 . 265149) + (-3281 . 265054) (-3282 . 264769) (-3283 . 264616) (-3284 . 264391) + (-3285 . 264278) (-3286 . 263861) (-3287 . 263775) (-3288 . 263545) + (-3289 . 263435) (-3290 . 263299) (-3291 . 262984) (-3292 . 262910) + (-3293 . 262822) (-3294 . 262688) (-3295 . 262616) (-3296 . 262489) + (-3297 . 262434) (-3298 . 262384) (-3299 . 262331) (-3300 . 261948) + (-3301 . 261745) (-3302 . 259967) (-3303 . 259911) (-3304 . 259852) + (-3305 . 259824) (-3306 . 259736) (-3307 . 259555) (-3308 . 259485) + (-3309 . 259341) (-3310 . 259188) (-3311 . 259050) (-3312 . 258939) + (-3313 . 258770) (-3314 . 258720) (-3315 . 258132) (-3316 . 258025) + (-3317 . 257058) (-3318 . 257005) (-3319 . 256850) (-3320 . 256555) + (-3321 . 256022) (-3322 . 255859) (-3323 . 255787) (-3324 . 255704) + (-3325 . 255522) (-3326 . 255355) (-3327 . 255069) (-3328 . 254642) + (-3329 . 254585) (-3330 . 254333) (-3331 . 254280) (-3332 . 254227) + (-3333 . 254025) (-3334 . 253972) (-3335 . 253691) (-3336 . 253481) + (-3337 . 253410) (-3338 . 253243) (-3339 . 252996) (-3340 . 252760) + (-3341 . 252276) (-3342 . 252103) (-3343 . 252051) (-3344 . 251979) + (-3345 . 251900) (-3346 . 251512) (-3347 . 251260) (-3348 . 251097) + (-3349 . 250937) (-3350 . 250450) (-3351 . 250307) (-3352 . 250089) + (-3353 . 249994) (-3354 . 249572) (-3355 . 249165) (-3356 . 249106) + (-3357 . 249001) (-3358 . 248708) (-3359 . 248260) (-3360 . 247939) + (-3361 . 247826) (-3362 . 247689) (-3363 . 246953) (-3364 . 246886) + (-3365 . 246790) (-3366 . 246474) (-3367 . 246330) (-3368 . 245936) + (-3369 . 245773) (-3370 . 245598) (-3371 . 245427) (-3372 . 245281) + (-3373 . 245154) (-3374 . 245062) (-3375 . 244904) (-3376 . 244755) + (-3377 . 244598) (-3378 . 244482) (-3379 . 244409) (-3380 . 244306) + (-3381 . 244250) (-3382 . 244035) (-3383 . 243840) (-3384 . 243787) + (-3385 . 243734) (-3386 . 243447) (-3387 . 243317) (-3388 . 243201) + (-3389 . 242991) (-3390 . 242935) (-3391 . 242869) (-3392 . 242227) + (-3393 . 241934) (-3394 . 241712) (-3395 . 241599) (-3396 . 241441) + (-3397 . 241243) (-3398 . 241139) (-3399 . 241077) (-3400 . 240993) + (-3401 . 240775) (-3402 . 240562) (-3403 . 240500) (-3404 . 240433) + (-3405 . 240339) (-3406 . 240267) (-3407 . 240230) (-3408 . 240100) + (-3409 . 239872) (-3410 . 239819) (-3411 . 239706) (-3412 . 239298) + (-3413 . 239245) (-3414 . 239193) (-3415 . 239090) (-3416 . 238969) + (-3417 . 238659) (-3418 . 238456) (-3419 . 238385) (-3420 . 238278) + (-3421 . 238170) (-3422 . 238070) (-3423 . 237982) (-3424 . 237898) + (-3425 . 237490) (-3426 . 237335) (-3427 . 237222) (-3428 . 237069) + (-3429 . 236801) (-3430 . 236747) (-3431 . 235599) (-3432 . 235520) + (-3433 . 235443) (-3434 . 235203) (-3435 . 235085) (-3436 . 234493) + (-3437 . 234398) (-3438 . 234315) (-3439 . 234076) (-3440 . 233910) + (-3441 . 233811) (-3442 . 233732) (-3443 . 233680) (-3444 . 233457) + (-3445 . 233388) (-3446 . 233328) (-3447 . 233254) (-3448 . 233187) + (-3449 . 233092) (-3450 . 232984) (-3451 . 232888) (-3452 . 232804) + (-3453 . 232731) (-3454 . 231852) (-3455 . 231757) (-3456 . 231155) + (-3457 . 231085) (-3458 . 230617) (-3459 . 230454) (-3460 . 230295) + (-3461 . 230196) (-3462 . 230101) (-3463 . 229610) (-3464 . 229509) + (-3465 . 229392) (-3466 . 229358) (-3467 . 229212) (-3468 . 228967) + (-3469 . 228904) (-3470 . 228665) (-3471 . 228593) (-3472 . 228549) + (-3473 . 228120) (-3474 . 227798) (-3475 . 227667) (-3476 . 227587) + (-3477 . 226829) (-3478 . 226746) (-3479 . 226632) (-3480 . 226391) + (-3481 . 226276) (-3482 . 226069) (-3483 . 225332) (-3484 . 225266) + (-3485 . 225210) (-3486 . 225115) (-3487 . 224909) (-3488 . 224857) + (-3489 . 224760) (-3490 . 224686) (-3491 . 224549) (-3492 . 224370) + (-3493 . 224131) (-3494 . 223883) (-3495 . 223791) (-3496 . 223421) + (-3497 . 223317) (-3498 . 222941) (-3499 . 222767) (-3500 . 222471) + (-3501 . 221876) (-3502 . 221708) (-3503 . 221485) (-3504 . 221245) + (-3505 . 221186) (-3506 . 221058) (-3507 . 221030) (-3508 . 220981) + (-3509 . 220535) (-3510 . 220431) (-3511 . 220376) (-3512 . 220280) + (-3513 . 219834) (-3514 . 219806) (-3515 . 219042) (-3516 . 218710) + (-3517 . 218492) (-3518 . 218327) (-3519 . 218246) (-3520 . 218191) + (-3521 . 217891) (-3522 . 217796) (-3523 . 217743) (-3524 . 217314) + (-3525 . 217219) (-3526 . 217137) (-3527 . 217018) (-3528 . 216847) + (-3529 . 216710) (-3530 . 216585) (-3531 . 216507) (-3532 . 216436) + (-3533 . 216368) (-3534 . 216340) (-3535 . 216167) (-3536 . 215935) + (-3537 . 215825) (-3538 . 215506) (-3539 . 215325) (-3540 . 215180) + (-3541 . 215018) (-3542 . 214966) (-3543 . 214881) (-3544 . 214802) + (-3545 . 214702) (-3546 . 214576) (-3547 . 214418) (-3548 . 214332) + (-3549 . 213728) (-3550 . 213629) (-3551 . 213555) (-3552 . 213472) + (-3553 . 213384) (-3554 . 213214) (-3555 . 213162) (-3556 . 213014) + (-3557 . 212933) (-3558 . 212615) (-3559 . 212456) (-3560 . 212319) + (-3561 . 212246) (-3562 . 212026) (-3563 . 211957) (-3564 . 211823) + (-3565 . 211719) (-3566 . 211556) (-3567 . 211482) (-3568 . 211361) + (-3569 . 211152) (-3570 . 210893) (-3571 . 210551) (-3572 . 210246) + (-3573 . 209917) (-3574 . 208187) (-3575 . 208137) (-3576 . 207845) + (-3577 . 207721) (-3578 . 207647) (-3579 . 206219) (-3580 . 206019) + (-3581 . 205966) (-3582 . 205813) (-3583 . 205498) (-3584 . 205273) + (-3585 . 205019) (-3586 . 204918) (-3587 . 204864) (-3588 . 204684) + (-3589 . 204615) (-3590 . 203825) (-3591 . 203716) (-3592 . 203340) + (-3593 . 203280) (-3594 . 203091) (-3595 . 203017) (-3596 . 202934) + (-3597 . 202864) (-3598 . 202766) (-3599 . 202700) (-3600 . 202536) + (-3601 . 202395) (-3602 . 202257) (-3603 . 202159) (-3604 . 201911) + (-3605 . 201877) (-3606 . 201781) (-3607 . 201629) (-3608 . 200327) + (-3609 . 200272) (-3610 . 200131) (-3611 . 200047) (-3612 . 199912) + (-3613 . 199627) (-3614 . 199413) (-3615 . 199357) (-3616 . 199241) + (-3617 . 198957) (-3618 . 198834) (-3619 . 198574) (-3620 . 198469) + (-3621 . 198392) (-3622 . 198236) (-3623 . 198078) (-3624 . 197838) + (-3625 . 197205) (-3626 . 196953) (-3627 . 196824) (-3628 . 196684) + (-3629 . 196283) (-3630 . 196230) (-3631 . 196129) (-3632 . 195820) + (-3633 . 195574) (-3634 . 195456) (-3635 . 195312) (-3636 . 195146) + (-3637 . 195067) (-3638 . 191004) (-3639 . 190828) (-3640 . 190618) + (-3641 . 190326) (-3642 . 190237) (-3643 . 189991) (-3644 . 189473) + (-3645 . 189394) (-3646 . 189176) (-3647 . 189021) (-3648 . 188969) + (-3649 . 188856) (-3650 . 188668) (-3651 . 188397) (-3652 . 188237) + (-3653 . 188118) (-3654 . 188023) (-3655 . 187950) (-3656 . 187743) + (-3657 . 187473) (-3658 . 186876) (-3659 . 186848) (-3660 . 186795) + (-3661 . 186761) (-3662 . 186542) (-3663 . 186199) (-3664 . 186122) + (-3665 . 185975) (-3666 . 185869) (-3667 . 185810) (-3668 . 185642) + (-3669 . 185559) (-3670 . 185403) (-3671 . 184795) (-3672 . 184737) + (-3673 . 184633) (-3674 . 184512) (-3675 . 183514) (-3676 . 183358) + (-3677 . 183272) (-3678 . 183167) (-3679 . 183107) (-3680 . 182675) + (-3681 . 182493) (-3682 . 182401) (-3683 . 182248) (-3684 . 182099) + (-3685 . 179754) (-3686 . 179720) (-3687 . 179378) (-3688 . 179251) + (-3689 . 179150) (-3690 . 178396) (-3691 . 178265) (-3692 . 178102) + (-3693 . 177960) (-3694 . 177602) (-3695 . 177521) (-3696 . 177465) + (-3697 . 177174) (-3698 . 177058) (-3699 . 176914) (-3700 . 176886) + (-3701 . 176820) (-3702 . 176749) (-3703 . 176631) (-3704 . 176501) + (-3705 . 176437) (-3706 . 176378) (-3707 . 176199) (-3708 . 175772) + (-3709 . 175648) (-3710 . 175546) (-3711 . 175428) (-3712 . 175243) + (-3713 . 175117) (-3714 . 175031) (-3715 . 174935) (-3716 . 174118) + (-3717 . 173692) (-3718 . 173610) (-3719 . 173537) (-3720 . 173477) + (-3721 . 173422) (-3722 . 173294) (-3723 . 173187) (-3724 . 173098) + (-3725 . 172880) (-3726 . 172796) (-3727 . 172710) (-3728 . 172530) + (-3729 . 172092) (-3730 . 171964) (-3731 . 171737) (-3732 . 171163) + (-3733 . 171051) (-3734 . 170832) (-3735 . 170779) (-3736 . 170747) + (-3737 . 170625) (-3738 . 170567) (-3739 . 170427) (-3740 . 170298) + (-3741 . 170066) (-3742 . 169070) (-3743 . 168742) (-3744 . 168533) + (-3745 . 168422) (-3746 . 168321) (-3747 . 168272) (-3748 . 168142) + (-3749 . 167982) (-3750 . 167723) (-3751 . 167670) (-3752 . 167554) + (-3753 . 163012) (-3754 . 162832) (-3755 . 162761) (-3756 . 162666) + (-3757 . 162560) (-3758 . 162464) (-3759 . 162285) (-3760 . 162201) + (-3761 . 161976) (-3762 . 161815) (-3763 . 161625) (-3764 . 161504) + (-3765 . 161328) (-3766 . 161133) (-3767 . 161048) (-3768 . 160721) + (-3769 . 160635) (-3770 . 160355) (-3771 . 160302) (-3772 . 160196) + (-3773 . 160119) (-3774 . 160004) (-3775 . 159530) (-3776 . 159448) + (-3777 . 159263) (-3778 . 159229) (-3779 . 159146) (-3780 . 159066) + (-3781 . 159037) (-3782 . 158618) (-3783 . 158475) (-3784 . 158373) + (-3785 . 157811) (-3786 . 157390) (-3787 . 157313) (-3788 . 156610) + (-3789 . 156531) (-3790 . 156448) (-3791 . 156340) (-3792 . 156005) + (-3793 . 155907) (-3794 . 155067) (-3795 . 154987) (-3796 . 154823) + (-3797 . 153981) (-3798 . 152903) (-3799 . 152872) (-3800 . 152812) + (-3801 . 152699) (-3802 . 152387) (-3803 . 152204) (-3804 . 152123) + (-3805 . 152068) (-3806 . 151980) (-3807 . 151725) (-3808 . 151673) + (-3809 . 151489) (-3810 . 151286) (-3811 . 151112) (-3812 . 150516) + (-3813 . 150387) (-3814 . 150251) (-3815 . 149763) (-3816 . 149708) + (-3817 . 149538) (-3818 . 149485) (-3819 . 149391) (-3820 . 149292) + (-3821 . 149206) (-3822 . 147760) (-3823 . 147586) (-3824 . 147292) + (-3825 . 147151) (-3826 . 147016) (-3827 . 146957) (-3828 . 146874) + (-3829 . 132786) (-3830 . 132664) (-3831 . 132486) (-3832 . 132405) + (-3833 . 131880) (-3834 . 131719) (-3835 . 131638) (-3836 . 131545) + (-3837 . 131349) (-3838 . 131286) (-3839 . 130883) (-3840 . 130749) + (-3841 . 130654) (-3842 . 130597) (-3843 . 130492) (-3844 . 130422) + (-3845 . 130212) (-3846 . 130162) (-3847 . 130074) (-3848 . 130012) + (-3849 . 129887) (-3850 . 129819) (-3851 . 129667) (-3852 . 129501) + (-3853 . 129307) (-3854 . 129175) (-3855 . 129094) (-3856 . 129041) + (-3857 . 128970) (-3858 . 128942) (-3859 . 128841) (-3860 . 128647) + (-3861 . 128524) (-3862 . 128365) (-3863 . 128241) (-3864 . 127890) + (-3865 . 127791) (-3866 . 127742) (-3867 . 127549) (-3868 . 127476) + (-3869 . 127424) (-3870 . 127323) (-3871 . 127264) (-3872 . 127162) + (-3873 . 127061) (-3874 . 126918) (-3875 . 125997) (-3876 . 125340) + (-3877 . 125267) (-3878 . 125146) (-3879 . 125068) (-3880 . 124892) + (-3881 . 124587) (-3882 . 124501) (-3883 . 124367) (-3884 . 124228) + (-3885 . 124083) (-3886 . 124000) (-3887 . 123921) (-3888 . 123818) + (-3889 . 123745) (-3890 . 123565) (-3891 . 123472) (-3892 . 123157) + (-3893 . 119490) (-3894 . 119316) (-3895 . 119264) (-3896 . 119084) + (-3897 . 118904) (-3898 . 118805) (-3899 . 118650) (-3900 . 118508) + (-3901 . 118309) (-3902 . 118222) (-3903 . 118153) (-3904 . 118008) + (-3905 . 117808) (-3906 . 117357) (-3907 . 117298) (-3908 . 117204) + (-3909 . 117121) (-3910 . 116922) (-3911 . 116349) (-3912 . 115979) + (-3913 . 115752) (-3914 . 115569) (-3915 . 115490) (-3916 . 115388) + (-3917 . 115335) (-3918 . 114695) (-3919 . 114663) (-3920 . 114323) + (-3921 . 114258) (-3922 . 114134) (-3923 . 114004) (-3924 . 113948) + (-3925 . 113892) (-3926 . 113784) (-3927 . 113555) (-3928 . 113483) + (-3929 . 113365) (-3930 . 113292) (-3931 . 113082) (-3932 . 112989) + (-3933 . 112907) (-3934 . 112855) (-3935 . 112786) (-3936 . 112644) + (-3937 . 112508) (-3938 . 112365) (-3939 . 112294) (-3940 . 112198) + (-3941 . 111862) (-3942 . 111789) (-3943 . 111661) (-3944 . 111326) + (-3945 . 111223) (-3946 . 110023) (-3947 . 109749) (-3948 . 109696) + (-3949 . 109644) (-3950 . 109560) (-3951 . 109371) (-3952 . 109170) + (-3953 . 109114) (-3954 . 108934) (-3955 . 108803) (-3956 . 108751) + (-3957 . 108699) (-3958 . 107581) (-3959 . 107482) (-3960 . 107388) + (-3961 . 107246) (-3962 . 107179) (-3963 . 106845) (-3964 . 106300) + (-3965 . 106198) (-3966 . 106136) (-3967 . 105823) (-3968 . 105646) + (-3969 . 105413) (-3970 . 105101) (-3971 . 105016) (-3972 . 104974) + (-3973 . 104942) (-3974 . 104756) (-3975 . 104606) (-3976 . 104518) + (-3977 . 104490) (-3978 . 104375) (-3979 . 104319) (-3980 . 103977) + (-3981 . 103731) (-3982 . 103524) (-3983 . 103191) (-3984 . 103059) + (-3985 . 102964) (-3986 . 102756) (-3987 . 102703) (-3988 . 102647) + (-3989 . 102517) (-3990 . 102462) (-3991 . 102383) (-3992 . 102255) + (-3993 . 102178) (-3994 . 102005) (-3995 . 101846) (-3996 . 101672) + (-3997 . 101585) (-3998 . 101528) (-3999 . 101455) (-4000 . 101324) + (-4001 . 101147) (-4002 . 100611) (-4003 . 100525) (-4004 . 100379) + (-4005 . 100314) (-4006 . 99842) (-4007 . 99783) (-4008 . 99464) + (-4009 . 97683) (-4010 . 97609) (-4011 . 97581) (-4012 . 97528) + (-4013 . 96860) (-4014 . 96682) (-4015 . 96429) (-4016 . 96328) + (-4017 . 96258) (-4018 . 96032) (-4019 . 95942) (-4020 . 95812) + (-4021 . 95189) (-4022 . 94435) (-4023 . 94220) (-4024 . 94157) + (-4025 . 94106) (-4026 . 94037) (-4027 . 93911) (-4028 . 93837) + (-4029 . 93685) (-4030 . 93602) (-4031 . 93504) (-4032 . 93424) + (-4033 . 93255) (-4034 . 93206) (-4035 . 92987) (-4036 . 92820) + (-4037 . 92732) (-4038 . 92650) (-4039 . 92526) (-4040 . 92428) + (-4041 . 92327) (-4042 . 92204) (-4043 . 91958) (-4044 . 91898) + (-4045 . 91743) (-4046 . 91530) (-4047 . 91434) (-4048 . 91335) + (-4049 . 90768) (-4050 . 90493) (-4051 . 90350) (-4052 . 90243) + (-4053 . 90187) (-4054 . 89825) (-4055 . 89709) (-4056 . 89587) + (-4057 . 89426) (-4058 . 89250) (-4059 . 89151) (-4060 . 89057) + (-4061 . 88984) (-4062 . 88901) (-4063 . 88519) (-4064 . 88340) + (-4065 . 88177) (-4066 . 88092) (-4067 . 87937) (-4068 . 87733) + (-4069 . 87638) (-4070 . 87541) (-4071 . 87423) (-4072 . 87127) + (-4073 . 86750) (-4074 . 86566) (-4075 . 86304) (-4076 . 86185) + (-4077 . 86044) (-4078 . 86015) (-4079 . 85916) (-4080 . 85815) + (-4081 . 85634) (-4082 . 85455) (-4083 . 84931) (-4084 . 84860) + (-4085 . 84828) (-4086 . 84760) (-4087 . 84689) (-4088 . 84442) + (-4089 . 83883) (-4090 . 83826) (-4091 . 83438) (-4092 . 83079) + (-4093 . 82941) (-4094 . 82591) (-9 . 82563) (-4096 . 82466) + (-4097 . 82248) (-4098 . 82196) (-4099 . 82128) (-4100 . 81930) + (-4101 . 81763) (-4102 . 81489) (-4103 . 81187) (-4104 . 80628) + (-4105 . 80554) (-4106 . 80468) (-4107 . 80306) (-4108 . 79885) + (-4109 . 79819) (-8 . 79791) (-4111 . 79717) (-4112 . 79561) + (-4113 . 79509) (-4114 . 78832) (-4115 . 78758) (-4116 . 78580) + (-4117 . 78276) (-4118 . 78203) (-4119 . 77911) (-4120 . 77813) + (-4121 . 77399) (-4122 . 77092) (-7 . 77064) (-4124 . 77012) + (-4125 . 76900) (-4126 . 76769) (-4127 . 76650) (-4128 . 76550) + (-4129 . 76425) (-4130 . 76176) (-4131 . 76104) (-4132 . 57529) + (-4133 . 57310) (-4134 . 57239) (-4135 . 56701) (-4136 . 55113) + (-4137 . 54916) (-4138 . 54488) (-4139 . 54419) (-4140 . 54254) + (-4141 . 54079) (-4142 . 54013) (-4143 . 53879) (-4144 . 53782) + (-4145 . 53702) (-4146 . 53589) (-4147 . 50768) (-4148 . 50644) + (-4149 . 50532) (-4150 . 50336) (-4151 . 50272) (-4152 . 49669) + (-4153 . 49373) (-4154 . 49295) (-4155 . 49166) (-4156 . 49065) + (-4157 . 48996) (-4158 . 48940) (-4159 . 48870) (-4160 . 48790) + (-4161 . 48738) (-4162 . 48356) (-4163 . 48295) (-4164 . 48068) + (-4165 . 47988) (-4166 . 47886) (-4167 . 47858) (-4168 . 47826) + (-4169 . 47723) (-4170 . 47485) (-4171 . 47331) (-4172 . 47299) + (-4173 . 47131) (-4174 . 47079) (-4175 . 46864) (-4176 . 46749) + (-4177 . 46606) (-4178 . 46525) (-4179 . 46446) (-4180 . 46368) + (-4181 . 46260) (-4182 . 46174) (-4183 . 46073) (-4184 . 45837) + (-4185 . 45749) (-4186 . 45626) (-4187 . 45487) (-4188 . 45272) + (-4189 . 45138) (-4190 . 45031) (-4191 . 44937) (-4192 . 44885) + (-4193 . 44811) (-4194 . 44603) (-4195 . 44252) (-4196 . 44199) + (-4197 . 43326) (-4198 . 43252) (-4199 . 43153) (-4200 . 43059) + (-4201 . 42852) (-4202 . 42731) (-4203 . 42598) (-4204 . 42506) + (-4205 . 42303) (-4206 . 41928) (-4207 . 41344) (-4208 . 41038) + (-4209 . 40876) (-4210 . 40821) (-4211 . 40733) (-4212 . 40630) + (-4213 . 40564) (-4214 . 40503) (-4215 . 40450) (-4216 . 40355) + (-4217 . 40240) (-4218 . 39324) (-4219 . 39151) (-4220 . 38724) + (-4221 . 37862) (-4222 . 37733) (-4223 . 37639) (-4224 . 37478) + (-4225 . 37394) (-4226 . 37176) (-4227 . 37057) (-4228 . 36962) + (-4229 . 36902) (-4230 . 36478) (-4231 . 36408) (-4232 . 36241) + (-4233 . 36146) (-4234 . 36061) (-4235 . 35960) (-4236 . 35826) + (-4237 . 34624) (-4238 . 34485) (-4239 . 34426) (-4240 . 34346) + (-4241 . 34250) (-4242 . 34105) (-4243 . 34034) (-4244 . 33672) + (-4245 . 33620) (-4246 . 33465) (-4247 . 33410) (-4248 . 33304) + (-4249 . 33160) (-4250 . 32992) (-4251 . 32894) (-4252 . 32836) + (-4253 . 32652) (-4254 . 32618) (-4255 . 32235) (-4256 . 32075) + (-4257 . 31973) (-4258 . 31870) (-4259 . 31842) (-4260 . 31724) + (-4261 . 31675) (-4262 . 31086) (-4263 . 31033) (-4264 . 30999) + (-4265 . 30915) (-4266 . 30717) (-4267 . 30645) (-4268 . 30253) + (-4269 . 30160) (-4270 . 29767) (-4271 . 29676) (-4272 . 29602) + (-4273 . 29391) (-4274 . 29203) (-4275 . 28988) (-4276 . 28616) + (-4277 . 28170) (-4278 . 28007) (-4279 . 27891) (-4280 . 27673) + (-4281 . 27620) (-4282 . 27187) (-4283 . 26980) (-4284 . 25676) + (-4285 . 25602) (-4286 . 25539) (-4287 . 25479) (-4288 . 25199) + (-4289 . 25115) (-4290 . 25012) (-4291 . 24945) (-4292 . 24524) + (-4293 . 24098) (-4294 . 24017) (-4295 . 23821) (-4296 . 23691) + (-4297 . 23638) (-4298 . 23434) (-4299 . 23312) (-4300 . 23253) + (-4301 . 23180) (-4302 . 23083) (-4303 . 20856) (-4304 . 20416) + (-4305 . 20089) (-4306 . 20017) (-4307 . 19791) (-4308 . 19739) + (-4309 . 19702) (-4310 . 19606) (-4311 . 19533) (-4312 . 19353) + (-4313 . 19298) (-4314 . 19269) (-4315 . 19145) (-4316 . 19051) + (-4317 . 18958) (-4318 . 18678) (-4319 . 18560) (-4320 . 18489) + (-4321 . 18460) (-4322 . 18389) (-4323 . 17297) (-4324 . 17205) + (-4325 . 17127) (-4326 . 17042) (-4327 . 16596) (-4328 . 14740) + (-4329 . 14662) (-4330 . 14592) (-4331 . 14524) (-4332 . 14341) + (-4333 . 14102) (-4334 . 13750) (-4335 . 13450) (-4336 . 13202) + (-4337 . 12886) (-4338 . 12829) (-4339 . 12712) (-4340 . 12634) + (-4341 . 12476) (-4342 . 11933) (-4343 . 11850) (-4344 . 11691) + (-4345 . 11548) (-4346 . 11470) (-4347 . 11397) (-4348 . 11097) + (-4349 . 10851) (-4350 . 10785) (-4351 . 10652) (-4352 . 10494) + (-4353 . 10336) (-4354 . 10144) (-4355 . 9963) (-4356 . 9805) + (-4357 . 9518) (-4358 . 9136) (-4359 . 8964) (-4360 . 8655) + (-4361 . 8035) (-4362 . 7905) (-4363 . 7809) (-4364 . 7757) + (-4365 . 7524) (-4366 . 7450) (-4367 . 7270) (-4368 . 7182) + (-4369 . 7098) (-4370 . 6961) (-4371 . 6323) (-4372 . 6221) + (-4373 . 6114) (-4374 . 5954) (-4375 . 5749) (-4376 . 5652) + (-4377 . 5201) (-4378 . 4809) (-4379 . 4751) (-4380 . 4699) + (-4381 . 4668) (-4382 . 4582) (-4383 . 4512) (-4384 . 2256) + (-4385 . 2161) (-4386 . 2084) (-4387 . 1646) (-4388 . 1573) + (-4389 . 1487) (-4390 . 1356) (-4391 . 1272) (-4392 . 1189) + (-4393 . 858) (-4394 . 714) (-4395 . 619) (-4396 . 188) (-4397 . 131) + (-4398 . 30))
\ No newline at end of file diff --git a/src/testsuite/interpreter/sf-2893009.input b/src/testsuite/interpreter/sf-2893009.input new file mode 100644 index 00000000..bbe38205 --- /dev/null +++ b/src/testsuite/interpreter/sf-2893009.input @@ -0,0 +1,4 @@ +-- Check that flags parameters are represented correctly, e.g. +-- as literal strings, not symbol. +s := first parse "sf-2893009.spad" +s :: DefinitionAst diff --git a/src/testsuite/interpreter/sf-2893009.spad b/src/testsuite/interpreter/sf-2893009.spad new file mode 100644 index 00000000..f3ae63a7 --- /dev/null +++ b/src/testsuite/interpreter/sf-2893009.spad @@ -0,0 +1,7 @@ +-- This is a support file for "f-2893009.input. +-- Check that flags parameters are represented correctly, e.g. +-- as literal strings, not symbol. + +elt(x,"left") == left x + + |